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ABSTRACT
Context-oriented programming (COP) extensions have been
implemented for several languages. Each concrete language
design and implementation comes with different variations of
the features of the COP paradigm. In this paper, we provide
a comparison of eleven COP implementations, discuss their
designs, and evaluate their performance.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.3.2 [Programming Languages]: Lan-
guage Classifications—Multiparadigm Languages

Keywords
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1. INTRODUCTION
The separation of cross-cutting concerns is an issue that

is considered by several programming language paradigms,
such as aspect-oriented programming [11], feature-oriented
programming [3], and context-oriented programming (COP)
[10]. The COP paradigm is a relatively novel approach.
Since its inception, several COP extensions to various
languages—to which we refer as host languages—have been
developed. Each language implements the core concepts
of COP and provides host-language specific functionality.
Even though it is apparent that COP is an interesting field
for research in programming language design, no systematic
comparison of these languages, their design, implementa-
tion, or unique features has been done yet.

In this paper, we compare eleven COP languages extend-
ing eight host languages. We describe their characteristics
and implementation strategies and discuss a performance
evaluation of the languages, where we measure the overhead
(relative to the respective host language) that is caused by
the use of COP constructs.
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Section 2 wraps up the COP paradigm and the surveyed
languages. Section 3 discusses COP language features and
variations. The performance evaluation of the language im-
plementations is presented in Section 4. Section 5 summa-
rizes the paper.

2. COP LANGUAGES
In this section, we give a brief introduction to COP and

the language implementations discussed in this paper. For a
detailed description of the concepts of COP, we refer to [10];
Section 2.2 provides references for the COP languages con-
sidered in this paper.

2.1 Overview
As an extension to object-oriented programming, COP

provides means for the concise specification and dynamic
composition of behavioral variations that cut across a sys-
tem. For this purpose, the paradigm introduces the layer
construct, a modularization concept for behavioral varia-
tions that are distributed over several modules, e.g. classes
or objects.

Layers contain partial method definitions that implement
the functionality of a behavioral variation. To distinguish
between these methods and common method definitions,
we introduce the terms plain method definition and layered
method definition. A plain method denotes a method whose
execution is not affected by layers. Layered methods consist
of a base method definition, which is executed when no ac-
tive layer provides a corresponding partial method, and at
least one partial method definition.

At run-time, layers can be composed for the dynamic ex-
tent of a certain control flow. A partial method definition
can proceed to a corresponding partial method in another
active layer or, if such method does not exist, to the base
method definition. The order of layer composition defines
the order in which partial methods definitions can be tra-
versed. In general, layers and their partial methods are
accessed in the reverse order of their activation: the last
activated layer is the first one of the proceed chain.

2.2 Languages
ContextL [4,5] was the first COP extension to a program-

ming language. It is based on Lisp and extends the Common
Lisp Object System. Layers can be defined for classes, func-
tions and methods. At run-time, layers can be activated
for a certain control flow. ContextL provides several special
features that are presented in Section 3.

Subsequently, several meta-level libraries for dynamic pro-



Figure 1: Feature comparison of several COP languages.

gramming languages were developed, namely ContextS [9]
for Smalltalk, ContextR [15] for Ruby, ContextJS for
JavaScript, ContextPy [16] and PyContext [17] for Python,
and ContextG for Groovy.

Aside from these dynamic languages, three COP exten-
sions to the Java programming language exist, namely Con-
textJ [1], ContextJ* [10], and ContextLogicAJ [2]. Con-
textJ* is a Java 5 library that implements the core concepts
of COP. The main purpose of the development of Context-
LogicAJ was to experiment with various mappings of COP
syntax to Java, to find an optimal transformation that can
be employed by a compiler-based implementation. It is im-
plemented as an aspect-oriented precompiler based on the
LogicAJ [12] aspect language and provides a more conve-
nient syntax than ContextJ*. ContextJ is a Java language
extension with a dedicated COP syntax. The first ideas
about a ContextJ language were presented in [5]; a lan-
guage specification and compiler-based implementation of
ContextJ is provided by [1].

The cj prototype [13, 14] is an implementation of a mini-
mal subset of ContextJ. It serves the purpose of demonstrat-
ing the applicability of a machine model and semantics for
multi-dimensional separation of concerns [8] to COP. The cj
prototype does not run on a standard Java virtual machine
but provides full layer (de)activation capabilities.

In the following sections, we investigate the design and
implementation of the COP languages presented so far1.
Another approach to context-orientation is Ambience and
its underlying Ambient Object System [6] that is based on
Common Lisp. It supports behavior adaptations with par-
tial method definitions and context objects, which corre-

1Most COP languages are accessible via our COP website
at http://www.hpi.uni-potsdam.de/swa/cop

spond to COP layers. Due to space limitations, we omit
Ambience in our comparison.

3. COP LANGUAGE FEATURES
In the following, we discuss COP language features and

the characteristics on which our comparison is based. We
distinguish between features of COP language designs and
implementation properties of the languages presented in the
preceding section. Figure 1 presents an overview of the COP
languages and their features.

3.1 Language Design

Layer Declaration Strategy. Layers are the modular-
ization concept for cross-cutting behavioral variations in
context-oriented languages. In general, we distinguish two
layer declaration strategies, namely class-in-layer and layer-
in-class. Class-in-layer denotes layer declarations where the
layer is defined outside the lexical scope of the modules (e. g.,
classes) for which it provides behavioral variations. Simi-
larly to aspect definitions, this strategy allows layer encap-
sulation in dedicated modules. This is especially beneficial
when programs are evolving: later introduction of layers or
layer behavior does not affect the code of already existing
modules.

In contrast, layer-in-class supports the declaration of a
layer within the lexical scope of the module it augments. The
benefit of that strategy is that module definitions are com-
pletely specified, which helps code analysis and understand-
ability. Some languages, such as ContextL and ContextCS,
allow both strategies and leave it to the programmer to de-
cide whether he wants to define layered methods close to the
lexical scope of their default methods, or in other modules.



The semantics of layer-in-class and class-in-layer can slightly
differ. In ContextL, for example, layer-in-class allows par-
tial methods to access private elements of its enclosing class,
whereas class-in-layer specifications cannot break encapsu-
lation and therefore do not have access to internal state and
behavior.

Layer Activation. The key mechanism of COP is the dy-
namic composition of layers. Several alternatives are pos-
sible to control the scope of the activation where the most
primitive way is to globally activate layers. In most cases,
this method is not applicable since it may cause inconsisten-
cies of the system’s state. Thread-based activation denotes
layer (de)activation with thread-local effect. ContextJ and
ContextLogicAJ support this control mechanism.

The most common activation strategy provided by COP
languages is dynamic-extent based activation. COP lan-
guages provide a block construct denoting the scope in
whose dynamic extent the layer activation is active. Most
languages also offer a special construct for dynamic-extent
based deactivation.

Some implementations offer global activation across
thread boundaries, so that one layer activation concurrently
influences several execution paths. This mechanism has to
be used carefully since global activation can trigger unin-
tended side-effects.

Reflective Access. Some situations require, besides com-
mon layer definition and activation, access to the currently
active layers at run-time. A few COP languages offer a re-
flective API that allows the introspection of the current layer
composition. In addition, host languages with strong reflec-
tive capabilities allow access to layers and partial methods,
though this functionality is not provided via an API but
requires the use of internal functions of the COP implemen-
tations2.

Stateful Layers. Besides behavioral variations, some lan-
guages offer the introduction of new state via layers. We
distinguish between two variants: (1) layers provide state
that is accessible in all definitions of a layer (that can be
distributed over several classes); and (2) a layer definition
introduces state to the classes it augments.

3.2 Implementation Details
The languages investigated in this paper implement lay-

ers and dynamic composition in various ways, which are
described in this section.

Implementation Technique. The investigated extensions
to dynamic languages are implemented by means of their
host language, i. e., at library level. For the extension of dy-
namic dispatch, the languages make use of their meta-level
facilities. The benefit of this implementation technique is
quick language development without requiring complex lan-
guage development environments, such as compiler frame-
works and parser generators. Possible drawbacks are per-
formance problems and complex non-declarative syntax.

Other techniques are precompilers, such as ContextLogi-
cAJ, and compilers, such as ContextJ. Both allow for dedi-

2In Figure 1, we denote the reflective access by means of the
host language with (x).

cated syntax and an implementation with good performance.
As dynamically updating compiled code is not easily achiev-
able in statically compiled languages, these implementations
have to maintain data structures capturing layer activation
state and providing information for dynamic dispatch.

ContextL is a hybrid approach since it is a meta-level
library using the Common Lisp Object System and uses
macros supporting a dedicated syntax.

Layer Activation. Two strategies for layer injection can be
observed. Layer and partial method definitions can cause
the generation of proxy objects that are executed instead of
the original method when the layer is active. The additional
proxy object delegations typically cause an overhead at run-
time (see Section 4.1). This variant requires to manage a list
of active layers which is consulted (at least) at any method
invocation to a layered method.

The other strategy is to dynamically change the delegation
chain or virtual method lookup table upon layer activation.
In this case, no explicit list of active layers needs to be man-
aged. On the other hand, each layer (de)activation causes
the manipulation of all delegations to its partial methods,
which might affect many classes.

Layer Representation. By definition, a layer is a language
construct orthogonal to classes. COP languages implement
layers in different ways. We only consider the layer repre-
sentation at development time since this is the phase where
developers have to deal with layers.

Library-based approaches implement layers in terms of
concepts available in their host language—e. g., classes or
objects that provide layer-specific functionality—allowing
for more flexibility in the language implementation. For
instance, if an application requires an adaption of the COP
behavior, this can be easily implemented in the COP library.

Compiler-based languages can extend their host lan-
guage’s syntax and therefore can introduce dedicated lan-
guage constructs for layers and layer activation. Since this
language design is not restricted to the known abstractions
of the host language, the COP syntax can be more declara-
tive than for library-based languages.

3.3 Special Features
Aside from the general COP functionality, some imple-

mentations offer special features for improving and extend-
ing COP. We will now give a brief overview of these concepts
and their corresponding implementations.

ContextL comes with explicit language support to cope
with dependencies between layers. Layers might have func-
tional dependencies on other layers; e. g., a security layer
might rely on the presence of a user management layer. To
expose and manipulate the run-time layer composition, Con-
textL provides a comprehensive reflective API supporting
reflective layer activation. A more declarative layer depen-
dencies description is also supported by ContextL.

ContextPy provides the concept of guards and the pos-
sibility to use COP for procedural programming. The ac-
tivation of a partial method might not just depend on one
layer being active. There might be scenarios in which the
activation of a partial method is only possible when a cer-
tain combination of layers is active. Guards are functions
that receive the list of currently active layers and return a
Boolean value indicating whether the partial method this



guard was assigned to is to be activated. Moreover, accord-
ing to its pure decorator implementation, ContextPy does
not depend on object-oriented constructs like classes. Thus,
COP can be applied to object-oriented as well as procedural
programming.

PyContext [17] suggests the concepts of dynamic vari-
ables [7] and implicit layer activation. Dynamic variables al-
low developers to access contextual state without additional
pass-through parameters in the method signature. They are
represented as globally accessible objects, whose values are
dynamically determined within the dynamic extent of a layer
activation. Previous values are hidden and available again
after leaving the current extent. For instance, session state
can be accessed at any point in time during the execution
of the current layer composition. The implicit activation of
layers is concerned with the problem of spreading many ex-
plicit layer activations over the whole source code. PyCon-
text factors out context activation from the main program
logic and defines a method returning whether the layer is
active or not. Each time a layered method is called and the
layer is registered for implicit activation, the active method
is executed and its corresponding partial method, if neces-
sary, contributes to the final composition.

In ContextR [15], layer definitions can be extended with
so-called hook methods that are executed at the beginning
and end of a dynamic extent-based layer activation.

4. PERFORMANCE EVALUATION
In this section, we present run-time measurements, based

on a set of micro-benchmarks, assessing the overhead caused
by layer activation and layer-aware method dispatch com-
pared to only using plain host language features. This anal-
ysis is the basis for the ensuing discussion of the different
language design and implementation decisions.

The micro-benchmarks were run on a 1.8 GHz dual core
Intel Core 2 Duo with 2 GB memory running Windows XP,
except the ContextL and ContextJS benchmarks, which
were evaluated on a Intel Core 2 Duo, 2.4 GHz, 4 GB, run-
ning Mac OS X 10.5.6. We execute the benchmarks with the
following versions of the host languages: LispWorks 64-Bit
5.1.2, Java 1.6, Squeak Smalltalk 3.10, Python 2.6, Ruby
1.8.6, JavaScript for Safari 3.2.1, and Groovy 1.6.

4.1 Layer-aware Method Dispatch
In most languages, layer-aware method lookup requires

additional operations at run-time that may cause an ex-
ecution overhead compared to the host language method
lookup. To measure the possible overhead, we compared
the method execution of plain methods that execute multi-
ple operations with their layered counterparts, where each
operation is modularized in a separate partial method. The
benchmark class contains ten plain methods (method_01–
method_10) and class variables (counter_01–counter_10),
where method method_i increments the fields counter_01–
counter_i. The same behavior is provided by a layered
method (layered), which only increments counter_01, and
nine partial method definitions (pmd_1–pmd_9) of nine dis-
tinct layers (Layer1–Layer9). Each partial method incre-
ments a distinct field and proceeds to the next method def-
inition. The call of method03, for instance, executes the in-
crementation of counter_01, counter_02, and counter_03,
which is the same behavior as the call to layered in the
presence of the layers Layer1 and Layer2.

The results are shown in Figure 2. In all languages ex-
cept ContextL and cj, we register a significant performance
decrease from 75 % up to 99 %. In those languages that im-
plement COP with meta-programming techniques, we recog-
nize a performance loss of more than 93 %. The two compiler
and precompiler based languages, ContextJ and Context-
LogicAJ, exhibit the least performance penalties (75–90 %).

The measurement of ContextL contains a broad range of
values from 6 % up to 140 % and the results seem not to
correlate with the increasing number of counter increments.
The anomalies can be explained by massive optimizations
provided by LispWorks.

Also, the cj prototype performs relatively well; the execu-
tion time of a layered method with no active layers even pro-
duces no overhead. This is because cj directly manipulates
the lookup table upon layer activation instead of manag-
ing an active-layers list for consultation upon dispatch. The
presence of such lists is the main reason for the extreme
overheads observed for the other languages.

4.2 Layer Activation
Aside from layer-aware method lookup, we analyzed the

costs of dynamic-scope based layer activation, since this is
the most common composition mechanism in the considered
languages. The activation of a layer requires an update of
a set or list of active layers. If the host language supports
threads, the active layers must be declared thread-locally.
To measure the costs of this update, we compared the ex-
ecution time of five methods (method_1–method_5), where
method_i contains the incrementation of a class variable
counter_i. For each method, five layers (Layer1–Layer5)
provide a partial method with the same body. Thus, the
execution of a method results in the same behavior, inde-
pendently from the layer composition. We ran method_1–
method_5 without active layers, which is the reference value
for this benchmark, and with the successive activation of
one to five layers.

Figure 3 presents the results of this benchmark. Best re-
sults are achieved by ContextL, ContextPy, and ContextJS.
The other languages suffer from a significant performance
decrease caused by the representation of active layers. Es-
pecially for the (pre)compiler-based implementations, layer
activation is very expensive.

Worst results are measured for ContextS and cj. In con-
trast to the other implementations, they do not maintain a
list of active layers but directly inject and later on remove
the code of partial method definitions on each layer activa-
tion. This strategy leads for cj and also for the first run of
ContextS to good results in our first benchmark but causes
huge overhead for frequent layer activation.

4.3 Discussion
COP language abstractions, namely layers and dynamic

activation, increase the expressiveness of programming lan-
guages. However, as our micro-benchmarks of the current
versions of some COP languages show, these benefits do not
come for free. In most cases the implementations suffer from
a performance loss at layer-aware dispatch and layer activa-
tions. Some exceptions, such as ContextL and cj in the first
benchmark and ContextL and ContextPy in the second, sig-
nificantly reduce the overhead.

At first glance, the results seem discouraging. However,
the micro-benchmarks only measure the overhead of COP-



Figure 2: Throughput of layered methods with in-
creasing number of active layers.

Figure 3: Throughput of zero to four layer activa-
tions.



specific code. In a real application, the contingent of this
code can be expected to be relatively small, so the observed
overheads should be of low relevance.

The observed performance penalties definitely call for the
investigation of dedicated optimization strategies in the un-
derlying execution environments. As, e. g., the standard
Java VM does not know about the concept of layer-aware
method dispatch, it cannot optimize this and other related
operations to the same degree it can apply to normal virtual
method dispatch. The exceptions mentioned above (i. e.,
ContextJ, cj and ContextPy) suggest directions in which
future research should evolve.

5. SUMMARY
The COP paradigm is designed for the separation of

context-dependent cross-cutting concerns. It has been im-
plemented in several programming languages, especially for
dynamic languages. In this paper, we give an overview on
eleven COP languages and present their language design and
implementation. The micro-benchmarks in Section 4 show
that the current language implementations suffer from a big
execution overhead. Future work should definitely consider
performance issues of the COP languages, which is a vital
property for larger applications.
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