
Type Feedback for Bytecode Interpreters
Position Paper

ICOOOLPS 2007

Michael Haupt1, Robert Hirschfeld1, and Marcus Denker2

1 Software Architecture Group
Hasso-Plattner-Institut

University of Potsdam, Germany
2 Software Composition Group

Institute of Computer Science and Applied Mathematics
University of Berne, Switzerland

{michael.haupt,hirschfeld}@hpi.uni-potsdam.de, denker@iam.unibe.ch

Abstract. This position paper proposes the exploitation of type feed-
back mechanisms, or more precisely, polymorphic inline caches, for purely
interpreting implementations of object-oriented programming languages.
Using Squeak’s virtual machine as an example, polymorphic inline caches
are discussed as an alternative to global caching. An implementation
proposal for polymorphic inline caches in the Squeak virtual machine is
presented, and possible future applications for online optimization are
outlined.

1 Introduction

Bytecode interpreters are small in size and comparatively easy to implement,
but generally execute programs much less e�ciently than just-in-time (JIT)
compilers. Techniques like threaded interpretation [9, 11, 2] focus on speeding
up bytecode interpretation itself, and caching [4, 5, 1] improves the performance
of message sends—the most common operation in object-oriented software [7].

It is interesting to observe that, while threading mechanisms are used natu-
rally to a varying degree in bytecode interpreter implementations, such systems
usually employ only global caching to speed up dynamic method dispatch. A
global cache is clearly beneficial with respect to overall performance. Still, it
does not provide optimal support for polymorphic message send sites, and it
does not allow for exploiting type information (we provide details on these issues
in the following section). In our opinion, the employment of polymorphic inline
caches (PICs) [5] instead can provide means for achieving significant speedups
in bytecode interpreters while exhibiting only a moderate increase in memory
footprint and implementation complexity.

In the next section, we briefly discuss global caches. The bytecode interpreter
we use as a case study throughout this paper is that of the Squeak [8, 12] virtual
machine (VM) [13]. Section 3 proposes an approach to the implementation of

17



PICs in the Squeak bytecode interpreter. Finally, section 4 gives a summary of
the paper and an outlook on possible future optimizations in bytecode inter-
preters that are encouraged by the introduction of type feedback mechanisms.

2 Global Caching: Discussion

The Squeak VM bytecode interpreter uses a global cache for improving method
lookup performance. This cache has a fixed size and maps <target class,
selector> pairs to concrete method implementations (compiled methods). It sig-
nificantly contributes to the overall performance of the Squeak interpreter.

However, such a cache has several shortcomings. Since it is global, collisions
are relatively frequent and lead to longer method lookup times. The cache has to
be flushed as soon as changes in the class hierarchy or in method implementations
occur. For changes in method implementations, the cache is not entirely flushed,
but only for the entries that refer to implementations of the selector in question.

Moreover, flushing is required whenever the garbage collector performs heap
compaction, as hashing is done based on target class and selector object ad-
dresses. After a flush, the cache needs to be repopulated, during which and
overall performance is lower.

The global cache su�ers from being global. It cannot react to local changes in
an adequate way—i. e., by an update operation that is quasi-local in its e�ect on
cache contents. A local change, such as a class overwriting an inherited method,
actually a�ects only a small part of the entire class hierarchy. Nevertheless,
method lookup data for large parts of the class hierarchy needs to be restored.

Also, the global cache is, due to its mapping scheme, generally not able to
provide local information, that is information per send site. Such information
typically comprises of the concrete receiver types (classes) of a message at a
given polymorphic send site. It is called type feedback information [6] and is very
interesting with regard to optimizations (cf. Sec. 4).

The performance of the Squeak bytecode interpreter is good. Still, we believe
that it can benefit from a caching mechanism that supports local type feedback.
These so-called inline caches [4] are usually used in environments that employ
JIT compilation and bring great benefit in terms of dynamic message dispatch
performance.

Inline caches store the most recently looked-up method address at each given
send site. The address is cached at the send site, replacing the call instruction
to the lookup method with a direct jump to the code of the method. Since there
is a jump to the cached method, no lookup needs to be done at all. There is
only a slight overhead resulting from a check at the beginning of the method
verifying that the class of the receiver is the correct one. In case the receiver
class has changed, the standard lookup is used instead. Obviously, simple inline
caches are not an ideal solution for supporting polymorphic send sites since they
already fail if the same message is sent to an alternating list of objects.

PICs [5] store, for a given send site, the method addresses of N past message
sends, where N is the cache size. A PIC stores <receiver class, method address>

18



key-value pairs. The Strongtalk [14] VM is a prominent example of such an
environment. It is comprised of a bytecode interpreter and a JIT compiler; the
interpreter already stores type feedback information in PICs to speed up message
sending. Information stored in these PICs is later exploited by JIT-compiled
native code.

3 Polymorphic Inline Caching in Bytecode Interpreters

We believe that PICs can be beneficial also in solely interpreting VM implemen-
tations, such as the Squeak VM [13]. In this section, we outline an implementa-
tion proposal for PICs in that environment.

An interpreter does not generate binary code for methods, thus PICs cannot
store memory addresses of code. In Squeak, the bytecode is stored in compiled
method objects. Here, PICs can store a reference to the compiled method object
instead.

The implementation a�ects both the Squeak VM and reflectively the
Smalltalk image. At the image level, each Smalltalk method is represented as an
instance of the CompiledMethod class. The format of CompiledMethod instances
needs to be modified to store send site type feedback information. In the VM,
the interpreter logic must be augmented to support storing and updating of said
information.

Squeak CompiledMethods have the layout shown in Fig. 1. The standard ob-
ject header provides information about the object itself, its class, hash value, etc.
The subsequent method header contains information on the method in question,
such as the number of arguments, local variables and literals. After that, there
are several pointers to the method’s literals, each referencing a given constant
occurring in the method. For example, all send bytecodes reference their selector
(the name of the method to call) as an o�set in the literal frame. The bytecode
array represents the method code, and the trailer carries additional information
about the method’s source code location.

object 
header

method 
header

... literals ... ... bytecodes ... ... trailer ...#test

selector send
bytecode

send
bytecode

Fig. 1. Object layout of a Squeak CompiledMethod instance.

For the PIC implementation in Squeak, the literals region in CompiledMethod
instances is of special interest. In the current Squeak system, the compiler gen-
erates one slot in the literal frame for any unique selector. This means that send
bytecodes sending the same selector reference the same slot in the the literal
array (cf. Fig. 1). The Smalltalk compiler needs to be modified to generate one

19



entry in the literal array for each send, without the sharing property mentioned
above.

Thus we have as many literal slots storing selectors as there are send byte-
codes in the CompiledMethod (cf. Fig. 2). Each of these slots can hold a reference
to an object carrying type feedback information. To this end, several dedicated
classes (described below) are to be introduced into the image.

object 
header

method 
header

... bytecodes ... ... trailer ...

selector

#test #test

selector

... literals ...

send
bytecode

send
bytecode

Fig. 2. A CompiledMethod instance without selector sharing.

Initially, all selector slots contain selectors. Once a send site is visited by
the bytecode interpreter and the corresponding message is sent, the selector is
replaced by a reference to an inline cache (IC) object (cf. Fig. 3), an instance
of the InlineCache class. An IC object contains five values: the selector, the
most recent target class of the send, the address of the most recently looked-up
method for the selector, a hotness counter, and a trip counter.

object 
header

method 
header

... bytecodes ... ... trailer ...#test

selector

... literals ...

send
bytecode

send
bytecode

object 
header

#test
method 
address

hotness 
counter

trip counter

inline cache object

class

Fig. 3. A former literal slot referencing an IC object.

The bytecode interpreter increases the hotness counter each time it executes
the corresponding message send. It then also checks whether the target class is
the same as it was when the send was executed the last time. If so, the stored
method address is used to retrieve the method implementation to be executed. If
the receiver class check fails, the trip counter is increased, and the correct class
and implementation are looked up and stored.

If such a send site causes actual lookups too often, its IC object reference can
be replaced with a PIC object reference (cf. Fig. 4). A PIC object is organized
much like an IC object: it also carries the selector in question and type feedback

20



information. The notable di�erence is that a PIC object carries up to 8 triples
of receiver class, method address, and hotness counter.

object 
header

#test
method 
address

hotness 
counter

polymorphic inline cache object

class

(CompiledMethod instance literal slot)

method 
address

hotness 
counter

class ...

Fig. 4. A PIC object referenced from a CompiledMethod instance.

The bytecode interpreter, when executing the corresponding send, iterates
over the PIC and checks for the correct receiver class. Once it finds one already
stored, the respective stored method is executed and the pertaining hotness
counter is increased. If no matching receiver class is found, lookup proceeds as
usual and the result is stored in a free slot of the PIC object if available. It is
not necessary to store a hotness counter alongside with each PIC object entry,
but future optimizations can benefit from this information (see below).

4 Summary and Future Optimizations

In the previous sections, we have discussed caching optimization mechanisms for
bytecode interpreters. In our opinion, global caches are, although helpful with
regard to performance, not fully supportive of dynamic optimizations possible in
interpreters. For that we propose the introduction of PICs based on local type
feedback.

The locality of type feedback information is a feature of PICs that can be
exploited beyond performance improvements in the VM. Type feedback infor-
mation made available at the image level facilitates optimizations above the
abstraction barrier imposed by the Squeak VM.

The AOStA (Adaptively Optimizing Smalltalk Architecture) project [10] re-
lies on type feedback from the VM to dynamically and adaptively optimize
Smalltalk bytecodes in the image using bytecode manipulation. An example of
such an optimization is method inlining: based on type feedback information and
hotness counter data, methods frequently invoked from a given send site can be
inlined directly at the image level, without the need to create stack frames and
method context objects.

Originally, AOStA has been conceived for the VisualWorks VM [3]. The
VisualWorks JIT compiler generates PICs at send sites. A system like AOStA
can be beneficial also to purely interpreted systems like Squeak Smalltalk if the
underlying interpreter supports type feedback using PICs, as proposed in this
paper.

21



References

1. M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A Survey of Adaptive
Optimization in Virtual Machines. Proceedings of the IEEE, 93(2), 2005.

2. M. Berndl, B. Vitale, M. Zaleski, and A. D. Brown. Context Threading: A Flexible
and E�cient Dispatch Technique for Virtual Machine Interpreters. In CGO ’05:
Proceedings of the international symposium on Code generation and optimization,
pages 15–26. IEEE Computer Society, 2005.

3. Cincom Home Page. http://www.cincomsmalltalk.com/.
4. L. P. Deutsch and A. M. Schi�man. E�cient Implementation of the Smalltalk-80

System. In POPL ’84: Proceedings of the 11th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, pages 297–302. ACM Press, 1984.

5. U. Hölzle, C. Chambers, and D. Ungar. Optimizing Dynamically-Typed Object-
Oriented Languages With Polymorphic Inline Caches. In ECOOP ’91: Proceed-
ings of the European Conference on Object-Oriented Programming, pages 21–38.
Springer-Verlag, 1991.

6. U. Hölzle and D. Ungar. Optimizing Dynamically-Dispatched Calls With Run-
Time Type Feedback. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, pages 326–336.
ACM Press, 1994.

7. U. Hölzle and D. Ungar. Do Object-Oriented Languages Need Special Hardware
Support? In ECOOP ’95: Proceedings of the 9th European Conference on Object-
Oriented Programming, pages 283–302. Springer-Verlag, 1995.

8. D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the Future:
the Story of Squeak, a Practical Smalltalk Written in Itself. In Proc. OOPSLA
1997, pages 318–326. ACM Press, 1997.

9. P. Klint. Interpretation Techniques. Software—Practice and Experience, 11(9):963–
973, 1981.

10. E. Miranda. A Sketch for an Adaptive Optimizer for Smalltalk written in Smalltalk.
unpublished, 2002.

11. I. Piumarta and F. Riccardi. Optimizing Direct Threaded Code by Selective In-
lining. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference on Pro-
gramming language design and implementation, pages 291–300. ACM Press, 1998.

12. Squeak Home Page. http://www.squeak.org/.
13. Squeak Virtual Machine Home Page. http://www.squeakvm.org/.
14. Strongtalk Home Page. http://www.strongtalk.org/.

22


	tubforschbericht
	icooolps2007

