
A Penny a Function: Towards Cost Transparent
Cloud Programming

Lukas Böhme
lukas.boehme@hpi.uni-potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Tom Beckmann
tom.beckmann@hpi.uni-potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Sebastian Baltes
sebastian.baltes@adelaide.edu.au

University of Adelaide
Adelaide, Australia

Robert Hirschfeld
robert.hirschfeld@uni-potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Abstract

Understanding and managing monetary cost factors is cru-
cial when developing cloud applications. However, the di-
verse range of factors in�uencing costs for computation,
storage, and networking in cloud applications poses a chal-
lenge for developers whowant tomanage andminimize costs
proactively. Existing tools for understanding cost factors are
often detached from source code, causing opaqueness regard-
ing the origin of costs. Moreover, existing cost models for
cloud applications focus on speci�c factors such as compute
resources and necessitate manual e�ort to create the models.
This paper presents initial work toward a cost model based
on a directed graph that allows deriving monetary cost esti-
mations directly from code using static analysis. Leveraging
the cost model, we explore visualizations embedded in a code
editor that display costs close to the code causing them. This
makes cost exploration an integrated part of the developer
experience, thereby removing the overhead of external tool-
ing for cost estimation of cloud applications at development
time.

CCS Concepts: • Software and its engineering → Appli-

cation speci�c development environments; Integrated
and visual development environments; Software organi-
zation and properties.

Keywords: Cloud computing, cost transparency, cost model-
ing, developer tooling

PAINT ’23, October 23, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0399-7/23/10.

h�ps://doi.org/10.1145/3623504.3623566

ACM Reference Format:

Lukas Böhme, Tom Beckmann, Sebastian Baltes, and Robert

Hirschfeld. 2023. A Penny a Function: Towards Cost Transpar-

ent Cloud Programming. In Proceedings of the 2nd ACM SIGPLAN

International Workshop on Programming Abstractions and Inter-

active Notations, Tools, and Environments (PAINT ’23), October

23, 2023, Cascais, Portugal. ACM, New York, NY, USA, 10 pages.

h�ps://doi.org/10.1145/3623504.3623566

1 Introduction

Cloud computing accelerates application development and
deployment by providing developers with rapid infrastruc-
ture provisioning and managed services [3]. Instead of own-
ing physical servers, developers can opt to lease infrastruc-
ture and services on-demand, allowing them to compose
their applications as a mixture of self-written and managed
services and pay only for what resources they actually use.
Case studies have reported that resulting cost savings for
hosting can reach 77% and up to 95%, depending on the given
cloud application [2, 20].

Cloud infrastructure and services come with various pric-
ing models, ranging from �at monthly costs (subscription-
based billing) to pay-per-use models, each having many cost-
related con�guration options (usage-based billing). While
such �ne-grained models can o�er economic advantages,
they also introduce opaqueness regarding the origin of costs,
increasing the risk of unplanned expenses [9].
For instance, a simple modi�cation in a cloud applica-

tion’s code could signi�cantly increase expenses if it triggers
multiple calls to costly services like a secret manager or
unexpectedly triggers a chain of computationally intensive
services.1 Since the motivation for opting to move services to
the cloud often arises from a need to support large amounts
of tra�c, designing cost-e�cient applications is an impor-
tant concern for developers [9], as even small architectural

1Accounts from industry: https://news.ycombinator.com/item?id=31907374

https://twitter.com/donkersgood/status/1635244161778737152

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3065-6997
https://orcid.org/0000-0003-0015-1717
https://orcid.org/0000-0002-2442-7522
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3623504.3623566
https://doi.org/10.1145/3623504.3623566
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623504.3623566&domain=pdf&date_stamp=2023-10-19


PAINT ’23, October 23, 2023, Cascais, Portugal Böhme, Beckmann, Baltes, Hirschfeld

Figure 1. HTTP endpoint and handler annotated with our
proposed user interface for communicating costs.

decisions can have a large impact when called millions of
times.
Currently, obtaining cost information for an application

is usually done in two ways: First, before the services and
resources are provisioned, developers can use web-based
cost calculators, which require error-prone manual mapping,
detached from the actual development process. Second, after
the application has been deployed, developers wait up to 24
hours for cost reports from their cloud provider, introducing
long feedback loops and requiring developers to analyze the
report retrospectively in a web portal, again detached from
the actual development process. Both options do not allow
developers to e�ciently understand and optimize costs of
their cloud applications, especially when considering archi-
tectural changes.
Approaches in research suggested using logs for a more

�ne-grained post-hoc analysis [11] or even proposed a model
that would allow obtaining a cost prediction based on pa-
rameters provided by the developer [14]. While supporting
developers in comprehending expenses, both approaches de-
tach insights from source code, forcing developers to bridge
the gap between code and associated costs themselves.

To close this gap, we present an approach to automatically
derive a cost model from application code based on static
analysis of a cloud application following the Infrastructure-
from-Code (IfC) paradigm2, where infrastructure declara-
tions are derived from source code. Building on that model,
we present a user interface that displays derived cost infor-
mation attached to the source code expression causing the
expenses, with the goal of enhancing cost comprehension
on a per-expression basis (see Figure 1). The contributions

2https://klo.dev/state-of-infrastructure-from-code-2023/

of this paper are thus: (1) increasing cost-transparency of
cloud applications, (2) supporting developers in making in-
formed cost-based architecture decisions, (3) reducing the
risk of unexpected costs while having a short feedback loop
without the burden of manually deriving a cost model, and
(4) laying out the foundation for cross-vendor cloud applica-
tion cost models. The prototype we describe in this paper is
open-source and available on Github3.

2 Background

In this section, we will brie�y describe the domain of cloud
computing, pricing models for cloud computing, followed
by approaches to deploy cloud applications.

2.1 Cloud Computing

Cloud computing describes an on-demand delivery model of
computational resources over the internet. Instead of provid-
ing and maintaining its own infrastructure to run applica-
tions, developers provision servers and services from cloud
providers. In addition to a large portfolio of services, cloud
computing is especially interesting for developers because
of provided scalability and elasticity of many cloud services.
Lehrig et al. [12] describes both terms as follows: Scalability
refers to the ability of a service to automatically adjust its
resources to increase its maximum processable workload
without compromising on service quality. On the other hand,
elasticity describes how well services can adapt their maxi-
mum processable workload over time.
The most prominent on-demand paradigm in the cloud

leveraging scalability and elasticity are serverless functions.
Serverless computing is a cloud computing paradigm that
allows developers to create applications without the need
to manage servers and scaling capacity. The main building
blocks of serverless applications are so-called cloud func-
tions, also known as Function-as-a-Service (FaaS) o�erings.
Cloud functions are small, stateless programs executed based
on external triggers such as HTTP requests or state changes
in a database [19]. Developers assemble larger applications
using cloud functions combined with vendor-provided ser-
vices such as databases, API gateways, or queues. Cloud
functions are dynamically scaled to meet workload demands
by increasing or decreasing available resources, ensuring
optimal resource allocation for the given workload. Because
of their built-in scalability, cost estimation and monitoring
of serverless applications are particularly important.

2.2 Pricing Models

One advantage of building applications following the server-
less paradigm is that cloud functions do not incur any cost as
long as they are not being executed. The underlying pricing
model is called usage-based billing, where the cloud provider

3https://github.com/hpi-swa-lab/sb-tree-sitter/tree/master

/packages/Sandblocks-Wing

2



A Penny a Function: Towards Cost Transparent Cloud Programming PAINT ’23, October 23, 2023, Cascais, Portugal

only charges for resources during their usage. Synonyms
for usage-based billing include consumption-based billing,
pay-per-use, and pay-as-you-go.
Subscription-based billing, on the other hand, means that

one pays a recurring fee for a �xed period of time, granting
access to a speci�c con�guration such as a virtual machine
with a certain number of CPUs, a certain amount of main
memory, etc. That fee is a �at rate regardless of resource
usage on the provisioned virtual machine. A synonym for
those virtual machines is “reserved instances”. Discounts are
available for longer commitments, e.g., one to three years.
Besides these two general billing approaches, there are

also hybrid settings with a �xed monthly rate plus usage-
based components or special o�ers such as free tiers. Fi-
nally, cloud providers o�er unused capacity at a discount
via so-called transient or spot instances. Those discounted
resources can, however, be reclaimed if the provider needs
the capacity due to increased demand.
As mentioned above, serverless o�erings usually come

with usage-based billing. A common approach is that cloud
function prices are determined by the execution time mea-
sured in milliseconds multiplied by a base price resulting
from the con�gured main memory. The con�gured main
memory then again determines the available CPU power for
the application. Serverless storage o�erings such as docu-
ment databases might bill the developer by the number of
read and write operations, the number and size of stored
documents, and the speci�ed quality of service. While read
and write operations can be scaled down to zero, once data
is persisted in the database, there will be a recurring fee
regardless of usage. This indicates that understanding usage-
based billing is complex and involves considering many dif-
ferent cost factors. An advantage of this pricing model is
the auto-scaling mechanism. If no workload is required, the
application does not cost anything (at least in theory, see
the database example above). If more computing or stor-
age power is required, the resources can easily be scaled
up. This pricing model does, however, also introduce cost
in-transparency due to the large amount of additional cloud
provider services that all have their own pricing models,
such as queues, con�gurable databases, and cloud functions.
The number of possible con�gurations, the di�culty in pre-
dicting future workloads, and the fact that many “metered”
services are usually part of serverless applications, are all
factors making the development of cost-e�cient serverless
applications a challenging endeavor.

2.3 Methods of Cloud Application Deployment

In a cloud environment, infrastructure and consumed ser-
vices must be provisioned before usage. For simple use cases,
such as deploying a single web service, a developer can man-
ually provision the service using the vendor’s online dash-
board. This may quickly become di�cult to oversee and

reproduce for sophisticated applications using multiple de-
ployments that may span dozens of individual services and
complicated permission structures. In response, declarative
and imperative approaches for provisioning cloud infras-
tructure and services arose. Declarative automation systems
such as Ansible for single machines or Terraform for clusters
of machines allow developers to state the desired state in a
domain-speci�c language (DSL) declaratively. Tools inter-
pret the declarative description of infrastructure to provision
cloud environments automatically. Automation systems such
as AWS’s Cloud Development Kit (CDK) enable developers to
use an imperative approach instead of declarative DSLs. This
allows the developer to use pre-constructed abstractions in a
given programming language, such as an object representing
an object store to declare the required infrastructure.

Both approaches introduce redundancy: a separate decla-
ration of services duplicates the same abstract services, as
used in the source code, from which parts of their declara-
tion could be inferred. Notably, aspects such as host, port,
and schemas for a database are commonly provided in the
application’s source code. Other aspects related to source
code, such as memory requirements for services like cloud
functions, are not redundant but detached from source code
in con�guration panels or separate declaration �les.

To bring the con�guration of the deployment closer to the
source code that concern it, IfC approaches are being devel-
oped to merge infrastructure and service declaration into
programming languages to reduce this redundancy. An IfC
approach detects explicit uses of services and infrastructure
from source code, which in non-IfC code are mere proxies
communicating to an endpoint, and derives a declaration for
deployment. For other deployment concerns, which are not
usually expressed in code, IfC approaches use annotations
or similar means of adding con�guration to code.
An example of an IfC programming language is Wing

[15]. Listing 2 shows an example of this work-in-progress
programming language, which was developed to ease the de-
velopment of cloud applications [15]. The compiler of Wing
�nds instantiations that require allocation of cloud services
and automatically derives a description for Terraform or
AWS CDK, allowing the developer to focus on the source
code instead of managing and understanding separate infras-
tructure declaration �les.

As IfC approaches bring code and infrastructure concerns
close together, they facilitate a �ne-grained understanding of
resource allocation and use of those resources. Additionally,
as allocation, con�guration, and use of those resources occur
in a single programming language, reasoning for static anal-
ysis is simpli�ed, as only mechanisms of one language need
to be supported, and the language can enforce strong refer-
ences between declaration and use of resources. For these
reasons, we chose Wing as platform and language on which
to build the reference implementation of our cost estimation
approach.

3



PAINT ’23, October 23, 2023, Cascais, Portugal Böhme, Beckmann, Baltes, Hirschfeld

HTTP
/upload

HTTP
/search

Object
Store

Table

onCreate

Queue

Schedule
Every 1s

3rd Party
Service

Table

HTTP
/callback

Figure 2. Illustrative schema of our running example of a
video transcription service.

3 A Model For Costs for Cloud Applications

To illustrate our cost modeling approach, we will use a run-
ning example throughout the rest of the paper. This running
example is a (simpli�ed) video transcription service with
subtitle extraction, which is visualized in Figure 2.
The service has two public HTTP endpoints: one that

returns a download link of a video and its extracted subtitles
from a database (/search) and another that allows users to
upload video �les (/upload). The video �les are saved in an
object storage service. Once saved, the service passes a public
URL to a third-party transcription service. The transcription
service has a rate limit of one request per second that our
application respects through a queue. Once the transcription
service has completed transcribing the video, it calls a third
HTTP endpoint that receives the video identi�er and the
transcribed text and stores both in the database.

As described in Section 2.1, to estimate the cost of invoking
the endpoints and storing video �les, we need to consider
multiple factors concerning the use and con�guration of our
cloud application. To facilitate this estimation process, we
construct a cost model. Our cost model is a directed graph
where nodes are all application parts that incur costs. Nodes
could be a database, a queue, an API call, or an invocation
of a cloud function. Edges between the nodes in the graph
correspond to the cloud application’s control �ow.
Nodes without incoming edges are called entry points.

Entry points are invoked either by external users or by time-
based triggers. A typical example of an entry point is an API
gateway, which forwards an HTTP request to a cloud func-
tion that is another node, creating a directed edge between
both nodes.

Each node has associated costs set by the respective cloud
vendor, which we de�ne as cost factors. A cost factor is a
single atomic aspect that in�uences the overall costs of the
given node. For instance, a typical cloud function has two
cost factors: execution time and memory usage. A cost factor
is associated with a concrete pricing model de�ned by a
cloud vendor. To instantiate our cost model according to the
pricing model of a speci�c vendor, a developer has to de�ne
a mapping between types of nodes and the pricing model
once. This mapping can then be reused for instantiations of
cost models for the same vendor.
We identi�ed three categories of cost factors: invocation,

�xed, and accumulating cost factors.

Invocation cost factors incur cost each time its associ-
ated node is reached during an execution ("invoked").
Examples of invocation cost factors are execution time
and required memory for cloud functions or byte size
of a data transfer. Invocation cost factors are associated
with usage-based billing o�erings of cloud providers.

Fixed cost factors incur cost regardless of use and are
solely related to the provision of a service, such as a
physical server or database, which is charged at a �xed
rate, as in subscription-based o�erings.

Accumulating cost factors change over time based on
the use of a service. For example, the expenses associ-
ated with data storage increase as an application writes
data to the database. Accumulating cost factors occur
when using usage-based billing o�erings for storage
solutions.

While some factors are directly determined by the pricing
structure of a vendor, such as the cost per invocation of an
API, and some are evident from code, for example, whether a
databasewrite occurswithin a transaction or not, others need
to be estimated or looked up by the user or automatically
retrieved from analytical data, such as visitor numbers. Based
on this observation, we further distinguish between external

and internal cost factors.

External cost factors are those determined by actors
external to the system. For example, the number of
requests to an HTTP endpoint might depend on visitor
numbers or the payload size on the length of videos
uploaded to our system. Developers may make guesses
to allow the model to perform calculations or consult
historical data.

Internal cost factors are all other factors and can typi-
cally be inferred or automatically estimated. For exam-
ple, the duration of a cloud function can be estimated
by running it with representative payloads. Or, the stor-
age taken up by a database can be inferred through the
number and parameters of insert calls that the code
will make.

External cost factors appear at entry points, where user
interactions with the cloud application occur. Internal cost

4



A Penny a Function: Towards Cost Transparent Cloud Programming PAINT ’23, October 23, 2023, Cascais, Portugal

factors commonly depend on external cost factors for their
calculation. For example, if pro�ling the runtime duration
of our example video transcription service with short ten-
second video snippets, the calculations will di�er if users
upload videos that are hours long.

The cost model for our running example is shown in Fig-
ure 3. Each service incurring costs is represented as a node
with the associated cost factors. In our example, most cost-
incurring nodes have invocation cost factors. Serverless func-
tions (fn) have two invocation cost factors: allocated mem-
ory and runtime, whereas method calls Table.list, Queue.pop
and Queue.push, as well as HTTP endpoints (/upload /search /

callback) have costs per execution. Nodes for calls to storage
solutions such as Bucket.put and Table.insert are associated
with both invocation and accumulating cost factors since
they are billed per invocation, and the resulting storage entry
accumulates costs over time.
To estimate the costs for a single execution of an entry

point, we simulate the expected control �ow a program takes.
Therefore, we traverse the cost model graph beginning from
the entry point and sum costs for each cost factor of each
passed node. All cost factors are combined to calculate the
costs for one node using the rules determined by the vendor’s
pricing model. This can range from a simple multiplication
of factors to more complex calculations that increase in steps
as thresholds of use are exceeded. To assess the total cost
of running the complete system over a given time frame,
external cost factors determine how often the entry points
of our application are invoked and, thus, how often we need
to simulate execution and add up the resulting cost.
Some edges in the graph are conditionally taken based

on the occurrence of certain API calls elsewhere rather than
their control �ow as expressed in code. We call these implicit
control �ow edges. Implicit control �ow edges occur when
a relationship between the source of control �ow and the
target of control �ow is not stated explicitly in the source
code. For example, debounced processing of work through a
queue establishes an implicit connection between the place
where work is pushed to the queue and the place where work
is popped from the queue. In the visualization of the model,
we add two arrows for such scenarios that meet in a diamond,
as seen in Figure 3: one arrow shows the actual control �ow
that triggers the target of the implicit control �ow; a second
arrow shows the implicit control �ow from the source. For
the purposes of our cost model, the �rst arrow showing the
actual control �ow is irrelevant and only helps the developer
understand the relationship. For example, the frequency of
popping values o� of a queue is considered secondary to
the frequency of pushing to that queue when considering a
branch that is only taken when the queue is not empty.

To summarize, we mapped our running example as a con-
crete cost model, as shown in Figure 3. Here, the entry points
determining the overall tra�c are theHTTP routes that allow
users to upload videos or search transcriptions. As the nodes

Entry Point

Conditional Control-flow

Serverless Function

HTTP
/upload

Invocation Cost Factor

Accumulating Cost Factor

fn Bucket.put

fn Queue.push

Queue.popSchedule
Every 1min

fn

HTTP
/callback

fn Table.insert

3rd Party Transcribe

HTTP
/search

fn Table.list

fn

Legend

Figure 3. Cost model for our example video transcription
service. As syntax, we propose to use circles for invocation
factors and squares for accumulating factors. Filled arrows
denote synchronous control �ow. Dashed arrows denote
a jump but continuation of logical control �ow, such as
through a deferred trigger. A conditional control �ow ele-
ment has a �lled and an open arrow. The �lled arrow denotes
the dominant �ow, which should be considered for the invo-
cation count of subsequent nodes. The open arrow denotes
the synchronous control �ow that allows us to reach the
diamond but may be invoked at a di�erent frequency.

are invoked along the execution of the model, their associ-
ated cost factors incur expenses. First, the HTTP endpoint
incurs expenses for its invocation and cost for the bandwidth
for request and response. Next, the HTTP endpoint invokes a
function to handle the request, which incurs two cost factors
for memory and execution duration. Following, the function
places the video �le in a bucket store, incurring a cost factor
for the upload and another accumulating factor for the data
added to the store. The synchronous �ow of the function
ends now, but our logical �ow continues through a trigger
reacting to �les being uploaded to the bucket by pushing to

5



PAINT ’23, October 23, 2023, Cascais, Portugal Böhme, Beckmann, Baltes, Hirschfeld

a queue. Now, the second entry point is of relevance, as it
will attempt to pop an item o� the queue every minute and,
if an item had previously been pushed, send that �le to a
third-party transcription service. That service sends a com-
pleted transcript via an HTTP request to our infrastructure,
where we store the transcript in a database table.

4 A User Interface for Visualizing Cost of
Cloud Applications

As described in Section 1, our goal is to visualize the cost
information of a cloud application as close as possible to the
code causing the costs. To derive the cost model of a cloud
application introduced in Section 3, we �rst need to derive
the graph structure from the source code (see Section 4.1).
We then use the resulting model to construct a user inter-
face to visualize costs directly within the source code (see
Section 4.2). Figure 4 shows an example of the user inter-
face we propose. To facilitate tight integration between the
user interface and the source code, we use the Sandblocks
structured editor [5]. While using a structured editor for our
approach is not required, it simpli�es the creation of a user
interface next to the source code.

4.1 Extracting the Cost Model from Code

In the following, we describe how we extract the cost model
from Wing source code. As discussed in Section 2.3 IfC ap-
proaches likeWing combine application code and declarative
infrastructure construction in one source code �le. To facil-
itate this, Wing distinguishes between a pre�ight and an
in�ight phase, as seen in Listing 2. By default, code runs
in the pre�ight phase. Code running in the pre�ight phase
evaluates and obtains the infrastructure’s declarative de-
scriptions, such as the instantiation of an API gateway or a
database. Code marked with in�ight is contained in closures
that are executed at runtime on a provisioned cloud server.
Pre�ight API calls in Wing wire together di�erent parts

of the infrastructure to form its declarative description that
can be deployed. In particular, pre�ight code schedules when
in�ight code will be run. For example, a pre�ight call may set
an in�ight function to run every time an object is added to
an object store. Furthermore, pre�ight API calls declare the
use of resources, such as a static host of �les for the web or
a database that charges for the amount of storage taken up.
In�ight code uses resources that are declared in the pre�ight
phase: an in�ight closure might reference a database and
insert a record into it. To extract a cost model from Wing
code, we follow a process of three phases:

1. we �nd constructors of resources in the code by look-
ing for speci�c AST nodes (e.g., new cloud.Api()),

2. we �nd all calls on instances of these resources by
statically analyzing the use of the variables that the
resources are bound to, and

3. we reference a list of parameters relevant to cost esti-
mation for each resource and call on that resource.

Once we collected the set of resources and API calls, repre-
senting nodes in the cost model graph, we derive the control
�ow between the nodes through a list of hard-coded rules
derived from the function of the Wing APIs.
The control �ow begins from an entry point, linearly ex-

ecutes code in an in�ight closure, and exits, except for two
cases. First, event-driven triggers might leave the linear con-
trol �ow as manifested in sequential code. For example, we
know that an upload to an object storage will invoke all
handlers that are subscribed to the corresponding upload
trigger:

1 api.post("/upload",

2 inflight(req: ApiRequest): ApiResponse => {

3 videoStorage.put(str.fromJson(req.body));

4 return ApiResponse { status :200 };

5 });

6 videoStorage.onCreate(inflight(key: str) => {

7 queue.push(key);

8 });

Listing 1. HTTP endpoint adding a �le to a bucket and a
trigger responding to �les added.

Second, implicit control �ow edges may depend on an
additional factor, as seen in the code below.While the closure
is invoked every second, the API call for transcription is only
invoked if an element was pushed to the queue in Listing 1.

1 let schedule = new Schedule(ScheduleProps {

2 rate: std.Duration.fromSeconds (1)

3 });

4 schedule.onTick(inflight () => {

5 if let key = queue.pop() {

6 httpPost("http :// example.com/transcribe", {

7 videoId: key

8 });

9 }

10 });

Listing 2. Scheduled operation checking a queue and calling
an HTTP endpoint.

4.2 User Interface

The cost model serves the vital function of calculating ex-
penses linked to the cost factors of a cloud application. This
process is essential to improve awareness of the expenses of
cloud applications. A user interface that tightly integrates
with the source code is then responsible for communicating
to the developer:

1. what statements cause costs,
2. what the overall summation of cost per month accord-

ing to the model is, and
3. how the (non-linear) control �ow causes costs.

To communicate what statements cause cost, we wrap all
statements and resources found during the analysis process

6



A Penny a Function: Towards Cost Transparent Cloud Programming PAINT ’23, October 23, 2023, Cascais, Portugal

Figure 4. A screenshot of our user interface prototype. A
conditional checks for elements in a queue. The API call to
access the queue is annotated with the number of pushes
to that queue happening elsewhere in that program and the
total cost for all pop operations per month. Below, a HTTP
request to a third-party video transcription service has two
annotations: through the outer, the user has informed the
system that this service will callback to our /complete HTTP
endpoint, and the other was added by the system, showing
how often this call will occur, allowing the user to set a cost
per call, and calculating the total cost per month.

Figure 5. User interface embedded at the top of the source
�le. It allows users to select a month to show a prediction
for and, below, how much the model indicates the monthly
cost will amount to for the con�gured month. Below the dec-
laration of a bucket for storing video �les, showing the total
of storage added each month based on all upload operations
in the program and their con�gured payload sizes, as well
as the cost for the total storage based on the point in time
con�gured in the widget just above.

in widgets that expose the factors of that statement that
in�uence cost according to our model, as seen in Figure 4.
For a database, we may show how much storage is added
per month, and for an API call how frequently it is called.

The cost model is independent of time because it describes
costs produced from a single invocation along any of its entry
points. However, accumulating factors like database storage
as described in Section 3 will often increase cost over time.
Consequently, we provide a slider as part of the user interface
that allows developers to globally con�gure a point in time to

know the cost for. All cost factors that depend on how long
the system has been in use should refer to that slider. In our
running example, the slider in�uences storage costs for the
object store and the table. As time progresses, entry points
are triggered, leading to new entries in the object storage
and table. Consequently, accumulating costs increase over
time since data entries are only added, not deleted.

An overall cost estimate for the entire application is given
at the top of the source �le, next to the selection for point in
time, as shown in Figure 5. The widget adds up all costs for
the con�gured month. Developers will need to make sure to
have sensible estimates for external factors, for example, for
the amount of tra�c each endpoint receives, for this total to
be useful.
All language constructs that require annotations persist

the information provided by developers in the source code.
Speci�cally, as Wing does not have an expression-level anno-
tation syntax construct, we wrap each invocation in an array
of the form [new cloud.Table(), {averageRecordSize: 200}][0]

that embeds the relevant information in the AST but does
not a�ect runtime.

While we provide hard-coded rules describing the control
�ow of Wing’s API and triggers for use by our static analysis,
a call to our cloud application that occurs from a system that
acts as a black box cannot be automatically inferred. Instead,
we allow developers to annotate that an expression will
invoke an HTTP endpoint in the user interface, as shown in
Figure 4. Once annotated, our system can infer the number
of invocations in the HTTP endpoint based on the number
of invocations to the black box service.
The user interface thus uses the cost model information

to provide developers with relevant and acute information.
Changing values, either in the code or in a con�gurable cost
factor, shows immediate changes in all derived cost factors.
A large number of relevant factors are automatically derived
by our system, notably non-linear control �ow, and the devel-
oper is able to �ll in the gaps to arrive at useful information,
even in the early stages of the presented prototype.

5 Related Work

Most research in the �eld of cost transparency for cloud ap-
plications was published in the cloud computing community.
For instance, Leitner et al. [13] introduce CostHat, a model to
calculate the cost of microservice-based applications, which
integrates cost information in an IDE. While this research
has similar aims, our approach di�ers in two key aspects.
First, CostHat explicitly states that the instantiation of their
model is out of scope, requiring developers to create the
cost model by themselves. Our approach uses static analysis,
supported by the IfC deployment approach, to derive cost
models from source code. Second, CostHat simpli�es the
cost calculation to four factors: compute costs, costs of API
calls, costs of IO operations such as writes to a database,

7



PAINT ’23, October 23, 2023, Cascais, Portugal Böhme, Beckmann, Baltes, Hirschfeld

and additional costs. In practice, cloud vendors use a vari-
ety of factors that go beyond these four. For example, the
cost of cloud functions depends on con�gured memory size.
Moreover, the cost of storage and networking depends on
the size of objects accessed or transferred. Our model allows
specifying arbitrary parameters, thus letting developers to
match the current and future billing practices.
Another tool aiming to improve cost comprehension for

cloud applications is Costradamus. Costradamus, introduced
by Kuhlenkamp and Klems [11] is a tracing system focus-
ing on retroactively capturing costs in a cloud environment.
It enriches log statements with cost-related metadata and
analyzes this data to gain insights into the sources of costs.
While Costradamus dynamically captures �ne-granular cost
information, it has limitations in reliably capturing all possi-
ble paths of an application, as it relies on these paths being
used while capturing is active. Moreover, the approach does
not allow theoretical scenario analysis and introduces long
feedback loops since tracing data must be captured �rst.

In addition to speci�c tools, other research areas are also
related to our topic. For instance, the integration of perfor-
mance information in code editors shares a close connection
with the objective of enhancing cost comprehension, as both
aim to convey runtime information to users. Baltes et al. [4]
integrate runtime performance information in a code editor.
Based on a user study, they conclude that the integration of
performance information in the IDE helped developers to
�nd and understand performance bugs. Moreover, Cito et al.
[7] introduce PerformanceHat, which integrates pro�ling
information from production systems into the editor code,
to give direct feedback about the runtime performance of
speci�c methods and functions. They also identi�ed that
developers �nd performance bugs faster by integrating pro-
�ling information, which may be applicable to costs as well.
Obetz et al. [16] describe an approach to derive a static

call graph from serverless applications based on vendor-
provided SDKs. The call graph can be used to communicate
control �ow in complex setups across serverless functions
to, for example, assessing security or performing dead code
elimination.
Furthermore, much research has been conducted in the

context of serverless functions to predict the costs of cloud
functions and work�ows. For example, Eismann et al. [8]
e�ciently predict the costs of serverless work�ows using
a monte-carlo simulation and information from prior exe-
cutions. However, they treat each function as a black box,
ignoring possible cost side e�ects such as calling other ser-
vices or using external data storage.

Finally, the open-source community also published tools
to ease the development of cloud applications related to costs.
Infracost [1] is a specialized tool to estimate costs for infras-
tructure based on a declarative Terraform �le, leaving out
runtime information. Resulting cost information is either
displayed directly in the code editor via plugins or is part

of the version control work�ow, enabling developers to dis-
cuss changes on the cost before they occur. The tool AWS
Lambda Power Tuning [6] enables developers to experimen-
tally execute functions to determine the con�guration with
an optimal cost-performance ratio.

6 Discussion and Future Work

In the following section, we �rst discuss the characteristics
of the cost model and, second, the user interface to communi-
cate the costs derived from themodel. In addition, we identify
future work for both cost models and the user interface to
increase awareness of the expenses of cloud applications.

6.1 Cost Model

The model, as presented in the paper, acts as a proof-of-
concept for further development. Below, we outline its cur-
rent strengths and limitations.

Flexibility. The model can simulate execution and con-
sider relevant factors for cost estimation of cloud applica-
tions, including statically derived control �ow and logical
connections, such as invocations made from third-party sys-
tems. Our proposed directed graph approach consisting of
nodes and cost factors allows instantiatingmodels for current
and future pricing models of di�erent vendors. Currently,
a static mapping between the pricing of services for each
vendor to the language constructs once. In future versions,
adapters to the vendor pricing APIs can be used to instantiate
our model. However, when having a model with up-to-date
pricing information of multiple vendors, our system can
automatically estimate expected expenses for each vendor,
allowing the developer to make informed decisions before se-
lecting a vendor for their cloud application. At the same time,
a challenge to our approach is the complexity and vastness
of the con�guration space o�ered by cloud vendors. For ex-
ample, current cloud developers can select quality-of-service
levels, compute units, regions, and dozens of other factors, to
con�gure a database. Pricing tiers, which decrease costs per
unit as usage increases, make it more di�cult to predict the
e�ect of changes in usage, as they no longer grow linearly.
Communicating this large con�guration space e�ectively
and concisely will be important in future work.

Control Flow. To precisely calculate a cloud application’s
costs, identifying possible control �ow branches, particu-
larly costly rare worst-case branches, is vital for a precise
estimate. While the model incorporates basic control �ow
from the source code of a cloud application automatically
and allows developers to patch non-inferrable gaps, the pre-
sented implementation currently does not interpret control
statements like loops for if-statements. For instance, when
a cloud function is called within a loop, the current model
does not re�ect multiple executions, missing relevant cost
information. Similarly, a branch may let control �ow make

8



A Penny a Function: Towards Cost Transparent Cloud Programming PAINT ’23, October 23, 2023, Cascais, Portugal

two di�erent API calls based on user input, or a query may
cache results to reduce costs by avoiding subsequent com-
putations. In future versions, the model should detect such
cases and create conditional edges that can be weighted by
probabilities in the form of the user’s input or a cache hit
ratio. To derive places where probabilities are necessary and
what data they depend on, a complete version of the static
analysis might incorporate symbolic execution and abstract
interpretation. Both techniques might help developers un-
derstand dependencies between input and branches along
the control �ow and identify possible costly branches of a
program without executing it.

6.2 User Interface

The user interface visualizes the expenses of a cloud applica-
tion by using the cost model to increase the cost awareness
of a developer. The possibilities of interactions exposed in
the user interface determine how developers can interact
with the model.

Proximity to Source Code. Similar to the goal of IfC to
combine infrastructure declarations and source code and
remove redundancies, our user interface brings cost infor-
mation directly to the source code. Through annotations,
information developers add to aid cost estimation persists in
source code and can be shared. Thus, developers can exper-
iment and understand the impact on cost interactively. In
future iterations, lessons from live programming [18] could
be integrated to support developers in quickly experimenting
with permutations of their program.

Manual Predictions. In the current user interface, many
parameters can be derived. Consequently, the burden for
developers when estimating cost, which as described either
required developers to enter every detail in cost calculators
or wait for billing information from deployments to arrive,
is signi�cantly lessened. As the prototype has an under-
standing of control �ow, it can propagate factors that are
con�gured once to multiple places where they are used. Still,
some manual data entry is required to calculate costs that
may not be necessarily required. Recent studies show that
some of the parameters of serverless applications, such as
the execution time of a serverless function, can be predicted
accurately [8]. Similarly, we can include production infor-
mation in the estimation analogous to performance research
[4]. For example, tests or examples such as in Babylonian
Programming [17] could be used to perform trial runs of
functions to estimate duration and memory usage.

Visualization for Costs Tracing. Currently, our user
interface does not aid developers in analyzing the sources of
a factor. Although the necessary data is already available, the
user interface does not yet communicate the edges between
the model nodes. For example, the user interface may display

the edges overlayed on the code or show a tabular view. Vi-
sualizations attached to the code causing costs might enable
developers to explore the cost factors of their application
interactively. More comprehensive analytics could highlight
where cost optimizations may have the most impact. This
expanded approach would empower developers with more
detailed information and analysis options.

Optimizing Cost. Given a complete model, a future direc-
tion could begin identifying parameters to optimize for cost
e�ciency. For example, developers could formulate service-
level requirements such as response times and leave param-
eters of cost factors free to be speci�ed by the system, as
long as those requirements are ful�lled [10]. Or, a linting
mechanism on the graph could communicate the potential
for batch operations to developers.

7 Conclusion

In this paper, we presented an approach to model cost for
cloud applications independent of a speci�c vendor. The re-
sulting cost model facilitates the calculation of the overall
cost of deploying and running a cloud application. In a proto-
type, we demonstrate that it is possible to derive a large part
of factors relevant for cost through static analysis and map
the remaining factors into an interface where the developer
can �ll the gaps.
Our prototype displays the derived and con�gured cost

factors attached to their related expressions in code. Conse-
quently, our approach supports developers in understanding
how their code incurs cost and allows them to experiment
with alternative design choices in code while directly seeing
the impact on cost. Our system demonstrates the feasibility
of cost as a tightly integrated concern in development envi-
ronments, paving the way for future developments where
that information can be used to support developers in de-
signing and optimizing their cloud applications.

Acknowledgments

We gratefully acknowledge the �nancial support of HPI’s
Research School4.

References
[1] Infracost 2023. Infracost/Infracost. Infracost. h�ps://github.com/

infracost/infracost

[2] Gojko Adzic and Robert Chatley. 2017. Serverless Computing: Eco-

nomic and Architectural Impact. (2017), 884–889. h�ps://doi.org/10.

1145/3106237.3117767

[3] M. G. Avram. 2014. Advantages and Challenges of Adopting Cloud

Computing from an Enterprise Perspective. 12 (2014), 529–534. h�ps:

//doi.org/10.1016/j.protcy.2013.12.525

[4] Sebastian Baltes, Oliver Moseler, Fabian Beck, and Stephan Diehl.

2015. Navigate, Understand, Communicate: How Developers Locate

Performance Bugs. (2015), 1–10. h�ps://doi.org/10.1109/ESEM.2015.

7321208

4h�ps://hpi.de/en/research/research-school.html

9

https://github.com/infracost/infracost
https://github.com/infracost/infracost
https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1145/3106237.3117767
https://doi.org/10.1016/j.protcy.2013.12.525
https://doi.org/10.1016/j.protcy.2013.12.525
https://doi.org/10.1109/ESEM.2015.7321208
https://doi.org/10.1109/ESEM.2015.7321208
https://hpi.de/en/research/research-school.html


PAINT ’23, October 23, 2023, Cascais, Portugal Böhme, Beckmann, Baltes, Hirschfeld

[5] Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and

Robert Hirschfeld. 2023. Structured Editing for All: Deriving Usable

Structured Editors from Grammars. In Proceedings of the 2023 CHI Con-

ference on Human Factors in Computing Systems (Hamburg, Germany)

(CHI ’23). Association for Computing Machinery, New York, NY, USA,

Article 595, 16 pages. h�ps://doi.org/10.1145/3544548.3580785

[6] Alex Casalboni. 2023. AWS Lambda Power Tuning. h�ps://github.com/

alexcasalboni/aws-lambda-power-tuning

[7] Jürgen Cito, Philipp Leitner, Martin Rinard, and Harald C. Gall. 2019.

Interactive Production Performance Feedback in the IDE. (2019), 971–

981. h�ps://doi.org/10.1109/ICSE.2019.00102

[8] Simon Eismann, Johannes Grohmann, van Erwinm Eyk, Nikolas

Herbst, and Samuel Kounev. 2020. Predicting the Costs of Serverless

Work�ows. In Proceedings of the ACM/SPEC International Conference

on Performance Engineering (Edmonton AB Canada). ACM, 265–276.

h�ps://doi.org/10.1145/3358960.3379133

[9] Adam Eivy and Joe Weinman. 2017. Be Wary of the Economics of

"Serverless" Cloud Computing. 4, 2 (2017), 6–12. h�ps://doi.org/10.

1109/MCC.2017.32

[10] JosephM. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-

Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018.

Serverless Computing: One Step Forward, Two Steps Back. (2018).

h�ps://doi.org/10.48550/arXiv.1812.03651

[11] Jörn Kuhlenkamp and Markus Klems. 2017. Costradamus: A Cost-

Tracing System for Cloud-Based Software Services. In Service-Oriented

Computing, Michael Maximilien, Antonio Vallecillo, Jianmin Wang,

and Marc Oriol (Eds.). Vol. 10601. Springer International Publishing,

657–672. h�ps://doi.org/10.1007/978-3-319-69035-3_48

[12] Sebastian Lehrig, Hendrik Eikerling, and Ste�en Becker. 2015. Scal-

ability, Elasticity, and E�ciency in Cloud Computing: A System-

atic Literature Review of De�nitions and Metrics. (2015). h�ps:

//doi.org/10.1145/2737182.2737185

[13] Philipp Leitner, Jürgen Cito, and Emanuel Stöckli. 2016. Modelling

and Managing Deployment Costs of Microservice-Based Cloud Appli-

cations. , 165–174 pages. h�ps://doi.org/10.1145/2996890.2996901

[14] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer.

2019. A Mixed-Method Empirical Study of Function-as-a-Service

Software Development in Industrial Practice. 149 (2019), 340–359.

h�ps://doi.org/10.1016/j.jss.2018.12.013

[15] Inc. Monada. 2023. Wing - Documentation. (2023). h�ps://docs.

winglang.io/

[16] Matthew Obetz, Stacy Patterson, and Ana Milanova. 2019. Static

Call Graph Construction in AWS Lambda Serverless Applications.

In Proceedings of the 11th USENIX Conference on Hot Topics in Cloud

Computing (USA) (HotCloud’19). USENIX Association, 20.

[17] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert

Hirschfeld. 2019. Babylonian-style Programming: Design and Imple-

mentation of an Integration of Live Examples into General-purpose

Source Code. The Art, Science, and Engineering of Programming 3, 3 (feb

2019). h�ps://doi.org/10.22152/programming-journal.org/2019/3/9

[18] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias

Pape. 2018. Exploratory and Live, Programming and Coding. The

Art, Science, and Engineering of Programming 3, 1 (jul 2018). h�ps:

//doi.org/10.22152/programming-journal.org/2019/3/1

[19] Eyk van Erwin, Alexandru Iosup, Simon Seif, and Markus Thömmes.

2017. The SPEC Cloud Group’s Research Vision on FaaS and Serverless

Architectures. In Proceedings of the 2nd International Workshop on

Serverless Computing (New York, NY, USA) (WoSC ’17). Association for

Computing Machinery, 1–4. h�ps://doi.org/10.1145/3154847.3154848

[20] Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena

Salamanca, Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos

Valencia, Angee Zambrano, and Mery Lang. 2017. Cost Comparison

of Running Web Applications in the Cloud Using Monolithic, Mi-

croservice, and AWS Lambda Architectures. 11, 2 (2017), 233–247.
h�ps://doi.org/10.1007/s11761-017-0208-y

Received 2023-07-17; accepted 2023-08-07

10

https://doi.org/10.1145/3544548.3580785
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://doi.org/10.1109/ICSE.2019.00102
https://doi.org/10.1145/3358960.3379133
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.48550/arXiv.1812.03651
https://doi.org/10.1007/978-3-319-69035-3_48
https://doi.org/10.1145/2737182.2737185
https://doi.org/10.1145/2737182.2737185
https://doi.org/10.1145/2996890.2996901
https://doi.org/10.1016/j.jss.2018.12.013
https://docs.winglang.io/
https://docs.winglang.io/
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1007/s11761-017-0208-y

	Abstract
	1 Introduction
	2 Background
	2.1 Cloud Computing
	2.2 Pricing Models
	2.3 Methods of Cloud Application Deployment

	3 A Model For Costs for Cloud Applications
	4 A User Interface for Visualizing Cost of Cloud Applications
	4.1 Extracting the Cost Model from Code
	4.2 User Interface

	5 Related Work
	6 Discussion and Future Work
	6.1 Cost Model
	6.2 User Interface

	7 Conclusion
	Acknowledgments
	References

