
2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

Declaring Constraints on Object-oriented
Collections

Tim Felgentreff1 Robert Hirschfeld1 Maria Graber1 Alan Borning2

Hidehiko Masuhara3

Abstract: Logic puzzles such as Sudoku are described by a set of properties that a valid solution must have.
Constraints are a useful technique to describe and solve for such properties. However, constraints are less
suited to express imperative interactions in a user interface for logic puzzles, a domain that is more readily
expressed in the object-oriented paradigm.
Object constraint programming provides a design to integrate constraints with dynamic, object-oriented
programming languages. It allows developers to encode multi-way constraints over objects using existing,
object-oriented abstractions. These constraints are automatically maintained at run-time.
In this paper we present an application of this design to logic puzzles in the Squeak/Smalltalk programming
environment, as well as an extension of the design and the formal semantics of Babelsberg to allow declaring
constraints using the imperative collection API provided in Squeak. We argue that our implementation fa-
cilitates creating applications that use imperative construction of user interfaces and mutable program state
as well as constraint satisfaction techniques for different parts of the system. The main advantage of our
approach is that it moves the burden to maintain constraints from the developer to the runtime environment,
while keeping the development experience close to the pure object-oriented approach.

Keywords: Object Constraint Programming, Constraint Imperative Programming, Constraint Solving,
Babelsberg

1. Introduction

Logic puzzles are declarative. Their rules declare what a

valid solution should look like, and they can then be solved

without any pre-described algorithm other than logical de-

duction techniques. A famous example is Sudoku. The rules

of a logic puzzle describe properties that should be main-

tained while solving the puzzle. For example, in Sudoku,

the properties are that each row, column, and box contain

the numbers from 1 to 9 exactly once. The properties of a

logic puzzle can be formulated as formal constraints, which

a constraint solver can use to find one or more solutions or

to check if a solution input by the user is valid [12].

User interface frameworks such as Morphic [15] are inher-

ently imperative – the user interface consists of compositions

of Morphs that have state and react to user input events.

Morphic was first implemented in Self, with later implemen-

tations in Squeak [16] and JavaScript [19].

Babelsberg [5] is a design to integrate constraints into

object-oriented languages in a way that allows programmers

to dynamically create and satisfy constraints on objects.

The design is a strict extension of the object-oriented seman-

tics of the underlying host language. Babelsberg uses object-

oriented method definitions to define constraints rather than

1 Hasso Plattner Institute, University of Potsdam, Germany
2 University of Washington, Seattle, WA, USA
3 Department of Mathematical and Computing Sciences, Tokyo

Institute of Technology

a constraint domain-specific language (dsl) [17], [18]. As a

consequence, Babelsberg respects encapsulation and object-

oriented abstractions. The design also supports solver fea-

tures such as constraint priorities [2] and incremental re-

solving [8]. Recently, the design has been extended to allow

multiple constraint solvers to cooperate to find a solution [6].

This design lends itself well to build interactive user inter-

faces for logic puzzles where the puzzle rules are expressed

as constraints on the Morphic objects. In a standard im-

perative programming language, constraint solving and sat-

isfaction is implemented explicitly. Using just Morphic in

a standard imperative language, developers have to ensure

that all event sources that might change the user interface

resatisfy constraints or call an external constraint solver.

In contrast, Babelsberg maintains constraints automatically,

regardless of how the system was perturbed. This reduces

the amount of knowledge the developer has to have about

possible event sources for the Morphs. We argue that this is

more in line with the encapsulation and abstraction desired

in object-oriented applications.

An incomplete aspect of the original Babelsberg design

was that it only allowed constraints on objects and their

parts, but did not allow multi-directional solving for con-

straints on collections. In the context of logic puzzles

the rules are usually defined on sets of objects (for exam-

ple, Sudoku constraints are defined on rows, columns, and

boxes.) In prior work, we experimented with an extended

Squeak/Smalltalk based prototype implementation of the

1

2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

Babelsberg design — Babelsberg/S — to support opera-

tions on collections of objects [9]. In this paper, we derive a

general design from this prototype implementation, as well

as semantic rules to supplement the existing Babelsberg se-

mantics [7].

Thus, the contributions of this work are:

• We describe an implementation of the Babelsberg de-

sign in Squeak/Smalltalk.

• We describe an extension to Babelsberg that let the

programmer conveniently specify constraints on collec-

tions.

• We present a technique for Morphic applications to in-

teract with constraints, using as a running example an

interactive Sudoku application

• In an appendix, we present semantic rules to supple-

ment the formal Babelsberg design to support collection

predicates.

2. Object Constraint Programming in

Squeak

This section describes how constraints are expressed in our

Squeak implementation of Babelsberg, called Babelsberg/S.

For our examples, we use the rules of a Sudoku puzzle.

1 constraint := [
2 (sudoku at: 1 at: 1) between: 1 and: 9
3] alwaysSolveWith: solver.

Listing 1: Defining the domain of a Sudoku cell

Listing 1 shows the constraint for defining the domain of

one Sudoku cell. In general, a constraint in Babelsberg/S is

specified as a block that evaluates to a boolean — if the block

evaluates to true, the constraint is satisfied. As mentioned

in Section 1, this block contains Smalltalk code, rather than

code written in a separate dsl. The variable sudoku in List-

ing 1 represents the grid of cells in the interactive applica-

tion from the outside scope and the method between:and:

is a predefined predicate on Squeak numbers that just checks

whether the receiver’s value is between the upper- and lower-

bound arguments. To actually turn this code in into a con-

straint that can be handed to a solver, we send the message

alwaysSolveWith: to the block, passing as argument an

instance that implements the interface of the Bablelsberg/S

ConstraintSolver class. (It is also possible to solve the

constraint with a default constraint solver, which is global

inside the Squeak image, by sending alwaysTrue.) While

the Smalltalk block can contain arbitrary Smalltalk code,

asking the system to interpret it as a constraint puts the

same restrictions on the expressions insides the block as for

previous implementations of Babelsberg [5], [6]. These are

a) an expression that is used as a constraint must evaluate

to a boolean (the constraint is that it evaluate to true), b)

the expression should return the same result on repeated

evaluation (so that, for example, a random number genera-

tor would not qualify), and c) the expression should be free

of side-effects.

Fig. 1: The architecture of Babelsberg/S constraint con-
struction mode

Translating Constraints in Babelsberg/S

To translate the Smalltalk expression into a form suit-

able for a constraint solver, the constraint block is exe-

cuted in a different execution mode called constraint con-

struction mode which uses symbolic execution [3], [13] to

create constraint expressions from the code. The block is

only evaluated in constraint construction mode when either

alwaysTrue or alwaysSolveWith: are sent to it, otherwise

it is just an ordinary Squeak block.

Squeak/Smalltalk includes an in-image Smalltalk inter-

preter that we instrumented to implement constraint con-

struction mode. The resulting architecture is shown in

Figure 1. Squeak stack frames can be reified into in-

stances of subclasses of the ContextPart class. These pro-

vide methods to interpret each bytecode. This facility

is used by the Squeak debugger. Babelsberg/S uses the

instrumented interpreter to evaluate the constraint block.

The alwaysTrue method creates a new Process (a Smalltalk

green-thread) that is interpreted stepwise using the interface

of the ContextPart objects. Where interpretation in con-

straint construction mode deviates from normal Smalltalk

semantics, we use ContextS [10] to instrument methods

whose behavior needs to change inside a constraint construc-

tion mode layer.

Consider the above constraint: the block

[(sudoku at: 1 at: 1) between: 1 and: 9] is compiled

into bytecode. A new Squeak process is created (but not

scheduled) by sending the method newProcess to it. The

process has a stack with exactly one frame (a ContextPart

object.) That frame’s program counter is set to 0 and

it contains the bytecode for the constraint block. The

Babelsberg/S interpreter then steps through this frame

by interpreting the bytecodes one by one, including doing

method lookup and creating new frames as needed. An

important consequence of this is that a variable binding that

is used as receiver in a constraint block cannot be allowed to

change, because then the lookup, and thus the constructed

constraint, might be invalid. Thus, for Listing 1, the solver

cannot simply find a collection that already satisfies the

constraint and change the binding of the sudoku variable.

Instead, it has to change the contents of the Sudoku to

satisfy the constraint. This restriction does not apply to

bindings that were created during constraint construction,

such as return values of methods – so the solver can (and

2

2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

will) change what the method at:at: returns when sent to

sudoku.

The modified interpreter creates ConstraintVariable

objects for instance variables that are accessed through

accessor methods. All methods are then called on these

ConstraintVariable objects. Operator methods such as

+, -, or <= construct constraint expressions instead of eval-

uating directly. Other methods that the solver does not

directly support are partially evaluated to break them down

into the primitive operations. In the case of between:and:,

for example, the constraint constructed from partially

evaluating the method would be equivalent to specifying

n >= lower and: [n <= upper] directly. By re-using ex-

isting methods, Babelsberg/S supports the object-oriented

abstractions that already exist in the system. This is

equivalent to the Babelsberg implementations in Ruby and

JavaScript [5].

Additionally, the interpreter creates instance-specific

method wrappers to intercept access to these variables. The

wrappers delegate read and write access to the correspond-

ing ConstraintVariable, which calls the solver as needed

to keep the constraints satisfied and returns the value of the

variable from the solver’s solution.

In contrast to JavaScript or Ruby, Squeak/Smalltalk does

not allow instance-specific behavior directly. All methods

and instance variables are declared on the class. How-

ever, wrapping accessors on the class of any encountered

object would cause all instances of that class in the sys-

tem to go through our wrapper, which imposes considerable

performance overhead. To wrap only the encountered in-

stances, we create anonymous subclasses of their class, and

use Smalltalks become: facility to change the class of the ob-

ject to the anonymous subclass. We then install our wrap-

pers only on this instance-specific subclass.

This solution to instance-specific behavior means that

there is no run-time overhead when using objects that have

no constraints on them. Constrained objects are easily dis-

covered through Smalltalk’s meta-programming interface,

because their class has no name and only wraps the accessors

encountered in the constraint. We encountered methods in

the core system that check for the class of its arguments not

using the isKindOf: method (which works correctly for in-

stances of subclasses), but by directly comparing the class

pointer. Although one might consider this as a bug in the

method, we are working on a solution to instance-specific

behavior that is completely transparent to these common

uses of meta-programming.

After constraint construction has interpreted the block,

the generated constraint expressions are added to a

Constraint object, which is passed to the constraint solver.

We explain the solving process in more detail in Section 3.3.

If solving succeeds, the method alwaysSolveWith: returns

the newly created constraint object. This object can then

be used for reflection (e.g., to inspect which variables par-

ticipate in the constraint) as well as to dynamically disable

and re-enable the constraint. If solving fails, an exception is

raised, which must be handled by the programmer. In that

case, the constraint is not added and the system remains

unperturbed.

3. Constraints on Collections of Objects

The original Babelsberg design did not support con-

straints on collections directly; rather, it was proposed to

use a specialized solver for collections [5]. To model an en-

tire Sudoku puzzle, we need to assert the constraint given in

Listing 1 for each cell. With the existing Babelsberg design,

this would either require a solver for collections that sup-

ports domains for numbers, or alternatively, loop over the

cells imperatively (Listing 2.)

1 (1 to: sudoku size) do: [:index |
2 [(sudoku at: index) between: 1 and: 9]
3 alwaysSolveWith: solver].

Listing 2: Defining the domain of all Sudoku cells with a loop

The code has two main problems, however. First, if we

consider collections that can grow (or shrink), these con-

straints would then be incorrect — they would either have

to be redacted and the loops re-executed or after adding the

above constraints once any changes to the size of the col-

lection must be prohibited. Second, many object-oriented

languages including Squeak/Smalltalk come with applica-

tion programming interfaces (apis) to work with collec-

tions, and rather than iterating manually, a method such as

allDifferent, if available on the Collection class, should

work in a constraint, because it satisfies our restrictions on

constraint expressions that they return a boolean and are

free of side-effects:

1 [collection allDifferent] alwaysTrue.

The formal design of Babelsberg indeed does support such

methods, but only for solving in the forward direction, that

is, to execute them and use the result as a constant [7]. In

this case, solving in the forward direction would be of little

use, however, since if the result of the call to allDifferent

is not already true, there is nothing the system can do.

Supporting collections in constraints more directly is thus

useful in at least this application, and more generally in any

application that deals with finite domain problems as well

as representations of those problems (graphical or otherwise)

that are more readily expressed using imperative code. This

combination makes Sudoku applications an ideal example of

the kinds of applications we want to support with this de-

sign.

There are a number of collection predicates that are

commonly used in constraints and that would be useful

to support. For these, we propose that implementers of

Babelsberg-like languages must check their actual imple-

mentation and decide for each if they should allow them

in a modified form of constraint construction mode. In this

mode, rather than simply executing through complex meth-

ods involving loops, we convert any operations involving col-

lection elements that are used as tests into constraints. Any

3

2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

Table 1: Mapping from collection predicates to declara-
tive representation

anySatisfy: ∃x ∈ array : f(x)
noneSatisfy: ∀x ∈ array : ¬f(x)
allSatisfy: ∀x ∈ array : f(x)

includes: y.∃x ∈ array.x = y

indexing variable is treated as read-only. If the test would

trigger an early return, we ignore the return and continue.

Depending on the type of recognized test, the generated

constraints must then added to a conjunction or disjunction.

The system determines whether to use a conjunction or dis-

junction if the method uses an early return optimization. If,

depending on an element test, the method would early re-

turn true, the tests must be combined in a disjunction, since

it is enough to satisfy just one test to have the method return

the same. Otherwise, the elements are negated and added in

to a conjunction. Thus, an implementation of allDifferent

as in Listing 3 would be turned into a conjunction of pair-

wise inequality constraints.

1 allDifferent
2 1 to: self length do: [:i |
3 1 to: self length do: [:j |
4 (i ~= j and: (self at: i = self at: j))
5 ifTrue: [↑ false]]]
6 ↑ true

Listing 3: A possible implementation of allDifferent

The code for allDifferent would be expanded into

a conjunction of constraints, because the early return

is false. The constraints in the conjunction would be

for the tests to that early return, pair-wise constraining

self at: i = self at: j to be false (with the values of i

and j fixed for each constraint). In addition, supposing the

length method represents a field access, this field is also

used in the constraint, and thus the system can track any

change to this field to trigger regenerating the constraints

on the collection.

Some common predicates available on collections in

Squeak/Smalltalk are translated as per Table 1. (Note that

both the test if some element satisfies a particular predicate

as well as the test for membership (the latter being a spe-

cial case of the former) require a disjunction. Without any

other constraints, and since our design does not use Prolog-

style backtracking, they would probably always be satisfied

by setting the first (or last, depending on the concrete im-

plementation) element of the array.) Even though this list

contains only a few predicates, in practice many languages

come only with a small set of primitive collection types that

are supported at a language level. Languages with a rich

collection library such as Common Lisp or Squeak/Small-

talk [11] are built around a small number of types and prim-

itive operations to access and store indexed elements in an

object. Thus, implementing the special support needed to

support these basic predicates enables their use in a variety

of contexts, including methods that are built on top of these

predicates.

3.1 Constraints on User-Defined Methods

We do not intend for language implementers to support

every possible method that a collection may have in a prac-

tical implementation, in particular if that collection may be

extended with user-defined methods. As an example, con-

sider an iterative sum method as in Listing 4.

1 sum
2 | answer |
3 answer := 0.
4 1 to: self length do: [:i |
5 answer := answer + self at: i].
6 ↑ answer

Listing 4: A possible implementation of sum

We can of course use this method in the forward direction

in a constraint:

1 a := Array new: 2.
2 a at: 1 put: 10.
3 a at: 2 put: 20.
4 s := 30.
5 [s = a sum] alwaysTrue.
6 a at: 1 put: 100.

After the constraint is executed, s is 30 (since the constraint

is already satisfied); then after setting the first element of a

to 100, s becomes 120. However, the method doesn’t work

backwards — for example, we can’t constrain the sum of the

array and expect the system to update one or more elements

to satisfy the constraint. So the constraint in the last line

below will be too hard for the system to solve:

1 a := Array new: 2.
2 a at: 1 put: 10.
3 a at: 2 put: 20.
4 [50 = a sum] alwaysTrue.

We have found a design pattern for user code that works

well in these situations that can provide something that

works both forward and backward. Rather than using a

method that returns the calculated sum of the elements, we

eagerly update the sum as the array changes in a variable.

This can be done by writing an ordinary method that sets

up a recursive network of addition constraints over the ar-

ray elements. The sum becomes an instance variable of our

collection, and the implementation of that collection must

take care to correctly initialize the constraint network when

it is created or an element is added or removed. An example

of such an initialization is given in Listing 5. The advantage

for code using the collection’s sum in further constraints is

that it is used simply as a variable — constraints on it can

work both ways, and it can even be assigned and the array

changes to satisfy the constraints.

1 initializeSum
2 self.length = 0
3 ifTrue: [[self sum = 0] alwaysTrue]
4 ifFalse: [[self sum = (self at: 1) +
5 self allButLast sum] alwaysTrue].

Listing 5: A possible initialization for a constrainable sum

4

2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

3.2 Implementing Constraints on Collections in

Babelsberg/S

Babelsberg/S implements a prototype of our scheme

to support constraints on object-oriented collections. As

a result, the domain constraint of a Sudoku puzzle can

be expressed through sending the collection predicate

allSatisfy: to sudoku (Listing 6).

1 [sudoku allSatisfy: [:cell | cell between: 1 and: 9]]
2 alwaysSolveWith: solver.

Listing 6: Defining the domain of all Sudoku cells with the
Collection API

The extension to support collections directly in

Babelsberg/S leverages the fact that Smalltalk comes with

only one fixed-size pointer array type, upon which the

Smalltalk collections library builds. This type provides three

methods implemented in primitives for all low-level access:

at:, at:put:, and replaceFrom:to:with:startingAt:.

Babelsberg/S subclasses the basic Array class and over-

rides the three low-level access methods to intercept any

modifications to the array. In addition, it overrides the

copyFrom:to: method, which is regularly used in Squeak to

access sub-sequences of an array.

In constraint construction mode, any array that is vis-

ited in the dynamic extent of the execution is transparently

replaced by the Babelsberg/S subclass. Besides the over-

ridden methods, this subclass is a completely transparent

proxy. Each element in the array that participates in the

constraint is wrapped in a ConstraintVariable. The pred-

icates of the collection api are straightforward to support.

The predicates anySatisfy:, noneSatisfy:, and allSatisfy:

are mapped as per Table 1. Note that for the first relation,

a disjunction over all elements must be created. For solvers

that do not support disjunctions, Babelsberg/S forces the

first element to satisfy the block. This prevents the system

from finding solutions in many cases. To find additional

solutions with solvers without disjunctions requires back-

tracking in the case of unsatisfiable constraints. This is not

implemented yet, but is left for future work.

In general, any predicate method available on collections

can be used in constraints, as per our design for supporting

user defined methods as collection predicates. For example,

predicate methods such as allDifferent: can be mapped to

pair-wise inequalities by simply interpreting their implemen-

tation in constraint construction mode. Other methods that

are useful in constraints reduce all elements of a collection

and then express properties over those reductions. Reduc-

tion methods include the sum method mentioned above, as

well as the count: method that returns the number of ele-

ments that satisfy a particular condition.

The constraints created with these methods are recon-

structed when the elements in the array change, but since

the size of arrays is fixed, the length of the linear expressions

is bounded, so in the Babelsberg/S implementation, we only

initialize intermediate variables once, as the underlying ar-

ray cannot grow or shrink. Since we only need to initialize

them once, this can be taken care of by the framework.

Predicates over expressions are useful to state constraints

on a collection as a whole, rather than on each of its ele-

ments. We have used this, for example, in our implemen-

tation of the Outside-Sum-Sudoku. Here, all elements in

a collection must sum to the number outside the Sudoku.

When one element changes, the others must change, too, to

ensure the total sum does not.

We have found few use-cases for the most general

collection-methods do:, collect:, and select: that could

not be expressed using more specific methods. These meth-

ods create new collections from existing ones. What the de-

veloper means when using them and how to translate that

meaning to the solver is less clear in the general case, and

we do not support them for now. We have found that uses

of select:, collect:, and detect: in predicate expressions

can usually be replaced by the direct predicate methods.

We have found that the iteration method do: is usually just

used to express constraints on each element, and can usu-

ally be pulled outside of the constraint block. We might lift

this restriction in the future if we find a significant number

of uses of these methods in constraints that are much more

expressive than their direct predicate counterparts. Until

then, and for simplicity in the implementation, we do not

allow these methods in constraints.

3.3 Maintaining Constraints in Babelsberg/S

Once asserted, constraints need to continue to be satis-

fied until they are disabled, all objects they apply to are

garbage collected, or the program stops. To ensure this,

the Babelsberg design follows the perturbation model es-

tablished by the Kaleidoscope constraint-imperative lan-

guage [14]. This model is similar to reactive systems in

that changes to one part of the system propagate to other

parts. In reactive systems, these changes are made by sam-

pling a continuous process or through discrete events. In

Babelsberg, the changes are the concrete event of assigning

a new value to a variable that participates in a constraint.

These changes then potentially propagate to other variables

to keep constraints satisfied.

Each variable that participates in a constraint implicitly

reacts to programmatic changes to its value by calling one

or more solvers to re-satisfy the variable’s constraints. Our

wrappers around accessors intercept changes to variables

that were used in a constraint and call suggestValue: on

their associated ConstraintVariable. This adds a tempo-

rary equality constraint for the new value to the underlying

constraint solver. The solver tries to solve all constraints.

If the constraints are satisfiable, the new value is assigned.

As a side-effect, other variables might change to satisfy con-

straints. If the solver cannot find a solution, a runtime error

is generated and the new value is ignored.

In our Sudoku example, if a new value is assigned to a cell,

the Sudoku constraints are solved in the background. If the

solver finds a solution, the cell changes its value and the

rest of the puzzle is adjusted to keep the Sudoku solveable.

5

2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

Fig. 2: The Morphic UI of the Sudoku puzzle. Some num-
bers (in black) are given initially. Each free cell allows the
user to input a single number (in blue). The system can
also generate hints (in red).

That is possible because the Sudoku application interacts

with the underlying constraints.

Babelsberg/S can accommodate a variety of constraint

solvers. Currently, it supports the Squeak implementation

of Cassowary [1], and Z3 [4] through an IPC interface.

4. Evaluation

The constraints in Sudoku are easy to state, but not al-

ways easy to satisfy. A correct solution must assign each cell

a number between 1 and 9 inclusively, while at the same time

ensuring the no number occurs twice in a row, a column, or

a block of 3 by 3 cells. We argue that logic puzzles such as

Sudoku are good examples for interactive constraint appli-

cations. The user interface (written in Morphic) is shown in

Figure 2.

Listing 7 shows the constraints necessary to solve this Su-

doku puzzle. These constraints use the Z3 constraint solver.

Line 1 ensures that the user cannot change the numbers that

were given initially. In some solvers, such as Cassowary, stay

constraints can be used to express that the solver may not

change a given variable, or to only change it if the con-

straints cannot be satisfied otherwise. Stay constraints are

currently not supported in Z3, but will be in future versions.

Currently, the method addConstraintsForAllGivenNumbers

iterates over cells and creates a constraint that each cell

that already has a value is always equal to just that value.

Lines 3–4 assert the constraint that all cells must contain

numbers between 1 and 9. Finally, lines 6–10 ensure that no

row, column, or 3×3 box of cells can have duplicate num-

bers.

Note that the Squeak collection api does not contain a

method allDifferent. Babelsberg/S adds this predicate

for convenience. It is a normal object-oriented method in

the Collection class that iterates over all elements in the

collection and tests them for pairwise inequality. In ordi-

nary code, this is just a test – the constraint interpreter,

however, creates an inequality constraint expression for each

comparison, exploding the allDifferent method into multiple

constraints that the solver can understand. This means also,

that subclasses can override the method and any different

behavior will be reflected in the created constraints.

Note also that the normal accessor methods for rows and

columns from Squeak Matrix objects are used, too. The Su-

doku grid is just a subclass of Matrix that, besides a method

to assert constraints on the given numbers, adds the atBox:

accessor method to access each of the 9 boxes of size 3×3.

1 sudoku addConstraintsForAllGivenNumbers.
2

3 [sudoku allSatisfy: [:cell |
4 cell between: 1 and: 9]] alwaysSolveWith: solver.
5

6 (1 to: sudoku rowCount) do: [:index |
7 [(sudoku atRow: index) allDifferent &
8 (sudoku atColumn: index) allDifferent &
9 (sudoku atBox: index) allDifferent]

10 alwaysSolveWith: solver].

Listing 7: All Constraints of a Sudoku Puzzle

As can be seen from Listing 7, the amount of code neces-

sary for specifying all properties of a Sudoku puzzle is very

small. With these, a solver can solve an arbitrary given Su-

doku puzzle. The constraints are completely decoupled from

the specific Sudoku puzzles and their given numbers.

In Babelsberg, constraints can be constructed, enabled

and disabled at run-time, and, because they work correctly

with method polymorphism, it is possible to subclass a logic

puzzle to construct another by adding or removing con-

straints only. As an example, we have created Sudoku puzzle

subclasses for Diagonal Sudokus and Outside-Sum Sudokus.

In the former, the numbers of the two main diagonals have

to be all different, and in the latter, the first three numbers

in a row or a column must add up to a specific sum.

For a Diagonal Sudoku, provided there are accessor meth-

ods for the two diagonals, the method to create constraints

is shown in Listing 8.

1 super createConstraints. "from normal Sudoku"
2 [(self diagonalFromTopLeft allDifferent)
3 and: [self diagonalFromTopRight allDifferent]]
4 alwaysSolveWith: solver.

Listing 8: The Diagonal Sudoku

With object-constraint programming (ocp), it does not

matter in which way a constraint variable or a constraint

changes. The constraint satisfaction automatically works

on each disturbance of the system. Currently, the values of

cells only change when the user enters a new value into the

morph that represents a cell. If that value is not a number

between 1 and 9, or the Sudoku cannot be solved by adding

this value, the solver rejects the input. However, the con-

straints encode no source for the change, so it does not mat-

ter if the change actually occurred through keyboard input.

The Sudoku could also be calculated entirely by the com-

puter, or the game could allow remote users to send values

over the network. The constraints thus provide flexibility,

6

2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

Fig. 3: Squeak debugger with constraints

because the developer does not need to know all events that

might change the puzzle.

5. Conclusions

We have argued that ocp facilitates reactive systems in

which dependencies between objects can be declared as con-

straints. It modularizes the relationship between objects

and decouples constraint satisfaction from the application.

Constraints can be dynamically added and removed, and

are maintained automatically. This makes them useful for

writing interactive applications. As an example, we imple-

mented applications for specifying and solving different vari-

ants of Sudoku with constraints with a graphical user inter-

face. The user can change the values of the constraint vari-

ables interactively without breaking the properties of the

Sudoku. The application reacts on the user input by resolv-

ing the underlying constraints.

There are two major directions for future work. Regard-

ing the implementation, we plan to implement an alternative

solution to provide instance-specific wrappers. This will im-

prove the compatibility of constrained objects with existing

Smalltalk code. We also plan to support more features of

the Babelsberg design as found in its JavaScript and Ruby

implementations, such as incremental resolving, local prop-

agation, and identity constraints.

Furthermore, we plan to leverage the Smalltalk meta-

programming facilities to explore how to aid developers in

debugging and understanding constraints. If incorrect con-

straints are generated, why? If the solver cannot find a

solution or is slow, what can be done? These are still open

questions for Babelsberg, because constraints cannot be eas-

ily debugged.

Figure 3 shows how we extended the Squeak debugger

to support stepping into constraints. Our debugger has an

additional pane on the top right 1©, and a special inspec-

tor on the right hand side 2©. The debugger works as it

normally would when running imperative code, but upon

entering constraint construction mode, the debugger addi-

tionally tracks the constraints as they are created. In the

example, we assert that pt1 and pt2 should be equal 3©.

From just looking at the expression we cannot tell how many

constraints would be created. We could infer from the imple-

mentation if the = method for 2d points that we will create

two constraints, one for each pair of dimensions on those two

points, but a debugger allows us to observe this fact and see

the equations that have been translated for the Cassowary

solver in the top right pane. On the right hand side, we

can see the details of the first constraint and for example

change its strength or the generated expression to see how

that changes the program behavior. Additionally, we can

step into the procedure that assigns updated values from

the constraint solver to the program variables and thus see

the global effects of a constraint. This is particularly useful

to understand which solution a solver chooses for a particu-

lar constraints and how many variables are changed in which

way. We plan to extend this prototype into a debugger that

is useful to answer different questions that arise when devel-

oping with constraints.

Despite these avenues for future work, we think that

Babelsberg/S is already a useful implementation of object-

constraint programming and we plan to include it in a future

release of the R/Squeak distribution, a Squeak distribution

that includes research projects considered useful for general

purpose development*1.

References

[1] Badros, G. J., Borning, A. and Stuckey, P. J.: The
Cassowary Linear Arithmetic Constraint Solving Algo-
rithm, ACM Transactions on Computer-Human Interac-
tion (TOCHI), Vol. 8, No. 4, pp. 267–306 (online), DOI:
10.1145/504704.504705 (2001).

[2] Borning, A., Freeman-Benson, B. and Wilson, M.: Con-
straint Hierarchies, Lisp and Symbolic Computation, Vol. 5,
No. 3, pp. 223–270 (online), DOI: 10.1007/bf01807506
(1992).

[3] Clarke, L. A.: A system to generate test data and sym-
bolically execute programs, IEEE Transactions on Soft-
ware Engineering, Vol. 2, No. 3, pp. 215–222 (online), DOI:
10.1109/tse.1976.233817 (1976).

[4] de Moura, L. and Bjørner, N.: Z3: An Efficient SMT Solver,
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), Springer, pp. 337–340 (online), DOI:
10.1007/978-3-540-78800-3 24 (2008).

[5] Felgentreff, T., Borning, A. and Hirschfeld, R.: Specify-
ing and Solving Constraints on Object Behavior, Journal of
Object Technology, Vol. 13, No. 4, pp. 1–38 (online), DOI:
10.5381/jot.2014.13.4.a1 (2014).

[6] Felgentreff, T., Borning, A., Hirschfeld, R., Lincke, J.,
Ohshima, Y., Freudenberg, B. and Krahn, R.: Babels-
berg/JS, Proceedings of the European Conference on Object-
oriented Programming (ECOOP), Springer, pp. 411–436 (on-
line), DOI: 10.1007/978-3-662-44202-9 17 (2014).

[7] Felgentreff, T., Millstein, T. D., Borning, A. and Hirschfeld,
R.: Checks and balances: constraint solving without sur-
prises in object-constraint programming languages, Pro-
ceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), ACM, pp. 767–782 (online), DOI:
10.1145/2814270.2814311 (2015).

[8] Freeman-Benson, B. N., Maloney, J. and Borning, A.: An In-
cremental Constraint Solver, Communications of the ACM,
Vol. 33, No. 1, pp. 54–63 (online), DOI: 10.1145/76372.77531
(1990).

[9] Graber, M., Felgentreff, T., Hirschfeld, R. and Borning, A.:
Solving Interactive Logic Puzzles With Object-Constraints
— An Experience Report Using Babelsberg/S for Squeak/-
Smalltalk, Workshop on Reactive and Event-based Lan-
guages & Systems (REBLS), pp. 1:1–1:5 (2014).

[10] Hirschfeld, R., Costanza, P. and Haupt, M.: An Introduction
to Context-Oriented Programming with ContextS, Genera-
tive and Transformational Techniques in Software Engineer-

*1 https://www.hpi.uni-potsdam.de/swa/trac/
↪→ SqueakCommunityProjects

7

2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

ing II, Springer, pp. 396–407 (online), DOI: 10.1007/978-3-
540-88643-3 9 (2008).

[11] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S. and Kay,
A.: Back to the Future: The Story of Squeak, a Practical
Smalltalk Written in Itself, Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), ACM, pp.
318–326 (online), DOI: 10.1145/263698.263754 (1997).

[12] Ist, I. L., Lynce, I. and Ouaknine, J.: Sudoku as a SAT Prob-
lem, Proceedings of the nternational Symposium on Artificial
Intelligence and Mathematics (AIMATH), Springer, pp. 1–9
(online), DOI: 10.1.1.331.458 (2006).

[13] King, J. C.: Symbolic Execution and Program Testing, Com-
munications of the ACM, Vol. 19, No. 7, pp. 385–394 (on-
line), DOI: 10.1145/360248.360252 (1976).

[14] Lopez, G., Freeman-Benson, B. and Borning, A.: Kaleido-
scope: A Constraint Imperative Programming Language,
Constraint Programming, Springer, pp. 313–329 (online),
DOI: 10.1007/978-3-642-85983-0 12 (1994).

[15] Maloney, J.: Morphic: The Self User Interface Framework,
4th edition (1995).

[16] Maloney, J.: An Introduction to Morphic: The Squeak User
Interface Framework (2001).

[17] Milicevic, A., Rayside, D., Yessenov, K. and Jackson, D.:
Unifying Execution of Imperative and Declarative Code,
Proceedings of the International Conference on Software
Engineering (ICSE), ACM, pp. 511–520 (online), DOI:
10.1145/1985793.1985863 (2011).

[18] Sadun, E.: iOS Auto Layout Demystified, Addison-Wesley
(2013).

[19] Taivalsaari, A., Mikkonen, T., Ingalls, D. and Palacz, K.:
Web Browser As an Application Platform: The Lively Kernel
Experience, Technical report, Sun Microsystems, Inc. (2008).

Appendix

A.1 Extension to the Formal Semantics

of Babelsberg

The semantic rules presented here are an extension to the

semantics of Babelsberg/Objects, presented in the compan-

ion technical report to [7]. This appendix should be read as

an additional chapter after that companion report.

The syntax is augmented to include an element P©,

which ranges over the core predicates on collections such

as allSatisfy:, anySatisfy:, includes: and so on. For

languages which support re-definition of the methods that

come with the language, we assume that the element

matches only the original implementations, not user-defined

re-definitions. Furthermore, we augment the syntax to also

support accessing records using expressions.

L-Value L ::= x | e.l | e[e]
Label l ::= record label names | P©

Table A·1 gives an overview of the additional judgments

used in this extension of the semantics. We add two opaque

helper judgments. The first converts constants to label

names, and the second checks if a constant value refers to an

array class type. Both are defined in terms of the host lan-

guage api. Note that for languages the support re-definition

of core classes, the second judgment will return false if such

re-definition has taken place.

Besides those additions, we only add the extended evalua-

tion rules for dynamic field access and the special constraint

construction mode (ccm) for collection apis. Note that we

do not add a typing rule for dynamic field access — during

inlining, such access are turned into ordinary field accesses,

and their expressions are required to stay equal to the cur-

rent value.

<E|S|H|C|I|el> ⇓ <E′|H′|C′|I′|c> asLabel(c) = l

<E′|S′|H′|C′|I′|e.l> ⇓ <E′′|H′′|C′′|I′′|v>
<E|S|H|C|I|e[el]> ⇓ <E′′|H′′|C′′|I′′|v>

(E-ExpField)

<E,S,H,C,I,el> <E′,eCl
,e′l>

<E′|S|H|C|I|el> ⇓ <E′′|H|C|I|c> asLabel(c) = l

<E′′,S,H,C,I,e.l> <E′′′,eC,e′>
<E,S,H,C,I,e[el]> <E′′′,eCl

∧eC∧e′l=c,e′>
(I-ExpField)

We extend the inlining judgment to also work for state-

ments. This is used in the inlining judgment to translate

calls to the well-known collection predicates. These predi-

cates will not match the previous I-MultiWayCall rule,

because their implementations have more than a single re-

turn expression, so that rule is unchanged. Because we allow

a limited subset of statements, including assignment to lo-

cals in inlining collection predicates, the inlining rule includ-

ing statements also returns an updated scope. In addition,

the constraint expressions that are returned by the inlining

rule for statements are split into groups for conjunctions and

disjunctions — this is required to track, based on the early

returns that are encountered, whether a set of inlined ex-

pressions all need to be satisfied or if just one needs to be

satisfied.

We define a helper judgments to inline collection predi-

cates:

<E′|S|H|C|I|e0> ⇓ <E′′|H|C|I|v>
E;H ` v : T isBasicCollection(T) = true

<E0|S|H|C|I|e1> ⇓ <E1|H|C|I|v1>
· · ·

<En−1|S|H|C|I|en> ⇓ <En|H|C|I|vn>
eC = (e=v ∧ e1=v1 ∧ · · · ∧ en=vn)

lookup(v,l) = (x1 · · · xn,s; return c)

enter(En,S ,H ,C , I ,v,x1 · · · xn,e1 · · · en) = (E′,Sm,H ,C ,I)

preparePredicate(E, S,H,C, I,e.l(e1,. . .,en))

= (E′, Sm, s; return c, eC)

(PreparePredicate)

This helper rule sets up the required equalities for all the

arguments and the receiver, and is essentially the same as

I-Call. As an addition, it limits any inlining to collection

predicates that return a constant as a final statement. In

the two rules that follow, this constant is further limited to

be either true or false.

preparePredicate(E, S,H,C, I,e. P©(e1,. . .,en))

= (E′, S′, s; return c, e0)

c = true <E′,S′,H,C,I,s> <E′′,S′,e1,eC,eD>

<E,S,H,C,I,e. P©(e1,. . .,en)> <E′′,e0∧e1,eC>
(I-PositivePredicate)

8

2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

Table A·1: Judgments and Intuitions of Additional and Changed Semantic Rules

Opaque Judgments
asLabel(c) = l Constant c converted into a label yields l

isBasicCollection(T) = c When type T corresponds to a known basic collection type that is supported in constraints with predicates,
c is true.

Constraint Solving
<E,S,H,C,I,e> <E′,e0,e′>

Inlining expression e in S is equivalent to e′ in E if eC evaluates to true.
<E,S,H,C,I,s> <E′,S′,e0,ec,ed>

Inlining statement s is equivalent to solving conjunction of constraint expressions eC and the disjunction
of constraint expressions eD if e0 evaluates to true. This inlining step returns an updated environment E′

and scope S′.
Helper Rule
preparePredicate(E, S,H,C, I,e.l(e1,. . .,en)) = (E′, S′, s; return c, eC)

Preparing the method call e.l(e1,. . .,en) for inlining returns and updated environment E′, the fresh
method scope S′, the method body s; return c, and is valid if eC evaluates to true.

preparePredicate(E, S,H,C, I,e. P©(e1,. . .,en))

= (E′, S′, s; return c, e0)

c = false <E′,S′,H,C,I,s> <E′′,S′,e1,eC,eD>

<E,S,H,C,I,e. P©(e1,. . .,en)> <E′′,e0∧e1,eC ∧ eD>

(I-NegativePredicate)

We use two separate rules for inlining through collection

predicates that return true or false as their final statement.

For methods that return true any disjunction, which would

be created by an early return true, does not have to be ful-

filled, as even without the early return the method would

return true. Conversely, when the method returns false,

fulfilling any conjunction will not suffice, because that would

simply prevent an early return false, but not the final re-

turn statement.

Since we now allow inlining through a limited subset of

statements, we add inlining rules for those. Note that these

rules can only come into play through an I-*Predicate.

Furthermore, all rules not supplied here still lead to a fail-

ure to evaluate an I-*Predicate rule, and fall back to the

previous I-Call rule to set up a one-way constraint on the

result of the call.

S (x)↑ E (xg)↑
<E|S|H|C|I|e> ⇓ <E′|H|C|I|v>
<E′,S,H,C,I,e> <E′′,e0,e′>

S′ = S
⋃
{(x, xg)} E′′′ = E′′

⋃
{(xg, v)}

ec = (e0 ∧ e′ = v ∧ xg = v)

<E,S,H,C,I,x := e> <E′′′,S′,ec,true,false>
(I-AsgnNewLocal)

Assignments are only permitted to local variables. Since

we can only start the statement inlining rules from a collec-

tion predicate P©, we start with a fresh scope and any local

variable must be newly created first. In this case, assign-

ment is turned into a required equality between the fresh

variable name and the initial value. Note that we are using

the expression judgment to evaluate the right-hand side, but

we disallow any changes to the heap or the constraint stores.

S(x) = xg E (x′g)↑
<E|S|H|C|I|e> ⇓ <E′|H|C|I|v>
<E′,S,H,C,I,e> <E′′,e0,e′>

S′ = S \ {x, xg} S′′ = S′
⋃
{(x, x′g)}

E′′′ = E′′
⋃
{(x′g, v)}

ec = (e0 ∧ e′ = v ∧ x′g = v)

<E,S,H,C,I,x := e> <E′′′,S′′,ec,true,false>
(I-AsgnLocal)

Since we do not allow creating additional constraints even

in this extended inlining mode, there is no need to solve con-

straints when we re-assign to a local variable. Furthermore,

since re-assignments are needed for looping over collection

indices, and these indices are also used to then access the col-

lection, we create a fresh global name for every re-assigned

variable. This way, every re-assignment turns into a new

variable for the solver.

<E,S,H,C,I,skip> <E,S,true,true,true> (I-Skip)

<E,S,H,C,I,s1> <E′,S′,e1,eC1,eD1>

<E′,S′,H,C,I,s2> <E′′,S′′,e2,eC2,eD2>

eC3 =eC1 ∧ eC2 eD3 =eD1 ∨ eD2

<E,S,H,C,I,s1;s2> <E′′,S′′,e1 ∧ e2,eC3,eD3>

(I-Seq)

The skip and sequence rules are straightforward. The con-

junction and disjunction expressions from the sequences are

connected appropriately.

s = if e then return true else s1

<E,S,H,C,I,e> <E′,eC,e′>
<E,S,H,C,I,s> <E,S,eC,true,e′>

(I-IfThenReturnTrue)

s = if e then return false else s1

<E,S,H,C,I,e> <E′,eC,e′>
<E,S,H,C,I,s> <E,S,eC,e′=false,false>

(I-IfThenReturnFalse)

We only support if-clauses used as early returns in this

extended inlining mode. As described in Section 3, if the

9

2015-5-(5): Manuscript for presentation at IPSJ-SIGPRO, 28 February 2016.

early return would return true, the inlined conditional is

used in a disjunction, otherwise it is used in a conjunction.

s0 = while e do s

<E|S|H|C|I|e> ⇓ <E′|H|C|I|true>
<E′,S,H,C,I,e> <E′′,e0,e′>

<E′′,S,H,C,I,s> <E′′′,S′,e1,eC1
,eD1

>

<E′′′,S′,H,C,I,s0> <E′′′′,S′′,er,eCr
,eDr

>

e′ = e0∧e′∧e1∧er eC = eC0
∧ eCr

eD = eD0
∨eDr

<E,S,H,C,I,s0> <E′′′′,S′′,e′,eC,eD>

(I-WhileDo)

s0 = while e do s

<E|S|H|C|I|e> ⇓ <E′|H|C|I|false>
<E′,S,H,C,I,e> <E′′,e0,e′>

<E,S,H,C,I,s0> <E′′,S,e0∧e′=false,true,false>
(I-WhileSkip)

Finally, the while construct is now supported during in-

lining. Note that the loop condition is inlined and required

to stay at its value. This prevents the solver from being

able to change the loop condition to, for example, satisfy

the collection predicate only on a subset of the collection.

There is an issue with these rules: they may generate con-

straints that are too strong. Consider the following method:

1 def some_or_none()
2 i := 0;
3 while i < self.length do (
4 if self[i] > 10 then return true;
5 if self[i] < 0 then return false;
6 i := i + 1
7);
8 return true
9 end

10 always ary.some_or_none()

The constraint ensures that at least one element in the array

is larger than ten, or else all elements are negative. Here,

the constraint would be satisfied if:

∃(x, i) ∈ ary. (x > 10 ∧ (∀(y, j) ∈ ary.¬(y < 0) ∨ j > i))∨
∀(x, i) ∈ ary.¬(x < 0)

But the I-PositivePredicate rule would always require

the conjunction to be satisfied, so the solver would have to

solve this stronger constraints instead:

∀(x, i) ∈ ary.¬(x < 0)

We have decided to avoid additional complexity in the rules

to support generating the proper constraints in these cases.

The code above could easily be rewritten to use two meth-

ods which each test one property, and then use these in a

disjunction. Since the set of supported collection predicates
P© is defined as part of the language, such methods may

simply not be included in that set.

10

