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1 Babelsberg/UID and Two Key Theorems

This technical report is intended to accompany the conference paper “Checks and Balances – Constraint
Solving without Surprises in Object-Constraint Programming Languages,” and presents the full formalism
and proofs for two theorems that capture key properties of the Babelsberg/UID core language. These
theorems are stated (without the proofs) in Section 3.3 of that paper.

1.1 Syntax

We use the following syntax for Babelsberg/UID:

Statement s ::= skip | L := e | x := new o | always C | once C

| s;s | if e then s else s | while e do s

Constraint C ::= ρ e | C ∧ C

Expression e ::= v | L | e ⊕ e | L==L | D
Object Literal o ::= {l1:e1,. . .,ln:en}
L-Value L ::= x | L.l
Constant c ::= true | false | nil | base type constants
Variable x ::= variable names
Label l ::= record label names
Reference r ::= references to heap records
Dereference D ::= H(e)

Value v ::= c | r

Metavariable c ranges over the nil value, booleans, and primitive type constants. A finite set of operators on
primitives is ranged over by ⊕. We assume that ⊕ includes an equality operator for each primitive type; for
convenience we use the symbol = to denote each of these operators. We also assume it includes an operator
∧ for boolean conjunction. The operator == tests for identity — for primitive values this behaves the same
as =. The symbol ρ ranges over constraint priorities and is assumed to include a bottom element weak and
a top element required. The syntax requires the priority to be explicit; for simplicity we sometimes omit it
in the rules and assume a required priority.
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In the syntax, we treat H as a keyword used for dereferencing. Source programs will not use expressions of
the form H(e), but they are introduced as part of constraints given to the solver, which we assume will treat
H as an uninterpreted function. We also assume that the solver supports records and record equality, which
we also denote with the = operator.

1.2 Operational Semantics

The semantics includes an environment E and a heap H. The former is a function that maps variable
names to values, while the latter is a function that maps mutable references to “objects” of the form
{l1:v1,. . .,ln:vn}. When convenient, we also treat both E and H as a set of pairs ({(x,v),...} and
{(r,o),...}, respectively). The currently active value constraints are kept as a compound constraint C;
identity constraints are kept as a single conjunction referred to as I.

E;H ` e ⇓ v

“Expression e evaluates to value v in the context of environment E and heap H.”

The rules for evaluation are mostly as expected in an imperative language. We do not give rules for ex-
pressions of the form H(e), because they are not meant to appear in source. For each operator ⊕ in the
language we assume the existence of a corresponding semantic function denoted J⊕K.

E;H ` c ⇓ c (E-Const)

E(x) = v

E;H ` x ⇓ v
(E-Var)

E;H ` L ⇓ r H(r) = {l1:v1,. . .,ln:vn} 1 ≤ i ≤ n

E;H ` L.li ⇓ vi
(E-Field)

E;H ` r ⇓ r (E-Ref)

E;H ` e1 ⇓ v1 E;H ` e2 ⇓ v2 v1 J⊕K v2 = v

E;H ` e1 ⊕ e2 ⇓ v
(E-Op)

E;H ` L1 ⇓ v E;H ` L2 ⇓ v

E;H ` L1 == L2 ⇓ true
(E-IdentityTrue)

E;H ` L1 ⇓ v1 E;H ` L2 ⇓ v2 v1 6= v2

E;H ` L1 == L2 ⇓ false
(E-IdentityFalse)

E;H ` e : T

E;H ` C

“Expression e has type T in the context of environment E and heap H.”

“Constraint C is well formed in the context of environment E and heap H.”
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We use a notion of typechecking to prevent undesirable non-determinism in constraints. Specifically, we
want constraint solving to preserve the structure of the values of variables, changing only the underlying
primitive data as part of a solution. We formalize our notion of structure through a simple syntax of types:

Type T ::= PrimitiveType | {l1:T1,. . .,ln:Tn}

The typechecking rules are mostly standard. We check expressions dynamically just before constraint solving,
so we typecheck in the context of a runtime environment. Note that we do not include type rules for identities.
This ensures that constraints involving them do not typecheck, so identity checks cannot occur in ordinary
constraints.

E;H ` c : PrimitiveType (T-Const)

H(r)={l1:v1,. . .,ln:vn} E;H ` v1 : T1 · · · E;H ` vn : Tn

E;H ` r : {l1:T1,. . .,ln:Tn}
(T-Ref)

E(x) = v E;H ` v : T

E;H ` x : T
(T-Var)

E;H ` L : {l1:T1,. . .,ln:Tn} 1 ≤ i ≤ n
E;H ` L.li : Ti

(T-Field)

E;H ` e1 : PrimitiveType E;H ` e2 : PrimitiveType

E;H ` e1 ⊕ e2 : PrimitiveType
(T-Op)

E;H ` e : T

E;H ` ρ e
(T-Priority)

E;H ` C1 E;H ` C2

E;H ` C1 ∧ C2
(T-Conjunction)

E;H |= C

This judgment represents a call to the constraint solver, which we treat as a black box. The proposition
E;H |= C denotes that environment E and heap H are an optimal solution to the constraint C, according to
the solver’s semantics.

We assume several well-formedness properties about a solution E and H to constraints C:

• any object reference appearing in the range of E also appears in the domain of H

• any object reference appearing in the range of H also appears in the domain of H

• for all variables x in the domain of E there is some type T such that E;H ` x : T

• E;H ` C

stay(x=v, ρ) = C
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stay(r=o, ρ) = C

stay(E, ρ) = C

stay(H, ρ) = C

As in Kaleidoscope, the semantics ensure that each variable has a stay constraint to keep it at its current
value, if possible. The stay rules take a priority as a parameter. When solving value constraints, this priority
is set to required, to ensure that the structures of objects and the relationship between l-values and object
references cannot change. When solving identity constraints as part of executing an assignment statement,
the priority is set to weak to allow structural changes.

To properly account for the heap in the constraint solver, we employ an uninterpreted function H that maps
references to objects (i.e., records). The rules below employ this function in order to define stay constraints
for references.

stay(x=c, ρ) = weak x=c (StayConst)

stay(x=r, ρ) = ρ x=r (StayRef)

x1 fresh · · · xn fresh stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(r = {l1:v1,. . .,ln:vn}, ρ) = (required H(r)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn
(StayObject)

E= {(x1, v1), . . ., (xn, vn)} stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(E, ρ) = C1 ∧ · · · ∧ Cn
(StayEnv)

H= {(r1, o1), . . ., (rn, on)} stay(r1=o1, ρ) = C1 · · · stay(rn=on, ρ) = Cn

stay(H, ρ) = C1 ∧ · · · ∧ Cn
(StayHeap)

stayPrefix(E, H, L) = C

stayPrefix(E, H, I) = C

These judgments are another form of stay constraints that ensure that the “prefix” L of an l-value L.l is
unchanged; this is necessary to ensure that updates to the value of L.l are deterministic.

stayPrefix(E, H, x) = true (StayPrefixVar)

L = x.l1.. . ..ln n > 0 E;H ` x ⇓ r0 E;H ` r0.l1 ⇓ r1 · · · E;H ` rn−2.ln−1 ⇓ rn−1

stayPrefix(E, H, L) = x=r0 ∧ r0.l1=r1 ∧ · · · ∧ rn−2.ln−1=rn−1
(StayPrefixField)

I = L1==L2 ∧ · · · ∧ L2n−1==L2n stayPrefix(E, H, L1) = C1 · · · stayPrefix(E, H, L2n) = C2n

stayPrefix(E, H, I) = C1 ∧ · · · ∧ C2n
(StayPrefixIdent)
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E;H ` C  C′

We use these judgments to translate a constraint into a constraint suitable for the solver. Specifically, each
occurrence of an expression of the form L.l, where L refers to a heap reference r, is translated into H(L).l
(recursively, as required), and each occurrence of the identity operator == is replaced by ordinary equality.
We do not give these rules, because they are straightforward.

solve(E, H, C, ρ) = E′;H′

“Solving constraint C in the context of E and H using stay constraints with priority ρ produces the new
environment and heap E′ and H′.”

This judgment represents one phase of constraint solving – either solving “value” constraints or identity
constraints.

stay(E, ρ) = CE stay(H, ρ) = CH E;H ` C  C′

E′;H′ |= (C′ ∧ CE ∧ CH)

solve(E, H, C, ρ) = E′;H′
(Solve)

<E|H|C|I|s> −→ <E′|H′|C′|I′>

“Execution starting from configuration <E|H|C|I|s> ends in state <E′|H′|C′|I′>.”

A “configuration” defining the state of an execution includes a concrete context, represented by the envi-
ronment and heap, a symbolic context, represented by the constraint and identity constraint stores, and a
statement to be executed. The environment, heap, and statement are standard, while the constraint stores
are not part of the state of a computation in most languages. Intuitively, the environment and heap come
from constraint solving during the evaluation of the immediately preceding statement, and the constraint
records the always constraints that have been declared so far during execution. Note that our execution
implicitly gets stuck if the solver cannot produce a model.

The rule below describes the semantics of assignments. We employ a two-phase process. First the identity
constraints are solved in the context of the new assignment. This phase propagates the effect of the assign-
ment through the identities, potentially changing the structures of objects as well as the relationships among
objects in the environment and heap. In the second phase, the value constraints are typechecked against the
new environment and heap resulting from the first phase. If they are well typed, then we proceed to solve
them. This phase can change the values of primitives but will not modify the structure of any object.

Implicitly this rule gets stuck if either a) the identity constraints cannot be solved, b) the value constraints do
not typecheck, or c) the value constraints cannot be solved. A practical implementation would add explicit
exceptions for these cases that the programmer could handle.

E;H ` e ⇓ v stayPrefix(E, H, L) = CL stayPrefix(E, H, I) = CI
solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E′;H′ E′;H′ ` C solve(E′, H′, C∧ L=v, required) = E′′;H′′

<E|H|C|I|L := e> −→ <E′′|H′′|C|I>
(S-Asgn)

The next rule describes the semantics of object creation, which is straightforward. For simplicity we require
a new object to be initially assigned to a fresh variable, but this is no loss of expressiveness.
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E;H ` e1 ⇓ vn · · · E;H ` en ⇓ vn
E(x)↑ H(r)↑ E′ = E

⋃
{(x, r)} H′ = H

⋃
{(r, {l1:v1,. . .,ln:vn})}

<E|H|C|I|x := new {l1:e1,. . .,ln:en}> −→ <E′|H′|C|I>
(S-AsgnNew)

The next two rules describe the semantics of identity constraints. The rules require than identity constraint
already be satisfied when it is asserted; hence the environment and heap are unchanged.

E;H ` L0 ⇓ v E;H ` L1 ⇓ v

<E|H|C|I|once L0 == L1> −→ <E|H|C|I>
(S-OnceIdentity)

<E|H|C|I|once L0 == L1> −→ <E|H|C|I> I′ = I ∧ L0 == L1

<E|H|C|I|always L0 == L1> −→ <E|H|C|I′>
(S-AlwaysIdentity)

The following two rules describe the semantics of value constraints. Recall that these constraints cannot
contain identity constraints in them (because identity constraints do not typecheck). As we show later,
solving value constraints cannot change the structure of any objects on the environment and heap.

E;H ` C0 solve(E, H, C∧ C0, required) = E′;H′

<E|H|C|I|once C0> −→ <E′|H′|C|I>
(S-Once)

<E|H|C|I|once C0> −→ <E′|H′|C|I> C′ = C ∧ C0

<E|H|C|I|always C0> −→ <E′|H′|C′|I>
(S-Always)

The remaining rules are standard for imperative languages, only augmented with constraint stores, and are
only given for completeness.

<E|H|C|I|skip> −→ <E|H|C|I> (S-Skip)

<E|H|C|I|s1> −→ <E′|H′|C′|I′> <E′|H′|C′|I′|s2> −→ <E′′|H′′|C′′|I′′>
<E|H|C|I|s1;s2> −→ <E′′|H′′|C′′|I′′>

(S-Seq)

E;H ` e ⇓ true <E|H|C|I|s1> −→ <E′|H′|C′|I′>
<E|H|C|I|if e then s1 else s2> −→ <E′|H′|C′|I′>

(S-IfThen)

E;H ` e ⇓ false <E|H|C|I|s2> −→ <E′|H′|C′|I′>
<E|H|C|I|if e then s1 else s2> −→ <E′|H′|C′|I′>

(S-IfElse)

E;H ` e ⇓ true <E|C|H|I|s> −→ <E′|H′|C′|I′>
<E′|H′|C′|I′|while e do s> −→ <E′′|H′′|C′′|I′′>
<E|H|C|I|while e do s> −→ <E′′|H′′|C′′|I′′>

(S-WhileDo)

E;H ` e ⇓ false

<E|H|C|I|while e do s> −→ <E|H|C|I>
(S-WhileSkip)
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1.3 Properties

Here we state and prove two key theorems about our formalism.

We assume that a given configuration E|H|C|I is well formed, meaning that it satisfies these sanity conditions:

• any object reference appearing in the range of E also appears in the domain of H

• any object reference appearing in the range of H also appears in the domain of H

• for all variables x in the domain of E there is some type T such that E;H ` x : T

• E;H ` C

• E;H ` I ⇓ true

Well-formedness follows from the assumptions made on the constraint solver described earlier.

The first theorem formalizes the idea that any solution to a value constraint preserves the structures of the
objects on the environment and heap:

Theorem 1 (Structure Preservation) If <E|H|C|I|s> −→ <E′|H′|C′|I′> and s either has the form once

C0 or always C0 and E;H ` C0 and E;H ` L : T, then E′;H′ ` L : T.

Proof. If s has the form once C0 then the result follows by Lemma 1. If s has the form always C0,
then since <E|H|C|I|s> −→ <E′|H′|C′|I′> and C0 is not an identity test, by rule S-Always we have
<E|H|C|I|once C0> −→ <E′|H′|C|I>. Then again the result follows from Lemma 1. �

Lemma 1 If <E|H|C|I|once C0> −→ <E′|H′|C′|I′> and E;H ` C0 and E;H ` L : T, then E′;H′ ` L : T.

Proof. Since <E|H|C|I|once C0> −→ <E′|H′|C′|I′> and C0 is not an identity test, by S-Once we have
that E;H ` C0 and solve(E, H, C∧ C0, required) = E′;H′. By the assumption of well-formedness we have
E;H ` C so by T-Conjunction also E;H ` C∧ C0. Therefore the result follows from Lemma 2. �

Lemma 2 If E;H ` C and solve(E, H, C, required) = E′;H′ and E;H ` L : T, then E′;H′ ` L : T.

Proof. Since solve(E, H, C, required) = E′;H′ by Solve we have that stay(E, required) = CEs
and stay(H,

required) = CHs
and E;H ` C  C′ and E′;H′ |= (C′ ∧ CEs

∧ CHs
). We prove this lemma by structural

induction on T.

By Lemma 3 there exists a value v such that E;H ` L ⇓ v and E;H ` v : T. Then by Lemma 4 there exists a
value v′ such that E′;H′ ` L ⇓ v′. Furthermore, if v is an object reference r, then also v′ = r. Case analysis
on the form of v′:

• Case v′ is a constant c′. Then also v is a constant c. Since E;H ` v : T, the last rule in this derivation
must be T-Const so T is PrimitiveType and the result follows from T-Const.

• Case v′ is a reference r′. Since E′;H′ ` L ⇓ v′ by Lemma 5 there is a type T′ such that E′;H′ ` L : T′

and E′;H′ ` r′ : T′. So it suffices to show that T = T′. Case analysis on the form of v:
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– Case v is a constant c. Since E;H ` v : T, the last rule in this derivation must be T-Const, so
we have T = PrimitiveType. Case analysis on the last rule in the derivation of E;H ` L ⇓ v:

∗ Case E-Variable. Then L is a variable x and E(x) = c. Since stay(E, required) = CEs , by
StayEnv we have that CEs

includes a conjunct Cx such that stay(x=c, required) = Cx, and
by StayConst Cx has the form weak x=c.
Since E′;H′ ` L ⇓ r′, the last rule in this derivation must be E-Variable, so we have E′(x) =
r′. We know that assigning x to c satisfies the weak stay constraint above. Therefore there
must be some constraint on x in C that causes the change in value for x from c to r′.

∗ Case E-Field. Then L has the form L0.li and E;H ` L0 ⇓ r0 and H(r0) = {l1:v1,. . .,ln:vn}
and 1≤ i≤ n and r′ = vi. Since stay(H, required) = CHs , by StayHeap we have CHs includes
a conjunct Cr0 such that stay(r0={l1:v1,. . .,ln:vn}, required) = Cr0 . By StayObject Cr0
has the form (required H(r0)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn, where x1 . . . xn are
fresh variables and stay(xi=vi, required) = Ci. Then by StayConst Ci has the form weak

xi=c.
Since E;H ` L0 ⇓ r0, by Lemma 4 we have E′;H′ ` L0 ⇓ r0. Since E′;H′ ` L ⇓ r′, the last rule
in this derivation must be E-Field, so we have that H′(r0) = {l1:v′1,. . .,ln:v′n} where v′i,
and hence xi is r′. We know that assigning xi to c satisfies the weak stay constraint above.
Therefore there must be some constraint on an l-value of the form L00.li in C, where E;H `
L00 ⇓ r0, that causes the change in value for xi from c to r′.

Therefore in either case, there must be some constraint on an l-value L′′ in C, where E;H ` L′′ ⇓ c

but E′;H′ ` L′′ ⇓ r′. By Lemma 5 there is some T′′ such that E;H ` L′′ : T′′ and E;H ` c : T′′. The
last rule in the derivation of E;H ` c : T′′ must be T-Const so T′′ is PrimitiveType. We argue
a contradiction by case analysis of the immediate parent expression of any occurrence of L′′ in C.
We are given E;H ` C so this parent expression must also be well typed.

∗ Case L′′.l. Then by T-Field L′′ must have a record type, contradicting the fact that E;H `
L′′ : PrimitiveType.

∗ Case L′′ is an immediate subexpression of an ⊕ operation. But these operations only apply
to primitives, so the solver cannot satisfy them by assigning x to r′.

∗ Case ρ L′′. This constraint is only satisfied if x is a boolean, so the solver will not assign x

to r′.

• Case v is a reference r. Then r = r′. Since E;H ` v : T, by T-Ref we have that H(r)={l1:v1,. . .,ln:vn}
and E;H ` v1 : T1 · · · E;H ` vn : Tn and T is {l1:T1,. . .,ln:Tn}. By T-Field we have E;H ` L.li :
Ti for each 1 ≤ i ≤ n, so by induction E′;H′ ` L.li : Ti for each 1 ≤ i ≤ n.

Since stay(H, required) = CHs
, by StayHeap we have that CHs

includes a conjunct Cr such
that stay(r={l1:v1,. . .,ln:vn}, required) = Cr. By StayObject Cr has the form (required

H(r)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn, where x1 . . . xn are fresh variables and stay(xi=vi,
required) = Ci. Therefore any solution to (C′ ∧ CEs ∧ CHs) must map r to an object value of
the form {l1:v′1,. . .,ln:v′n} in H′.

Since E′;H′ ` L.li : Ti for each 1 ≤ i ≤ n, by Lemma 3 we have E;H ` L.li ⇓ v′′i and E;H ` v′′i : Ti for
each 1 ≤ i ≤ n. Since the last rule in each of these evaluation derivations must be E-Field we have
that v′′i = v′i for each 1 ≤ i ≤ n. Finally, since E′;H′ ` r : T′, the last rule in this derivation must be
T-Ref, so we have that T′ = {l1:T1,. . .,ln:Tn}.

�

Lemma 3 If E;H ` L : T, then there exists a value v such that E;H ` L ⇓ v and E;H ` v : T.
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Proof. By structural induction on L:

• Case L is a variable x: Then by T-Var we have that E(x) = v and E;H ` v : T. Finally by E-Var we
have E;H ` x ⇓ v.

• Case L has the form L′.li: By T-Field we have that E;H ` L′ : {l1:T1,. . .,ln:Tn} and 1 ≤ i ≤ n and
T = Ti. By induction there exists a value v′ such that E;H ` L′ ⇓ v′ and E;H ` v′ : {l1:T1,. . .,ln:Tn}.
Case analysis of the derivation of E;H ` v′ : {l1:T1,. . .,ln:Tn}:

– Case T-Const: Then {l1:T1,. . .,ln:Tn} = PrimitiveType and we have a contradiction.

– Case T-Ref: Then we have v′ = r and H(r)={l1:v1,. . .,ln:vn} and E;H ` vi : Ti. Finally, by
E-Field we have E;H ` L′.li ⇓ vi.

�

Lemma 4 If E;H ` C and solve(E, H, C, required) = E′;H′ and E;H ` L ⇓ v, then there exists a value v′

such that E′;H′ ` L ⇓ v′. Furthermore, if v is an object reference r, then also v′ = r.

Proof. Since solve(E, H, C, required) = E′;H′ by Solve we have that stay(E, required) = CEs and stay(H,
required) = CHs

and E;H ` C  C′ and E′;H′ |= (C′ ∧ CEs
∧ CHs

). We proceed by structural induction
on L:

• Case L is a variable x. Since E;H ` L ⇓ v, by E-Var we have that E(x) = v. Then since stay(E, required)
= CEs

, by StayEnv we have that CEs
includes a conjunct Cx such that stay(x=v, required) = Cx.

Case analysis of the rule used in the derivation of stay(x=v, required) = Cx:

– StayConst: Then Cx has the form weak x=v and v is a constant c. Therefore the variable x

appears in the constraint (C′ ∧ CEs
∧ CHs

), so any solution to the constraint must include some
value v′ for x in E′, and the result follows by E-Var.

– StayRef: Then Cx has the form required x=v and v is an object reference r. Therefore any
solution to (C′ ∧ CEs ∧ CHs) must map x to r in E′, and the result follows by E-Var.

• Case L has the form L′.li. Then by E-Field we have E;H ` L′ ⇓ r and H(r) = {l1:v1,. . .,ln:vn}
and 1 ≤ i ≤ n and v = vi. By induction we have E′;H′ ` L′ ⇓ r. Since stay(H, required) = CHs

, by
StayHeap we have that CHs

includes a conjunct Cr such that stay(r={l1:v1,. . .,ln:vn}, required)
= Cr. By StayObject Cr has the form (required H(r)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn,
where x1 . . . xn are fresh variables and stay(xi=vi, required) = Ci. Therefore any solution to (C′

∧ CEs
∧ CHs

) must map r to an object value of the form {l1:v′1,. . .,ln:v′n} in H′, where v′i is the
value assigned to variable xi by the solution. Therefore by E-Field we have E;H ` L′.li ⇓ v′i. Finally
suppose vi is an object reference ri. Then by StayRef Ci has the form required xi = ri so any
solution to the constraints must map xi to ri, so also v′i is ri.

�

Lemma 5 If E;H ` L ⇓ v then there is some type T such that E;H ` L : T and E;H ` v : T.

Proof. By induction on the derivation of E;H ` L ⇓ v:

9
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• Case E-Variable. Then L is a variable x and E(x) = v. Then by well formedness there is some type
T such that E;H ` x : T and by T-Var also E;H ` v : T.

• Case E-Field. Then L has the form L′.li and E;H ` L′ ⇓ r and H(r) = {l1:v1,. . .,ln:vn} and 1 ≤ i
≤ n and v = vi. By induction there is some type T′ such that E;H ` L′ : T′ and E;H ` r : T′. Then by
T-Ref T′ has the form {l1:T1,. . .,ln:Tn} where E;H ` vi : Ti. Then by T-Field also E;H ` L : Ti.

�

Lemma 6 If E;H ` L ⇓ r then r is in the domain of H.

Proof. Case analysis on the last rule in the evaluation derivation.

• Case E-Variable. Then L is a variable x and E(x) = r. Then the result follows from the assumption
that E and H are well formed.

• Case E-Field. Then L has the form L′.li and E;H ` L′ ⇓ r′ and H(r) = {l1:v1,. . .,ln:vn} and 1 ≤
i ≤ n and r = vi. Then the result follows from the assumption that E and H are well formed.

�

The second theorem formalizes the idea that all solutions to an assignment will produce structurally equiv-
alent environments and heaps:

Theorem 2 (Structural Determinism) If <E|H|C|I|L := e> −→ <E1|H1|C1|I1> and <E|H|C|I|L := e>

−→ <E2|H2|C2|I2> and E;H ` x : T0, then there exists a type T such that E1;H1 ` x : T and E2;H2 ` x : T.

Proof. By S-Asgn we have E;H ` e ⇓ v and stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and
solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E′1;H

′
1 and E′1;H

′
1 ` C and solve(E′1, H′1, C∧ L=v, required) = E1;H1.

Also by S-Asgn and Lemma 13 we have solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E′2;H
′
2 and E′2;H

′
2 ` C and

solve(E′2, H′2, C∧ L=v, required) = E2;H2. By Lemma 7 we have that E′1 = E′2 and H′1 = H′2. Since E;H ` x :
T0, by T-Var x is in the domain of E, so it is also in the domain of E′1 and by E-Var we have E′1;H

′
1 ` x ⇓

vx where E′1(x) = vx. Then by Lemma 5 there is some type T′ such that E′1;H
′
1 ` vx : T′ and E′1;H

′
1 ` x : T′.

Finally by Lemma 2 we have that E1;H1 ` x : T′ and E2;H2 ` x : T′, so the result is shown with T = T′.

�

Definition 1 We say that L1 and L2 are aliases given E and H if either:

• L1 and L2 are the same variable x

• L1 has the form L′1.l and L2 has the form L′2.l and there is a reference r such that E;H ` L′1 ⇓ r and
E;H ` L′2 ⇓ r

Definition 2 We say that L and L′ are the operands of the constraint L == L′.
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Definition 3 We define the induced graph of I and L given E and H as follows. Let S be the set that
includes L as well as all operands of identity tests in I. Partition S into equivalence classes defined by the
alias relation: L1 and L2 are in the same equivalence class if and only if they are aliases given E and H. Then
the induced graph has one node per equivalence class and an undirected edge between nodes N1 and N2 if
there is a conjunct L1==L2 in I such that L1 belongs to node N1 and L2 belongs to node N2.

Definition 4 We say that a node in the induced graph of I and L given E and H is relevant if it is reachable
from L’s node in the graph; an l-value is relevant if its node in the graph is relevant.

Definition 5 The relevant update of E and H for I and L=v is the environment E′ and heap H′ that are
identical to E and H except that for each relevant l-value L0 in the induced graph of I and L given E and H:

• If L0 is a variable x, then E′(x) = v.

• If L0 has the form L′0.l and E;H ` L′0 ⇓ r, then E′;H′ ` r.l ⇓ v.

Lemma 7 If stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and solve(E, H, CL ∧ CI ∧ L=v∧ I, weak)
= E1;H1 and solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E2;H2, then E1 = E2 and H1 = H2.

Proof. By Solve we have stay(E, weak) = CE and stay(H, weak) = CH and E;H ` (CL ∧ CI ∧ L=v∧ I)  
C′ and E′;H′ |= (C′ ∧ CE ∧ CH) and E′′;H′′ |= (C′ ∧ CE ∧ CH).

By Lemma 9, E′ and H′ include all the updates of the relevant update (which we will call E0 and H0) of E and
H for I and L=v, and similarly for E′′ and H′′. To complete the proof we argue that both of these solutions
are in fact identical to the relevant update. WLOG we consider E′ and H′. By Lemma 8 the relevant update
of E and H for I and L=v is a solution to the constraint C′ ∧ CE ∧ CH . Therefore if E′ and H′ is not the
relevant update, then by Definition 5 either:

• there is a variable x such that E0(x) = E(x) but E′(x) has a different value

• there is a reference r and field label l such that H0(r).l = H(r).l but H′(r).l has a different value

Consider the former. Since stay(E, weak) = CE , by StayEnv, StayConst, and StayRef we have that CE
includes a weak constraint x=vx, where E(x) = vx. Since E′ and H′ include all the updates of the relevant
update, E′ and H′ satisfy strictly fewer weak constraints than the relevant update, contradicting the optimality
of E′ and H′.

Similarly, consider the latter. Since stay(H, weak) = CH , by StayHeap and StayObject CH includes a
required constraint H(r)={l1:x1,. . .,ln:xn} where the xi variables are fresh and l is some li. Then by
StayConst and StayRef there is a weak constraint of the form xi = vi where H(r).li = vi. Since E′ and
H′ include all the updates of the relevant update, E′ and H′ satisfy strictly fewer weak constraints than the
relevant update, contradicting the optimality of E′ and H′.

�

Lemma 8 If stay(E, weak) = CE and stay(H, weak) = CH and stayPrefix(E, H, L) = CL and stayPrefix(E,
H, I) = CI and E;H ` (CL ∧ CI ∧ L=v∧ I)  C′ and the constraint C′ ∧ CE ∧ CH is satisfiable, then the
relevant update E′ and H′ of E and H for I and L=v is a solution to the constraint C′ ∧ CE ∧ CH .
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Proof. It suffices to show that all required constraints in C′ ∧ CE ∧ CH are satisfied in E′ and H′. We
consider the various constraints in turn:

• CE : Since stay(E, weak) = CE , by StayEnv, StayConst, and StayRef there are no required con-
straints in CE , so all required constraints are satisfied vacuously.

• CH : Since stay(H, weak) = CH , by StayHeap, StayObject, StayConst, and StayRef the only
required constraints in CH have the form H(r)={l1:x1,. . .,ln:xn} where the xi variables are fresh
and H maps r to some value of the form {l1:v1,. . .,ln:vn}. By Definition 5 also H′ maps r to a value
of the form {l1:v′1,. . .,ln:v′n} so the constraint is satisfied.

• CL: By StayPrefixField the conjuncts in CL have the form x=v or r.l=v. Suppose the relevant
update fails to satisfy one of these conjuncts. We consider each form in turn:

– x=v: Then the relevant update maps x to some v′ 6= v in E′. But by Solve and Lemma 9 any
solution to the constraint C′ ∧ CE ∧ CH must map x to v′ in the environment, which violates
the constraint x=v. So there must be no solution to the constraints, contradicting our assumption
of satisfiability.

– r.l=v: Then the relevant update maps r.l to some v′ 6= v in H′. But by Solve and Lemma 9
any solution to the constraint C′ ∧ CE ∧ CH must map r.l to v′ in the environment, which
violates the constraint r.l=v. So there must be no solution to the constraints, contradicting our
assumption of satisfiability.

• CI : By StayPrefixIdent the conjuncts in CL have the form x=v or r.l=v. So the argument is
identical to that above for the CL constraint.

• L=v: By Definitions 3 and 5 we have that L is relevant for I and L given E and H. Then by Lemma 10
we have E′;H′ ` L ⇓ v, so by E-Op and the semantics of equality we have E′;H′ ` L=v ⇓ true.

• I: Consider a conjunct L0 == L1 in I. We have two cases:

– L0 is relevant for I and L given E and H. By Definitions 4 and 3, L1 is also relevant. Then by
Lemma 10 we have E′;H′ ` L0 ⇓ v and E′;H′ ` L1 ⇓ v, so by E-IdentityTrue we have E′;H′ `
L0==L1 ⇓ true.

– L0 is not relevant for I and L given E and H. By Definitions 4 and 3, L1 is also not relevant. By
well formedness we have E;H ` L0==L1 ⇓ true, so by E-IdentityTrue there is some v0 such
that E;H ` L0 ⇓ v0 and E;H ` L1 ⇓ v0. Then by Lemma 11 we have E′;H′ ` L0 ⇓ v0 and E′;H′ `
L1 ⇓ v0, so by E-IdentityTrue we have E′;H′ ` L0==L1 ⇓ true.

�

Lemma 9 If stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and solve(E, H, CL ∧ CI ∧ L=v∧ I, weak)
= E′;H′ and L0 is a relevant l-value of I and L given E and H, then E′;H′ ` L0 ⇓ v and:

• If L0 is a variable x, then E′(x) = v.

• If L0 has the form L′0.l and E;H ` L′0 ⇓ r, then E′;H′ ` r.l ⇓ v.

Proof.

By Definition 4, we know that L0’s node in the induced graph for I and L given E and H is reachable from
L’s node. The proof proceeds by induction on the length k of the path between these nodes.
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• Case k = 0. Then by Definition 3, L and L0 are aliases given E and H. Case analysis on the structure
of L:

– Case L is a variable x. Then by Definition 1 also L0 is x. Since solve(E, H, CL ∧ CI ∧ L=v∧ I, weak)
= E′;H′ we must have E′;H′ ` x=v ⇓ true, so by E-Op and the semantics of equality we have
E′;H′ ` x ⇓ v. Then by E-Var also E′(x) = v.

– Case L has the form L′.l. Then by Definition 1 also L0 has the form L′0.l and E;H ` L′ ⇓ r and
E;H ` L′0 ⇓ r. We are given stayPrefix(E, H, L) = CL. Then since solve(E, H, CL ∧ CI ∧ L=v∧ I,
weak) = E′;H′ we must have E′;H′ ` CL ⇓ true. Similarly we are given stayPrefix(E, H, I) = CI
so by StayPrefixIdent we have also stayPrefix(E, H, L0) = CL0

where CL0
is a conjunct within

CI . Then since solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E′;H′ we must have E′;H′ ` CL0
⇓ true. So

by Lemma 13 and Lemma 12 we have E′;H′ ` L′ ⇓ r and E′;H′ ` L′0 ⇓ r. We also know E′;H′ `
L=v ⇓ true, so by E-Op and the semantics of equality we have E′;H′ ` L ⇓ v. Then by E-Field
we have H′(r) is a record whose l field has value v. Then by E-Field also E′;H′ ` r.l ⇓ v and
E′;H′ ` L0 ⇓ v.

• Case k > 0. Then by Definition 3 there is some neighbor node of L0’s node that is only k − 1 hops
away from L’s node, which contains an l-value L′1 such that L′0 == L′1 or vice versa is in I, where L′0 is
an alias of L0 given E and H. By induction we have E′;H′ ` L′1 ⇓ v. Then since the identities in I are
satisfied in E′ and H′, by E-IdentityTrue also E′;H′ ` L′0 ⇓ v. Case analysis on the structure of L′0:

– Case L′0 is a variable x. Then by Definition 1 also L0 is x and by E-Var also E′(x) = v.

– Case L′0 has the form L′.l. Then by Definition 1 also L0 has the form L00.l and E;H ` L′

⇓ r and E;H ` L00 ⇓ r. We are given stayPrefix(E, H, I) = CI so by StayPrefixIdent we
have also stayPrefix(E, H, L′0) = CL′

0
where CL′

0
is a conjunct within CI . Then since solve(E, H,

CL ∧ CI ∧ L=v∧ I, weak) = E′;H′ we must have E′;H′ ` CL′
0
⇓ true. By the same argument we must

also have E′;H′ ` CL0 ⇓ true where stayPrefix(E, H, L0) = CL0 . So by Lemma 13 and Lemma 12
we have E′;H′ ` L′ ⇓ r and E′;H′ ` L00 ⇓ r. Then since E′;H′ ` L′0 ⇓ v by E-Field we have H′(r)
is a record whose l field has value v. Then by E-Field also E′;H′ ` r.l ⇓ v and E′;H′ ` L0 ⇓ v.

�

Lemma 10 If stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and E′ and H′ is the relevant update
of E and H for I and L=v and E′;H′ ` CL ⇓ true and and E′;H′ ` CI ⇓ true and L0 is a relevant l-value for
I and L given E and H, then E′;H′ ` L0 ⇓ v.

Proof. Case analysis of the structure of L0:

• Case L0 is a variable x: By Definition 5 E′(x) = v, so the result follows by E-Var.

• Case L0 has the form L′.l: First we argue that stayPrefix(E, H, L0) = CL0 and E′;H′ ` CL0 ⇓ true.
If L0 is L, then these follow from the assumptions of the lemma. Otherwise, by Definition 4 L0 is an
operand in an identity test in I. Then since stayPrefix(E, H, I) = CI by StayPrefixIdent we have
stayPrefix(E, H, L0) = CL0, where CL0 is a conjunct in CI . Then since E′;H′ ` CI ⇓ true also E′;H′ `
CL0 ⇓ true.

Then by Lemma 12 there is some r′ such that E;H ` L′ ⇓ r′ and E′;H′ ` L′ ⇓ r′. By Lemma 13 and
Definition 5 we have E;H ` r′.l ⇓ v and the result follows by E-Field.

�
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Lemma 11 If stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and E′ and H′ is the relevant update of
E and H for I and L=v and E′;H′ ` CL ⇓ true and and E′;H′ ` CI ⇓ true and L0 is an operand of an identity
test in I and L0 is not relevant for I and L given E and H and E;H ` L0 ⇓ v0, E′;H′ ` L0 ⇓ v0.

Proof. Case analysis on the structure of L0:

• Case L0 is a variable x. Since x is not relevant, by Definition 5 the value of x in E′ is the same as that
in Euid. Since E;H ` L0 ⇓ v0, by E-Var we have E(x) = v0, so also E′(x) = v0 and the result follows
by E-Var.

• Case L0 has the form L′.l. Since L0 is an operand in an identity test in I and stayPrefix(E, H, I) = CI ,
by StayPrefixIdent we have stayPrefix(E, H, L0) = CL0, where CL0 is a conjunct in CI . Then since
E′;H′ ` CI ⇓ true also E′;H′ ` CL0 ⇓ true.

Therefore by Lemma 12 there is some r′ such that E;H ` L′ ⇓ r′ and E′;H′ ` L′ ⇓ r′. Since E;H ` L0
⇓ v0 by E-Field and Lemma 13 we have that H(r′).l is v0. By Definition 5 H′(r′) also has a field
with label l, so by E-Field we are done if that field’s value is v0. Suppose not. Then by Definition 5
there is some relevant l-value L1 of the form L′1.l such that E;H ` L′1 ⇓ r′. But then by Definition 1
we have that L0 and L1 are aliases so they correspond to the same node in the induced graph of I and
L given E and H by Definition 3. But then since L1 is relevant, by Definition 4 so is L0 and we have a
contradiction.

�

Lemma 12 If stayPrefix(E, H, L.f) = C and E′;H′ ` C ⇓ true, then there is some reference r such that E;H

` L ⇓ r and E′;H′ ` L ⇓ r.

Proof. By StayPrefixField we have L.f = x.l1.. . ..ln and n > 0 and E;H ` x ⇓ r and E;H ` x.l1 ⇓
r1 · · · E;H ` x.l1.. . ..ln−1 ⇓ rn−1 and C is x=r∧ x.l1=r1 ∧ · · · ∧ x.l1.. . ..ln−1=rn−1.

• Case n = 1. Then L is x and C is x=r. Since E′;H′ ` C ⇓ true, by E-Op and the semantics of equality
we have E′;H′ ` x ⇓ v1 and E′;H′ ` r ⇓ v2 and v1 = v2. By E-Ref we have that v2 = r, so the result
follows.

• Case n > 1. Then L is x.l1.. . ..ln−1. Since E′;H′ ` C ⇓ true, by E-Op and the semantics of equality
we have E′;H′ ` L ⇓ v1 and E′;H′ ` rn−1 ⇓ v2 and v1 = v2. By E-Ref we have that v2 = rn−1, so the
result follows.

�

Lemma 13 (Determinism)

• If E;H ` e ⇓ v1 and E;H ` e ⇓ v2 then v1 = v2.

• If stay(E, ρ) = C1 and stay(E, ρ) = C2 then C1 = C2.

• If stay(H, ρ) = C1 and stay(H, ρ) = C2 then C1 = C2.

• If stayPrefix(E, H, L) = C1 and stayPrefix(E, H, L) = C2 then C1 = C2.
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• If stayPrefix(E, H, I) = C1 and stayPrefix(E, H, I) = C2 then C1 = C2.

Proof. Straightforward. �
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