
Fuzzing as Editor Feedback
Marcel Garus #

Hasso Plattner Institute, University of Potsdam, Germany

Jens Lincke #

Hasso Plattner Institute, University of Potsdam, Germany

Robert Hirschfeld #

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
Live programming requires concrete examples, but coming up with examples takes effort. However,
there are ways to execute code without specifying examples, such as fuzzing. Fuzzing is a technique
that synthesizes program inputs to find bugs in security-critical software.

While fuzzing focuses on finding crashes, it also produces valid inputs as a byproduct. Our
approach is to make use of this to show examples, including edge cases, directly in the editor.

To provide examples for individual pieces of code, we implement fuzzing at the granularity of
functions. We integrate it into the compiler pipeline and language tooling of Martinaise, a custom
programming language with a limited feature set. Initially, our examples are random and then
mutate based on coverage feedback to reach interesting code locations and become smaller.

We evaluate our tool in small case studies, showing generated examples for numbers, strings,
and composite objects. Our fuzzed examples still feel synthetic, but since they are grounded in the
dynamic behavior of code, they can cover the entire execution and show edge cases.

2012 ACM Subject Classification Software and its engineering → Development frameworks and
environments; Software and its engineering → Empirical software validation; Software and its
engineering → Functionality

Keywords and phrases Fuzzing, Example-based Programming, Babylonian Programming, Dynamic
Analysis, Code Coverage, Randomized Testing, Function-Level Fuzzing

Digital Object Identifier 10.4230/OASIcs.Programming.2025.8

Supplementary Material Software (Source Code): https://github.com/MarcelGarus/martinaise
[5], archived at swh:1:dir:8a3acf542aa172ae7ccc3a1384b6fd5303d42f61

1 Introduction

Concrete examples help programmers understand abstract source code. Several practices,
such as unit tests, technical documentation, and tutorials, use examples to illustrate the
meaning of programs. Examples can also increase the confidence that a program behaves
correctly for edge cases. However, coming up with good examples for edge cases is often
overlooked and happens later, if at all.

Bugs introduced by unhandled edge cases can be difficult to fix because the original
context, such as familiarity with the code and intent, is lost. Static analyses (such as linters
and type checkers) and dynamic analyses (such as tests and fuzzing) can proactively find
bugs. One of these techniques, fuzzing, automatically tests code with synthetic inputs to
find crashes and has found many security-critical bugs in open-source projects.

We propose using fuzzing to generate examples while editing code. We built a prototype
that works in a standard IDE for a custom language with a limited feature set, making it easy
to fuzz. Examples found through fuzzing automatically appear in the editor. Even though
the synthetic examples are often not typical and may even be unpleasant, these examples
illustrate edge cases, help cover the code base, and can help find bugs, e.g., by illustrating
uncaught errors.

© Marcel Garus, Jens Lincke, and Robert Hirschfeld;
licensed under Creative Commons License CC-BY 4.0

Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming
(Programming 2025).
Editors: Jonathan Edwards, Roly Perera, and Tomas Petricek; Article No. 8; pp. 8:1–8:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marcel.garus@student.hpi.uni-potsdam.de
https://orcid.org/0009-0000-8252-2563
mailto:jens.lincke@hpi.uni-potsdam.de
https://orcid.org/0000-0002-3828-7778
mailto:robert.hirschfeld@hpi.uni-potsdam.de
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.4230/OASIcs.Programming.2025.8
https://github.com/MarcelGarus/martinaise
https://github.com/MarcelGarus/martinaise
https://archive.softwareheritage.org/swh:1:dir:8a3acf542aa172ae7ccc3a1384b6fd5303d42f61;origin=https://github.com/MarcelGarus/martinaise;visit=swh:1:snp:1cd4f16547225178406d94c45095603b0c33dd43;anchor=swh:1:rev:aac443c4d6f5f439af828fca4fbcdf80ac365d76
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de


8:2 Fuzzing as Editor Feedback

VS Code with our extension

fuzzer
compiler

visible
functions

fuzzed examples

fuzzer for
is_valid_email

fuzzing harness

input (String)
generation

input (String)
mutation

compiled code of
is_valid_email
and dependencies

coverage tracking

➀ ➁
create
fuzzer

➂

Figure 1 Our extension tracks which functions are visible (1), creates and runs specialized fuzzers
for them (2) and uses examples with different coverage to showcase the entire function behavior (3).

Our contributions are:
We use techniques from fuzzing and property-based testing to find examples, not just
bugs.
We built an IDE extension that continuously fuzzes the visible code and shows examples.
We fuzz individual functions with structured inputs, enabling our tool to quickly cover
the entire code base.
We minimize examples to make them less overwhelming to developers. We discuss the
shortcomings of this approach for finding helpful examples.

The rest of the paper is structured as follows: Section 2 briefly introduces property-based
testing and fuzzing and motivates the need for examples as editor feedback. Section 3
introduces our approach that fuzzes functions and shows the result directly in the editor.
Section 4 describes the implementation for the Martinaise language and the Visual Studio
Code editor. Section 5 evaluates the quality and performance of our tool with small case
studies. Section 6 discusses ideas for future work and how to adapt the approach to other
languages. Section 7 concludes.

2 Background and Related Work

Over the years, the software engineering industry has adopted several practices that help
write robust code. Static tools such as type checkers or linters analyze the code without
executing it. Dynamic tools such as unit tests or debuggers execute the code to find other
errors. Some dynamic tools, such as property-based testing and fuzzing, reduce the amount
of setup required by automatically generating inputs.

2.1 Property-Based Testing
Property-based testing frameworks generate random inputs. Your tests receive those inputs
as arguments and can then test properties of your code that should be true for any input [16].
For example, to test a function that calculates the maximum of a list of numbers, you could
write a test that receives a list of numbers as input, calls the maximum function, and verifies
properties of the result. Properties of the maximum function could be that the original list
has to contain the result, or that the result is larger than or equal to every list item.



M. Garus, J. Lincke, and R. Hirschfeld 8:3

Property-based testing frameworks exist for many languages, such as QuickCheck1 for
Haskell. They usually work in two phases:
1. In the exploration phase, the framework runs the test with increasingly more complex

inputs. If one of those inputs causes the test to fail, it enters the shrinking phase.
2. In the shrinking phase, the framework tries smaller versions of the failing input. It

repeatedly shrinks the input until any further reduction causes the test to succeed.
Finally, it reports the smallest input that still fails the test.

To generate correctly-typed inputs, property-based testing frameworks usually require
developers to implement code for generating inputs, although this can sometimes be auto-
mated.

Compared to unit tests (which only test a single input-output pair), property-based tests
are more abstract and can test code more thoroughly without much more effort.

2.2 Fuzzing
Fuzzing is the testing of programs with random inputs to find crashes. Historically, fuzzing
evolved from an outside-in view, analyzing the robustness of other people’s programs [14].
Today, fuzzing makes security-critical software, such as firmware, operating systems, browsers,
and applications, more robust2 [26, 24, 27].

In this technique, a component called fuzzer generates bytes, runs the program with
those inputs, and receives feedback about the program’s behavior. Because fuzzing works
with unstructured bytes, it is usually more feedback-driven than property-based testing out
of necessity. State-of-the-art fuzzers can be differentiated in the amount of feedback they
receive from the running program [3, 22, 19]:
Blackbox fuzzing The fuzzer only receives feedback about the program’s externally visible

behavior, such as whether it crashed and how long it was executed. The limited amount
of feedback makes it difficult to reach interesting code, especially if the program validates
its input.

Whitebox fuzzing The fuzzer accesses the program code (at the source or machine code level)
and analyzes its structure. For example, it can use symbolic execution and a constraint
solver to generate inputs that reach target locations. This produces high-quality inputs
but introduces a considerable overhead for generating inputs, especially for code with
complicated control flow.

Greybox fuzzing The fuzzer uses simple coverage feedback to judge the quality of inputs. For
example, inputs leading deep into the program’s logic are perhaps more interesting than
ones only executing a few instructions. Greybox fuzzers mutate promising inputs – for
example, by inserting or removing a few bytes from the input byte sequence – gradually
exploring all code. Greybox fuzzing balances the quantity and quality of the input
generation and is, therefore, more effective at finding bugs than the other two variants.

The most widely used open-source fuzzers are based on American Fuzzy Lop (AFL) [26],
a Greybox fuzzer. Since its inception, several papers [2, 1, 3, 10, 25, 6, 4] have proposed
additions to make fuzzing more effective, but most Greybox fuzzers follow AFL’s general
architecture:

1 https://hackage.haskell.org/package/QuickCheck
2 Some high-profile projects where fuzzing found bugs: Mozilla Firefox, Apple Safari, iOS kernel, sqlite,

Linux ext4, Tor, PHP, OpenSSL, OpenSSH, LibreOffice, libpng, curl, GPG, OpenCV, zstd, MySQL, . . .
See also: https://github.com/google/oss-fuzz

Programming 2025

https://hackage.haskell.org/package/QuickCheck
https://github.com/google/oss-fuzz


8:4 Fuzzing as Editor Feedback

1. The fuzzer maintains a pool of inputs. Initially, this pool is empty or filled with examples
explicitly given by the developer.

2. The fuzzer either generates a random byte sequence or picks and slightly mutates one
from the pool.

3. The fuzzer runs the program, sending the input bytes into its standard input (stdin).
The fuzzer observes the coverage and whether the program crashed.

4. If the input executes code that was not reached before, the input is added to the input
pool. If the input crashes the program, it is reported.

5. Go to step 2.

While fuzzing and property-based testing evolved from different origins, their use cases
overlap: Fuzzing tests the property that the program doesn’t crash (although assertions in
the code can reduce any property to a crash). A unique appeal of fuzzing among dynamic
tools is that it requires no setup.

2.3 Motivation
Fuzzing and property-based testing are usually used as after-the-fact analyses to find bugs.
This distances them from the development workflow, both temporally and spatially.

Using property-based testing requires conscious effort from the developer. They have to
implement/derive code for generating typed values, and they have to manually write tests
for properties.

Using fuzzing requires less setup. However, it is usually not integrated into the editor,
but invoked from the command line. Fuzzing works on entire programs, generates inputs at
the byte level, and can take a long time to find bugs deep within your code (far from the
main function).

Both tools yield insights apart from a potential crash report: They create examples
covering all the different parts of the program and showing edge cases. Making these examples
readily available during programming sessions rather than as an after-the-fact analysis has
not yet been explored. Perhaps the developer can see these examples directly while writing
code?

2.4 Examples as Editor Feedback
Other works explore showing live examples next to the source code, a practice sometimes
called Babylonian Programming [18, 17]. For example, in Inventing on Principle [21], Bret
Victor presents an editor that lets you specify example values for function inputs in a pane
next to the source code. The editor will then show the concrete values of all variables and
how they evolve as the function executes. Other works of live examples in your code include
Live Literals [20], the Babylonian Programming Editor [18], or projection boxes [8].

A major difference among these tools is how developers specify examples. Rauch et
al. [18] distinguish between two methods:
Implicit examples are provided in the source code, thus requiring code modification.
Explicit examples are provided using a special syntax or separate UI.

Making the computer come up with examples adds a third method. Mattis et al. [12]
explore using large language models (LLMs) to generate examples and tests automatically.
However, the model sometimes hallucinates function arguments, especially if code is not
sufficiently tested or used by other code – the exact cases where examples would be helpful.



M. Garus, J. Lincke, and R. Hirschfeld 8:5

A fundamental limitation of LLMs is that they approximate the runtime behavior of code
internally [15, 9]. On the other hand, examples found through fuzzing are grounded in the
actual semantics of the code.

Fuzzing is a largely untapped source of examples. In this paper, we bring those examples
to the editor. Our prototype shows annotations based on these examples.

3 Fuzzed Function Examples

We built an editor extension that uses fuzzing to generate examples for functions in a
statically typed language. As you browse and edit code, our extension shows example inputs
for functions, derived through function-level fuzzing.

As soon as a function becomes visible in the editor, our extension creates a specialized
fuzzer for that function, as seen in Figure 1. Because this functionality is integrated into
the compiler, it can automatically derive code that allows the fuzzer to work with typed
arguments, for example, to generate new values. If you prefer, you can customize this code.
Our extension then runs the generated fuzzer, which uses coverage feedback to explore the
whole execution space, similar to other Greybox fuzzers. It also uses coverage to select and
print examples that show different behaviors of the function. The extension reads the fuzzer’s
reports and transforms them into hints that are shown in the editor.

Our tooling wants to not only find crashes, but also provide examples that help developers
understand the function behavior, including edge cases. However, “helpfulness” is difficult to
formalize and optimize. So, like traditional fuzzers and property-based testing frameworks,
our prototype minimizes inputs. Compared to raw, random examples, these smaller, less
complex ones are usually easier to comprehend but still highlight edge cases.

In traditional fuzzing starting from the main function, arguments to inner functions are
filtered by the calling code, but it is more computationally expensive or even impossible to
reach some functions. Fuzzing individual functions instead of the whole program can result
in examples that may never actually occur in practice, highlighting edge cases early and
driving developers to specify their assumptions and code more defensively.

4 Implementation for Visual Studio Code in Martinaise

We want to explore whether fuzzing-based editor tooling is useful. Rather than creating a
generic solution that works on the lowest common denominator of programming languages
and editors, we limit our scope to a single language and editor.

4.1 Martinaise
We designed Martinaise3, a custom programming language that has some specific limitations
that make it easy to fuzz:

It has a simple, static type system and favors concrete types over abstract interfaces.
It has no first-class functions capturing their lexical context, only top-level functions.
It has a small compiler and virtual machine, which enable complete code instrumentation.
It has basic tooling support for Visual Studio Code (VS Code), a popular code editor.

In section 6, we discuss how our approach can be adapted to real-world languages.

3 https://marcelgarus.dev/martinaise

Programming 2025

https://marcelgarus.dev/martinaise


8:6 Fuzzing as Editor Feedback

4.2 Working With Arguments

The fuzzer needs to be able to generate, mutate, and analyze the function arguments. Our
prototype creates code that allows the fuzzer to work with the argument types, but the
behavior can be overridden if necessary.

The fuzzer can generate random values of a desired type:
For structs, it generates a random value for each field.
For enums, it chooses a random variant and generates a random payload.

Like many property-based testing frameworks, the code for generating values accepts a
desired complexity. This allows the fuzzer to test a function with increasingly larger inputs
and prevents infinite recursion for recursive types.

Only being able to generate values is not enough. Greybox fuzzers use evolution to be
effective at exploring code. They randomly mutate the input and keep those inputs that
cover new ground as the new baseline.

For structs, the fuzzer changes a random field.
For enums, the fuzzer either chooses a new variant or changes the payload.

This mutation works with a temperature: The higher the temperature, the more the
mutated value differs from the original one. This allows the fuzzer to widen or narrow the
search space of new inputs.

4.3 Tracking coverage

Fuzzing requires feedback about the code coverage. Similar to existing fuzzers like AFL, our
fuzzer instruments the generated byte code to track the coverage: It rewrites conditional
jumps, the only form of data-dependent control flow, so that they update a global coverage
bitset. After running some code, this bitset automatically indicates which branches were
chosen.

Instructions with external side effects also get replaced during instrumentation. Instruc-
tions that output data (such as printing or writing a file) get omitted. If a function reads
external data (from the standard input or a file), the function is not fuzzed.

4.4 Fuzzing

Given the functionality for generating inputs, judging their complexity, tracking coverage,
and mutating them, we can now implement Greybox fuzzing. We have demands that are
somewhat different from those of existing Greybox fuzzers: We want to find crashes but also
interesting inputs. The editor should show representative examples as soon as possible.

Our process is very similar to how AFL works [26]: The fuzzer maintains a pool of
examples. Initially, these are randomly generated. The fuzzer picks an example, mutates it,
runs it, and compares the coverage to the original one:

If it covers less code, it is discarded.
If it covers the same code but is smaller, the example replaces the current example.
If it covers new code, it is added to the pool for further exploration.

This process results in a set of small examples that execute different parts of a function’s
code.



M. Garus, J. Lincke, and R. Hirschfeld 8:7

4.5 Fuzzing for Editor Tooling
We want to show examples in the editor based on fuzzing. As a proof of concept, we
implemented that functionality for the Visual Studio Code IDE4 (VS Code). We created a
VS Code extension that tracks the opened files and the scroll position, checks which functions
are visible, and spawns fuzzers for these functions. As these fuzzers report their progress,
the extension continuously updates the examples shown in the editor.

Currently, editing the code invalidates the fuzzed examples in that file. When writing
code, the visible functions are continuously fuzzed.

5 Evaluation

To illustrate how our tool works, here is a function that averages a list of numbers:

The red and green hints at the end of the first line automatically appear when our
extension is activated. The red hint informs us that the function crashes when applied to an
empty list (this happens because it divides by zero). The green hint tells us that the average
of a list containing a zero is zero.

Our tool can work with custom types and tries to find example inputs that cover the entire
function. For the following evaluation function for mathematical terms, our tool implements
code for generating and mutating random terms and produces examples displayed after the
function definition:

As not all examples fit on the screen, here are all the examples you can see when scrolling
to the right:

4 https://code.visualstudio.com/

Programming 2025

https://code.visualstudio.com/


8:8 Fuzzing as Editor Feedback

The tool shows five examples of the five branches inside the function and another example
that crashes the function.

In VS Code, one can use code actions to perform refactorings. Figure 2 shows how to use
a code action to filter the examples to ones reaching a particular location. This does not
change the fuzzing behavior, such as the directed fuzzing described by Böhme et al. [1]; it
only changes which inputs are displayed.

(a) Code action asking for examples.

(b) Filtered fuzzing examples.

Figure 2 Asking for examples that reach a given code location.

5.1 Quality of Examples

Coverage feedback is enough to explore functions with a straightforward control flow. Here
is a function where the fuzzer successfully gives one example for each way the function can
return:



M. Garus, J. Lincke, and R. Hirschfeld 8:9

These are all examples:

However, achieving full coverage on any function is impossible. For example, this function
only returns an integer if the SHA-256 hash of the input matches an expected value:

While, in theory, the fuzzer could generate and show an example input that reaches the
conditional branch, doing so in a reasonable time frame requires breaking SHA-256.

In practice, our fuzzer already struggles with simpler code. For example, it does not
reach the inner code in the following if clause:

State-of-the-art fuzzers can fuzz this code because they also track the number of loop
iterations, so inputs with a different prefix of "https" (such as "hello" and "htttt") will
have different coverage in the string comparison code.

Apart from finding inputs that crash functions, the examples discovered by our tool can
also be used to understand how a function behaves without looking at its implementation.
However, while code coverage and input complexity generally correlate with how helpful
examples are, we recognize that it is not a perfect proxy. In everyday use, we identify two
major limitations when using our tool to understand existing code.

First, minimizing examples can be counterproductive. Previously, we showed that our tool
gives [0] as an example for the average function. While a list containing a single number
achieves full code coverage, it does not give the developer confidence that the implementation
is correct. [1, 2, 3] would be a better example.

Second, the examples our tool shows are often unnatural. Here, our tool greets someone
with an empty name:

While this is the expected behavior of fuzzing, in our experience, such unnatural examples
introduce some mental overhead. This problem is difficult to address in a general way because
the perceived complexity of values depends on the context: Even if 0 is perceived as less
complex than 3 in isolation, most humans perceive [1, 2, 3, 4] as less complex than
[1, 2, 0, 4].

Programming 2025



8:10 Fuzzing as Editor Feedback

Table 1 Better examples over time for an email address checking function.

time
(ms) runs screenshot of the examples in the editor

0 0

989 1

991 28

1002 82

2155 1140

2177 1334

2592 2409

3450 3794

3664 4236

4906 5272

7183 9367

5.2 Performance

Fuzzing takes time. Compared to traditional fuzzing, an advantage of fuzzing on the
granularity of functions as opposed to entire programs is that the fuzzer does not have to
reach potentially crashing code indirectly through the main function. For example, if the
entry part of the code is guarded with code that is difficult to pass such as the SHA-256 code
from section 5.1, our tool can still fuzz internally used functions in isolation.

Unlike type-checking or linting, the output of fuzzing changes over time. Table 1 shows
how examples for the email address check from section 5.1 change on a desktop computer5.
Every line shows a timestamp, the number of function executions that were performed, and
a screenshot of the examples. In the beginning, there are no examples. After the function is
compiled, our tool quickly discovers four random-looking examples that cover all the code.
Then, it shrinks them. The table only shows a subset of all updates – in total, the fuzzer
produces many more intermediate versions, most of which differ only by a single character
from the previous version. In the end, you are left with four small, representative examples
of the function behavior.

Because of this continuous refinement, the feedback feels reasonably fast in practice. Even
for large functions, the initial examples appear quickly – it just takes longer for the examples
to stabilize.

5.3 Displaying Examples

Apart from the quality of examples, we also want to look at how and where examples are
displayed. Currently, our tool formats examples as text and shows them next to the function
signature. For many values, there are more appropriate representations than formatted text,
such as visualizations. It may make sense to expand our tool to other editors that do not
have VS Code’s constraints like the ones discussed by Rauch et al. [18].

5 The computer has an AMD Ryzen™ 7 5800X × 16 and 32 GiB of RAM. It runs Ubuntu 24.04.1 LTS.



M. Garus, J. Lincke, and R. Hirschfeld 8:11

There are some practical limitations of our implementation: We currently don’t order
examples. Also, for functions that mutate the input or produce a side effect, input-output
pairs do not help understand their behavior.

6 Future Work

We showed that fuzzing can be a new source of information in the editor. There are many
paths for further exploration.

6.1 Ideas for Improvements
Better performance

Implementing fuzzing for a real-world language with an optimizing compiler will improve
the performance. Using a just-in-time compiled language or an incremental compiler could
improve the latency between editing the code and examples updating. The same incremental
caching could be used to only fuzz functions if they change.

Better fuzzing

State-of-the-art fuzzers track more information, such as the number of iterations in a loop;
this makes it possible to explore more code. Various other aspects of fuzzing research could
also be adapted, such as using directed fuzzing [1] when asking for examples reaching a
particular location.

Fuzz with more context

Currently, functions are fuzzed in complete isolation. Rather than fuzzing functions individ-
ually or indirectly through the main function, we could only record examples that passed
through a fixed level of other functions. These indirectly found examples are potentially
more natural because the code in outer functions restricts which values reach inner functions.
Alternatively, the fuzzer could start with function arguments retrieved from tests using
example mining [7].

More natural examples

The usual objective of fuzzing – finding a small input that breaks the code – does not quite
match our use case of finding helpful examples. Recent developments in LLMs make it
practical to generate natural examples automatically [12]. Some approaches [23, 13] try to
integrate LLMs into the input generation and mutation parts of fuzzing to guide the fuzzer
to sensible inputs in a more targeted way. Using that technique to maximize how natural
examples look might lead to helpful and correct examples grounded in actual execution.
Parallel to this work, Mattis et al. created a framework to more rigorously evaluate examples
in multiple dimensions [11] such as complexity, exceptionality, abstractness, or interactivity.
We could evaluate our approach using this newly created framework.

Relate examples to coverage

We could clarify the relationship between examples and their coverage by moving examples to
unique code locations they reach or greying out unreached code when clicking on an example.

Programming 2025



8:12 Fuzzing as Editor Feedback

Prioritize examples

Currently, examples are unordered. An intentional ordering might first show an example
covering a happy path and examples covering crashes and only then display examples that
reach niche code locations. Alternatively, examples reaching the cursor position could be
considered more relevant, leading to a reordering of examples as you move the cursor through
the code.

Interactive examples

Currently, examples are only displayed as text. Examples should be the starting point for
visualizations, debugging sessions, unit tests, and other tools.

6.2 Generalizing to Other Languages
We chose Martinaise because it allowed us to investigate using fuzzing in the editor without
focusing on more advanced challenges posed by real-world languages. These are ways in
which our prototype could be adapted to different languages:

Dynamically Typed Languages

In dynamically typed languages, functions generally do not have type annotations, so the
fuzzer can only rely on coverage data to guide it to valid (read: non-crashing) inputs.
Because inputs with unexpected shapes are likely to cause functions to crash, crashes are
less meaningful than in statically typed languages. However, passing examples can be a very
valuable replacement for types.

Languages With Pure Functions

Mathematical functions cannot modify their inputs or have side effects. Some programming
languages model their code similarly: They favor immutable data structures and functions
without side effects (“pure functions”).

In these languages, fuzzing would not need to protect against mutations of inputs or side
effects. Communicating the insights from fuzzing is more straightforward for these languages.

Languages With First-Class Functions

Some languages support functions as values. To fuzz higher-order functions (functions
expecting functions), the fuzzer needs to generate a function. Mocking a function as a map
from inputs to outputs enables the fuzzer to slightly mutate the function’s behavior, enabling
evolution, and display the function to the developer.

7 Conclusion

Concrete examples can be valuable while editing abstract code and are needed in live
programming, but coming up with examples takes effort and usually happens after writing
code. However, there are ways to execute code without specifying examples: Fuzzing is a
technique that synthesizes program inputs to find bugs in security-critical software.

In this paper, we used fuzzing to show examples in the editor. Our tool generates examples
by starting with random inputs, which it then mutates based on coverage feedback to reach
interesting code locations. While fuzzing focuses on finding crashes, it also produces valid
inputs as a byproduct that can serve as examples for developers. Aesthetic qualities of inputs
are of no concern to fuzzers, but are important when showing examples to the user.



M. Garus, J. Lincke, and R. Hirschfeld 8:13

Fuzzing the whole program just to get examples for the functions visible in the editor
takes too long. By fuzzing individual functions instead of entire programs, we can display
examples next to function signatures and do not have to find a path from the program entry
point, making the process faster. This way, examples can be generated reasonably quickly,
but we also show examples that a function would never be called with.

We evaluate our tool in small case studies, showing generated examples for numbers,
strings, and composite objects. Similar to other tools such as type checking or linting, our
tool gives reasonably quick feedback, but the results take a moment to stabilize as the
fuzzer explores more code and refines examples. Unlike examples created by humans or
large language models, fuzzed examples feel synthetic, but they are grounded in the dynamic
behavior of code, cover the entire execution, and test edge cases.

References

1 Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. Directed
Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas Texas USA, October 2017. ACM. doi:10.1145/3133956.
3134020.

2 Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based Greybox
Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna Austria, October 2016. ACM. doi:10.1145/2976749.
2978428.

3 Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Principled Search. In 2018 IEEE
Symposium on Security and Privacy (SP), May 2018. doi:10.1109/SP.2018.00046.

4 Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu, and Zuoning
Chen. GREYONE: Data Flow Sensitive Fuzzing. In Proceedings of the 29th USENIX
Conference on Security Symposium, SEC’20, 2020. doi:10.5555/3489212.3489357.

5 Marcel Garus. Martinaise. Software, swhId: swh:1:dir:8a3acf542aa172ae7ccc3a1384b6fd5303d42f61
(visited on 2025-09-08). URL: https://github.com/MarcelGarus/martinaise,
doi:10.4230/artifacts.24697.

6 Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with Code Fragments. In Proceedings
of the 21st USENIX Conference on Security Symposium, Security’12, USA, 2012. USENIX
Association. doi:10.5555/2362793.2362831.

7 Eva Krebs, Patrick Rein, and Robert Hirschfeld. Example Mining: Assisting Example
Creation to Enhance Code Comprehension. In Companion Proceedings of the 6th International
Conference on the Art, Science, and Engineering of Programming, Porto Portugal, March 2022.
ACM. doi:10.1145/3532512.3535226.

8 Sorin Lerner. Projection boxes: On-the-fly reconfigurable visualization for live programming.
In Regina Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres, Joanna McGrenere,
Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjøn, Shengdong Zhao, Briane Paul
Samson, and Rafal Kocielnik, editors, CHI ’20: CHI Conference on Human Factors in
Computing Systems, Honolulu, HI, USA, April 25-30, 2020, CHI ’20, pages 1–7, New York,
NY, USA, 2020. ACM. doi:10.1145/3313831.3376494.

9 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
CoRR, abs/2305.01210, December 2023. doi:10.48550/arXiv.2305.01210.

10 Dominik Christian Maier, Lukas Seidel, and Shinjo Park. Basesafe: baseband sanitized fuzzing
through emulation. In René Mayrhofer and Michael Roland, editors, WiSec ’20: 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, Linz, Austria, July
8-10, 2020, pages 122–132. ACM, July 2020. doi:10.1145/3395351.3399360.

Programming 2025

https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.5555/3489212.3489357
https://archive.softwareheritage.org/swh:1:dir:8a3acf542aa172ae7ccc3a1384b6fd5303d42f61;origin=https://github.com/MarcelGarus/martinaise;visit=swh:1:snp:1cd4f16547225178406d94c45095603b0c33dd43;anchor=swh:1:rev:aac443c4d6f5f439af828fca4fbcdf80ac365d76
https://github.com/MarcelGarus/martinaise
https://doi.org/10.4230/artifacts.24697
https://doi.org/10.5555/2362793.2362831
https://doi.org/10.1145/3532512.3535226
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.1145/3395351.3399360


8:14 Fuzzing as Editor Feedback

11 Toni Mattis, Lukas Böhme, Stefan Ramson, Tom Beckmann, Martin C. Rinard, and
Robert Hirschfeld. Dimensions of examples: Toward a framework for qualifying exam-
ples in programming. In Proceedings of the Programming Experience 2025 (PX/25) Work-
shop, Programming ’25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (OASIcs), 2025.
doi:10.4230/OASIcs.Programming.2025.22.

12 Toni Mattis, Eva Krebs, Martin C. Rinard, and Robert Hirschfeld. Examples out of Thin Air:
AI-Generated Dynamic Context to Assist Program Comprehension by Example. In Companion
Proceedings of the 8th International Conference on the Art, Science, and Engineering of
Programming, Programming ’24, New York, NY, USA, July 2024. Association for Computing
Machinery. doi:10.1145/3660829.3660845.

13 Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. Large Language
Model guided Protocol Fuzzing. In Proceedings 2024 Network and Distributed System Security
Symposium, San Diego, CA, USA, 2024. Internet Society. doi:10.14722/ndss.2024.24556.

14 Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of UNIX
utilities. Communications of the ACM, 33(12), December 1990. doi:10.1145/96267.96279.

15 Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh, Michel C.
Desmarais, and Zhen Ming (Jack) Jiang. GitHub Copilot AI pair programmer: Asset or
Liability? Journal of Systems and Software, 203, September 2023. doi:10.1016/j.jss.2023.
111734.

16 Joe Nelson. The design and use of quickcheck, January 2017. URL: https://begriffs.com/
posts/2017-01-14-design-use-quickcheck.html.

17 Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian König, Kolya Opahle, Nico
Scordialo, and Robert Hirschfeld. Example-based live programming for everyone: building
language-agnostic tools for live programming with LSP and GraalVM. In Proceedings of the
2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Virtual USA, November 2020. ACM. doi:10.1145/3426428.
3426919.

18 David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld. Babylonian-
style Programming: Design and Implementation of an Integration of Live Examples into
General-purpose Source Code. The Art, Science, and Engineering of Programming, 3(3),
February 2019. doi:10.22152/programming-journal.org/2019/3/9.

19 Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner, and Thorsten Holz.
Nyx: Greybox hypervisor fuzzing using fast snapshots and affine types. In Michael D. Bailey
and Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, pages 2597–2614. USENIX Association, 2021. URL: https://www.usenix.
org/conference/usenixsecurity21/presentation/schumilo.

20 Tijs Van der Storm and Felienne Hermans. Live Literals, 2016. Presented at the Workshop
on Live Programming (LIVE). URL: https://homepages.cwi.nl/~storm/livelit/livelit.
html.

21 Bret Victor. Inventing on Principle, February 2012. URL: https://www.youtube.com/watch?
v=PUv66718DII.

22 Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu, and Purui
Su. Not all coverage measurements are equal: Fuzzing by coverage accounting for input
prioritization. In 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020, San Diego, CA, 2020. The Internet
Society. doi:10.14722/ndss.2020.24422.

23 Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang.
Fuzz4All: Universal Fuzzing with Large Language Models. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE ’24, New York, NY, USA, April
2024. Association for Computing Machinery. doi:10.1145/3597503.3639121.

https://doi.org/10.4230/OASIcs.Programming.2025.22
https://doi.org/10.1145/3660829.3660845
https://doi.org/10.14722/ndss.2024.24556
https://doi.org/10.1145/96267.96279
https://doi.org/10.1016/j.jss.2023.111734
https://doi.org/10.1016/j.jss.2023.111734
https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html
https://begriffs.com/posts/2017-01-14-design-use-quickcheck.html
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://homepages.cwi.nl/~storm/livelit/livelit.html
https://homepages.cwi.nl/~storm/livelit/livelit.html
https://www.youtube.com/watch?v=PUv66718DII
https://www.youtube.com/watch?v=PUv66718DII
https://doi.org/10.14722/ndss.2020.24422
https://doi.org/10.1145/3597503.3639121


M. Garus, J. Lincke, and R. Hirschfeld 8:15

24 Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace: Data race fuzzing for
kernel file systems. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020, pages 1643–1660. IEEE, 2020. doi:10.1109/SP40000.2020.00078.

25 Michal Zalewski. Binary fuzzing strategies: what works, what doesn’t, August 2014. URL:
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html.

26 Michal Zalewski. Technical “whitepaper” for afl-fuzz, January 2015. URL: https://lcamtuf.
coredump.cx/afl/technical_details.txt.

27 Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and Limin Sun. FIRM-
AFL: High-Throughput greybox fuzzing of IoT firmware via augmented process emulation.
In Proceedings of the 28th USENIX Conference on Security Symposium, SEC’19, USA, 2019.
USENIX Association. doi:10.5555/3361338.3361415.

Programming 2025

https://doi.org/10.1109/SP40000.2020.00078
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.5555/3361338.3361415

	1 Introduction
	2 Background and Related Work
	2.1 Property-Based Testing
	2.2 Fuzzing
	2.3 Motivation
	2.4 Examples as Editor Feedback

	3 Fuzzed Function Examples
	4 Implementation for Visual Studio Code in Martinaise
	4.1 Martinaise
	4.2 Working With Arguments
	4.3 Tracking coverage
	4.4 Fuzzing
	4.5 Fuzzing for Editor Tooling

	5 Evaluation
	5.1 Quality of Examples
	5.2 Performance
	5.3 Displaying Examples

	6 Future Work
	6.1 Ideas for Improvements
	6.2 Generalizing to Other Languages

	7 Conclusion

