
20 Explorative Authoring of Active Web Content

2 Handling Touch Events on Mobile Devices for Lively
Kernel

2.1 Introduction

The Web is an important platform for modern applications. Most of these applications
use keyboard and mouse as input devices. These work well on desktop computers, but
mobile computing is becoming more popular. Smartphones and tablet computers are
outnumbering regular desktop PCs. As mobile devices often have neither keyboard nor
mouse, the way users interact with applications is changing. Rather than having two in-
put devices22, there is only one touch enabled display. This display provides the possibil-
ity to recognize and trace multiple fingers simultaneously, which offers new possibilities
for user interaction. Applications need to adapt to this paradigm shift.

On mobile devices, we distinguish between native applications (apps), which are de-
veloped solely for these medium and Web applications (Web apps), which behave like
native apps, but are executed in a Web browser. Native apps are not supposed to work
on desktop computers and can take advantage of software development kits (SDK) op-
timized for multi touch input. Web apps however should work in both environments.
Therefore they must implement keyboard and mouse as well as touch optimized meth-
ods of user interaction. Most applications deliver distinct content for desktop and mobile
devices to solve this problem.

Web apps are executed in a Web browser, which is an event based system. Web develop-
ers implement the behaviour of their website based on the events the browser provides.
On a stationary desktop PC without a touchscreen interface, these are mainly mouse
and keyboard events. On a mobile device, these are touch events. When a website im-
plements handlers for touch events, users can interact with the site on mobile devices.
But many websites are not optimized for touch yet, so the mobile browser generates
mouse events based on the touch events to enable the user to interact with these sites
anyway. Tapping an element will therefore trigger both, a touch and a mouse event.
However, it is advisable not to rely on these generated mouse events, as they do not
take advantage of multitouch.

Mobile Web browsers also implement multitouch gestures to navigate the site, like
pinch to zoom or swipe to scroll. The browser provides events for these interactions,
so that developers can react to scroll and zoom events. It is also possible to prevent the
page from zooming and scrolling. However, developers must be careful when doing so
as users expect a website to behave in a certain way.

22 keyboard and mouse

26 Explorative Authoring of Active Web Content

5HQGHU&RQWH[W

UHJLVWHU+DQGOHU)RU(YHQW

(YHQW+DQGOHU

UHJLVWHU+70/$QG69*

DGG(YHQW/LVWHQHU

0RUSK

UHJLVWHU)RU(YHQWV

SUHSDUH)RU1HZ5HQGHU�
&RQWH[W

LQLWLDOL]H

UHJLVWHU)RU(YHQWV

UHJLVWHU)RU(YHQW
UHJLVWHU)RU(YHQWUHJLVWHU)RU(YHQW

UHJLVWHU)RU(YHQWV
UHJLVWHU)RU7RXFK(YHQWV

Figure 19: method calls for registering an event

Morph – prepareForNewRenderContext Lively Kernel was supposed to work
with render contexts apart from HTML. prepareForNewRenderContext calls functions to
initialize the renderer and create a graphical representation32 for the morph. It also calls
itself for the submorphs of the morph.

Morph – registerForEvents This method takes the argument handleOnCapture as pa-
rameter which is defined in the global Config object. handleOnCapture indicates whether
the eventListener should be called in the capturing phase33 of the event. Per default
Lively Kernel uses the capturing phase. registerForEvents dispatches the call to multiple
registerForEvent methods like registerForMouseEvents or registerForTouchEvents.

Morph – registerForTouchEvents registerForTouchEvents contains calls to register-
ForEvent with DOM event names as argument.

Morph – registerForEvent Every morph has an event handler which contains a dis-
patch table where all callback functions are stored. This dispatch table is an associative
array where the key is the name of the DOM event34 and the value is an event specifica-
tion. This event specification contains the type of the event, the target morph, the target
method name and the handleOnCapture flag. This function creates the event specification
object and calls registerHandlerForEvent on the render context of the morph.

32 for the HTML renderer this is a DOM node
33 rather than the bubbling phase
34 for example touchstart or mousemove

Explorative Authoring of Active Web Content 27

RenderContext – registerHandlerForEvent This method dispatches the call to dif-
ferent functions of the event handler regarding the render context. In the default case
the render context is HTML, so registerHTMLAndSVG is called.

EventHandler – registerHTMLAndSVG This methods adds the event listener to
the DOM node of the morph. The registered method is not the one the user implemented
like onClick or onTouchStart, but an anonymous function which just calls handleEvent on
the event handler. Since the event handler keeps its own dispatch table35 it can call the
associated function when the event occurs.

If the user interacts with the site, certain DOM events are fired. These are dispatched
by the browser and the registered callback function is executed. In Lively Kernel, this
callback function is the same for every event.

1 registerHTMLAndSVG: function (eventSpec) {
2 var handler = this;
3 eventSpec.handlerFunc = function(evt) {
4 handler.handleEvent(evt);
5 };
6 eventSpec.node.addEventListener(
7 eventSpec.type,
8 eventSpec.handlerFunc,
9 eventSpec.handleOnCapture

10);
11 }
12

13 handleEvent: function (evt) {
14 var eventSpec = this.dispatchTable[evt.type];
15 if (!eventSpec) {
16 return false;
17 }
18 var target = eventSpec.target;
19 if (target.eventsAreDisabled) {
20 return false;
21 }
22 target[eventSpec.targetMethodName](evt);
23 return true;
24 }

Code Example 1: process of registering an event handler to a DOM node and calling the user
defined method

35 see Morph - registerForEvent

28 Explorative Authoring of Active Web Content

The event handler of the morph is scoped into the callback function. The handleEvent
function checks if the event should be dispatched. Morphs have an eventsAreDisabled
flag. If this flag is set, the actual callback function will not be executed. The eventsAre-
Disabled flag is not to be confused with eventsAreIgnored, which is used by Lively Kernel’s
default actions for events. The eventsAreDisabled flag tells the dispatcher, that events for
this morph should be discarded. If events should not be ignored, the actual callback
function the user wrote will be called.

Lively Kernel uses the capturing phase, consequently events are dispatched top down
from the root node to the children. Figure 20 shows an example scene with the associated
DOM tree.

Figure 20: Example scene [36]

morph1 and morph2 are direct submorphs of the world. morph3 is a submorph of morph2,
but its shape overlaps with morph1. If an event occurs on position p1, the event handlers
of the world and the event handlers of morph2 are called. An event on position p2 will
trigger the handlers of the world, morph2 and morph3. Note that an event on position p3
will also trigger the handlers of the world, morph2 and morph3, but not morph1. morph1 is
only visually below morph3 on position p3, but in a different branch of the scene graph.
The path through the scene graph from the root node to morph3 does not include morph1.

If a script needs the morphs under a certain position rather than the scene graph hierar-
chy, developers can use the function morphsContainingPoint. This function does not use
the DOM but internal data structures to determine the position of morphs. It will return
an array of morphs which include the given point.

Explorative Authoring of Active Web Content 29

2.4 Implementing Touch Events in Lively Kernel

Mapping Touch Input to Mouse Events Before our work, the Lively Kernel loaded
on mobile Web browsers, but interactions were limited. We could press buttons, edit
text and navigate through the world. These interactions were only possible because of
the generated mouse events of Safari as Lively Kernel had no support for touch events
back then. The generation of the mouse events was very unpredictable36. The best case
scenario would be if every morph in Lively Kernel had event handlers for touch events.
Most morphs have event listeners for mouse interaction, so we decided to build upon
these handlers.

Concept The touch events are similar to mouse events, as there is a touchstart, touch-
move and touchend event which are similar to mousedown, mousemove and mouseup.
If we fire a mousedown whenever a touchstart occurs, a mousemove on touchmove and
mouseup on touchend, we could simulate normal mouse interaction on mobile devices.
All these mappings are only performed if and only if there is one touch on the screen.
This way users can still zoom and scroll using two fingers. We also prevent the browser
from firing mouse events itself so that buttons do not get triggered twice.

Implementation To generate events, Javascript provides the build-in functions
createEvent, initMouseEvent and dispatchEvent. This way, we can generate mouse events
on touch devices. We wrapped these functions in a fireMouseEvent method.

1 fireMouseEvent: function(evtType, touchObj, target) {
2 var buttonFlag = touchObj.buttonFlag }| 0;
3 if(buttonFlag === 0 }|
4 buttonFlag === 1 }|
5 buttonFlag === 2) {
6 var mouseEvent = document.createEvent('MouseEvents');
7 mouseEvent.initMouseEvent(/*a lot of arguments*/);
8 mouseEvent.fromTouch = true;
9 target.dispatchEvent(mouseEvent);

10 }
11 }

Code Example 2: the fire mouse event method which creates a mouse event on mobile devices
based on the parameters. The button flag is set by the caller and determines whether the event
should be a left or a right mouse button event. The variable fromTouch indicates that we generated
this event.

36 see iPad Specific Issues with Touch Events

30 Explorative Authoring of Active Web Content

This method is called if we want to fire a mouse event. A mouse event is always bound
to one mouse button (left, middle or right). Only if this button flag is set correctly, we
fire the event. We also add the fromTouch property. This property is used to distinguish
between generated mouse events and mouse events of the browser. We only want our
mouse events to be handled, so we discard every mouse event without this flag in Lively
Kernel dispatcher.
The right click metaphor for touch events is touch and hold. Unfortunatly we can not
predict on touch start if the user is going to do a normal tap37 or touch and hold38.
Consequently we can not fire a mouse event on touch start. Instead, we start a timeout
whose callback function will trigger a right mouse button down event, if no other mouse
event has been fired at this time.

1 onTouchStart: function(evt) {
2 var touch = evt.touches[0];
3 touch.buttonFlag = "unknown";
4 var that = this;
5 var touchAndHoldFct = function() {
6 if(touch.buttonFlag === "unknown") {
7 touch.buttonFlag = 2; // right click
8 that.fireMouseEvent('mousedown', touch, evt.target);
9 }

10 };
11 // check for right click after 750 milliseconds
12 window.setTimeout(touchAndHoldFct, 750);
13 }

Code Example 3: setting a timeout for right click mapping

Note that we are adding the buttonFlag directly to the touch object. Unlike the prop-
erties of other DOM events, the touch object is persistent between events. So the corre-
sponding touchend event will include the same touch object as the touchstart event. The
buttonFlag property tells the script whether this touch should become a right or a left
click. On touch start this is still unknown since we do not know how long the touch will
last.
We define a function, which will trigger a mousedown for the right mouse button after
750 milliseconds. We found this timespan by testing the system ourselves. To make sure
that we do not fire both: left and right mouse button click for a single touch, we only do
this if after the timeout it is still not clear if this touch is equivalent to a right or left click.
If we get a touchmove or touchend within the 750 milliseconds timespan, we know it
should be a left mouse button click and set the button flag accordingly.

37 equivalent to left mouse button
38 equivalent to right mouse button

Explorative Authoring of Active Web Content 31

1 onTouchMove: function(evt) {
2 if(touch.buttonFlag === "unknown") {
3 touch.buttonFlag = 0; // left mouse button
4 this.fireMouseEvent('mousedown', touch, evt.target);
5 }
6 this.fireMouseEvent('mousemove', touch, evt.target);
7 }

Code Example 4: firing mouse events on touch move

1 onTouchEnd: function(evt) {
2 if(touch.buttonFlag === "unknown") {
3 touch.buttonFlag = 0; // left click
4 this.fireMouseEvent('mousedown', touch, evt.target);
5 this.fireMouseEvent('mouseup', touch, evt.target);
6 this.fireMouseEvent('click', touch, evt.target);
7 } else {
8 this.fireMouseEvent('mouseup', touch, evt.target);
9 }

10 }

Code Example 5: firing mouse event sequence on touch end

The browser emits mouse events itself based on the touch input, for example if the user
presses a button. In our case this would trigger buttons twice39. To prevent that, we had
to patch Lively Kernel’s event handler. We added a layer which discarded the event if
the user agent matches a touch enabled device and the event is a mouse event which
was not generated by us. We implemented the latter by adding the flag fromTouch to the
mouse event object we generated.

Evalutation With this implementation, users are able to invoke and use halos and the
world menu. They could open the PartsBin, a workspace and other tools. Typing text is
also possible. However, using the touch and hold metaphor for right click is not efficient
as users have to wait at least 750 milliseconds until a right click is performed. This is es-
pecially unsatisfactory as the right click is extensively used by lively kernel for invoking
halos. It is not possible to move the mouse without firing a mousedown event40. Users
could not open the Parts submenu in the world menu. Scrolling through the world with
only one finger on the screen is also not possible as this invokes the selection box.

Interaction Techniques for Morphs The implementation of the touch to mouse
mapping taught us that there has to be a faster way to invoke halos on the iPad. Touch
and hold is the traditional right click metaphor on mobile devices, but since Lively Ker-
nel uses right click a lot, we decided to break this metaphor. Beside touch and hold we
implemented and tested two other methods to invoke the halo.

39 once by our implementation of touch to mouse mapping and by the events the browser emitted
40 hovering

32 Explorative Authoring of Active Web Content

1 handleEvent: function(evt) {
2 if(UserAgent.isTouch &&
3 !evt.fromTouch &&
4 (evt.type == "mousedown" }|
5 evt.type == "mousemove" }|
6 evt.type == "mouseup" }|
7 evt.type == "click")) {
8 evt.stop();
9 return false;

10 }
11 cop.proceed(evt);
12 }

Code Example 6: discarding mouse events on mobile devices which were not generated by us

The first implementation was to simply tap the morph to open the halo. This has the
advantage, that the interaction is very fast and allows quick manipulation of the morph.
The drawback of this method is, that a left click on a morph is often used to perform
actions like triggering a button. When a tap invokes halos, users can not trigger buttons
anymore without toggling the halo. Tap also opens the virtual keyboard for text editing
on the iPad, so we had to disable all text editing in order to make the halo work on text.
This was not acceptable.

To fix these issues, we implemented double tap to open halos. Users need to tap the
morph twice in order to interact with it. This is similar to performing a double click on
a desktop PC. With this implementation buttons can still be triggered by a tap and text
can still be edited. A double tap is not significantly slower than a single tap and much
faster than touch and hold. However, we needed to set a threshold for the delay between
the first and the second tap. This delay describes the amount of time which is allowed to
pass between two taps until it is not interpreted as double tap anymore. In our current
implementation this is set to 250 milliseconds. We found this timespan by testing the
system ourselves.

In our first implementation we took care of the timekeeping ourselves. We took the
time at each touchstart event handler and compared them in order to find out if the two
events occured within 250 milliseconds. However, the touchstart event handler script
could take more than 250 milliseconds itself to do expensive operations. Since Javascript
is noninterruptive the next event can only be handled after these expensive operations
are finished. [62] This leads to the case where we could not interact with the morphs
anymore, because our double taps were not recognized as double taps when the site
was under heavy load. We fixed this issue by using the timestamp attribute of the touch
events.

Pie Menus as an Alternative Way of Morph Interaction In this section we will
show how pie menus can replace the halo items for morph interaction on the iPad. A pie
menu is a two-dimensional, circular menu. [28] With a swipe in one direction one menu
entry is selected. We will show that halo items are not suitable for mobile devices and
that pie menus offer a faster and more direct way to interact with morphs.

Explorative Authoring of Active Web Content 33

Figure 21: A pie menu with eight menu entries, moving towards an entry will highlight it, when
the touch passes the defined section for the entry the associated method will be called.

Using tap events, we can easily implement methods to interact with morphs. On desk-
top PCs users interact with morphs using the halo items. They use right click to open the
halo and left click to activate the halo items. On mobile devices only touch interaction
is possible. In the previous sections we described three ways to select a morph. For the
implementation of pie menus we use a single tap to select all morphs except text and
buttons. These two kinds of morphs are selected via double tap. Buttons are triggered
on single tap and texts can be edited when tapped. This has technical reasons. We can
not trigger the virtual keyboard of the iPad with Javascript. Instead it opens automat-
ically when an editable morph is tapped. Consequently we can not use a single tap to
select text.

The problem of the halo items is that they are too small for touch interaction. The
Apple user interface design guideline states, that “The comfortable minimum size of
tappable UI elements is 44 x 44 points.” [10] On a desktop PC the size of UI elements does
not matter so much as users can aim precisely with a mouse. On mobile devices, users
interact with their fingers, which are not as precise as a mouse pointer. They also can
not see what is below their finger. To solve these problems we increased the size of the
halo items to make them work on the iPad. This worked, but through the bigger items,
the halo itself became bigger and more distractive. Furthermore it was problematic to
arrange all halo items around a small morph.

34 Explorative Authoring of Active Web Content

At that point, our project partner Dan Ingalls suggested the use of pie menus. They are
a completely different approach to user interaction. Instead of clicking a visible element
on the page, users perform a swipe in a specified direction to select the entry. This form
of interaction is much more suitable for the iPad as the user does not need to click ele-
ments. Another advantage is, that the pie menu does not have to be displayed in order
to interact with it. Users can perform the gesture without the interface by remembering
the arrangement of the menu items. If users do not know how to interact with morphs
on mobile devices, they will naturally touch the morph. If they do not perform a ges-
ture within a certain timeframe, the pie menu is shown. This way they can see in which
direction they have to move to trigger the desired behaviour.

Experienced users however can perform the gesture without the menu because they
already know which direction triggers which action. In contrast to halo items, we don’t
have to create and render the pie menu, what makes the whole application more respon-
sive.

Implementation of Custom Events In Lively Kernel, event handlers are registered
by adding scripts with special names like onClick, onMouseDown or onMouseUp to a
morph. These scripts are registered by the event handler. We wanted to do the same for
the touch interface, so we extended the event handler to include registerForTouchEvents
and registerForGestureEvents. These methods work like the other registerForEvents meth-
ods41.

The standard event interface for touches includes only touchstart, touchmove, touchend
and touchcancel. We want to provide convenience methods like onTap, onDoubleTap and
onHold, which are not part of the original touch interface, but very useful for efficient
programming. To implement these methods we could not use registerForEvents as it just
calls the standard addEventListener method, which only recognizes the official event
interface.

Instead, we assign default event handlers to every morph, which call the onTap, on-
DoubleTap and onHold methods when needed. To do so we have to manage the touch
events. This is done by event handlers, which use the standard DOM event interface
(touchstart, touchmove, touchend) and decide if the series of standard events fulfill the
requirements for a custom event. The following code example shows the standard han-
dler for the touchstart event:

The default event handler for the touchstart event sets some variables on the morph
to make sure that the tap events are triggered correctly. Note that the handler is called
onTouchStartAction instead of onTouchStart. This way users can not overwrite our default
function when they implement their own onTouchStart event listeners. This corresponds
to the implementation strategy which is used for morph interaction with the mouse.

We assign a tapTouch property, which holds a reference to our touch object. This touch
object is persistent between touch events42. We need a reference to this touch to check
when the touch started and if the user moved the finger. A tap event should not be
triggered if the user made a fast flicking gesture. The moveTouch property is used for
our implementation of scrolling43.

41 see Handling events in the Lively Kernel
42 see Events on Mobile Devices
43 see Implementation of Zoom Independent morphs

Explorative Authoring of Active Web Content 35

1 onTouchStartAction: function (evt) {
2 if (evt.targetTouches.length === 1){
3 this.tapTouch = evt.targetTouches[0];
4 this.moveTouch = evt.targetTouches[0];
5 }
6 if (evt.touches.length === 1) {
7 $world.scheduleHoldIndicatorFor(this);
8 }
9 if (typeof this.onTouchStart === "function") {

10 return this.onTouchStart(evt);
11 }
12 }

Code Example 7: touchstart handler for tap events

If there is only one finger on the screen we also want to schedule a hold indicator for the
touched morph. The hold indicator is a morph, which indicates the necessary timespan
to trigger a hold event. The hold indicator is loaded from the PartsBin when the world
is loaded and is then used as a prototype for every hold interaction. There can only be
one hold indicator at any given time, so it is loaded only once. The hold indicator itself
takes care of calling the onHold function on the morph it is assigned to.

Lastly we also want to call the user defined function onTouchStart if it exists. We make
sure that we return the value the user defined script returns. This is important because
this return value is used within Lively Kernel’s event dispatcher.

The following code shows the default handler for the touchend event:

1 onTouchEndAction: function (evt) {
2 var out = false;
3 if (typeof this.onTouchEnd === "function") {
4 out = this.onTouchEnd(evt);
5 }
6 if (this.tapTouch &&
7 evt.changedTouches.include(this.tapTouch)) {
8 this.checkForTap(evt);
9 this.cancelHold();

10 }
11 return out;
12 }

Code Example 8: touchend handler for tap events

36 Explorative Authoring of Active Web Content

When the touchend event occurs, we first call the user defined onTouchEnd script of the
morph if it exists and save its return value. We do the onTouchEnd call before we check
if we must call any onTap event handler to meet the mouse metaphor. The standard
mouse event sequence is mousedown, mousemove, mouseup, click. Similar to this structure
we want our event sequence to be touchstart, touchmove, touchend, tap. That is why we
call onTouchEnd before the tap function. Nevertheless we want to return the user defined
return value so we have to save it locally.

Afterwards we check if the morph has a tapTouch assigned and if this touch has
changed in the event. We do this to ensure that a tap can only be performed with exactly
one finger on the morph. If this is not the case, the user performed a gesture and we do
not trigger tap events. If the touch qualifies as tap touch, we cancel the hold indicator
and call a function which checks if the touch fulfills the tap requirements:

1 checkForTap: function (evt) {
2 var delta = this.tapTouch.timeFromStartToLastUpdate();
3 if (delta <= 200 &&
4 this.tapTouch.getScreenDeltaToStart().r() <= 25) {
5 this.tapped(evt);
6 }
7 }

Code Example 9: checkForTap function which checks whether the touch input fulfill the tap re-
quirements

This function checks if the tap was fast enough to be interpreted as a tap. To do so we
use the timeFromStartToLastUpdate method, which is added to each touch event by the
patchTouchEvent method. This method uses the timestamp attribute of the event itself.
This way it is independend from the actual load of the page. If the touch lasted no longer
than 200 milliseconds and the finger moved no more than 25 pixel, we call the tapped
method of the morph.

We now know that a tap has occured, but it could be the second one in a row. In this
case we want to call onDoubleTap rather than onTap. We decided that in the event of a
double tap, only the onDoubleTap method is called and not both44. Users can still get the
other behaviour by calling onTap in the onDoubleTap method themselves.

We defined a maximum amount of time which is allowed to pass between two taps.
If we had a tap on this morph before and less than 250 milliseconds passed since then,
onDoubleTap is called if it exists. Otherwise we call onTap and set the lastTap property.

44 onDoubleTap and onTap

Explorative Authoring of Active Web Content 37

1 tapped: function (evt) {
2 var doubleTapTimeout = 250;
3 if (this.lastTap &&
4 new Date() - this.lastTap <= doubleTapTimeout) {
5 if (typeof this.onDoubleTap === "function") {
6 this.lastTap = false;
7 this.onDoubleTap(evt);
8 }
9 } else {

10 if (typeof this.onTap === "function") {
11 this.onTap(evt);
12 }
13 this.lastTap = new Date();
14 }
15 }

Code Example 10: tapped function which calls onTap respectively onDoubleTap

Implementation of Zoom Independent Morphs This section describes how we
implemented zoom and scroll independent morphs. With this functionality, we can build
tool morphs, which modify the currently selected morph. This way we only need one
tool for each purpose instead of one tool for each purpose and morph. Having less tools
on one page saves screen space on mobile devices.

Motivation The iPad has a native implementation for zooming and scrolling. To do this
fast, it stops the rendering of the page. This means that while the users scrolls the page,
positions of morphs can not get updated. It is not possible to set the position of a scroll
independent morph when the user scrolled or zoomed. Normally this behaviour can be
achieved by using the CSS attribute position fixed, but this does not work on mobile
devices. [35]
Furthermore the browser does not create an event for scroll interaction. All events we
get are touchstart, touchmove, touchend as well as gesture events. So we decided to im-
plement scrolling ourselves and not use the native iPad implementation. That has the
advantage, that we can control every phase of the scrolling and react to the user inter-
action by changing the position of fixed morphs appropriately. The drawback is, that
if we do this with Javascript, it is slower than the native implementation by the iPad.
With scrolling the performance was still okay, but we could not implement zooming
ourselves because the permanent redraw of the whole page made smooth zooming im-
possible. There are no explicit events for zooming. We utilized the gesture events, which
are only fired when two or more touches occur at the same time. This is exactly the ges-
ture which invokes the zooming. Consequently we can just use the gesture events to
react on the zooming.

Implementation of scrolling To implement scrolling we added a default touchmove
handler to every morph.

38 Explorative Authoring of Active Web Content

1 onTouchMoveAction: function (evt) {
2 if (evt.touches.length === 1 &&
3 this.tapTouch &&
4 evt.touches[0] === this.tapTouch) {
5 var delta = this.tapTouch.getScreenDeltaToStart();
6 if (delta.r() > 25) { // not hold
7 this.cancelHold();
8 }
9 }

10

11 if (evt.touches.length === 1 &&
12 this.moveTouch &&
13 evt.touches[0] === this.moveTouch) {
14 this.moveToTouchPosition(evt);
15 evt.stop();
16 }
17

18 if (typeof this.onTouchMove === "function") {
19 return this.onTouchMove(evt);
20 }
21 }

Code Example 11: default touchmove handler for every morph

We have to be careful with our implementation of tap events, especially the hold event.
If the user scrolls the page, the touch often lasts longer than the timeframe necessary to
trigger the onHold function. So we have to cancel the hold if a tapTouch exists45 and
the touch has moved more than 25 pixels. This threshold is necessary to make sure that
users do not not accidentally cancel the hold by moving their finger. To determine how
far the touch has moved, we use the getScreenDeltaToStart function of the touch object.
This function is patched to every touch in the emphpatchTouchStartEvent method.
If the morph has a moveTouch assigned, moveToTouchPosition is called. The moveTouch is
set in the onTouchStartAction handler46. As always, if the user defined an ontouchMove
function, we call it and return its return value.
The following method is called when the touch qualifies as scroll touch. It checks if it
reaches the threshold to initialize respectively emulate the scrolling.

45 that means that the hold is scheduled, see Implementation of Custom Events
46 see code example 7

Explorative Authoring of Active Web Content 39

1 moveToTouchPosition: function(evt) {
2 var delta = this.moveTouch.getScreenDeltaToStart();
3 if (this.scrolled }| delta.r() > 25) {
4 // scroll the world
5 if(!this.scrolled) {
6 $world.initializeBrowserScrollForTouchEvents(
7 this.moveTouch.startTouch);
8 }
9 this.scrolled = true;

10 $world.emulateBrowserScrollForTouchEvents(this.moveTouch);
11 }
12 }

Code Example 12: Function to check for the scrolling threshold. It triggers emulated scrolling if this
threshold is reached.

In this function we check if the touch has moved more than the 25 pixel threshold. If this
is the case, we initialize the emulated browser scrolling algorithm and call the emulate
method, which does the actual scrolling. We also set a scrolled field on the morph. We
need this because getScreenDeltaToStart only returns the absolute distance from the start
of the touch to the current position. If the touch passes the 25 pixel barrier and then goes
back near its starting position, delta.r() will return something smaller than 25, but
the scrolling must not be canceled. Therefore the information, that the touch has passed
the 25 pixel theshold once is stored in the scrolled field of the morph.
The following methods implement the calculation of the scroll position as well as the
Javascript call to set the viewframe.

initializeBrowserScrollForTouchEvents sets some fields on the world which are required
to calculate the scroll position later. It also sets the emulatedScrolling flag of the world to
true. This field is never read, but scroll independent morphs connect to this field so they
are notified when it changes. It is reset to false in the onTouchEndAction of the morph.
emulateBrowserScrollForTouchEvents calculates the target scroll position based on the cur-
rent touch position and the fields we set in the initialize method. It uses
window.scrollTo to set the viewframe of the page. This call produces an window
scroll event, which we use to update the scrollOffset variable of the world.
For zoom events we utilize the gesture events of the browser to set the property zooming-
InProgress in the same manner as emulatedScrolling. When the zooming is done, the
zoomLevel of the world is recalculated and stored in the zoomLevel property of the
world.

Implementation of fixed Position and Scale Now that we have a notification when the
world scrolled and zoomed, morphs can connect to the property and implement be-
haviour so that they are always displayed at the same position and in the same size. To
do so we added the method setFixed to each morph. A fixed morph does not change its
position or scale when the world is scrolled or zoomed.

40 Explorative Authoring of Active Web Content

1 initializeBrowserScrollForTouchEvents: function(touch) {
2 this.emulatedScrolling = true;
3 this.scrollStart = pt(document.body.scrollLeft,
4 document.body.scrollTop);
5 this.scrollTouchStart = pt(touch.clientX, touch.clientY);
6 }
7

8 emulateBrowserScrollForTouchEvents: function(touch) {
9 var touchDelta = pt(touch.clientX, touch.clientY).

10 subPt(this.scrollTouchStart);
11 var scrollTarget = this.scrollStart.subPt(touchDelta);
12 window.scrollTo(scrollTarget.x, scrollTarget.y);
13 }
14

15 onWindowScroll: function(evt) {
16 $world.scrollOffset = pt(window.pageXOffset,
17 window.pageYOffset);
18 }

Code Example 13: calculating and setting the scroll position of the viewport

1 onGestureStart:function (evt) {
2 this.zoomingInProgress = true;
3 }
4 onGestureEnd: function(evt) {
5 $world.zoomLevel = document.documentElement.clientWidth /
6 window.innerWidth;
7 $world.zoomingInProgress = false;
8 }

Code Example 14: Gesture event handlers which set the zoom level of the world. Morphs can
connect to the zoomLevel and zoomingInProgress field to get notified when changes occur.

This method calculates a normalized scale and position for the morph. These proper-
ties depend on the current zoom level of the world and the scroll offset of the browsers
viewport. We store the calculated normalized position and scale on two properties on
the morph and set connections to all properties we change in our zoom and scroll im-
plementation. This way the morph can react to any change that occurs.
As mentioned earlier, the iPad browser stops the rendering of the page when it is zoomed.
One possibility is to update the position and scale after the zooming. This would mean
that parts of the fixed morphs which should be invisible47 become visible when zoom-
ing. Alternatively, we could hide the morphs when zooming started and display them
with the correct scale and position after the gesture. This way fixed morphs would not
be displayed at all when the user zooms or scrolls. We implemented the second alterna-
tive48.
To make sure fixed morphs always are rendered before other morphs, we use remove and
addMorph to hide them. The update functions set the position respectively the scale of
the morph.
With this functionality we were able to implement morphs which always have the same
screen position and size. We used it to implement tools and widgets like a color chooser,
a minimap or flaps.

47 because they are fixed outside the viewframe
48 see code example 16

Explorative Authoring of Active Web Content 41

1 setFixed: function(fixed) {
2 this.fixedScale = this.getScale() * $world.getZoomLevel();
3 this.fixedPosition = this.getPosition().
4 subPt(pt(document.body.scrollLeft,
5 document.body.scrollTop)).
6 scaleBy($world.getZoomLevel());
7 connect($world, "zoomLevel", this, "updateZoomScale");
8 connect($world, "emulatedScrolling", this, "toggleScrolling");
9 connect($world, "zoomingInProgress", this, "toggleScrolling");

10 connect($world, "scrollOffset", this, "updateScrollPosition");
11 }

Code Example 15: setting connections to react to scroll and zoom events

1 toggleScrolling: function(isScrolling) {
2 if(isScrolling) {
3 this.remove();
4 } else {
5 $world.addMorph(this);
6 }
7 }
8

9 updateScrollPosition: function(newPosition) {
10 this.setPosition(this.fixedPosition.
11 scaleBy(1/$world.zoomLevel).
12 addPt(newPosition));
13 }
14

15 updateZoomScale: function(newZoom) {
16 this.setScale(this.fixedScale/newZoom);
17 }

Code Example 16: updating morph properties on scrolling and zooming

2.5 Related work

Sencha Touch Framework The Sencha Touch Framework49 is a popular framework
for developing mobile webpages. It is not limited to the iPad but works for most mobile
devices including Android and Windows tablets. To support the different touch APIs,
it provides a standardized interface offering tap, double tap, long press50, swipe, pinch
and rotate gestures. Like our solution it wraps the DOM events.

49 http://docs.sencha.com/touch/2-0/ (visited 29.06.2012)
50 equivalent to our hold

http://docs.sencha.com/touch/2-0/

42 Explorative Authoring of Active Web Content

Applications done with the Sencha framework are supposed to look like native appli-
cations. The framework offers widgets for touch interaction like menus, lists or icons.
This can be compared to Lively Kernel’s PartsBin, which also offers user build widgets
for everyone to use.

PhoneGap PhoneGap51 is a framework for developing native apps with HTML5, Java-
script and CSS. Unlike other HTML5 frameworks it embeds the Javascript source code
in a custom virtual machine. This way the application can take advantage of features
which are not accessible via plain Javascript, like vibration, notifications or contacts.
Using Javascript as programming language it avoids device specific APIs. The same
source code can be used for various platforms.

The drawback of this method is, that users can not simply go to a webpage and get
started. They have to install the app first. Sharing of creations is also limited, because
other users also have to install the app.

Morphic.js Morphic.js52 is an alternative implementation of the Morphic user inter-
face. It supports touch interactions, which act similar to our touch to mouse mapping.
Touch and hold opens the right click menu on a morph and all mouse click actions are
triggered on tap. It does not support scrolling the page. Instead users can drag and drop
morphs by simply dragging them on the screen. There is no dedicated selection mode.

2.6 Conclusion and Future Work

The way users interact with mobile devices is different from the way they interact with
desktop PCs. Instead of a mouse and a keyboard, mobile devices only have one single
touch enabled display. This offers the possibility to recognize and trace multiple fingers
simultanously. Web pages are required to adapt to this new situation.

In this bachelor’s thesis we have shown how we added support for touch interaction
in the prototyping framework Lively Kernel. We examined the internal structure of the
touch events Apple specified and had a look at the event registration process of Lively
Kernel. We showed how event handlers can be added in Lively Kernel to react to stan-
dard and non standard events. We introduced three non standard events tap, double tap
and hold, which developers can use to make their Lively application touch compatible.
More gestures like swipe, pinch or rotate can be added in the future.

To enhance the usability on mobile devices we implemented features like pie menus
or zoom independend morphs based on the work we did on touch events. We also im-
plemented widgets like scrollable lists, hold indicators or flaps. These widgets were suc-
cessfully tested in applications like an iPad PartsBin with a scrollable category list, an
object editor which always edits the currently selected morph and is located in a flap
in order to be easily made available. More widgets like formulars can be added in the
future.

51 http://phonegap.com/ (visited 29.06.2012)
52 http://chirp.scratchr.org/dl/experimental/JsMorphic/morphic.html (visited

29.06.2012)

http://phonegap.com/
http://chirp.scratchr.org/dl/experimental/JsMorphic/morphic.html

Explorative Authoring of Active Web Content 75

4 Design and Implementation of Shared Workspaces in a
Mobile and Desktop Environment

4.1 Introduction
Wiki systems [40] offer an easy and accessible way for people to work together. Usually
users can create and save pages that can afterwards be edited by other users of the
wiki system. With such systems, work can be distributed over long distances. Lively
Kernel [30] offers such functionality via two system built-in mechanisms.

First, the system is split into worlds which are part of the Morphic Framework [46]
implementation that is a core component of the system. Those worlds can form a so
called Webwerkstatt [37] which collects the knowledge produced by the system’s users
just as other wiki systems do with pages.

Second, the PartsBin [43], as a way to publish written programs to the system, offers
an identical benefit on the level of applications.

Working in wikis surely enables users to work together, but the style of collaboration
is rather asynchronous since only one user can save the document at the same time. For
the ability to work together at the same time53, there need to be additional mechanisms.

As changes in a wiki can not be seen until someone saves them, duplication of work
can happen if the work to be done is not pre-coordinated. But such coordination creates
overhead on the process of working and disrupts the workflow of synchronous collabo-
ration. However, the synchronization of content is an important task that has to be done
in near real time to create a notion of synchronous work. Consequently, a system for syn-
chronous work should either be on one location54, so that synchronization does not have
to happen, or it has to synchronize the content in a way that creates the least overhead
on the actual process.

As Lively Kernel does not offer such functionality, we approached to implement such a
system. This bachelor thesis describes how we augmented Lively Kernel’s collaboration
facilities by creating a new application that enables its users to collaborate at the same
time no matter of what place they are. We compared our system with other collabora-
tion systems in the collaboration matrix in figure 4955. Since synchronous collaboration
is missing in Lively Kernel, most of the focus is on this particular style of collaboration.
In general, the intention of our application is to support collaboration for people work-
ing on a common goal. That is why the users should not have to take care of the asyn-
chronous collaboration style as well. Therefore, our system has asynchronous aspects as
well.

When users come together to work on a common goal, that is called a session. Those
sessions can be started if one user opens a new shared workspace within the system. In
order not to have to wait for all participants to join a session, the system needs to support
asynchronous collaboration styles. Users joining later need the content that has been
produced at the time they joined, as well as the updates that happens after joining. As
a consequence, our system does not only support synchronous, but also asynchronous
collaboration styles.

53 synchronous collaboration
54 meant is actually one machine / computer
55 The graphic is based upon the authors personal estimation and is not backed with measured

numbers. It only serves for an approximated comparison of systems.

78 Explorative Authoring of Active Web Content

1 2 3 4

Figure 50: User interface of the SyncMorph with (1) buttons to toggle and indicate connection state,
chat pane and pencilstyler (2) synchronization pane, (3) chat pane and (4) pencil styler

A high-level overview of our applications functionality is shown in figure 51. It is based
on message exchange to communicate modifications of the content. The figure shows an
example of how content can be produced synchronously on two independent worlds.

Client-Server Architecture We decided to implement the application with a client-
server architecture. The decision was made for the following reasons:

First of all, the server as a central unit knows all clients. Having such an actor makes
it easier to implement the distribution of messages. Althought, this does not say that
a distributed networking system might not be equally well. Our solution was just the
most suggesting one with the used technology.

Moreover, as the server receives all messages from all clients it is possible to store the
input data into a persistent storage. At the moment, the persistence is realized by clients
holding a certain state. This concept of persisting state in clients would of course work
with a distributed system, but in this case one loses the central server as an additional
archiving unit.

Beides, implementing a distributed system without central infrastructure might be con-
voluted in Javascript.

The client-server architecture also enables the implementation of alternative clients that
communicate over the same server. Since the server’s purpose is only the message dis-
tribution, and possibly persistence, there is no need to replace it with an alternative
implementation. Alternative clients could for example implement a different drawing
algorithm for the purpose of interoperability. Here again a set of polymorphic clients
without a central server unit is possible as well.

Furthermore, the server can act as a centeralized mixer [25] for messages [50]. This can
save bandwidth to increase the performance when using slower connections.

Data Exchange Format We decided to define a specific exchange format for message
exchange. With this format it should be possible for the user58 to decide who will get the
message that is going to be sent. In favor of applying59 messages in the correct order it
is also possible to augment the format in that way so that each message contains an ID
and a timestamp.

58 in this case a client application
59 or resending

Explorative Authoring of Active Web Content 79

3. Mouse Down + Move

1. Mouse Enters

4. Line Drawn

5. Mouse Move + Morph

6. Morph Added

7. Change Color

8. Color chaged

2. Indicator Added

Synchronization Server Client 2Client 1

time

Figure 51: High-level overview of functionality

88 Explorative Authoring of Active Web Content

As SVG does not have a convenient API for drawings such as HTML5’s canvas ele-
ment, we implemented a workaround in order to map the code to the drawing metaphor.
When an event arrives, that starts the drawing of a new line70, a new SVG line morph
is created. With each arriving event71 that indicates the continuation of the drawing, the
current position of the mouse or finger, which is stored in the regarding event, is added
to the vertices of the SVG line.

Additionally, we abstracted the call of drawing functions and the regarding events that
should trigger them. For example, we mapped the mouse move event to a method that
handles the process of drawing a new stroke. When we added touch interaction we only
had to map the touch move event to the same method.

Actually drawing at the same time on different clients requires that each message con-
tains a point72 and an identifier for a line. By providing these information, the client
application is capable of drawing multiple lines at the same time.

This version of the Whiteboard offers a way to draw together on a morph with a better
performance than the previous iteration.

Additional Features To better support the expressiveness of the drawings, we imple-
mented a virtual pencil that could be styled in different ways. We implemented the
customization of line thickness, color and line style. With that users have a versatile tool
at hand for different drawing tasks.

To implement this additional feature, we only had to set the width and color as well
as the style of the border of the SVG path. Moreover, we built a GUI tool to set all those
parameters in a convenient way. This GUI can be seen in figure 50 on the right.

Finally after this iteration we have a software that supports the collaborative drawing
on desktop and touch devices. Likewise, simultaneous drawing on different clients and
with a customizable pencil style is possible.

Awareness Features To increase awareness for the people collaborating via our ap-
plication we implemented some features described in the following.

Telepointers Javascript does contain events for mouse interaction and Lively Kernel
does contain events for touch interaction as well, which is an enhancement we made
that is described in the bachelor’s thesis of Sebastian Stamm (see section 2). Looking at
the move events for each interaction method one gets the current position of the rep-
resentation of the hand in the system. Since telepointers are specific content, they are
synchronized optimistically with a limited set of information. The mouse event that is
distributed by the server to its connected clients contains the position and identification
information for the telepointer. An example of how a mouse message event looks like
can be seen in code example 22.

The remote clients create and display a telepointer for each other client. With the iden-
tifier that is provided in the mouse message, the corresponding indicator can be found.
With each arriving event the remote clients update the position of the corresponding
indicator.

70 mouse down + mouse move or touch start
71 mouse move or touch move
72 that should be added to the vertices array of the SVG line

Explorative Authoring of Active Web Content 89

1 {
2 message: {
3 indicator: 120938479283,
4 position: {x: 42, y: 23}
5 },
6 me: false,
7 broadcast: true,
8 }

Code Example 22: an example of a mouse message event

Chat The implementation of a chat system was straightforward, since there is already
synchronization server that can distribute messages, and that is already able to commu-
nicate complex information. On the server side a new message type had to be added
that does nothing but simple routing of messages to the clients.

On the client side, the sending and displaying of messages had to be implemented. For
that, we build a separate GUI pane that users can trigger from the main view.73 The chat
pane consists of two elements for its two tasks: First, an input field where users can type
in text and send it by pressing the return key. To have this behavior implemented, we
watched on each key stroke74 if the return key was pressed. Second, a pane to display
incoming messages. This message log was realized by taking the data that is coming in
and concatenating the message’s content to the current content of the text pane.

In order to support shortcut commands for power users, we added commands that can
be entered in the same input field. Every command begins with a slash that is followed
by the name of the command. The commands are stored in an object that has the com-
mand name as a key and the description of the functionality of the command as a value.
The key is a string and the functionality description is a Javascript function. An exerpt
of the definition of this object can be seen in code example 23.

Having this object available, the functionality gets called by accessing the commands
object with the command string the user had just entered as a key and calling the apply
method on the function that was returned. The function will be applied to the chat pane
so that the description of a command must be written with that in mind. All parameters
given by the user will be routed to the function that is called on the chat pane.

Furthermore, the convenience feature of having a history of the entered text was im-
plemented by again watching the pressed keys. If the up or down keys were pressed,
the user will be able to cycle through an array of the entered messages. Those messages
were saved by pressing enter75.

4.4 Examples and Scenarios

This chapter points out some scenarios of usage that will be discussed on the basis of
the current version of the collaboration system we implemented.

73 This can be seen in figure 50
74 onKeyDown
75 The same mechanism as sending messages

90 Explorative Authoring of Active Web Content

1 this.commands = {
2 'nick': function (name) {
3 this.whiteboard.setUserName(name);
4 this.showMessage("changed nick to " + name);
5 },
6 'names': function () {
7 this.whiteboard.getConnectedUserNames();
8 },
9 'channel': function (channel) {

10 this.whiteboard.setChannel(channel);
11 },
12 'chan': this.commands['channel'],
13 'clear': function () {
14 this.whiteboard.clear();
15 },
16 /*
17 ... more commands intentionally left out
18 */
19 };

Code Example 23: exerpt of the command object

Exchange of Content Between Worlds Let us assume the following collaborative
scenario: Two users working in Lively Kernel on two different worlds want to exchange
ideas in form of an application written within the system. Having the PartsBin, the cre-
ator of the application can publish it. The other user can from now on load it using the
PartsBin.

This process invokes several problems when working together closely. First, the over-
head of publishing the application and writing a commit message might be too high to
justify the benefit of sharing the work. Second, the user that shall have a look at the work
of his or her coworker might not want to invest the time to search the application in the
PartsBin in order to load it. Besides, the progress made on the implementation might not
be in a state where one wants to publish it to a broad audience76.

Consequently, a fast exchange of applications77 should have the least overhead to share
the application with others.

The SyncMorph implements this workflow by letting the user simply drop the morph
into the synchronization pane. The system will take care of the synchronization. As an
effect, the morph appears in the coworker’s application without the need that this per-
son does anything except being connected to the server.

Developing Ideas Together Working with a system that follows the metaphor of a
wiki, a user will create content on its own and save the content page in the interest of
making it available to other users of the wiki system. The collaborators can open the
saved page to see what the user created and add their own ideas to it.

76 This is what the PartsBin actually does.
77 generally Morphs which are Javascript objects

Explorative Authoring of Active Web Content 91

This kind of conflict handling is called “Single Active Participant” [20]. This process is
relatively slow since every participant has to wait until someone saves the page to add
own content to it. If the style of work is highly asynchronous, this will not be a problem.
But as the system should support synchronous work, this approach does not fit the re-
quirements of simulaneous editing. Figure 53 shows the difference of asynchronous and
synchronous styles of working together.

Consequently, conflict handling in our application is not done in such a blocking man-
ner. Our approach is aiming at group dynamics to solve editing conflicts by giving each
user the information he or she needs to know where and what his or her coworkers
are doing. Furthermore, communication is important to create group dynamics. That is
why we implemented an instant chat that is located next to the synchronization pane.
Besides, the actual editing happens in a fully synchronized way. If a person makes an
update this change will be sent to every other client that is connected. With such a level
of synchronization, we create the feeling that the group is working on the same content.

Communication Within the System Communication in wiki systems is often done
via comments that are just another variation of content of a wiki page. Consequently,
this comes along the same problems as other content78 when working synchronously.

In favor of a synchronous working style, the system should distribute those messages
instantly. As mentioned in the previous section, the SyncMorph implements this instant
messaging with a chat interface that distributes messages to all users of a channel.

4.5 Performance Evaluation
This chapter deals with the evaluation of the performance of the system. Since synchro-
nization of contents is time critical for synchonous collaboration, the focus lies on how
fast messages are exchanged between clients using differnt networking technologies.
The experiments were all done using the same laptop computer. This machine was con-
nected over WiFi to an access point that was connected to the internet using one of the
following technologies: local network79, DSL, UMTS-Broadband, GSM. Further, the ex-
periments were realized using two clients connected to the server. Both clients ran on
the same machine and used the same networking technology.

For the sake of being able to interpret the results better, we first measured how long
it takes for a simple message to get from one client to the other and back. For this
roundtrip, we sent a ping message through the synchronization server to the other client.
The other client then responded with a pong message. As the pong arrived at the original
sender the time measurement was over. Figure 54 shows the results of the measurement.

The different technologies performed as expected. The roundtrip time in the local net-
work was 5.4 ms in average. Consequently, a message arrived at the other client after
approximately 2.7 ms. The other technologies performed worse as expected. For the DSL
internet connection, the roundtrip time was 172.4 ms in average which means that a mes-
sage was received by the other client after approximately 86.2 ms. UMTS-Broadband80

was not that much slower than DSL with 232.7 ms in average for a roundtrip meaning
that after approximately 116.4 ms the other client received the message. Using GSM as
an internet connection slowed the roundtrips of messages down to 4346.5 ms in average.
Consequently, a message arrives at the other client after more than 2 seconds.

78 see previous sections
79 refers to the same network the application server is in
80 also known as 3G or HSDPA = High Speed Data Packet Access

92 Explorative Authoring of Active Web Content

Peter

new version
of content

Mary

new version
of content

wait for collaborators
to save the page

Mary

new version
of content

Peter

new version
of content

1

2

Figure 53: Examplary comparison of (1) asynchronous and (2) synchronous collaboration style

Explorative Authoring of Active Web Content 93

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8

ti
m

e
 i
n

 m
s

run

local network
dsl

umts broadband
gsm

Figure 54: Roundtrip time of a simple ping message through the synchronization server, this dia-
gram uses a logarithmic scale on the y-axis

For messages with a considerable amount of content the throughput of the network
connection is important. Using the system ourselves we figured that a synchronization
time around 500 ms seems to be enough not to break the synchronous workflow.

Adding content to the messages has an effect on the timings of the messages. The
roundtrips in average were: 90.3 ms for the local network, which results in a time of
45.2 ms that the other user needs to wait for message arrival; 466.7 ms for the DSL
connection, so that messages arrive at their destination after approximately 233.4 ms;
564.6 ms for the UMTS-Broadband connection, so that messages arrive after approxi-
mately 282.3 ms; 7569.3 ms for the GSM connection, meaning that messages reach their
goal after approximately 3784.7 ms.

Conclusively, the throughput on connections using the local network, DSL or UMTS-
Broadband is good enough to use the system. Whereas, connections using GSM are
definitly too slim to use them for synchronous collaboration.

There are also messages that show a continuous action like the mouse moves on a
client that are represented by telepointers on the other clients. For those messages, the
throughput of the network connection is not important but speed of the network81 Those
message are not as large as a message with a morph as content since they basically
only contain a point that says where the mouse pointer moved. But since the action that
is shown is continuous and the users expect it to be continuous, the time it takes to
synchronize should be low.

81 How fast messages arrive at the destination.

Explorative Authoring of Active Web Content 107

1 setUp: function($super, world){
2 $super(world);
3 var bounds = rect(pt(0,0), pt(50,50));
4 this.morphs = [
5 new lively.morphic.Box(bounds),
6 new lively.morphic.Text(bounds),
7 new lively.morphic.Button(bounds)
8];
9 this.baseStyle = {

10 position: pt(0,0), extent: pt(50,50),
11 scale: 1, origin: pt(0,0),
12 fill: Color.blue,
13 borderWidth: 1, borderColor: Color.black,
14 rotation: 0, borderRadius: 0
15 }
16 var self = this;
17 this.morphs.forEach(function(morph){
18 morph.applyStyle(self.baseStyle);
19 self.world.addMorph(morph);
20 });
21 var proto = lively.morphic.Morph.prototype;
22 this.actions = [
23 //... see Code Example 1.5
24]
25 }

Code Example 27: setting up the morph manipulation benchmark

The actions used in this benchmark should include all important ways of morph ma-
nipulation. The actions we identified are: changing size and position by different meth-
ods, changing the origin of a morph, changing fill and border color, changing the border
width and radius and adding scripts. We specified each of this actions as an object that
includes the function to call and the arguments, that are to be passed to the function.

Having created the morphs and specified the actions, running the benchmark is only it-
erating over both and executing the actions. We use the method apply of the Function
object to bind the function to the morph, pass the arguments and run it. After all actions
have been executed, we reset the morphs to their base style.

Benchmarking Morph Serialization Lively Kernel is able to transmit whole morphs
from one machine to another in several ways. One way is saving a world containing that
morph and opening it on another machine. Another way, that allows transmission be-
tween worlds, is publishing it to the PartsBin and loading it from there to any world.
While this is asynchronous, a synchronous way of sharing morphs has recently been
introduced by the SyncMorph. The SyncMorphs allow it to share a part of your screen
with coworkers. (see section 4)

108 Explorative Authoring of Active Web Content

1 var proto = lively.morphic.Morph.prototype;
2 this.actions = [
3 {func: proto.setExtent,
4 args: [pt(100,100)]},
5 {func: proto.moveBy,
6 args: [pt(20,20)]},
7 {func: proto.setBounds,
8 args: [rect(pt(70,70), pt(150,150))]},
9 {func: proto.setScale,

10 args: [2]},
11 {func: proto.setOrigin,
12 args: [pt(40,40)]},
13 {func: proto.setFill,
14 args: [Color.green]},
15 {func: proto.setBorderWidth,
16 args: [2]},
17 {func: proto.setBorderColor,
18 args: [Color.red]},
19 {func: proto.setRotation,
20 args: [1.07]},
21 {func: proto.setBorderRadius,
22 args: [5]},
23 {func: proto.addScript,
24 args: [function testScript(x, y){
25 this.moveBy(pt(x-y, y-x));
26 }
27]}
28]

Code Example 28: The manipulation actions performed on the morphs

1 performRepeatableAction: function(world){
2 var self = this;
3 this.morphs.forEach(function(morph){
4 self.actions.forEach(function(action){
5 action.func.apply(morph, action.args);
6 });
7 morph.applyStyle(self.baseStyle);
8 });
9 }

Code Example 29: running the morph manipulation benchmark

All these ways of sharing need to transform the morphs in a transmittable form of data.
In our case, this is a JSON string. It is therefore of high importance, that this serialization
can be performed quickly. So we included it in our benchmark suite.

Explorative Authoring of Active Web Content 109

While serialization itself can be a complex and expensive task, benchmarking it is quite
simple. We just need to take some morphs and call the serialization method. However, as
serialization is quite expensive, getting a good sample of data with morphs of different
complexity might consume a lot of time. Web browsers tend to stop script execution, if
a script takes too long to complete a task, therefore we split the serialization benchmark
in two parts: simple morphs and complex morphs.

The simple morphs are the same as in the other benchmarks, a box, a button and a text.

1 setUp: function($super, world){
2 $super(world);
3 this.morphs = [];
4 var bounds = rect(pt(0,0),pt(100,100));
5 this.morphs.push(new lively.morphic.Box(bounds));
6 this.morphs.push(new lively.morphic.Button(bounds));
7 this.morphs.push(new lively.morphic.Text(bounds));
8 }

Code Example 30: setting up the simple serialization benchmark

As complex morphs, we selected three commonly used parts from the tools category of
the PartsBin. The ObjectEditor is the tool that can add scripts to morphs. The ObjectIn-
specor gives detailed information about JavaScript objects and is a valuable debugging
tool. The StyleEditor is used to change the visual properties of morphs. We load them
from the PartsBin using the method loadPartItem of the world.

1 setUp: function($super, world){
2 $super(world);
3 this.morphs = [];
4 this.morphs.push(
5 this.world.loadPartItem("ObjectEditor","PartsBin/Tools")
6);
7 this.morphs.push(
8 this.world.loadPartItem("ObjectInspector","PartsBin/Tools")
9);

10 this.morphs.push(
11 this.world.loadPartItem("StyleEditor","PartsBin/Tools")
12);
13 }

Code Example 31: setting up the complex serialization benchmark

As said before, the execution of the benchmark consists only of calling the serialization
method for each morph.

110 Explorative Authoring of Active Web Content

1 performRepeatableAction: function(world){
2 this.morphs.forEach(function(morph){
3 lively.persistence.Serializer.serialize(morph);
4 });
5 }

Code Example 32: running the serialization benchmark

Benchmarking Morph Deserialization Transmitting morphs from one computer
to another. It is used for the PartsBin, the SyncMorph and the saving and loading of
worlds. To send a morph, it needs to be serialized. So the receiver needs to recreate the
morph from the JSON string. This deserialization takes place, when one loads a world,
opens a tool or loads a part to work on. It is crucial, that this does not block the user
from using Lively Kernel for long. Therefore we included it in our benchmark.

Similar to serialization, deserialization is easy to benchmark, but it takes a lot of time.
As we do not want the browser to interfere with our script because it is running too
long, we divided our benchmark into two smaller benchmarks: deserialization of simple
morphs and complex morphs.

The simple morphs are the same as in the other benchmarks, a box, a button and a
text. We serialize them and keep the JSON strings to deserialize them when running the
benchmark.

1 setUp: function($super, world){
2 $super(world);
3 this.jsons = [];
4

5 var bounds = rect(pt(0,0),pt(100,100));
6

7 var box = new lively.morphic.Box(bounds);
8 box = lively.persistence.Serializer.serialize(box);
9 this.jsons.push(box);

10

11 var button = new lively.morphic.Button(bounds);
12 button = lively.persistence.Serializer.serialize(button);
13 this.jsons.push(button);
14

15 var text = new lively.morphic.Text(bounds);
16 text = lively.persistence.Serializer.serialize(text);
17 this.jsons.push(text);
18 }

Code Example 33: setting up the simple deserialization benchmark

Explorative Authoring of Active Web Content 111

As complex morphs, we selected three commonly used parts from the tools category of
the PartsBin. Two of them are identical to the ones in the serialization benchmark. The
ObjectEditor and the ObjectInspector. The StyleEditor tends to throw errors on mobile
devices. This may interfere with the benchmark, so we use the PartTestRunner instead.
It is used for the execution of automated tests on parts from the PartsBin. Again, we only
keep the serialized versions.

1 setUp: function($super, world){
2 $super(world);
3 this.jsons = [];
4

5 var objectEditor =
6 this.world.loadPartItem("ObjectEditor", "PartsBin/Tools");
7 objectEditor =
8 lively.persistence.Serializer.serialize(objectEditor);
9 this.jsons.push(objectEditor);

10

11 var objectInspector =
12 this.world.loadPartItem("ObjectInspector", "PartsBin/Tools");
13 objectInspector =
14 lively.persistence.Serializer.serialize(objectInspector);
15 this.jsons.push(objectInspector);
16

17 var partTestRunner =
18 this.world.loadPartItem("PertTestRunner", "PartsBin/Tools");
19 partTestRunner =
20 lively.persistence.Serializer.serialize(partTestRunner);
21 this.jsons.push(partTestRunner);
22 }

Code Example 34: setting up the complex deserialization benchmark

The execution is also similar to the serialization benchmark. We only need to call the
deserialization function for each JSON string.

1 performRepeatableAction: function(world){
2 this.jsons.forEach(function(json){
3 lively.persistence.Serializer.deserialize(json);
4 });
5 }

Code Example 35: running the deserialization benchmark

112 Explorative Authoring of Active Web Content

Benchmarking Connections Lively Kernel allows the implementation of observer
patterns in an easy to use way called connections. A connection has a source and target
object and property. If you connect an attribute with another attribute, each change on
the first one is applied to the second one. If you connect an attribute to a method, the
method is called on each change, providing the new value as the only argument. Con-
nections are widely used in Lively Kernel, mostly to keep the user interface in sync with
internal variables. There is even a possibility to “fire” a connection without changing the
attribute, that is e.g. used to fire buttons. It is spread so far through the system, that it
cannot be ignored by the benchmark.

Although every property of every object can be connected, we decided to use only
morphs, because connections between morphs are more common. Our Example set con-
sists of a box, a text, and a button. The box has a script, so we can include all kinds of
connections.

1 setUp: function($super, world){
2 $super(world);
3 var bounds = rect(pt(0,0), pt(50,50));
4 this.box = new lively.morphic.Box(bounds);
5 this.text = new lively.morphic.Text(bounds);
6 this.button = new lively.morphic.Button(bounds);
7 this.box.addScript(function onFire() {});
8 }

Code Example 36: setting up the connection benchmark

There are for connections we want to benchmark. The first one connects a custom
fired signal to a script. The second one connects an attribute to a method, providing
the new value as parameter. The third one connects an attribute to another attribute.
The forth one again connects an attribute to a method. This type is included twice, be-
cause it is more common. We use connect()to set the connections. It is important to
use disconnect here, as we want everything to be in the same state before and after
the repeatable action.

Benchmarking Eval Lively Kernel is a dynamic and self-sufficient system. That means
especially that one can edit every part of the system out from inside the system. This is
possible, because javascript is a scripting language, that can execute code provided as a
string at runtime. This is not only used to load the lively Kernel, but also when adding
scripts to morphs and when modifying modules. The user can also execute code snip-
pets in text fields. So it is very important to us, that this can be done fast and should
therefore be included in our benchmarks.

We chose two snippets to execute, that shall represent eval actions without contatin-
ing expensive operations. The first one executes some basic arithemtic operations and
checks the result for validity. The second one defines a function and executes it to check,
if it was created correctly. Allthough we do not expect any modern browser to produce
wrong results, we included this validity checks to be sure everything went right.

Explorative Authoring of Active Web Content 113

1 performRepeatableAction: function(){
2 connect(this.button, "fire", this.box, "onFire");
3 connect(this.box, "scale", this.text, "setScale");
4 connect(this.button, "rotation", this.text, "textString");
5 connect(this.text, "position", this.button, "setLabel");
6 disconnect(this.button, "fire", this.box, "onFire");
7 disconnect(this.box, "scale", this.text, "setScale");
8 disconnect(this.button, "rotation", this.text, "textString");
9 disconnect(this.text, "position", this.button, "setLabel");

10 }

Code Example 37: running the connection benchmark

1 setUp: function($super, world){
2 $super(world);
3 this.snippets = [
4 "var t = 5;\n"+
5 "var t2 = 5*t;\n"+
6 "var t3 = 7*t2 + 2*t;\n"+
7 "t++; t2++; t3++;\n"+
8 "if(t3 !== 361){\n"+
9 " console.error(\"FAIL!\");\n"+

10 "}",
11

12 "var solveSqr = function(a, b, c){\n"+
13 " var p2 = b/a/2;\n"+
14 " var q = c/a;\n"+
15 " var det = p2*p2 - q;\n"+
16 " if(det < 0){\n"+
17 " return [];\n"+
18 " }\n"+
19 " var sqrt = Math.sqrt(det);\n"+
20 " return [-p2+sqrt, -p2-sqrt];\n"+
21 "}\n"+
22 "var res = solveSqr(2,2,-12)\n"+
23 "if(res[0] !== 2 || res[1] != -3){\n"+
24 " console.error(\"FAIL!\");\n"+
25 "}"
26];
27 }

Code Example 38: settng up the eval benchmark

Running this benchmark is quite simple, as it only involves calling the native function
eval() for each snippet.

114 Explorative Authoring of Active Web Content

1 performRepeatableAction: function(){
2 this.snippets.forEach(function(ea){
3 eval(ea);
4 });
5 }

Code Example 39: running the evaluation benchmark

Lively Score on different Systems We have run the described benchmark on dif-
ferent platforms using different browsers. The following subsections shows the results
and draws conclusions.

Figure 58 shows the benchmark results of the iMac 11 using different browsers. The
browser versions are:

– Google Chrome 19.0.1084.56
– Firefox 13.0.1
– Safari 5.1.7

We had to increase the configuration value dom.max_script_run_time for Firefox,
as it shows a dialog to stop the script after 10 seconds, that pauses script execution.
Google Chrome does similarly, but its dialog does not pause the script. Safari did not
show a dialog at all during our tests.

As we used Google Chrome on this machine as the reference system, results with
Google Chrome are at a constant score of 100. The overall result of Safari is 135. That
means Safari performs better than Google Chrome. To be exact: Safari took 1/1.35 = 0.74
as long to execute an action as Google Chrome on average. Firefox got a result of 98,
which means it performs about as good as Google Chrome.

The detailed results of the different benchmarks provide even more interesting in-
sights. Apparently, Google Chrome is especially good in evaluating scripts(about twice
as fast as Safari and six times as fast as Firefox), while Safari and Firefox are better in
Serialization (Firefox is about twice as fast as Google Chrome, Safari even 2.3 times).

The results of the same benchmarks run on a comparable windows machine can be seen
in figure 59. They are very similar to the iMac. Safari performs a bit better on the iMac
while Firefox profits from Windows, this is probably caused by the primary target plat-
forms for these browsers. Google Chrome performs almost equally on both machines,
with one exception: the evaluation of scripts under windows is twice as fast as under
Mac. We are not sure where this huge difference comes from, but suspect either a plat-
form specific optimization trick or the all-in-one binary of the Mac version to be the
source.

As Lively Kernel is being adjusted to provide a decent mobile interface, the perfor-
mance on mobile devices is especially interesting. We were able to get our hands on
some mobile devices to run the benchmarks on. An iPad2 with iOS 5.1, an iPhone 4S
with iOS 5.1, and an HTC Desire S with Android.

Explorative Authoring of Active Web Content 115

Figure 58: Benchmark results on the IMac 11, different browsers. Google Chrome sets the reference
value of 100. Higher is better.

Figure 59: Benchmark results on a Windows machine, different browsers. Higher is better.

As expected, the iPad2 performs best, it has a total score of 18, which means it needs
about 5 times as long to perform an action as the iMac with Google Chrome. As the
browser is a Safari, the individual results match those from the iMac version of Safari.
They are high for serialization and deserialization and low for connections and eval.
The iPhone is a bit slower but has a very similar distribution. That was expected, as they
vary mostly in hardware and only slightly in software.

The Android phone performs about 0.57 times as good as the iPhone which is about 0.44
times as good as the iPad. This was also quite expected, as the HTC Desire S is an older
phone than the iPhone4S and was sold in a lower price category. The score distribution
varies from the one of the apple devices. Again, the Google Software performs better in
eval and worse in serialization.

116 Explorative Authoring of Active Web Content

iPad2
iPhone4S
HTC Desire S

morph creation

serialisation I

serialisation II

deserialization I

deserialization II

manipulating morp...

settin
g connections

eval
5

10

15

20

25

30

Figure 60: Benchmark results on different platforms, using Google Chrome where possible, Safari
on the iPad2. Google Chrome on the iMac sets the reference value of 100. Higher is better.

The benchmarks confirm, what we felt when using Lively Kernel on different devices
ourselves. It is usable on the iPad, but has yet to be more optimized. Smartphones are
not fast enough to support the current system. So an overall score between 12 and 17
seems to be the minimal score indicating a suitable system.

5.3 Profiling

This section describes, how we measure the execution time of methods in order to find
bottle necks.

Now that we are able to find out, if there are performance issues and measure increases
ore decreases of performance, we need a way to track down the issues. Virtually every
performance issue is caused by a single bottle neck, a system component that can not
process the data as fast as it is provided. To find these bottlenecks, it is very helpful to
monitor the execution time of methods, to profile function calls.

Profiling single functions To measure the execution time of the individual func-
tions, we need to track when we enter and leave them. Having this information we can
calculate the time spent in each function. There are several methods to gather this infor-
mation.

The first and probably most efficient one would be to utilize the JavaScript VM. In
fact most modern browsers provide a profiler with access to the VM either native or as
a plug-in. However, we want a cross-browser solution, that is optimized on the Lively
Kernel architecture. As we have no access to the VM itself, we need an other option.

Fortunately, JavaScript is very dynamic and self-reflective. Each Method and each func-
tion is an object, that can be replaced. So we can replace it with a new function, that per-
forms additional tracking steps before and after the execution of the original function.

Explorative Authoring of Active Web Content 117

From here on, we will use the following bottles of beer function as an example to il-
lustrate the explanations. The function alertOK(text) is a lively function, that shows
text in a green box.

1 bottles = function(n) {
2 if(n>0) {
3 alertOK(
4 n + " bottles of beer on the wall, " +
5 n + " bottles of beer.\n" +
6 "Take one down and pass it around. " +
7 (n-1) + " bottles of beer on the wall."
8);
9 bottles(n-1);

10 } else {
11 alertOK(
12 "No more bottles of beer on the wall," +
13 "no more bottles of beer.\n" +
14 "Go to the shop and buy some more," +
15 "99 bottles of beer on the wall."
16);
17 }
18 }

Code Example 40: bottles of beer - example used for illustration purposes

The first idea to implement this approach would be just remembering the time of en-
trance and then calculating the time spent in the function after the execution has fin-
ished, adding up these results to retrieve the overall time spent in the function.

The method apply(context,arguments) is JavaScript native and executes a func-
tion. The variable this inside the function is bound to context.The contents of the array
arguments are passed as arguments to the function. As we want to preserve the con-
text, we pass the context of the new function to the old one. The variable arguments is a
magic variable in JavaScript. It contains all arguments passed to the current function call,
no matter how many arguments are expected in the definition. As we want to preserve
them, we pass them to the original function unchanged. We can put the original function
back in place by calling setting window[functionName] to
window[functionName].orig;.

This approach gives correct results, as long as no recursion occurs. Have a look at
figure 61. It shows a possible call tree of the beer function. The data provided is not
actual meassured data, it is just an example. The numbers at the edges of the tree denote
the total execution time of the called function. The numbers next to the nodes denote the
execution time of the functions without the time taken by subroutines.

118 Explorative Authoring of Active Web Content

1 var functionNames = ["bottles", "alertOK"];
2 functionNames.forEach(function(functionName){
3

4 var newFunction = function () {
5 var before = new Date().valueOf();
6 var out = newFunction.orig.apply(this, arguments);
7 newFunction.totalTime += new Date().valueOf() - before;
8 return out;
9 }

10

11 newFunction.totalTime = 0;
12 newFunction.orig = window[functionName];
13 window[functionName] = newFunction;
14 }

Code Example 41: naive profiling approach

beer(2)

beer(1) alertOK()

beer(0) alertOK() 10ms

10ms

24ms 10ms

36ms

2ms

12ms

2ms

10ms

10ms

alertOK() 10ms

2ms

Figure 61: Call tree of an example run of the beer function (no actual data). Numbers on edges
denote the running time of the called function. Numbers next to nodes denote the running time of
the function without subroutines.

The naive approach described above would now add up all execution times of the beer
function. That means it tells beer ran for 36 ms + 24 ms + 12 ms = 72 ms, which is
200% of the total running time. This is obviously not the value, we wanted to see. That
is the reason we need to remember, if a function has been called in the current call stack
already. Only the execution time of the first call per stack should be added to the overall
sum.

Explorative Authoring of Active Web Content 119

1 var functionNames = ["bottles", "alertOK"];
2 functionNames.forEach(function(functionName){
3

4 newFunction = function () {
5 var before = new Date().valueOf();
6 var newFunction.recursionDepth++;
7 var out = newFunction.orig.apply(this, arguments);
8 newFunction.recursionDepth--;
9 if (recursionDepth === 0) {

10 newFunction.totalTime += new Date().valueOf() - before;
11 }
12 return out;
13 }
14

15 newFunction.totalTime = 0;
16 newFunction.recursionDepth = 0;
17 newFunction.orig = window[functionName];
18 window[functionName] = newFunction;
19 }

Code Example 42: profiling approach that takes recursion into account

This approach counts 36 ms for beer and 30 ms for alertOK. These are the correct
total execution times of the functions. However, it is not very helpful, when looking for
bottlenecks. The function beer has a higher execution time than alertOK, nevertheless,
most time is spent executing alertOK. This is because beer includes alertOK, but
does not perform expensive operations itself. The time spend in beer without alertOK
is only 6 ms. According to the Google Chrome profiler, we call this time the self time.

To measure the self time, wee need to keep track of the call stack. Normally this fea-
ture is provided by JavaScript, but different browsers vary in their interpretation of the
standards. So this feature is not reliable and we need to implement our own tracking.

Fortunately, we already replaced all the functions, that are interesting to us, so we can
build a stack of these functions and thereby have a reference to the calling function. So
we can subtract the time the called function needed from the self time of the calling
function. As we subtract recursive calls, too, self time measurement does not need to
handle recursion different than other calls.

Instrumenting whole objects We now have achieved the ability to measure the ex-
ecution time of single functions, but this is not all we want. When looking for bottle
necks, the programmer seldom knows a small set of functions, that contain it. So we
need to be able to instrument all methods of multiple objects to find the functions taking
the most time. There is no need to build an extra method to instrument classes, because
they are only an abstraction of the prototypical inheritance of JavaScript. This results
in every class holding a reference to a prototype object for all its instances that can be
instrumented in the same way as normal objects.

120 Explorative Authoring of Active Web Content

1 var callStack = [];
2 var functionNames = ["bottles", "alertOK"];
3 functionNames.forEach(function(functionName){
4

5 var newFunction = function () {
6 var before = new Date().valueOf();
7 newFunction.recursionDepth++;
8 callStack.push(newFunction);
9 var out = newFunction.orig.apply(this, arguments);

10 callStack.pop();
11 newFunction.recursionDepth--;
12 var delta = new Date().valueOf() - before;
13 if (recursionDepth === 0) {
14 newFunction.totalTime += delta;
15 }
16 newFunction.selfTime += delta;
17 if (callStack.last()){
18 callStack.last().selfTimes -= delta;
19 }
20 return out;
21 }
22

23 newFunction.totalTime = 0;
24 newFunction.selfTime = 0;
25 newFunction.recursionDepth = 0;
26 newFunction.orig = window[functionName];
27 window[functionName] = newFunction;
28

29 }

Code Example 43: profiling approach with self time

Instrumenting whole objects is quite simple. First we use the Lively Kernel method
Functions.own to get a list of the names of all functions defined on this object itself.
The list does not contain functions inherited from prototypes, as we want to instrument
these via instrumenting the prototype. The only other change is replacing the global
namespace window with our object.

Profiling the whole system Now that we can instrument whole objects, we want
to be able to instrument all classes of the system at once. As said before, instrumenting
a class can be achieved by instrumenting the prototype-object in the same way as any
other object thanks to JavaScript prototypical inheritance. Getting a list of all classes is
also quite easy, we can get a list by calling Global.classes(true).

Explorative Authoring of Active Web Content 121

1 var callStack = [];
2 var functionNames = Functions.own(obj);
3 functionNames.forEach(function(functionName){
4

5 newFunction = function () {
6 //as before ...
7 }
8

9 newFunction.totalTime = 0;
10 newFunction.selfTime = 0;
11 newFunction.recursionDepth = 0;
12 newFunction.orig = obj[functionName];
13 obj[functionName] = newFunction;
14

15 }

Code Example 44: instrumenting a whole object for profiling

1 var callStack = [];
2 Global.classes(true).forEach(function(klass){
3 var obj = klass.prototype;
4 var functionNames = Functions.own(obj);
5 functionNames.forEach(function(functionName){
6

7 //as before ...
8

9 }
10 }

Code Example 45: instrumenting a whole object for profiling

This is already very promising, however, running this code would break the system.
When instrumenting classes, especially the basic ones, we have several problems. Firstly,
the prototype holds a reference to the constructor. Although the constructor is a func-
tion, it is not a method of the prototype and must therefore be excluded from the list of
methods wrapped.

When wrapping all methods of all classes, we may also wrap e.g. pop and push of
the class Array. As these are called by our profiling function, this results in endless
recursion. Yet we want to include these functions, as they might be important in the
profiled application.

To be able to include functions in the profiling, that are used by the profiler itself, we
need to be able to turn the profiling on and of for snippets of code without uninstru-
menting the functions.

122 Explorative Authoring of Active Web Content

This is exactly what context oriented programming (COP) does. [27] Lively Kernel in-
cludes ContextJS, a JavaScript COP implementation, so it would be quite easy to use. A
method tracer has even been implemented before using ContextJS. [41] However, Con-
textJS has a decent amount of execution time overhead. [38] As functions with deep call
trees are affected by the overhead more than flat ones, too much overhead may change
the results, rendering the profiler useless.

We decided to solve the problem with a minimalistic implementation of a COP like
functionality. A variable accessible to all profiling functions holds a Boolean value that
defines if the profiling steps should be executed or not.

1 var newFunction = function () {
2 if(active){
3 active = false:
4 //as before...
5 active = true;
6 }
7

8 var out = newFunction.apply(this, arguments);
9

10 if(active){
11 active = false;
12 //as before...
13 active = true;
14 }
15 return out;
16 }

Code Example 46: instrumenting a whole object for profiling

As you can see, we can not avoid calling the method apply of the system class Function
with active set to true. However, as this function should normally be native and very
fast, we can safely exclude it from our list of functions we want to instrument.

User Interface In this section we described, how to measure execution times in or-
der to find bottle necks. Collecting this data is only half the work, though. In order for
humans to be able to read it and find the problem, we need to present it in a compre-
hensible fashion. The user should furthermore be able to trigger the profiling easy and
intuitively.

Explorative Authoring of Active Web Content 123

Figure 62: User Interface of the Morph Profiler. Example data retrieved via “Just profile everything
I do”.

The user interface we ended up with so far can be seen in figure 62. It consists primarily
of two parts: on the left side one can choose what to profile and how, on the right side the
results are presented. We decided to base the Profiling on morphs, so users need to put
the morph under test in the upper left area. The profiler then automatically displays all
scripts of that morph. To run a script, users select it in the left list and provide parameters
via the right list and the small text pane. Note that the provided text is evaluated before
running the script, so they can be retrieved by a script, but will not change throughout
the profiling process. Finally, the users configure the number of times to run the script
in a row, this can help reducing variances in the execution time. The users can start the
profiling by pressing “Run”.

The profiler then copies the morph to make sure the original is not changed. The chosen
script will be executed the chosen number of times with the described profiling process
enabled. Finally the copy and the wrapper functions will be removed and the results
displayed. They are displayed as average per-run values, so the users are not bothered
with unnecessary large numbers.

124 Explorative Authoring of Active Web Content

However, not every user knows exactly which function to run or which arguments
to supply. Some times only the workflow causing trouble is known. For this case we
created the “Just profile everything I do” button. When pressing this button, profiling
will be turned on and all user interaction and resulting actions are measured. This is still
limited to the morph under test. When finished, the user presses the button again (It will
now read “I am done”) and the profiling is finished. All results will then be displayed in
the right pane. Note that the “Result (per call)” field is not updated, as there is no such
information.

The result view on the right displays the name of the object (or class), the name of
the function and the measured times for each function that has been called during the
profiling process. To find the bottle necks faster, the list can be sorted by any column in
any order by just clicking the header.

Instrumenting all classes can be very expensive in multiple ways. It needs time to
install all the wrapper functions, the functions themselves produce some overhead and
the huge amount of generation will need some time to be displayed. Apart from the
performance, it might even hide the true bottle neck amongst all those entries. That is
why profiling classes is optional, it is turned of by default, as this profiler is primarily
designed for the development of parts.

This user interface still needs much improvement.(see section 5.5). Anyhow, it enables
all Lively Kernel users to profile their parts and makes the search for bottle necks a real
search rather than a guess and test scenario.

5.4 Results of the profiler

This section provides some examples of information gathered using the described pro-
filer.

Insights from the Profiler When developing the profiler, we actually had some per-
formance issues with the User Interface. The profiling itself is smooth, but showing the
results needs quite a lot of time. So we decided to use the profiler on itself. We did not
profile the profiling process itself, because this would lead to way too many levels of
indirection. In fact even one Profiler may exceed the maximum call stack size, as the
stack depth of the call is almost doubled. Two nested profilers cause way to many of
these exceptions to deliver reliable meassurements. We could nevertheless profile the
aggregation and rendering of the results. This way we found out, that the creation and
rendering of the morphs building the table eats up the time. See section 5.5 for our ap-
proach to solve this problem.

We also used the profiler as an experimental tool, one example: We encountered three
ways to iterate over arrays, that were described having different speeds by different
sources. To find out what was really happening, we created a box morph, that executed
all three of them as seperate functions. The profiling result for this functions could then
be compared to compare the speed of the iteration. We could see, that all three methods
performed equally good and there is no performance argument for choosing one over
the other.

Explorative Authoring of Active Web Content 125

5.5 Future Work

This section describes which steps could be taken to improve the benchmarks and the
profiler described above.

The benchmarks provide a good impression of the overall performance of Lively Ker-
nel on various Systems. However, the selection of system components represented in
the benchmarks is made solely on manual observance of usage. This does not guaran-
tee the selection to be representative. A better way would be collecting usage statistics
over a couple of weeks. These statistics can be used to create benchmarks resembling
real interaction. Nevertheless, to preserve comparability, these would have to be new
benchmarks and should not replace the others.

As described in section 5.4, the rendering of the information of a profiling session takes
a lot of time. This originates in the huge number of morphs that need to be created,
styled, positioned and rendered to build up the table. A possible solution to this perfor-
mance issue could be a “table-morph”, that would not build the table out of submorphs
but rather use an html table.

The profiler gives a lot of information, too much in some cases. Allthough it provides a
sortable view of the results, it can get difficult to find the bottle neck among the dozens of
called functions. The profiler of the Google Chrome debugging tools solves this problem
with a tree view, that resembles a call tree with the additional information of runtime
per node. This could be usefull for the Lively Kernel profiler, too. As this requires more
information to be stored, we would need to evaluate the cost of the higher overhead
againts the use of the tree view.

The userinterface of the profiler is only a very simple one, one could say a first draft. It
would probably enhance the usability to revise it in multiple design iterations. Possible
changes could inlcude for example a possibility to enter a list of classes to instrument or
a recording feature for workflows, so one can retest them automatically.

5.6 Related Work

We have created a benchmark suite specialized on Lively Kernel, but it is still a JavaScript
benchmark. There are several other benchmarks that aim to achieve a comparison of the
overall performance. This section compares these to our benchmark.

There are several different JavaScript benchmarks. We have chosen some prominent
examples to compare our results with, namely SunSpider, V8 benchmarks, Kraken and
Dromaeo.

The SunSpider benchmark was developed by the WebKit team and was one of the
first attempts to measure the performance of “actual problems developers solve with
JavaScript today”. [11] It avoids micro benchmarks, which repeat small tasks severall
times, because the designers think these are not representative. This is a huge difference
to our Lively Kernel benchmark suite. SunSpider runs tasks like ray tracing, cryptogra-
phy and decompression. It aims to keep a balance between different language features
of JavaScript and determines an error range of the results. [11]

126 Explorative Authoring of Active Web Content

The V8 benchmarks are developed by Google as a reference to optimize their JavaScript
engine of the same name. It includes some heavy tasks and some micro benchmarks and
gives better results with Google Chrome than other browsers, because Google Chrome
uses V8 and is therefore optimized to achieve good results in this suite. [22]

The Kraken benchmark from Mozilla is similar to the SunSpider, in the way it runs
its small number of heavy tasks and determines error ranges. It uses other example
tasks however, that are even more complex. Examples are image manipulation, path
finding and audio processing. Mozilla developers aimed for more realism than other
benchmarks. [49]

The Dromaeo test suite is an attempt of Mozilla to unify all the different Benchmarks
and tests available. It executes micro benchmarks as well as larger tasks from different
sources. SunSpider, V8 and several other suites are included in Dromaero. Mozilla ex-
panded this already large collection by some own tests and implemented a test system
with a minimal number of runs and a minimal running time similar to ours. [52]

We ran these 3 benchmark suites on our most relevant test devices to compare them
to our benchmark. We used SunSpider 0.9.1, V8 benchmarks version 7, Kraken 1.1 and
Dromaero at 2012-06-29. We did not run the DOM tests of Dromaero, because the mo-
bile Safari kept timing out and crashing. We ran only the JavaScript tests (options: dro-
maero|sunspider|v8).

Figure 63: Results of different JavaScript Benchmarks. All run in Google Chrome, where possible,
Safari on the iPad. Higher is better.

The results of these benchmarks compared to ours can be seen in figure 63. Note that
we scaled all results to our reference system to achieve comparability. It is clearly visible,
that our benchmark suite favors Windows over the iMac and grants the iPad a higher
score than the other benchmarks. This means the subset of JavaScript tested by our suite
is probably well supported by the mobile Safari, although it lacks in some features we
did not use.

Explorative Authoring of Active Web Content 127

5.7 Conclusion

Performance is crucial to Lively Kernel. The highly interactive character and the goal of
fluent programming require fast processing and computation.

In this thesis we described and implemented two tools, that can help us on the way to
a perfomant system. A benchmark suite to provide objective information about perfor-
mance and a profiler to track down bottle necks.

The benchmarks allow us to compare the performance of Lively Kernel on diferent
devices, using different browsers and across time (and therefore state of Lively Ker-
nel). It provides an objective meassurement of performance that could only be feeled
and guessed before. We selected a representative set of features to base our benchmarks
upon and created an implementation framework, that allows for easy extension and
configuration of the benchmark suite. We implemented our suite and ran it on severall
plattforms.

The profiler is helpfull when fixing performance issues. It provides an efficient and
empirical way to find the bottle neck. We implemented the profiling mechanism using
wrapper functions and build a decent user interface. All resulting data is presented hu-
man readable in a sortable table. We are now able to profile scripts of parts or the whole
class system. We can even run a script severall times in order to compensate statistical
variances.

Our work has paved the way towards a fluent user experience by providing objective
meassurements and tools to notice, fund and fix performance issues.

128 Explorative Authoring of Active Web Content

A Specifications of test sytems

A.1 iMac

– iMac 11.2
– Intel Core i3
– 3.06 GHz
– 2 Cores
– 256 L2 Cache per Core
– 4 MB L3 Cache
– 4 GB 1333 MHz DDR3 RAM
– 5.86 GT/s
– Boot-ROM-Version IM112.0057.800
– SMC-version 1.64fS

A.2 Windows

– Windows 7 Enterprise SP 1
– Intel Core i5
– 2.66 GHz
– 4 Cores
– 4 x 32 KBytes L1 Cache
– 4 x 256 KBytes L2 Cache
– 8192 KBytes L3 Cache
– 6 GB 667 MHz DD3 RAM (3 x 2 GB)

Explorative Authoring of Active Web Content 129

References

1. Alan Kay, Dan Ingalls, T.K.: Squeak smalltalk (05 2012), http://squeak.org, vis-
ited 19.06.2012

2. Albinsson, P.A., Zhai, S.: High precision touch screen interaction. In: Proceedings
of the SIGCHI conference on Human factors in computing systems. CHI ’03, ACM,
New York, NY, USA (2003)

3. Allen-Conn, B.J., Rose., K.: Powerful ideas in the classroom. Viewpoints Research
Institute, Inc. (2003)

4. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide Time to Re-
lax. O’Reilly Media, Inc., 1st edn. (2010)

5. Apple Inc.: Touchevent class reference (12 2010), http://developer.apple.
com/library/safari/navigation/, visited 16.06.2012

6. Apple Inc.: Devicemotionevent class reference (06 2011), http://developer.
apple.com/library/safari/navigation/, visited 16.06.2012

7. Apple Inc.: Deviceorientationevent class reference (10 2011), http://developer.
apple.com/library/safari/navigation/, visited 16.06.2012

8. Apple Inc.: Safari web content guide (10 2011), http://developer.apple.com/
library/safari/navigation/, visited 16.06.2012

9. Apple Inc.: iOS Human Interface Guidelines (06 2012), https://
developer.apple.com/library/ios/documentation/userexperience/
conceptual/mobilehig/MobileHIG.pdf, visited 19.06.2012

10. Apple Inc.: iOS Human Interface Guidelines (03 2012), http://developer.
apple.com/library/safari/navigation/, visited 21.06.2012

11. Apple Inc: SunSpider JavaScript Benchmark (06 2012), http://www.webkit.
org/perf/sunspider/sunspider.html, visited 29.06.2012

12. Benko, H., Wilson, A.D., Baudisch, P.: Precise selection techniques for multi-touch
screens. In: Proceedings of the SIGCHI conference on Human Factors in computing
systems. CHI ’06, ACM, New York, NY, USA (2006)

13. Brubeck, M., Moon, S., Schepers, D.: Touch events (12 2011), http://www.w3.
org/TR/2011/CR-touch-events-20111215/, visited 25.06.2012

14. Callahan, J., Hopkins, D., Weiser, M., Shneiderman, B.: An empirical comparison of
pie vs. linear menus. In: Proceedings of the SIGCHI conference on Human factors in
computing systems. CHI ’88, ACM, New York, NY, USA (1988)

15. Czuchra, M.: Offline Worlds. Automated Client-Side Persistence in Lively Kernel.
Master’s thesis, Software Architecture Group, Hasso-Plattner-Institute, University
of Potsdam, Germany (2012)

16. Dannert, J.: WebCards. Entwurf und Implementierung eines kollaborativen,
graphischen Web-Entwicklungssystems für Endanwender. Master’s thesis, Soft-
ware Architecture Group, Hasso-Plattner-Institute, University of Potsdam, Ger-
many (2009)

17. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In: Pro-
ceedings of the 1992 ACM conference on Computer-supported cooperative work.
CSCW ’92, ACM, New York, NY, USA (1992)

18. Dourish, P., Bly, S.: Portholes: supporting awareness in a distributed work group.
In: Proceedings of the SIGCHI conference on Human factors in computing systems.
CHI ’92, ACM, New York, NY, USA (1992)

19. Ecma International: Ecmascript language specification (06 2011), http:
//www.ecma-international.org/publications/files/ECMA-ST/
Ecma-262.pdf, visited 16.06.2012

http://squeak.org
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/MobileHIG.pdf
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/MobileHIG.pdf
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/MobileHIG.pdf
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.w3.org/TR/2011/CR-touch-events-20111215/
http://www.w3.org/TR/2011/CR-touch-events-20111215/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

130 Explorative Authoring of Active Web Content

20. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD Rec.
18(2), 399–407 (06 1989)

21. Fitts, P.M.: The information capacity of the human motor system in controlling the
amplitude of movement. Journal of experimental psychology 47(6), 381–391 (06
1954)

22. Google Inc: V8 Benchmark Suite - version 7 (06 2012), http://v8.googlecode.
com/svn/data/benchmarks/v7/run.html, visited 29.06.2012

23. Google Inc. and the Open Handset Alliance: Iconography | android developers (05
2012), https://developer.android.com/design/style/iconography.
html, visited 19.06.2012

24. Google Inc. and the Open Handset Alliance: Selection | android developers (05
2012), http://developer.android.com/design/patterns/selection.
html, visited 19.06.2012

25. Graham, T., Phillips, W., Wolfe, C.: Quality analysis of distribution architectures
for synchronous groupware. International Conference on Collaborative Computing:
Networking, Applications and Worksharing 0, 41 (2006)

26. Hick, W.E.: On the rate of gain of information. Quarterly Journal of Experimental
Psychology 4(1), 11–26 (1952)

27. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented Programming
(03 2008), http://www.hirschfeld.org/writings/index.html, visited
29.06.2012

28. Hopkins, D.: The design and implementation of pie menus. Dr. Dobb’s J. 16(12),
16–26 (12 1991)

29. HPI Software Architecture Group: Lively - an explorative authoring environment,
http://lively-kernel.org/lively/index.html, visited 16.06.2012

30. Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., Mikkonen, T.: The lively kernel a self-
supporting system on a web page. In: Hirschfeld, R., Rose, K. (eds.) Self-Sustaining
Systems, Lecture Notes in Computer Science, vol. 5146. Springer Berlin / Heidelberg
(2008), 10.1007/978-3-540-89275-5_2

31. Jonathan P. Munson, P.D.: A flexible object merging framework (1994)
32. Just, H.: ActiveParts: A Server-Side Lively Kernel Runtime. Master’s thesis, Hasso-

Plattner-Institut, Potsdam (05 2005)
33. Kay, A.C.: A personal computer for children of all ages. In: Proceedings of the ACM

National Conference. Boston, Estados Unidos (08 1972)
34. Knittl-Frank, D.: Analysis and Comparison of Distributed Version Control Systems.

bachelor thesis, University of Applied Sciences, Upper Austria (2010)
35. Koch, P.P.: The fifth position value (12 2010), http://www.quirksmode.org/

blog/archives/2010/12/the_fifth_posit.html, visited 18.06.2012
36. Krahn, R.: Mouse and keyboard events in lively (08 2011), http:

//lively-kernel.org/repository/webwerkstatt/documentation/
Events.xhtml, visited 16.06.2012

37. Krahn, R., Ingalls, D., Hirschfeld, R., Lincke, J., Palacz, K.: Lively wiki a development
environment for creating and sharing active web content. In: Proceedings of the 5th
International Symposium on Wikis and Open Collaboration. WikiSym ’09, ACM,
New York, NY, USA (2009)

38. Krahn, R., Lincke, J., Hirschfeld, R.: Efficient Layer Activation in ContextJS (01 2012),
http://www.hirschfeld.org/writings/index.html, visited 27.06.2012

39. Leithead, T., Rossi, J., Schepers, D., Höhrmann, B., Hégaret, P.L., Pixley, T.: Docu-
ment object model (dom) level 3 events specification (06 2012), http://www.w3.
org/TR/DOM-Level-3-Events/, visited 16.06.2012

http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
https://developer.android.com/design/style/iconography.html
https://developer.android.com/design/style/iconography.html
http://developer.android.com/design/patterns/selection.html
http://developer.android.com/design/patterns/selection.html
http://www.hirschfeld.org/writings/index.html
http://lively-kernel.org/lively/index.html
http://www.quirksmode.org/blog/archives/2010/12/the_fifth_posit.html
http://www.quirksmode.org/blog/archives/2010/12/the_fifth_posit.html
http://lively-kernel.org/repository/webwerkstatt/documentation/Events.xhtml
http://lively-kernel.org/repository/webwerkstatt/documentation/Events.xhtml
http://lively-kernel.org/repository/webwerkstatt/documentation/Events.xhtml
http://www.hirschfeld.org/writings/index.html
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/

Explorative Authoring of Active Web Content 131

40. Leuf, B., Cunningham, W.: The Wiki way: quick collaboration on the Web. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001)

41. Lincke, J., Krahn, R., Hirschfeld, R.: Implementing Scoped Method Tracing with
ContextJS (07 2012), http://www.hirschfeld.org/writings/index.html,
visited 27.06.2012

42. Lincke, J., Krahn, R., Ingalls, D., Hirschfeld, R.: Lively fabrik a web-based end-user
programming environment. In: Proceedings of the 2009 Seventh International Con-
ference on Creating, Connecting and Collaborating through Computing. C5 ’09,
IEEE Computer Society, Washington, DC, USA (2009)

43. Lincke, J., Krahn, R., Ingalls, D., Röder, M., Hirschfeld, R.: The lively partsbin–a
cloud-based repository for collaborative development of active web content. Hawaii
International Conference on System Sciences 0 (2012)

44. Lincke, J., Krahn, R., Ingalls, D., Röder, M., Hirschfeld, R.: The lively partsbin-a
cloud-based repository for collaborative development of active web content. In:
HICSS (2012)

45. Maloney, J.: Morphic: The Self User Interface Framework (07 1995), http://ftp.
squeak.org/docs/Self-4.0-UI-Framework.pdf, visited 21.06.2012

46. Maloney, J.: Morphic: The Self User Interface Framework. Sun Microsystems, Inc.,
2550 Garcia Avenue, Mountain View, CA 94043 USA (1995)

47. McDirmid, S.: Coding at the speed of touch. In: Proceedings of the 10th SIGPLAN
symposium on New ideas, new paradigms, and reflections on programming and
software. ONWARD ’11, ACM, New York, NY, USA (2011)

48. Mikkonen, T., Taivalsaari, A.: Creating a mobile web application platform: the lively
kernel experiences. In: Proceedings of the 2009 ACM symposium on Applied Com-
puting. SAC ’09, ACM, New York, NY, USA (2009)

49. Mozilla Foundation: Kraken JavaScript Benchmark (version 1.1) (06 2012), http:
//krakenbenchmark.mozilla.org/, visited 29.06.2012

50. Ohkubo, M., Ishii, H.: Design and implementation of a shared workspace by inte-
grating individual workspaces. SIGOIS Bull. 11(2-3), 142–146 (03 1990)

51. Rauch, G.: socket.io (2012), http://socket.io, visited 27.06.2012
52. Resig, J.: Dromaeo: JavaScript Performance Testing (06 2012), http://dromaeo.

com/, visited 29.06.2012
53. Sebastian Herzberg, D.D.: Content-Tracking mit Git. Beleg zur Lehrveranstaltung

Softwareentwicklungswerkzeuge (2011)
54. Smus, B.: Multi-touch web development (06 2011), http://www.html5rocks.

com/en/mobile/touch/, visited 16.06.2012
55. Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., Tatar, D.: Wysiwis revised: early

experiences with multiuser interfaces. ACM Trans. Inf. Syst. 5(2), 147–167 (04 1987)
56. Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S., Suchman, L.: Beyond the

chalkboard: computer support for collaboration and problem solving in meetings.
Commun. ACM 30(1), 32–47 (01 1987)

57. Stewart, J., Bederson, B.B., Druin, A.: Single display groupware: a model for co-
present collaboration. In: Proceedings of the SIGCHI conference on Human factors
in computing systems: the CHI is the limit. CHI ’99, ACM, New York, NY, USA
(1999)

58. Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K.: Web browser as an application
platform. Software Engineering and Advanced Applications, Euromicro Conference
0, 293–302 (2008)

59. Tilkov, S., Vinoski, S.: Node.js: Using javascript to build high-performance network
programs. IEEE Internet Computing 14, 80–83 (2010)

http://www.hirschfeld.org/writings/index.html
http://ftp.squeak.org/docs/Self-4.0-UI-Framework.pdf
http://ftp.squeak.org/docs/Self-4.0-UI-Framework.pdf
http://krakenbenchmark.mozilla.org/
http://krakenbenchmark.mozilla.org/
http://socket.io
http://dromaeo.com/
http://dromaeo.com/
http://www.html5rocks.com/en/mobile/touch/
http://www.html5rocks.com/en/mobile/touch/

132 Explorative Authoring of Active Web Content

60. Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M.: Touchdevelop: program-
ming cloud-connected mobile devices via touchscreen. In: Proceedings of the 10th
SIGPLAN symposium on New ideas, new paradigms, and reflections on program-
ming and software. ONWARD ’11, ACM, New York, NY, USA (2011)

61. Ungar, D., Smith, R.B.: Self. In: Proceedings of the third ACM SIGPLAN conference
on History of programming languages. HOPL III, ACM, New York, NY, USA (2007)

62. WHATWG: Timers (06 2012), http://www.whatwg.org/specs/web-apps/
current-work/multipage/webappapis.html, visited 20.06.2012

63. World Wide Web Consortium: http://www.w3.org/, visited 16.06.2012

http://www.whatwg.org/specs/web-apps/current-work/multipage/webappapis.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/webappapis.html
http://www.w3.org/

