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Abstract

Distributed applications are hard to debug because timing-dependent network
communication is a source of non-deterministic behavior. Current approaches
to debug non-deterministic failures include post-mortem debugging as well as
record and replay. However, the first impairs system performance to gather
data, whereas the latter requires developers to understand the timing-dependent
communication at a lower level of abstraction than they develop on.

In this paper, we present the Peek-At-Talk debugger for investigating non-
deterministic failures with low overhead in a systematic, top-down method: first,
we record network communication schedules with less performance overhead.
Second, we detect anomalies in the network communication to help developers
understand timing dependencies. Finally, we constrain subsequent communi-
cation in the live system to reliably reproduce failures and allow developers to
inspect additional runtime data.
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1. Introduction

An increasing number of companies develop distributed Web applications [1].
Such applications often use custom communication interfaces rather than mid-
dleware [2]. This leads to timing dependencies in network communication and
possible non-deterministic failures because the order of network events can cause
changes in system behavior [3].

Non-deterministic failures are hard to debug, because developers cannot re-
liably reproduce them [4]. Without reproduction, developers cannot systemati-
cally test their hypotheses about possible failure causes and debugging becomes
a time-consuming trial and error approach. Standard symbolic debuggers are
also inappropriate to debug distributed systems because they work only at the
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source code level and provide no high-level view on communication between
processes and network nodes.

More state-of-the-art approaches to debug non-deterministic failures use ei-
ther expensive recording for post-mortem debugging [5] or hard to understand
record-and-replay techniques [6]. Post-mortem debugging collects all runtime
data during execution and presents the combined data from different processes,
which developers can then inspect independently from the running system.
Record-and-replay techniques only record the outcome of non-deterministic op-
erations to reproduce a specific failure. All non-deterministic operations such as
certain system calls, access to uninitialized memory, and unsynchronized access
to shared memory are replaced by their recorded outcomes and allow developers
to replay the distributed system.

The aim of both approaches is to present recorded data for inspection. Post-
mortem debugging records during one execution at comparatively high overhead,
while record-and-replay records only enough data to ensure future runs are
equivalent, and then uses multiple executions to record a little more data each
time. However, both approaches have limitations for debugging distributed
network applications:

(a) Post-mortem debugging imposes a high overhead on live systems [5] because
all required data has to be recorded beforehand. This overhead makes
it unfeasible to leave recording enabled for the live system at all times.
Moreover, these approaches have a potential to introduce Heisenbugs [4] in
which the act of observing influences the non-determinism behavior.

(b) Record and replay provides the wrong level of abstraction for understanding
timing-dependent communication. During replay, developers still have to
use symbolic debuggers and infer high-level network timing dependencies
from the source code of distributed components. The information that a
certain network request arrived after another does not easily map to which
methods get executed in which order.

(c) Neither approach allows developers to request additional data from the live
system if required during debugging. If the recorded data was insufficient
or the replay system is different than the live system in a certain aspect,
information required to understand and fix the bug may not be available
to the developers. They have to re-record all previous execution data plus
the additionally required information for post-mortem debugging, or have
to configure the replay system to be more like the live system.

We propose record and refinement—implemented in our Peek-At-Talk tool—
to debug timing-dependent network communication. Our approach imposes low
overhead, provides a top-down view on timing-dependent communication, and
still allows developers to inspect run-time data from the live system during
debugging.

During the initial record phase, we record network communication in the live
system and divide communication schedules into failing and successful schedules.
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We analyze the differences between these schedules to detect anomalies that are
likely causes of the non-deterministic failure. We constrain the distributed sys-
tem to the failing schedules by modifying its network communication analogous
to a traffic shaper [7] that inspects network requests and passes them on accord-
ing to some rule. Our rule is the previously recorded schedule, so we remove
timing-dependent communication as a source of non-determinism by delivering
and sending requests in order. If the constrained system reproduces the failure
repeatedly, developers can request and refine more data from the live system
with the help of our extended step-wise run-time analysis [8]. The contributions
of this paper are:

• A recording technique with low overhead that removes timing-dependent
network communication as a source of non-determinism, and enables con-
straining communication in the live system so multiple equivalent execu-
tions are possible.

• A communication anomaly analysis that allows developers to approach a
non-deterministic failure from the abstraction of network communication,
in addition to the low-level source code abstraction.

• An approach to record runtime data over multiple executions to provide
as much real data from the live system as required to understand the
non-deterministic failure.

• The Peek-At-Talk tool that implements our record and refinement ap-
proach for Squeak/Smalltalk [9].

The rest of this paper is structured as follows: Section 2 illustrates our
approach with the help of an example. Section 3 explains Peek-At-Talk and
gives an overview of its implementation. Section 4 presents related work and
Section 5 concludes.

2. Record and Refinement

We present an example system, a flight booking service that uses asyn-
chronous communication between servers. It includes: a) a Web server that
allows customers to search for and book flights, b) a cache that the Web server
communicates with to get flight information, and c) a crawler that collects flight
information from different airlines and stores it in the cache. The flight infor-
mation, such as available seats and pricing, changes over time and the cache
periodically updates its contents.

In this system, a non-deterministic failure can occur, for example, under
the following circumstance: two customers access the Web page at the same
time, looking for flights from Berlin to Amsterdam on the same date. If both
customers try to reserve seats on the same flight at roughly the same time, the
booking is influenced by: a) the latency of their connection to the Web server,
b) the cache update interval, and c) the changing flight information. It may
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happen that one of the two customers is able to book the flight at the displayed
rate, while the other can only receive a higher rate, because now fewer seats are
available and the crawler updated the cache. The less fortunate customer may
then complain in a bug report like this:

Sometimes, when I try to book a flight on your website, it is added to
my cart just fine, but with a different price than what was displayed
in the list when I clicked it.

This report contains the word “sometimes”, indicating that the failure did
not occur consistently, because of one or more sources of non-determinism in
the system (one such source may be variations in user behavior, which we will
ignore). We now present record and refinement with the help of this example.

2.1. Communication Recording
Developers could try to reproduce the problem on a development system

first, but for non-deterministic failures, observations from the live system are
essential [10]. Distributed systems are set up differently during development
than at deployment time, and will over time accumulate state changes and
encounter situations unforeseen during development [6]. Thus, instead of trying
to reproduce the non-deterministic failure locally, we record information in the
live system, including information about executions that exhibit the failure.

Given the above bug report, developers create hypotheses, which they need
to test, about the failure’s root cause. Using our approach, developers can
test whether communication timing dependencies are the source of this non-
deterministic failure. If so, they can inspect how communication varies over
multiple executions to understand the failure top-down, before debugging at
the source code level.

Developers need to establish causes from effects to debug failures in any
system, and to do so, the order in which events occur is essential [11]. However,
distributed systems are capable of truly parallel execution, in which case a
global ordering is not obtainable. Instead, we establish a partial ordering of
communication events through the use of Lamport Clocks. This order is called
the logical schedule [12] in which the events occurred. Figure 1 shows such a
schedule for our example system. In this schedule, two requests arrive at the
Web server. The first is sent on to the cache, which queries the crawler, and
eventually returns the data to the Web server. Then the second Web request
arrives at the cache, and is served from cached data. Upon receiving responses
from the cache, the Web server responds to the Web clients.

To be useful for debugging, the communication schedules we record have to
be sufficiently detailed to capture differences across multiple executions. We
assume that servers are otherwise deterministic, which allows us to limit the
amount of information we need to record to communication events. Conse-
quently, to record the causes of non-deterministic failures that stem from timing-
dependent communication, we have to record order, direction, and communica-
tion partners for each network event in a distributed application. This can be
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Figure 1: A communication schedule

done with little overhead both in space and time during the actual execution.
The necessary information overhead we encode into each event consists of 8 byte
Lamport clocks [6], with the first bit as a sign byte to tell incoming from outgo-
ing events. Additionally, we include IP addresses and port numbers to identify
the communication partners, which adds 4 bytes for the port and 16 bytes for the
address, in the worst case of IPv6 addressing. For an application that keeps the
last 1,000,000 requests stored in its logs before rotation, this amounts to about
26 MiB in additional storage space. The additional time required to encode this
information is negligible, inducing a slowdown of only 1% in Peek-At-Talk, with
most of the time spent waiting for network i/o operations.

Benchmark Avg Executions/5s σ
Normal execution 8.51 0.31
Recording 8.39 0.12

Table 1: Executions of a script that exercises the described flight booking bug.
We ran the script 50s and averaged the number of executions per 5s

Schedule Shaper. The first goal of record and refinement is to enable consistent
reproduction of failures in the live system by removing the network as a source
of non-determinism. From the data recorded during multiple executions, we
constrain the system to those communication schedules that exhibit the failure.
For this we use a traffic shaper [7], which, for each node, controls the interaction
with i/o devices and mediates application access to the network.

The scheduler has to control all network access by applications. We achieve
this control by wrapping the runtime’s network application programming inter-
face (api). All data sent or received through that api is treated according to the
recorded schedules. For this, the scheduler buffers each event. Once all events
that are expected to occur before a buffered event have appeared according to
the schedule, the buffered event is released. In the case of a single-threaded
server, any interaction with the network is served from the buffer if possible,
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and only executes the wrapped functions if no suitable event is available. The
scheduler will keep executing the wrapped function and add the result to its
buffer until a suitable event is available. On a multi-threaded server, events
are held back using semaphores that are signaled when the previous event is
released.

Our scheduler has to deal with situations in which no event occurs that
matches a required schedule. Such situations will cause an application to wait
for the network and appear to “hang”. In cases where a given schedule cannot be
reproduced in the live system, for example if a server that appears in the schedule
has been taken offline, we argue that developers have to be able to inspect
the scheduler operations to understand the situation. Appropriate heuristics
such as timeouts or conditions for giving up on a replay attempt are developer
configurable.

2.2. Anomaly Detection
To determine whether network races are the culprit of a failure, we require

developers to write a diagnosis script. Such a script is similar to a test case:

testBugReport001
| priceTable flightIdIdx flightId price reservation |
priceTable := (HTTPSocket

httpGetDocument: ’http://localhost:4567/search’
args: {’ origin ’ −> {’Berlin’}.

’destination ’ −> {’Amsterdam’}.
’date’ −> {Date today printString}}) content.

price := (table
copyFrom: (table indexOfSubCollection: ’<td>’ startingAt: priceEndIdx − 9)
to: (table indexOfSubCollection: ’ EUR’)) asInteger.

flightIdIdx := table content indexOfSubCollection: ’data−id="’.
flightId := (table content copyFrom: idIdx to: idIdx + 20) asInteger.
reservation := (HTTPSocket

httpPostDocument: ’http://localhost:4567/flights/’, id , ’/ reserve ’
args: nil ) content

self assert : ( reservation endsWith: price asString).

In our example, the script mimics the behavior of a customer who reserves
a seat on an airplane. It communicates with the Web server via the Hypertext
Transfer Protocol (http), and asserts that the returned data has the correct
rates. We use assertions to classify recorded network communication schedules
in relation to whether they produce a failure. Variances between successful and
failing communication schedules can be used to reduce the number of network
events that developers need to consider during debugging.

For our anomaly detection, we repeatedly apply the longest common sub-
sequence (lcs) [13] differencing algorithm to groups of communication sched-
ules. First, we determine lcss of all successes and all failures respectively,
removing outliers. Second, we diff lcss of successful communications with lcss
of failing communications. The differences between those are most likely to
contribute to a failure. In Figure 2, we have only one successful run at the top
and one failing run at the bottom left, so the lcss of failures and successes are
trivially to the full communication schedules each. We compare those and find
the differences between successes and failures in the shaded and magnified area.
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Figure 2: Anomaly detection for two schedules

For more complex examples, anomaly detection requires more recorded exe-
cutions to detect anomalies. Assuming otherwise deterministic servers, success-
ful schedules will exhibit fewer anomalies and thus a sufficiently large number
of failing and successful executions will ensure that the anomaly detection can
exclude variances that have little or no impact on the failure.

2.3. Refinement of Remote Data
If communication timing dependencies are the source of a non-deterministic

failure, then the system will fail consistently when constrained to failing com-
munication schedules. Once developers reviewed and understood the high-level
dependencies, they need to understand how they are expressed at the source
code level to fix the failure.

Using our scheduler, developers can inspect specific failing communication
schedules for further analysis. The scheduler provides an interface to add queries
to events. The first time a developer re-runs a schedule, Peek-At-Talk adds
a query to record the stack at the time each event is released. When this
schedule is applied to the live system, our scheduler records which methods
are active before each event is released and returns that data to our debugging
tool. A developer can then select an event in the communication view, and the
debugging tool will present a partial call tree that corresponds to the selected
event (cf. Section 2.3).

Developers can explore the call tree and request additional information about
method arguments and return values, as well as instance variables of objects.
Based on the recorded stack, Peek-At-Talk displays the method source code, if
it is available. If developers try to inspect, for example, a method argument, our
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tool attaches a query to the scheduler in the live system. The scheduler wraps
the corresponding method and creates deep copies of its arguments and return
values during the next re-execution, which are then returned to the debugging
tool1. Developers can drill into object references analogously.

This approach is an extension of step-wise runtime analysis [8]. Developers
can follow the information available in the live system until they understand
the failure, without causing a significant one-time overhead. The overhead of
each exploration step is small, because we only selectively record information
that developers request.

2.4. Discussion
The presented approach currently has two main limitations. First, our low-

overhead recording and schedule shaper depend on the determinism of each
server. Consequently, if other sources of non-determinism, such as system calls
to random or gettimeofday, have an impact on the failure, we cannot currently
reproduce it. This can be fixed by recording more sources of non-determinism,
at the expense of increased overhead. This can be easily implemented with
additional layered methods around such non-determinism. However, our sched-
uler could still use that additional data to constrain the live system to reliably
reproduce a failure, and the rest of our approach still applies.

Secondly, our approach currently only works in the closed-world case, in
which all processes that participate in the distributed system include our record-
ing and scheduler. If that is not the case, we need to extend our approach in
two ways to support an open-world case: first, we need to use a discovery mech-
anism to tell participating processes from non-participating processes. Second,
for non-participating processes, we need to record the message contents besides
what we currently record. If a schedule is later applied to the live system,
events from and to non-participating systems are replayed from the recorded
data. Note that this may not work if data returned from non-participating
servers is time-dependent, in which case our approach is not applicable.

3. Implementation

We implemented Peek-At-Talk in Squeak/Smalltalk [9]. It works for dis-
tributed applications that use http to communicate. We wrapped the Squeak
http api with ContextS [14], a context-oriented programming (cop) [15] im-
plementation for Squeak. cop is an extension to object-oriented programming
that provides a layer construct for encapsulating cross-cutting behavioral vari-
ations of a system. Layers can adapt classes and methods and can be composed
at runtime.

1For copying objects, we rely on Smalltalk’s veryDeepCopy protocol, which relieves us of
the burden of dealing with details of copying. If necessary, this protocol also allows developers
to adapt the analyzed object depth to their needs.
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Figure 3: Communication Recording Phase

Figure 4: Highlighted anomalies

With ContextS layers we can dynamically enable recording and scheduling
in the live system. The layers adapt all methods that read and write http
requests to and from a socket. This implementation approach can be applied
analogously in other programming languages for which a cop [15] mechanism
is available.

Communication Recording. Figure 3 shows how the different modules collabo-
rate during recording. A diagnosis script creates http traffic and the recording
layer creates a process-local trace of the network communication before pass-
ing the traffic on to the application. Network traces include an integer id as
Lamport clock, the first 500 bytes of the message, as well as IP address, url,
and port for both sender and receiver for all sent and received http requests.
This layer also adds the current Lamport clock “time” as an application defined
http header to each outgoing request. This is http specific, and for protocols
that do not have room for custom data, another approach—such as prepending
magic bytes to the payload—can be used [12]. After recording, we merge the
traces from different processes and sort events by id in Peek-At-Talk.

Anomaly Detection. For anomaly detection, Peek-At-Talk requires developers
to write a diagnosis script which can be executed to gather communication
schedules. If the script includes assertions that check for the presence of a
failure, Peek-At-Talk automatically compares and highlights anomalies of the
failures as shown in Figure 4. Developers can then begin their investigation
with these anomalous events.

Refinement of Remote Data. The scheduler layer, when active, constrains the
system to a particular communication schedule. Figure 5 shows that the sched-
ule is selected from Peek-At-Talk, and then the diagnosis script is re-run. The
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Figure 5: Scheduling and Refinement

schedule layer keeps a thread-safe input and output buffer to re-order network
events as required. A schedule contains a recorded trace with queries to the
refinement layer. Developers can inspect an event more closely by selecting it
graphically, and Peek-At-Talk will activate the scheduler layers for each process
with the corresponding schedule and queries. The first time a developer selects
an event, a query is added to record method invocations around it. The process
that generates that event leverages the reflective capabilities of Smalltalk to
gather execution data and return it to the Peek-At-Talk debugger, which com-
bines recorded method invocations and visualizes them in a call tree in Path
Tools [8, 16]. In Figure 6 we show the result of a developer clicking event 1©.
If the source code for the displayed methods is available in the image running
the debugger, the application method closest to the event automatically opens.
Developers can then select method arguments or receiver instance variables for
inspection, which causes other queries to execute.

4. Related Work

Our approach builds on previous work in the area of distributed post-mortem
debugging and distributed record and replay. Current approaches vary mainly
in how much they record, and subsequently, how much of the system they can
simulate to eliminate behavioral disturbance.

We draw ideas for our debugging tool and refinements approach from Fri-
day [17], a debugger for distributed record and replay, and Causeway [5], a
distributed post-mortem debugger. Friday provides extensions to the GDB de-
bugger and enables developers to add watchpoints and queries to a replay to
gather more information. Causeway synchronizes a network view with a call-
tree, so developers can easily map executed code to network events. In contrast
to these approaches, our record and refinement enables developers to continu-
ously use it on the live system to debug failures that occur very rarely or never
in development.

Our recording technique is similar to the record and replay as presented
in liblog [6], DejaVu [12], RecPlay [18], and Jockey [19], all of which also use
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Figure 6: Refinement of an event in the network schedule (top) to show the
corresponding application method (bottom)

Lamport clocks and intercept i/o to establish partial ordering of network events.
However, these approaches focus on low-level network events and intercept i/o
at the level of systems calls. They also require either a custom virtual machine
(vm) or additional dynamic libraries that cannot be deactivated at runtime.
The low-level events recorded by these approaches are further removed from
the application, which makes it difficult for developers to understand where
they originate in their application code. As the kind of data that is recorded
by these approaches is predetermined, developers cannot easily test whether a
given non-deterministic failure originates from timing dependencies in network
access. Compared to these approaches, record and refinement is more flexible
in what it records, and does so at a higher level abstraction.

R2 [20] is an application-level record-and-replay approach which offers more
control to the developers about what is recorded, and can be used to test for
multiple sources of non-deterministic failures. However, unlike our approach,
R2 does not allow replay in the live system.

Our record and refinement can be seen as an extension of dynamic memory
access race-detection in parallel programs such as RaceTrack [21]. Compared to
such approaches our implementation is less general. However, its advantage is
the higher level of abstraction, which is closer to the mental model of the Web
application developer. We argue that tools that detect a large set of data-races,
but do so by acting at a low level of abstraction, such as memory regions and
i/o devices, are less useful in debugging specific kinds of races than specialized
tools such as Peek-At-Talk.
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5. Conclusions

We have presented our record and refinement approach to debug non-deter-
ministic failures in the timing-dependent communication of distributed applica-
tions. Our approach provides a systematic top-down method to low-overhead
recording of network events in the live system, anomaly analysis, and refining
of runtime data from the live system. To evaluate our approach, we present our
Peek-At-Talk tool for debugging distributed Web applications.

Since the overhead of our recording approach is low, it can be enabled in a
deployed system continuously and record data about failures that occur infre-
quently or only during deployment. We achieve this low overhead by focusing
on the data strictly necessary for failures caused by timing-dependent commu-
nication.

Our anomaly analysis of communication schedules identifies network pat-
terns that are likely to contribute to a failure. Developers use these associations
to acquire an overview of the timing dependencies in the system at a high level
of abstraction and subsequently to choose schedules and events for further in-
spection. We detect anomalies by differentiating communication schedules and
correlating the differences with failed assertions.

Finally, we provide a refinement mechanism to selectively inspect runtime
data in the live system. This allows developers to debug the failure at the source
code level, without being restricted by the amount of prerecorded information.
We achieve this by constraining the system to a particular communication sched-
ule and wrapping method executions to record runtime data.

Future work is two-fold. First, recording and scheduling should be extended
to other sources of non-determinism, to show that our approach is applicable
not only to timing-dependent communication. Second, we are investigating how
to integrate non-participating servers into our approach. Furthermore, beyond
debugging of timing-dependent communication, we may investigate how Peek-
At-Talk allows developers to gain an overview of a distributed system. By
connecting code locations on different servers via network events it emphasizes
the implicit programming interfaces between servers and helps developers to
understand how communication is performed in the code.

Despite these future work, our approach is already usable to debug failures
in distributed systems. We have evaluated in a case study how developers can
approach failures without prior knowledge of the concrete distributed system.
Our approach does not require the system to stop, it allows debugging on the
live system, and it allows navigation on both network and implementation level.
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