
 



5.2.1 Process of Adding Activities, Actions and Operations 

When logged in, the edit commands toolbar provides end-user 
programmers contextual links for adding activities, actions and 
operation (Figure 5). Both activities and actions may be basically 
defined by providing a name and a path string (as any other stan-
dard Pier CMS node).  For example Sushi Shopping (classic) as an 
activity, and Fill and confirm cart as an action (Figure 7).  Num-
bers between parentheses in this Figure, e.g. “(3)” in line N. 4, 
indicate the line number of each argument. The Add Activity link 
appears in the toolbar when the enclosing node is an application 
node, which is a named repository of activities. The Add Action 
link appears when the enclosing node is an activity node. The Add 
Operation link appears when the enclosing node is an action node. 

In the latter case, when the link is pressed for example to add a 
while false operation (line 4 in Figure 2), the graphical interface 
illustrated in Figure 5 appears and the user is specifically invited 
to select a contract by pressing the Choose button, which pops up 
the contract selection dialog in Figure 6.  Upon the validation of 
this step, if arguments are required, another dialog is displayed 
that invites the end-user programmer to select them.  The list of 
options offered for each argument may comprise only operations, 
only actions, or a mixture of them.  This list is filtered by match-
ing the type of the argument with that of the available operations 
and actions in the scope of the activity under definition.  

The final result is depicted by the snapshot in Figure 7, which 
is a pontoon activity that implements exactly the same logic than 
the one implemented by Seaside (Figure 2).  Basically, there is a 
main action that implements the main logic of that process, and 
two subordinate actions, each for one of the block closures in the 
corresponding Smalltalk implementation.  The correspondence 
between the Seaside / Smalltalk statements in Figure 2, and Dart 
operations in the main action in Figure 7 is as follows:  Statements 
N. 3 and 4 go with operation N. 1 (wraps an action).  Statement N. 
5 goes with operation N. 2.  Statement N. 6 goes with operations 
N. 3 and 4. Statements N. 7 and 8 go with operation N. 5.  State-
ment N. 9 goes with operation N. 6.  Statement N. 10 goes with 
operation N. 7.  Statement N. 11 goes with operations 8 and 9.  

It should be noted that operations N. 4 and 9 have each an aux-
iliary operation with Literal String as contract (respectively opera-
tions N. 3 and 8).  Instances of this contract return at runtime the 
string value they hold.  Here, they serve to specify the message 
string to be displayed by the dialogs opened each time those op-
erations will be executed.  

Figure 5.  While False selected as contract for the operation (step) 
being added to the main action of the sushi shopping activity.    

 

Figure 7.  Snapshot of a pontoon activity definition, implementing 
a logic equivalent to the classic sushi shopping checkout process by 

Seaside (Fig. 2), but defined at runtime. 

Figure 8.  One enactment trace for the sushi shopping activity 
programmed online by an authorized and trained end-user. 

 

Figure 6.  Dialog for selecting a contract in the list of available 
contracts for the operation being defined, e.g. While False in Fig. 5. 
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Further, the statement N. 2 in Figure 2 has no operation 
equivalent per se.  The cart object is returned when the code 
wrapped by Fill Cart contract is executed.  The Fill Cart opera-
tion, in Fill and confirm cart action (Figure 7), takes itself as 
argument.  This ensures the safe execution of this operation inside 
the while false iteration.  For the first iteration, there is no cart.  
But, the consecutive iterations take as argument the last cart.  

The activity in Figure 7 and its lifecycles like in Figure 8 are 
available at http://www.afacms.com/repos/applications/sushistore.  

5.2.2 Exposing Activities by Enactment Links 

Now, to wrap this activity as a new pontoon application function-
ality, and make it available to other end-users for activation, the 
end-user programmer may simply edit the pages where s/he wants 
an enactment link to appear, and a mark-up as follows: 
 
+value:enact|target=/repos/applications/sushistore/classic+ 
 
The enact keyword is an extension to the Pier CMS value links, 
and serves to specify a request for creating and enactment link on 
the activity passed as argument to the target parameter (identified 
by its URL, here /repos/applications/sushistore/classic).  

Enactment links may be compared to bookmarklets, i.e. book-
marks that execute a JavaScript expression [32].  The difference 
between bookmarklets and enactment links is that in the former 
case the code is written in JavaScript and in the latter case in a 
domain-specific pontoon language. 

5.3 Ordinary End-users Execute Activities 

Now, ordinary end-users may access to the web site and press that 
link to launch the enactment of the underlying activity by the 
embedded interpreter, which ensures the flow of data and control 
among the involved atomic services following the specification of 
that activity by the authorized end-user (Subsection 5.2).  In spe-
cific conditions, enactments may be launched by program.  

5.4 Pontoon Applications Manage Lifecycles 

Pontoon applications trace systematically their execution results 
while situating the relevant static and dynamic knowledge in the 
context of the underlying activities.  For example, our sushi shop-
ping pontoon (Section 5) knows at any moment how many times 
each of the available shopping activities (like the one in Figure 7) 
have been executed, when, by whom, in which network setting, 
etc., and what are the resulting objects (cart, address, order ...).  It 
can also associate any object to its corresponding activity.   

At the end of an enactment, pontoon applications extend by 
default the corresponding activity node by an activity lifecycle 
node, which encloses one or more task lifecycles, each enclosing 
in turn operation lifecycles.  This design allows attaching URLs to 
individual enactment results, which may then be used for consul-
tation and specification of individualised reports.  

Figure 8 illustrates an activity lifecycle page that is auto-
generated by our sushi shopping pontoon application at the end of 
one of the enactments of the standard sushi shopping activity 
(Figure 7).  This trace comprises only those actions that have 
effectively been executed.  Specifically, the action named Get 
billing address is absent since during that enactment, the user has 
preferred reusing her/his shipping address as billing address too. 
Links in Figure 8 allows inspecting the execution results in de-
tails.  For example, when pressing the link aliased a Store cart, 
which results from the execution of the operation Fill Cart in the 
subordinate action Fill and confirm cart, an inspector (a Seaside 
component) pops up and shows the cart and its items.  

5.5 Implementing atomic services 

For space reasons, I’m not able to detail the implementation of 
Dart runtime engine, which is basically a visitor [36] of the ex-
plicit representation of the data and control flows.  Other opera-
tional semantics may be implemented to address specific require-
ments.  The description of a multi-agent execution engine for Dart 
may be found in [29].  Just to give an example, the logic for the 
while false atomic service is implemented by Dart as follows: 
 
�����	,�*�� ����!!������"��
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In this (simplified) implementation, the Smalltalk ������

"��
� construct is used to iterate over the evaluations of the 
receiver action lifecycle (class �����	,�*�� ���).  The latter 
corresponds to the argument passed to while false operations.   
Dart provides hooks for both implementing such atomic services, 
and adjusting the semantics of the underlying interpreter.  

Complementary illustrations may be found at http://www.aas-
platform.com/about/illustration. 

6. Related Work 

Web Pontoon is a method for developing object-oriented web 
applications that allow client-side adaptability, specifically by 
end-user programming.  Apart from Seaside, Pier CMS and Dart 
(Subsections 4.1, 4.2, and 4.3), as well as Web Velocity [44] 
which is also Seaside-based but dedicated to professional pro-
grammers, it is related to concepts and implementations that 
combine the wiki metaphor and client side programming, specifi-
cally Lively Wiki and Application Wikis. 

Lively Wiki [7] is designed as a combination of the wiki meta-
phor and a general purpose JavaScript-like programming language 
for client side application development.  Several extensions are, 
however, currently under development, .e.g. Lively Fabrik [33], to 
make development more appealing to end-users.   

Application Wikis are described by Dirk Riehle as “a natural 
outgrowth of more traditional wiki engines, enhanced with light-
weight programming features that allow users to create light-
weight applications as part of a regular Wiki, and aid in making 
data structures and processes explicit” [8].  Current application 
wikis provide end-users with a markup and scripting language that 
enables them to create their own wiki applications by editing wiki 
pages.  They provide database-like manipulation of fields stored 
on pages, and offer a query language to embed reports in wiki 
pages. However, according to Thoeny, “most application wiki 
programming today is done by a wiki champion rather than an 
end-user” [8].  This observation suggests that further research into 
end-user programming with wikis is needed. 

Within this context, and as a first step on a way to a more 
comprehensive integration of the SAP business application plat-
form with wikis, the SAP Wiki Business Object project follows 
the goal of allowing end-users to write business queries that oper-
ate on structured data from within a wiki, while the structured data 
resulting from the query executions are also displayed inside a 
wiki page. The architectural components of their MediaWiki-
based prototype comprise a description of the business objects, 
definition of queries that read and write business objects, and 
execution and presentation of queries [34].   

The definition of business objects in this system is comparable 
to that of concept nodes in pontoon applications.  However, their 
query definition language seems purely textual, which is more 
practical in some situations, and not integrated as content. 
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More generally, Application Wikis seem closer to pontoon appli-
cations than Lively Wiki, due to their closer integration with the 
wiki metaphor and their domain-specificity.  But, closed-loop 
lifecycle management does not seem a priority for the former.  

From theoretical perspective, I leverage results from activity 
theory [42], specifically their hierarchical representation of the 
structure of human activities (activity, action, and operation), their 
dynamics and dialectic relationship with the context of their per-
formance.  This has specifically led to the integration of a context 
and closed-loop lifecycle management API into Dart, which traces 
the execution results by situating the static and dynamic knowl-
edge of the system about itself in the context of users’ activities. 

7. Summary of Contributions 

I motivated (Section 2) and described (Section 3) Web Pontoon as 
a method for developing object-oriented, industrial-scale applica-
tions for network-based provisioning of individualised and adapt-
able services managed as content.  Individualisation and dynamic 
adaptability, core quality attributes in many applications (Section 
1), are achieved by a combination of content management, client 
side web programming, closed-loop lifecycle management and 
domain-driven design.  Pontoon applications may be deployed 
with only a blank home page, and extended online with new 
content, presentation and functionality (e.g. http://afacms.com). 

When appropriate tooling and software development method-
ology are deployed (Section 4), developing and maintaining pon-
toon applications becomes even somehow easier than developing 
traditional web applications. Programmers are guided through a 
set of well-defined steps to identify and code business concepts 
and atomic services, and wrap them for online programming and 
adaptation by end-users (Section 5).  By extending existing tools 
from Pier CMS, I have even implemented a framework that auto-
mates to a large extent the preparation and deployment of “blank” 
pontoon applications on secured servers under Linux / Apache.    

The core design principles of Web Pontoon include represent-
ing explicitly the application’s structure, exposing as content its 
data structures including those involved in its self-representations 
(structure and behaviour), and enabling their dynamic instantia-
tion by end-users, while supporting their immediate execution and 
lifecycle management.  Runtime adaptations in the resulting re-
flective web applications are currently curried out manually, but 
may be automated provided on-line reasoning mechanisms.  Like 
reflective programming languages, Pontoon applications regard 
and dynamically manipulate their own “code” as queryable regu-
lar objects, organized around meta-level objects that represent 
their concepts, contracts, structure, control flow, interpretation 
process, and lifecycles.  This meta-level layer provides the neces-
sary basis for their openness and runtime programmability, and 
allows pontoon applications maintaining a causally connected 
relationship with those meta-objects in that any modification is 
immediately reflected in their behaviour. These reflective facili-
ties extend further those already provided by the host system [43]. 

Pontoon languages allow dynamic definition of relatively 
complex logics by non-professional programmers, including 
iterations and conditionals.  Recursion is not supported.  Web 
Pontoon brings to end-users the combined benefits of a con-
strained programming environment for creating productive results 
[34], and the power of a full-fledged server side programming 
platform used to create and maintain those end-user programming 
tools. End-user generated pontoon services may be exported as an 
XML file, and reused by other end-users sharing the same domain 
model and atomic services.  Finally, due to sharing some design 
principles with wikis, as described by Ward Cunningham [38], 
pontoon applications expose a comparable behavior. 

8. Outlook 

Pontoon applications address adaptability in network-based appli-
cations in a usable, affordable and widely applicable way:   
Acceptability and applicability to diverse and changing situa-
tions This is achieved by postponing most design decisions until 
runtime.  This concerns not only structure, content, presentation, 
and components, but also the control flow of network-based ap-
plications.  New functionality may be added at runtime by com-
posing atomic services using any navigator and following an 
intuitive approach.  For example, in applications to support older 
persons, this will be accessible to care givers and dedicated rela-
tives.  Further, our architecture provides for the creation and easy 
integration of new atomic services.  We foresee a community of 
programmers for collaborative development and exchange of 
atomic services in different application areas (pontoonity.com).   
Usability It is admitted that usability goes beyond interface de-
sign. It has to do with task support - notably, avoiding misfits 
between the work process induced by the software and the work 
routines and local contingencies in the workplace [44, p.14].  We 
achieve usability by allowing runtime adaptation of task flows and 
integration of adequate methodologies like user-centric design.  
Affordability and privacy We build on Open Source and free 
technologies under MIT License.  There are also free, yet robust, 
environments for development and privately hosting our applica-
tions, namely Squeak [45] and Pharo [46].  Users shall not be 
requested to grant any rights on their personal data. 

We are currently defining a new project to build on this tech-
nical achievement to produce innovative network-based software 
and services, specifically for older persons, and to perform real-
life case studies.  Examples include individualized information 
(e.g. planning of visits, medication timing and dosage), communi-
cation, assistance (e.g. memory aids, activity encouragement and 
coaching), remote monitoring, and network-based enhanced feel 
of security.  Current socio-economic transformations indicate 
many other application areas for flexibility and runtime adaptabil-
ity by end-user programmers, like architectural renovation and 
requirements elicitation in legacy applications.  Smart features 
such as online reasoning and predictive services may be added, 
provided pontoon applications are coupled with wireless sensors 
(WSN) as we investigated during Ambiance [29, 30]. 

Extensions include model-to-code generation to map activities 
to other runtime engines like Lively Kernel, similarly our work on 
dynamic macroprogramming of ActorNet-based WSNs [29, 39]. 
Also, integration with GLASS by Gemstone [31] for transparent 
persistence of terabytes of lifecycle data when necessary. 

Finally, programmable web applications constitute an emerg-
ing interdisciplinary area of research, and the first Workshop on 
End User Development of Software Services and Applications 
was just held in Rome (Italy) on May 25, 2010 [40]. 
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Abstract
A trait is a programming construct which provides code reusability.
Traits are groups of methods that can be reused orthogonally from
inheritance. Traits offer a solution to the problems of multiple
inheritance by providing a behavior-centric modularity. Since traits
offer an alternative to traditional inheritance-based code reuse, a
couple of questions arise. For example, what is a good granularity
for a Trait enabling reuse as well as plug ease? How much reuse
can we expect on large existing inheritance-based hierarchies?

In this paper we take as case study the Smalltalk Collection
hierarchy and we start rewriting it from scratch using traits from
the beginning. We show how such library can be built using traits
and we report such a preliminary experience. Since the Collection
library is large, we focused and built the main classes of the library
with Traits and report problems we encountered and how we solved
them. Results of this experience are positive and show that we can
build new collections based on the traits used to define the new
library kernel.

1. Introduction
A trait is a programming construct which provides code reusability.
Traits are groups of methods that can be reused orthogonally from
inheritance. Traits offer a solution to the problems of multiple
inheritance by providing a behavior-centric modularity. [12, 20].

There are different trait model variations. In the original model,
Stateless traits [12,20], traits only define methods, and no instance
variables. Stateful traits [2] extend this model and let traits define
state. Freezable traits [14] extend stateless traits with a visibility
mechanism. In the context of this paper, when we use the term trait
we mean Stateless trait. The reader unfamiliar with traits may read
the appendix Section A for a rapid introduction to stateless traits.

Black et al. refactored the Squeak Smalltalk collection [4] hi-
erarchy and showed a gain of 12% of code reuse [6]. Still, their
solution closely followed the inheritance-based collection hierar-
chy. Cassou et al. rewrote the Smalltalk stream hierarchy from
scratch [9]. They showed that traits support the reuse of code be-
tween a new kernel and a backward compatible one based on the
same traits. Ducasse et al. reused and composed unit tests out of
traits [13].

Problem: The goal of this paper is to experimentally verify the
original claims of code reuse with traits, in the context of a forward
engineering scenario. More specifically, our experiment looks for
answers to questions that arise when using traits in practice: What is
a good trait granularity which favors reuse as well as ease of reuse?
Is the composition mechanism good enough to deal with common
composition scenarios? What do we gain from using traits? When
is it better to define a trait versus a class? Do we need state in traits?

Our approach was to redesign, from scratch, a new collection
library based on traits. We identified traits for collections based

on the work of Cook, who specified collection behavior [10], and
by analyzing the ANSI Smalltalk standard [1]. Since elementary
aspects of collections behavior are represented as traits, building
new collections based on the composition of such traits is possible.
We report on the creation of such new collections.

The paper contributions are:

• The identification of problems in the existing Collections li-
brary.

• The design of BLOC, a new library of collections composed
from traits.

• Assessing whether traits act as reusable elements to define a
library, and checking that the obtained design is clearer and
more modular.

• Identifying trait related reuse.

In Section 2, we present the working hypotheses that drive this
work. Then in Section 3, we highlight the existing Pharo Collection
hierarchy and its modularity problems. Section 4 presents the hier-
archy of traits based on the Collection behavior. Section 5 gives us-
age examples of the Collection Traits library to show the reusabil-
ity of traits. In Section 6, we discuss the validity of traits, and fi-
nally we discuss related work in Section 7 before concluding in
Section 8.

2. Working Questions
In this paper, we try to answer the following questions:

1. Trait granularity. Understanding whether a trait has a good size
is a difficult topic. On one hand, we would like to reuse a
coherent and a potentially large group of behaviors, but on the
other hand we may want to only use part of the behavior to
plug it into another scenario. Since there is no definitive answer
and the answers will depend on the context and domain, we
cannot draw immediate solutions. We would like, however, to
empirically get an understanding of the granularity of traits that
maximize reusability.

2. Trait reusability. The ideas beside traits are modularity and
reusability. A non-reusable trait is useless. The question is how
much code can be reused in the Collections library.

3. Trait modularity. Can we define traits as effective building
blocks? The idea is to have a library of traits to easily compose
new classes from different traits and obtain specific behaviors.

4. Can we identify guidelines to assess when trait composition
should be preferred over inheritance? This is an important ques-
tion for class modularity. Inheritance has a strong impact in a
system structure, whereas traits seem to be more difficult to un-
derstand without documentation.
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5. Do traits need state? In the original model, traits do not have
state, but in the context of collections, we want to understand
whether the initialization of state in the class is a problem. A
related question is to which extent mixing-like solutions that
include state are better from a user point of view [7].

6. What are the trait limits do we encounter? Traits are a new
approach, we enumerate limits and problems we encountered
during the study.

3. Collections in Pharo
In Smalltalk, the Collections library is a central part of the sys-
tem; it is used in the whole system, from the core to the UI. We
have chosen the Collections library from Pharo because it is a com-
plete library with a lot of different behavior [5, 16].The hierarchy
is composed by more than seven levels, which exhibits reuse of
behavior within branches of the hierarchy, but also across differ-
ent branches. The Collections library in Smalltalk defines a rich set
of behavior that we need: hash with HashedCollection, unicity with
Set, sequence with OrderedCollection, order, identity with Identity re-
lated classes . . . One of the problems is that elementary behaviors
are often defined in a branch of the hierarchical inheritance struc-
ture and this forces their duplication across branches. For example,
Dictionary inherits from HashedCollection, but dictionaries have both
hashed and indexed behaviors, therefore there are some duplicated
methods, like at:. The case of Dictionary shows that Traits could be
a good design for Collections.

3.1 The Collections Library
The collection classes form a loosely-defined group of general-
purpose subclasses of Collection and Stream. The group of classes
that appears in the [17] contains 17 subclasses of Collection (Fig-
ure 1), and had already been redesigned several times before the
Smalltalk-80 system was released. This group of classes is often
considered to be a paradigmatic example of object-oriented design.
In Pharo, the abstract class Collection has 101 subclasses, but many
of these (like Bitmap, FileStream and CompiledMethod) are special-
purpose classes crafted for use in other parts of the system or in
applications, and hence not categorized as Collections by the sys-
tem organization. In this paper, we use the term Collections Hier-
archy to mean Collection and its 47 subclasses that are also in the
categories labelled Collections-*.

Collection

BagHashedCollectionSequenceableCollection

Set Dictionary
LinkedListInterval

OrderedCollection

ArrayedCollection

SortedCollection

Object

Text

String

Array

SymbolByteString

PluggableSet

Identity
Dictionary

Pluggable
Dictionary

Figure 1. Current Collection hierarchy in Smalltalk

3.2 Cook Analysis
We based our decomposition of the Collections library into traits
on the one of Cook [10]. Cook decomposes the Collections library

in several behaviors, such as UpdatableCollection, IndexedCollection,
ExtensibleCollection . . . (shown in Figure 2). To decompose the Col-
lections hierarchy, he uses the different messages and protocols that
the classes define. What interested us in his work is the different be-
haviors that he defined.

On Figure 2 you can see the different behaviors Cook defines
for collections, and the methods he selects to define each behavior.
This work gives a first approach to a possible Collections library
decomposition.

3.3 Single inheritance hampers reusability
The reusability in the Collection Library is limited to single inheri-
tance. As with the example of Dictionary explained before, multiple
inheritance is not available and the sole possibility without Traits is
to copy and paste behaviors which are not in the same hierarchical
branch.

The Collections library does not provide reusability. This library
was built to be used, not extended by recomposition of elementary
behaviors. If we want to create a new collection, the choice is not
easy: what is the sole parent class of the new collection? Do we
choose a generic class or a more specific one? The complex hierar-
chy of the Collections library does not help. Moreover, sometimes
we need behaviors from different branches of the inheritance tree.

A simple example: OrderedSet. The new library built out of
traits should support the definition of new collections easily. For
example we want to be able to create an OrderedSet, a collection of
unique ordered elements, which mixes the properties of a Set and
OrderedCollection.

To create such a new collection, with the existing library, we
have two choices either we inherit from Set and duplicate code from
OrderedCollection, or we inherit from OrderedCollection and dupli-
cate code from Set. In either case we must duplicate code because
multiple inheritance does not exist in Smalltalk. This example re-
veals several problems:

• Of single inheritance limitations,
• necessity of code duplication, and
• lack of reuse.

Our work helps to avoid this problem. We create a library of
traits which can be used and reused, either to recreate the existing
collections, or to create new ones, as shown by the case studies we
performed with the classes Dictionary and OrderedSet.

4. Overall design of BLOC
4.1 Traits
Traits are sets of methods designed to be reused as a group in
classes. To define additional behaviors in a class, the class can com-
pose a set of traits. A trait requires methods that are necessary to use
the trait. Traits do not define state, instead, they require accessors.
A complete explanation of Traits is available in Appendix A.

To define a trait, we just send the message named:uses: to the
class Trait, specifying the new trait name as well as the traits it is
build upon. In the following code, the Trait TOrderedAccessing is
defined with the use of behavior from the Trait TSequenceableAc-
cessing.

Trait named: #TOrderedAccessing
uses: TSequenceableAccessing

To define a class using traits, the class should inherit from its
superclass. It should list the traits is used and provide the methods
that should be defined. Here the class OBOrderedCollection inherits
from Collection and uses some predefined traits such as TOrderedAc-
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Collection

Indexed
Collection

Updatable
Collection

Mapped
Collection

Set

Sequenceable
Collection

Dictionary Extensible
Collection

Bag
Poppable
Collection

Interval

Array

String
Ordered

Collection
&LinkedList

Internaly
Removable
Collection

Sorted
Collection

Dictionary protocol
   values keys keysDo
    removeKey:[ifAbsent:]
    associationAt:[ifAbsent:]
    includesAssociation:  addAssociation:
    associations  assocoationsDo:
    removeAssociation:[ifAbsent:]

SequencableCollection protocol 
    first last after: before: reverse with:do: reverseDo:
     findLast: findFirst: prevIndex:from:to:
     nextIndexOf:from:to: copyReplaceFrom:to:with:
     copyReplaceAll:with:  ,  copyFrom:to: copyWith:
     copyWithout: writeStream readStream asArray
     mappedBy: indexOf:[ifAbsent:]
     indexOfSubCollection:startingAt:[ifAbsent:]

isEmpty size includes: occurrencesOf: 
do: select: detecf:[ifNone:] reject: 
collect: injectinto: copyEmpty: 
       asSet asBag asSortedCollection 
               asOrderedCollection 

include: 
includeAll: 
removeEvery: 

at:[ifAbsent:]
includesIndex:
indexOf:[ifAbsent:] 

contents 

at:put:
atAll:put: 

* *
removeFirst
removeLast
removeFirst:
removeLast:

sameAs: asString
< C= >= > asNumber 
match: aslntegerArray
match:ignoreCase: asLowercase 
spellAgainst: asuppercase 
copyUpTo: asFilename
contractTo: asSymbol 
chopTo: 
display[On:]at: 
findString:starting- 
Af:[ifAbsent:]

addFirst:
addLast:
add:before:
add:after:
add:beforeIndex:
addAllFirst:
addAllLast

sortBlock
sortBlock:
initialize 

addwithOccurrences: 
sortedElements
sortedCounts

increment 

add:
addAll:
remove:[ifAbsent:]
removeAll:
removeAllSuchThat: 

removeAtIndex: 

                     atAIIPut: 
           replaceAll:with: 
 replaceFrom:to:with:- 
                 [startingAt:] 

Figure 2. Hierarchy of Collection by Cook

Selected Papers of the Int. Workshop on Smalltalk Technologies, Barcelona, Spain, September 14, 2010

13



Library of main collection traits

TOrdered
Adding

TOrdered
Updatable

TOrdered
Accessing

TOrdered 
Enumerating

BCOrderedCollection

BCCollection

Legend:
              Composed of
              Inherits fromTSort

TOrdered
Creation

TOrdered 
Removing

TOrdered 
Copying

TOrdered 
Testing

TOrdered 
Enumerating

Figure 3. Overall structure

cessing, TSort or TOrderedCopying. Then specific methods should be
defined.

Collection subclass: #OBOrderedCollection
uses: TOrderedAdding + TOrderedAccessing + TSort

+ TOrderedIterate + TOrderedCreation + TOrderedCollection
+ TOrderedRemoving + TOrderedCopying
+ TSequenceableTesting + TOrderedUpdatable

instanceVariableNames: ’array firstIndex lastIndex’
classVariableNames: ’’
poolDictionaries: ’’
category: ’BLOC-OrderedCollection’

4.2 BLOC Elementary Traits
The design of our Collection library is completely different from
the inheritance-based one. There is only one level of inheritance:
each collection class is a subclass of the abstract class Collection.
It brings a semantical means and a collection gets the generic
behavior of Collection (like atRandom:, anyOne or ,). Then a new
collection becomes specific by adding Traits from the library of
Traits.

In Figure 3, the collection BCOrderedCollection is composed
of the traits: TOrderedAdding, TOrderedAccessing, TOrderedEnu-
merating, TOrderedUpdatable, TOrderedCreation, TOrderedCollection,
TOrderedRemoving, TOrderedCopying, TSequenceableTesting.

To specify the main collections: OrderedCollection, Set, Sorted-
Collection, Dictionary, Interval and Array, we created traits represent-
ing the behaviors defined by protocols proposed in the “Pharo by
Example” book [5]. We created 9 different categories of traits pre-
sented in Table 1. Each of these categories can be defined (not nec-
essarily) for each main collection.

  Secondary
   Methods

Primary Methods

State

        Use method

         State access

Figure 4. Encapsulation used to compose a collection

If we take the case of Dictionary, Dictionary is a subclass of
HashedCollection and needs behaviors from SequenceableCollection
to be indexable. If we put all the behavior of one class in one trait,
we have to cancelled some methods not used in Dictionary.

4.3 Methods: primary vs. secondary
In Smalltalk, traits do not have state. Our design supports this sep-
aration between traits and object state access. Indeed, trait methods
should still access object state. In fact, we isolate state access by
defining methods in the class. Then, traits use these methods. This
concept follows encapsulation. It allows us to make traits indepen-
dent from the state and the structure of a collection.

To make it, we define two types of methods (see Figure 4): pri-
mary and secondary methods. Primary methods access directly ob-
ject state. They are accessors, but also more complex methods with
processing to avoid the time consumption of accessors. Secondary
methods use only other methods without accessing directly state.
With this differentiation, the Traits library can be used in new col-
lections with different structure. The primary methods are required
methods of Traits, so when we create new collection we have to
define the structure and these methods.

Therefore having a total abstraction of the state enhances reuse.
Note that with this approach Traits do not require accessors directly
since trait methods do not access state directly.

A primary method is not necessarily a required method. Primary
methods are useful for the collection, it provides primary process-
ing. Let’s look at an example: In OrderedCollection, the method in-
sert:before: accesses the state of the collection but this method is not
used directly by the trait methods. It is used by other primary meth-
ods such as add:beforeIndex: and add:afterIndex:. So, insert:before: is
a primary method which is not declared as required by the trait.

4.4 Composition Map
We defined the different behaviors of main collections and imple-
mented them as traits. Table 2 shows all main collection in Traits,
for each of them we defined the traits defined in Table 1. This way
we could recreate the collections but based on elementary charac-
teristics which can be recomposed and reused to create new collec-
tion.

We made a map of traits composition. In Figure 5, there is the
map of the category Accessing. It has some similarity with the
current Collection hierarchy, with a principle difference: there are
multiple use of Traits which represent multi-inheritance.

5. Case studies
In this Section we present how the new kernel (i.e., the trait library
for the core classes) let us define new collection by recomposing
and extending traits.

Selected Papers of the Int. Workshop on Smalltalk Technologies, Barcelona, Spain, September 14, 2010

14



TXXXAccessing Contains methods to accessing to the element(s) of the collection. at:, . . .
TXXXAdding Contains methods to add element(s) in the collection. add:, addAll:, . . .
TXXXUpdating Contains methods to change one or several elements in the collection. at:put:, . . .
TXXXRemoving Contains methods to remove element(s) in the collection. remove:, remove:ifAbsent:, . . .
TXXXCopying Contains methods to copy the collection. copy, copyWith:, . . .
TXXXTesting Contains methods which test the collection or the elements in. includes: isEmpty, . . .
TXXXCreation Contains methods to create the collection (class methods) with:, new:, . . .
TXXXEnumerating Contains methods to iterate on the collection. do:, select:, . . .
TXXXCollection Contains methods which are specific of the behavior of the collection. hash, findElementOrNil, . . .

Table 1. Elementary traits for composing collection behavior

[r] at:
at:ifAbsent:
atAll:
atRandom:
indexOf:
indexOf:ifAbsent:
lastIndexOf:
identityIndexOf:ifAbsent

TIndexed Accessing

[r] at:ifAbsent:
associationAt:ifAbsent:
keys
keyAtValue:
values

TDictionary 
Accessing

atRandom:
keyAt:
like:
someElement

TSetAccesing

TOrdered 
Collection 
Accesing

someElement

THashed 
Accessing

[r] do:
[r] size
anyOne
atRandom
atRandom:

TCollection 
Accessing

[r] at:
after:ifAbsent:
atLast:ifAbsent:
before:ifAbsent:
first
second
last

TSequenceable 
Accesing

TArrayed 
Accessing

atWrap:

TArray 
Accessing

[r] first
[r] last
[r] extent
[r] rangeIcludes:
indexOf:startingAt:ifAbsent:

TInterval Accessing

          composed from

[r]    Required methods

Figure 5. New trait hierarchy [r] represents required methods which are provided by primary methods or other Traits (secondary methods)

5.1 OrderedSet
We would like to define a new collection named OrderedSet that on
the one hand offers a hash-based access and on the other hand an
ordered access to its elements. Note that this collection is different
from an UniqueOrdered collection that makes sure that its elements
are ordered and not duplicated. For this goal, we create the new
collection OrderedSet with the library of traits designed previously.
As explained in Section 4.3, we simply create the structure to the
new collection, create primary methods and use necessary traits.
For this case study, we use two traits: TOrdered and TSet.

The following code shows how OrderedSet is defined. It uses all
TOrdered traits and all TSet traits expect a few methods which are
defined in both TSet and TOrdered. For example addAll: is defined
in TOrdered, so the one in TSet is not needed.

Collection subclass: #OrderedSet
uses: TSetAdding - {#addAll:} + TSetArithmetic + TSetTest-

ing - {#=. #isSequenceable} + TSetIterate - {#doWithIndex:. #se-
lect:thenCollect:} + TSetRemoving - {#removeAll} + TSetAccessing -
{#atRandom:} + TSetCopying - {#copyEmpty. #copyWith:. #copyWith-

out:} + TUnique + TSetCollection + TSetCreation + TOrderedAdding + TOrderedAc-
cessing + TSort + TOrderedIterate + TOrderedCreation + TOrdered-
Collection + TOrderedRemoving + TOrderedCopying + TOrderedEr-
ror + TSequenceableTesting + TOrderedUpdatable

instanceVariableNames: ’array arrayO tally firstIndex lastIndex’
classVariableNames: ’’
poolDictionaries: ’’
category: ’BLOC’

OrderedSet reuses 70 methods (Figure 6). Then, we only have
to reimplement or change the 38 required methods because the
structure is particular: it contains two arrays to encode the two
specific behaviors: hash access and order.

This example confirms the reusability of the BLOC library. In-
deed, we create the new collection in less than two hours. In addi-
tion we do not have duplication code.

5.2 Dictionary
When creating the design of BLOC, we redefined certain existing
collections such as Set, OrderedCollection, Interval . . . . This way we
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TIndexed Most indexed collections can retrieve elements
with at:.

TSequenceable Instances of all subclasses of SequenceableCol-
lection start from a first element and proceed in a
well-defined order to a last element.

THashed Collection hashed used an hash function to store
and access elements. This trait uses methods
scanFor: and findElementOrNil:.

TOrdered The Ordered behavior represents collections
which are indexed and sequenceable.

TSet There are methods for a set of unique elements
and without nil.

TDictionary It represents the behavior of a dictionary i.e., it
is an indexed collection which uses key as index.
Keys permit to have attached elements. The cou-
ple key→element is stored in the collection.

TArrayed It is a collection with a fixed size. It has the same
behavior than OrderedCollection without growing
behavior. This behavior is represented by a lack
of the Trait: TArrayedAdding does not exist.

Table 2. Principal behavior-specific traits for collections in Pharo
Smalltalk

add:last:
add:first:
add:before:
add:after:
at:
atNewIndex:put:
do:
includes
select:thenCollect:
copy
size

OrderedSet

add:last:
add:first:
add:before:
add:after:

TOrderedAdding
add:
addAll:
add:withOccurences:
addAllFirst:
addAllLast:

at:

after:ifAbsent:
atAll:
atLast:ifAbsent:
before:ifAbsent:
first
first:
indexOf:
last
last:
second

TOrderedAccessing

do:
at:
select:thenCollect:

allSatisfy:
anySatisfy:
collect:
detect:
do:without:
doWithIndex:
findFirst:
findLast:
reject:
reverse:
select:

TOrderedEnumerating

size
indexOf:
last:
copy
reject:

copyWith
copyAfter:
copyAfterLast:
copyEmpty
copyLast:
copyReplaceAll: with:
copyWithout:

TOrderedCopying

Collection

do:
collect:

allSatisfy:
anySatisfy:
detect:
doWithout:
reject:
reverse:
collect:

TSetEnumerating

copy
reject

copyWith
copyEmpty
copyReplaceAll:with:
copyWithout:

TSetCopying

add:
includes:
atNewIndex:put:

add:withOccurences:
addAll:
addIfNotPresent:

TSetAdding

Figure 6. Map of traits used by OrderedSet

avoided code duplication. Dictionary is an example of good refactor-
ing. In the existing library, Dictionary inherits from HashedCollection
to have hash function. In addition, Dictionary is an indexed collec-
tion. This behavior is duplicated from SequenceableCollection and
its subclasses.

In the original Dictionary class, there is some duplicated code,
such as do: and associationsDo: which provides the same algorithm.
With BLOC, Dictionary class uses 2 groups of traits TIndexed and
THashed and defines some methods specific to the Dictionary.

Trait named: #TDictionaryAccessing
uses: THashedAccessing + TIndexAccessing
category: ’BLOC-Dictionary’

We redefined using traits the following collections: OrderedCol-
lection, Interval, SortedCollection and Set. Now this redesign does not
systematically improved existing code since some classes like Set
did not present duplicated code. However, redesigning them and
using traits (1) brings uniformity to the library, (2) core classes are
the first clients of the traits they use, (3) it avoids duplication be-
tween such traits and their future clients. Finally an important point
of the new design is that the use of traits did not hamper efficiency
of the collection.

During the creation of BLOC, we discovered a difficulty: how to
transform existing methods invoking super into traits. Indeed, in-
voking super in a trait a sign of not totally rethought functionality
since it means that the trait is designed to be plugged in a hierar-
chy where the superclass is somehow fixed by the API it should
offer to the trait. This is against the trait philosophy to be orthogo-
nal to inheritance. Since the existing hierarchy is heavily based on
inheritance, we had to face such situations. For example, Ordered-
Collection uses the method asSortedArray. This method uses super to
call asSortedArray of SequenceableCollection but in our new hierar-
chy we only inherits from Collection. Therefore we have to redefine
all the methods which use super to call a method that by construc-
tion may not be in the superclass. This example shows that traits
are useful to avoid problems from the single inheritance. Indeed,
traits permit to simulate a multiple inheritance without state.

5.3 Reusability Comparison
Table 3 presents how much the core traits are reused. For each trait
it presents the number of client classes, the number of required
methods and the number of methods that the trait provides. We see
a good ratio provided/required for most traits, except for Interval.
There are multiple reasons for this difference: Interval is more
specialized than the other collections. As a consequence a large
part of its API is tailored towards specific behavior and methods
access directly the interval underlying structure. This explains the
larger number of required methods. Note that this is a consequence
of our design decision to avoid accessors and their associated cost.
In presence of a JIT such point could be changed.

Table 5 presents some metrics which compare the same func-
tionalities in the Pharo implementation and in BLOC. Note that
the table presents the sum of traits for a given category: for ex-
ample, TOrdered is the sum of all the traits related to the Ordered
behavior. Which one indicates that BLOC has much more classes
and Traits than Pharo collections and (number of methods) show
that the amount of code is smaller in BLOC than in original library.
BLOC has 10.9% less methods than the corresponding Pharo collec-
tion library. This means we avoided reimplementing a lot of meth-
ods by putting them in Traits. Finally, we can deduce from which
that the design of BLOC is better: there are fewer cancelled methods
and there are half as many methods less in BLOC than in Pharo.
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Trait client required provided ratio
classes methods methods prov. / req.

TCollection 3 10 92 9,20
TSequenceable 3 5 55 11
TIndexed 3 2 51 25,50
THashed 2 7 11 1,57
TOrdered 1 6 28 4,66
TSet 1 3 21 7
TDictionary 1 9 45 5
TArrayed 1 0 21
TInterval 1 16 6 0,375

Table 3. BLOC-trait reusability.

Trait required provided ratio
methods methods prov. / req.

TSequenceableAccessing 1 17 17.0
TSequenceableCollection 1 3 3.0
TSequenceableConcatenation 0 1
TSequenceableCopying 1 16 16.0
TSequenceableCreation 0 2
TSequenceableIterate 2 9 4.5
TSequenceableRemoving 3 0 0.0
TSequenceableTesting 3 1 0.33
TSequenceableUpdatable 5 6 1.2

Table 4. Sequenceable-trait reusability.

Pharo BLOC Pharo−BLOC
Pharo

# Classes and Traits 8 84 -950%
# Methods 510 454 10,9%
# Cancelled Methods 6 2 66%
# Reimplemented Methods 79 36 54%

Table 5. Some metrics comparing BLOC and pharo collection ker-
nel.

6. Discussions
Granularity of traits. There is no definitive answer to the good
granularity of traits but what we learn is that to enable reuse fine-
grained traits are mandatory. Indeed, if we want to avoid dupli-
cating code, the traits have to be small. Now pushing the idea the
extreme, we could have one trait for one method. In such a case
each method will be defined once. Now this is clearly not a good
idea since we want also traits to represent a abstraction or a partial
behavior. Adequate granularity is defined by the context. We have
found a good granularity for trait in our context. Table 4 displays
all traits related to SequenceableCollection. Some traits have no pro-
vided methods, because these methods are provided in TCollection.
Note that the number of provided methods is variable and depends
on the behavior provided.

Trait reusability. The reuse of trait depends on the behaviors. In-
deed, for the collection we have a good reusability. We can now
easily create different collections with BLOC. But all source code
could not be reused because some methods depend on the underly-
ing structure. In our solution, we removed a lot of reusability con-
straints except for methods which access state.

Trait composition vs Inheritance. One of the questions when
building a system with traits is to decide when to use inheritance
and when to use traits. In the Collection hierarchy (see Section 3.1),
defining a class or inheriting from a class does not make sense

since some of its state cannot be used or its behavior should be
canceled. This is a clear motivation for using traits. Most of the
time, however, the decision is not that easy to take, and the designer
has to assess whether potential clients may benefit from the traits,
i.e., if the defined behavior can be reused in another hierarchy.

Traits with state. In our work, we looked at the importance to
have state in traits. In the context of collections we think that it is
not necessary. If state is included in a trait, it also includes con-
straints for the implementation of future classes. In our context, to
have state in traits is not necessary because of the definition of pri-
mary methods. The initialization of the state and its recomposition
when used by different clients is also a problem that we did not
assess but that should not be neglected.

Trait problems and limits. During our experience, we detected
some limits and problems related to traits. The first problem we
had was the lack of browser or tools for traits. Indeed, it is diffi-
cult to see traits, which classes use them, documentation, required
methods, . . . . Traits are arbitrarily in the use: clause of the class def-
inition. Therefore it becomes difficult to read what traits are used
by the class.

7. Related work
Traits. We already compared our approach with the few work
refactoring existing code using traits. Now we want to summarize
the key differences.

Cassou et. al [9] rewrote the Stream Smalltalk hierarchy from
scratch. What is interesting is that they obtained a kernel based on
traits that can be assembled to reproduce the old kernel as well as
express a completely new design.

Ducasse et. al reuse and compose unit tests out of traits for the
collection hierarchy [13]. This work is closer to our approach since
they focused on identifying elementary collection behavior. Then
they used these elementary behavior to assemble tests for traits.

[6] proposed a refactoring of the existing collection but they
were bound to the existing hierarchy. The work presented in this
paper was focusing more on rethinking the collection as assembly
of composable behaviors.

[18] and [3] proposed to use FCA to help automatically refac-
toring and identifying traits in Smalltalk and Java programs. The
results are not as good as a manual approach because design is
complex and FCA is just an indication that some methods could be
optimally reused.

Automatic code reorganization of non traits code . We now
present the approaches that automatically transform existing li-
braries using Formal Concept Analysis (FCA) or other techniques.
FCA was used in different ways.

Godin [15] developed incremental FCA algorithms to infer im-
plementation and interface hierarchies guaranteed to have no re-
dundancy. To assess their solutions they used structural metrics.
They analyzed the Smalltalk Collection hierarchy. One important
limitation is that they consider each method declaration as a dif-
ferent method and thus cannot identify code duplication. Since the
resulting hierarchies cannot be implemented in Smalltalk because
of single inheritance, it would be interesting to understand whether
their results could be indication for traits.

Snelting and Tip analyzed a class hierarchy by making the rela-
tionship between class members and variables explicit [21]. By an-
alyzing the hierarchy client usage, they detected design anomalies
such as class members that are redundant or that can be moved into
a derived class. From this client perspective, Streckenbach infer im-
proved hierarchies in Java [22]. They proposed solution that should
be further be manually adapted. The tool proposes the reengineer to
move methods up in the hierarchy to work around multiple inher-
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itance situations generated by the generated lattice. The resulting
refactoring is behavior preserving only with respect to the analyzed
client programs.

Moore [19] proposes automatic refactoring of Self inheritance
hierarchies. Moore factors out common expressions in methods.
Resulting hierarchies do not contain any duplicated expressions
or methods. Moore’s factoring creates methods with meaningless
names which is a problem if the code should be read. The approach
is more optimizing method reuse than creating coherent compos-
able groups of methods.

Casais uses an automatic structuring algorithm to reorganize
Eiffel class hierarchies using decomposition and factorization [8].
In his approach, he increases the number of classes in the new
refactored class hierarchy. Dicky et al. propose a new algorithm
to insert classes into a hierarchy that takes into account overridden
and overloaded methods [11].

The key difference from our results is that all the work on hi-
erarchy reorganization focuses on transforming hierarchies using
inheritance as the only tool. In contrast, we are interested in explor-
ing other mechanisms, such as explicit composition mechanisms
like traits composition in the context of mixin-like languages. An-
other important difference is that we don’t rely on algorithms, to
obtain the design.

8. Conclusion
In this paper we assessed the traits in a reuse context. We refactored
the collection library to create a library of traits which can be com-
posed into the behavior of main collections. This work represents a
preliminary experience. A lot of questions has been raised, with no
answer in this work. The need of stateful traits or the granularity is
defined depending on the case. However, this study confirmed some
goals of traits. The results of modularity and reusability offered by
traits are good on the collection library. As future work, we need to
better investigation of how to use traits, how to better define gran-
ularity. It is also important to define a browser to navigate between
Traits, classes, behavior, documentation.
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A. Appendix: Traits in a Nutshell
To ease the understanding of this paper we added this section which
presents traits in a nutshell. This part is taken from [14] and is
not part of the current article. It is just added here for sake of
completeness and understanding the ideas presented in the paper.
Reusable groups of methods. Traits are units of behaviour. They
are sets of methods that serve as the behavioural building block
of classes and primitive units of code reuse [12]. In addition to
offering behaviour, traits also require methods, i.e., methods that
are needed so that trait behaviour is fulfilled. Traits do not define
state, instead they require accessor methods.
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lock
lock:
isBusy
hash

lock
SyncStream

TSyncReadWrite
syncRead
syncWrite
hash

read
write
lock:
lock

@{hashFromSync -> hash}

TStream
read
write
hash

@{hashFromStream -> hash}

syncRead
    | value |
    self lock acquire.
    value := self read.
    self lock release.
    ^ value

syncWrite
    | value |
    self lock acquire. 
    value := self write.
    self lock release.
    ^ value

hash
    ^ self hashFromSync
        bitXOr: self hashFromStream

Figure 7. The class SyncStream is composed of the two traits
TSyncReadWrite and TStream.

Figure 7 shows a class SyncStream that uses two traits, TSyn-
cReadWrite and TStream. The trait TSyncReadWrite provides the
methods syncRead, syncWrite and hash. It requires the methods read
and write, and the two accessor methods lock and lock:. We use an
extension to UML to represent traits (the right column lists required
methods while the left one lists the provided methods).
Explicit composition. A class contains a super-class reference,
uses a set of traits, defines state (variables) and behaviour (methods)
that glue the traits together; a class implements the required trait
methods and resolves any method conflicts.

Trait composition respects the following three rules:

• Methods defined in the composer take precedence over trait
methods. This allows the methods defined in a composer to
override methods with the same name provided by the used
traits; we call these methods glue methods.

• Flattening property. In any class composer the traits can be in
principle in-lined to give an equivalent class definition that does
not use traits.

• Composition order is irrelevant. All the traits have the same
precedence, and hence conflicting trait methods must be explic-
itly disambiguated.

Conflict resolution. While composing traits, method conflicts may
arise. A conflict arises if we combine two or more traits that pro-
vide identically named methods that do not originate from the same
trait. There are two strategies to resolve a conflict: by implementing
a (glue) method at the level of the class that overrides the conflict-
ing methods, or by excluding a method from all but one trait. Traits
allow method aliasing; this makes it possible to introduce an addi-
tional name for a method provided by a trait. The new name is used
to obtain access to a method that would otherwise be unreachable
because it has been overridden [12].

In Figure 7, the class SyncStream is composed from TSyncRead-
Write and TStream. The trait composition associated to SyncStream
is:

TSyncReadWrite alias hashFromSync→ hash
+ TStream alias hashFromStream→ hash

The class SyncStream is composed of (i) the trait TSyncRead-
Write for which the method hash is aliased to hashFromSync and (ii)
the trait TStream for which the method hash is aliased to hashFrom-
Stream.

Method composition operators. The semantics of trait composi-
tion is based on four operators: sum (+), override (.), exclusion
(−) and aliasing (alias→) [12].

The sum trait TSyncReadWrite + TStream contains all of the non-
conflicting methods of TSyncReadWrite and TStream. If there is a
method conflict, that is, if TSyncReadWrite and TStream both define
a method with the same name, then in TSyncReadWrite + TStream
that name is bound to a known method conflict. The + operator is
associative and commutative.

The override operator (.) constructs a new composition trait
by extending an existing trait composition with some explicit local
definitions. For instance, SyncStream overrides the method hash
obtained from its trait composition.

A trait can exclude methods from an existing trait using the
exclusion operator −. Thus, for instance, TStream − {read, write}
has a single method hash. Exclusion is used to avoid conflicts, or if
one needs to reuse a trait that is “too big” for one’s application.

The method aliasing operator alias → creates a new trait by
providing an additional name for an existing method. For example,
if TStream is a trait that defines read, write and hash, then TStream
alias hashFromStream → hash is a trait that defines read, write,
hash and hashFromStream. The additional method hashFromStream
has the same body as the method hash. Aliases are used to make
conflicting methods available under another name, perhaps to meet
the requirements of some other trait, or to avoid overriding. Note
that since the body of the aliased method is not changed in any way,
an alias to a recursive method is not recursive.

x   {^ 'C'}
 
Composer

T1
foo {self x}
x    {^ 'T1'}

T1 - x

 
 
Composer

Conflict resolution via method 
redefinition in Composer

Excluding x from T1

Composer new foo -> 'C'
Composer new bar -> 'C'
Composer new x -> 'C'

Composer new foo -> 'T2'
Composer new bar -> 'T2'
Composer new x -> 'T2'

T2
bar {self x}
x    {^ 'T2'}

T1
foo {self x}
x    {^ 'T1'}

T2
bar {self x}
x    {^ 'T2'}

Figure 8. Trait conflict resolution strategies: either via method
redefinition or via method exclusion.
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Abstract
Code profiling is an essential activity to increase software qual-
ity. It is commonly employed in a wide variety of tasks, such as
supporting program comprehension, determining execution bottle-
necks, and assessing code coverage by unit tests.

SPY is an innovative framework to easily build profilers and vi-
sualize profiling information. The profiling information is obtained
by inserting dedicated code before or after method execution. The
gathered profiling information is structured in line with the appli-
cation structure in terms of packages, classes, and methods. SPY
has been instantiated on four occasions so far. We created profilers
dedicated to test coverage, time execution, type feedback, and pro-
filing evolution across version. We also integrated SPY in the Pharo
IDE.

SPY has been implemented in the Pharo Smalltalk programming
language and is available under the MIT license.

1. Introduction
Profiling an application commonly refers to obtaining dynamic in-
formation from a controlled program execution. Common usages
of profiling techniques include test coverage [14], time execution
monitoring [5], type feedback [1, 2, 11], or program comprehen-
sion [12, 17]. The analysis of gathered runtime information pro-
vides important hints on how to improve the program execution.
Runtime information is usually presented as numerical measure-
ments, such as number of method invocations or number of objects
created in a method, making them easily comparable from one pro-
gram execution to another.

Even though computing resources are abundant, execution opti-
mization and analysis through code profiling remains an important
software development activity. Program profilers are crucial tools
to identify execution bottlenecks and method call graphs. Any re-
spectable and professional programming environment includes a
code profiler. Pharo Smalltalk and Eclipse, for instance, both ship
a profiler [6, 9].

A number of code profilers are necessary to address the differ-
ent facets of software quality [15]: method execution time and call
graph, test coverage, tracking nil values, just to name a few. Pro-
viding a common platform for runtime analysis has not yet been
part of a joint community effort. Each code profiler tool tradition-
ally comes with its own engineering effort to both acquire runtime
information and properly present this information to the user.

Most Smalltalk systems offer a flexible and advanced program-
ming environment. Over the years different Smalltalk communities
have been able to propose tools such as the system browser, the
inspector or the debugger. These tools are the result of a commu-
nity effort to produce better software engineering techniques and

methodologies. However, code profilers have little evolved over the
years, becoming more an outdated Smalltalk heritage than a spike
for innovation. A survey of several Smalltalk implementations—
Squeak [13], Pharo [6], VisualWorks [19], and GemStone—reveals
that none shines for its execution profiling capabilities: indented
textual output holds a royal position (see Section 2).

In the Java world, JProfiler1 is an effective runtime execution
profiler tool that, besides measuring method execution time, also
offers numerous features including snapshot comparisons, saving a
profiling trace in an XML file and estimating method call graphs.
Cobertura2 is a tool dedicated to measure test coverage. Similarly
to JProfiler, test coverage information may be stored in an XML file
which contains method call graph analysis and coverage. However,
JProfiler and Cobertura do not share any library besides the stan-
dard Java libraries. There are multiple reasons why JProfiler and
Cobertura are separated from each other even though both have to
gather similar runtime information. One of them is certainly a lack
of a common profiling framework.

This paper presents SPY, a framework for easily prototyping
various types of code profilers in Smalltalk. The dynamic informa-
tion returned by a profiler is structured along the static structure of
the program, expressed in terms of packages3, classes and meth-
ods. One principle of SPY is structural correspondence: the struc-
ture of meta-level facilities correspond to the structure of the lan-
guage manipulated4. Once gathered, the dynamic information can
easily be graphically rendered using the Mondrian visualization en-
gine [16]5.

SPY has been used to implement a number of code profilers. The
SPY distribution offers a type feedback mechanism, an execution
profiler [4], an execution evolution profiler, and a test coverage
profiler. Creating a new profiler comes at a very light cost as SPY
relieves the programmer from performing low-level monitoring.

To ease the description of the framework, SPY is presented in a
tutorial like fashion: We document how we instantiated the frame-
work in order to build a code coverage tool. The main contributions
of this paper are summarized as follows:

• The presentation of a flexible and general code profiling frame-
work.

1 http://www.ej-technologies.com/products/jprofiler/
screenshots.html
2 http://cobertura.sourceforge.net
3 In Pharo, the language used for the experiment, a package is simply a
group of classes.
4 According to the terminology provided by Bracha and Ungar [7], ensuring
structural correspondence makes SPY a mirror-based system.
5 http://www.moosetechnology.org/tools/mondrian
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• The construction of an expressive test coverage tool as an ex-
ample of the framework’s usage.
• The demonstration of the framework flexibility, via the descrip-

tion of three additional framework instantiation, and of its inte-
gration with Mondrian and Smalltalk code browsers.

The paper is structured as follows: first, a brief survey of
Smalltalk profilers is provided (Section 2). The description of SPY
(Section 3) begins with an enumeration of the different composing
elements (Section 3.1) followed by an example (Section 3.2 – Sec-
tion 3.6). The practical applicability of SPY is then demonstrated
by means of three different situations (Section 4) before concluding
(Section 5).

2. Current Profiler Implementations
This section surveys the profiling capabilities of the Smalltalk di-
alects and implementations commonly available.

Squeak. Profiling in Squeak6 is achieved through the MessageTally
class (MessageTally>> spyOn: aBlock). As most profilers, Message-
Tally employs a sampling technique, which means that a high-
priority process regularly inspects the call stack of the process in
which aBlock is evaluated. The time interval commonly employed
is one millisecond.

MessageTally shows various profiling information. The method
call graph triggered by the evaluation of the provided block
is shown as a hierarchy which indicates how much time was
spent, and where. Consider the expression MessageTally spyOn:
[MOViewRendererTest buildSuite run ]. It simply profiles the exe-
cution of the tests contained in the class MOViewRendererTest. The
call graph is textually displayed as:

75.1% {10257ms} TestSuite>> run:
75.1% {10257ms} MOViewRendererTest(TestCase)>> run:

75.1% {10257ms} TestResult>> runCase:
75.1% {10257ms} MOViewRendererTest(TestCase)>> runCase
...

This information is complemented by a list of leaf methods and
memory statistics.

Pharo. Pharo is a fork of Squeak and its profiling capabilities are
very close to those of Squeak. TimeProfiler is a graphical facade
for MessageTally. It uses an expandable tree widget to comfortably
show profiling information (Figure 1).

Gemstone. The class ProfMonitor allows developers to sample the
methods that are executed in a given block of code and to esti-
mate the percentage of total execution time represented by each
method7. It provides essentially the same ability as MessageTally
in Squeak. One minor variation is offered: methods can be filtered
from a report according to the number of times they were executed
(ProfMonitor>> monitorBlock:downTo:interval:).

VisualWorks. The largest number of profiling tools are available
in VisualWorks8. First, a profiler window offers a list of code
templates to easily profile a Smalltalk block: profiling result may be
directly displayed or stored in a file. Statistics may also be included.

VisualWorks uses sampling profiling. Repeating the code to be
profiled, with timesRepeat: for example, increases the accuracy of

6 http://wiki.squeak.org/squeak/4210
7 Page 301 in http://www.gemstone.com/docs/GemStoneS/
GemStone64Bit/2.4.3/GS64-ProgGuide-2.4.pdf
8 Page 87 in http://www.cincomsmalltalk.com/documentation/
current/ToolGuide.pdf

Figure 1. TimeProfiler in Pharo

the sampling. An additional mechanism to control accuracy is to
graphically adjust the sampling size.

The profiling information obtained in VisualWorks is very sim-
ilar to MessageTally’s. It is textually rendered, indentations indicate
invocations in a call graph, and execution times are provided in
percentage and milliseconds. Methods may be filtered out based on
their computation time. Similarly to TimeProfiler, branches of the
call tree may be contracted and expanded.

Conclusion. The Smalltalk code profilers available are very simi-
lar. They provide a textual list of methods annotated with their cor-
responding execution time share. None of these profilers is easily
extensible to obtain a different profiling such as test coverage. The
SPY framework described in the following addresses particularly
this issue.

3. The SPY Framework
3.1 SPY in a nutshell
The essential classes of SPY are depicted in Figure 2 and explained
in the following:

• The Profiler class contains the features necessary for obtaining
runtime information by profiling the execution of a block of
Smalltalk code. Profiler offers a number of public class meth-
ods to interface with the profiling. The profile: aBlock inPack-
agesNamed: packageNames method accepts as first parameter a
block and as second parameter a collection of package names.
The effect of calling this method is to (i) instrument the speci-
fied packages; (ii) to execute the provided block; (iii) to unin-
strument the targeted packages; and (iv) to return the collected
data in the form of an instance of the Profiler class which con-
tains instances of the classes described below, essentially mir-
roring the structure of the program.
Profiling results are globally accessible by other development
tools. The method registryName has to be be overridden to
return a name. Other IDE tools can then easily access to the
profiling.
• PackageSpy contains the profiling data for a package. Each

instance has a name and contains a set of class spies.
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packageName
classes

PackageSpy package
superclass
metaclass
methods

ClassSpy

afterRun:with: in:
beforeRun:with:in:
run:with:in:

methodName
class
originalMethod
outgoingCalls
incomingCalls
timeExecution

MethodSpy

profile: aBlock
runTests: tests
allMethods
registryName

packages
currentTest

Profiler

Core

TCPackage TCClass

TCMethod

beforeRun:with:in:
numberOfDifferentReceivers
nbOfExecutions
isCovered
initialize
viewBasicOn:

numberOfExectutions
receiverTable

view
ratioExecutedMethods
ratioCoveredClasses
viewBasicOn:
registryName

TestCoverage

TestCoverage

Figure 2. Structure of SPY

• ClassSpy describes a Smalltalk class. It has a name, a superclass
spy, a metaclass spy and a set of method spies.
• MethodSpy describes a method. It has a selector name and be-

longs to a class spy. MethodSpy is central to SPY. It contains
the hooks used to collect runtime information. Three meth-
ods are provided for that purpose: beforeRun:with:in: and af-
terRun:with:in: are executed before and after the corresponding
Smalltalk method. These empty methods may be overridden in
subclasses of MethodSpy to collect relevant dynamic informa-
tion, as we will see in the following subsections. The run:with:in
method simply calls beforeRun:with:in:, followed by the execu-
tion of the represented Smalltalk method, and ultimately calls
afterRun:with:in:. The parameters passed to these methods are:
the method name (as a symbol), the list of arguments, and the
object that receives the intercepted message.

The SPY framework is instantiated by creating subclasses of
PackageSpy, ClassSpy, MethodSpy and Profiler, all specialized to
gather the precise runtime information that is needed for a particu-
lar system and task.

3.2 Instantiating SPY

Test coverage. We motivate and demonstrate the usage of the SPY
framework by building a test coverage code analyzer. Identifying
the coverage of the unit tests of an application may be considered
as a code profiling activity. A simple profiling reveals the number of
covered methods and classes. This is what traditional test coverage
tools produce as output (e.g., Cobertura).

We go one step further with our test coverage tool running
example. In addition to raw metrics such as percentage of covered
methods and classes, we retrieve and correlate a variety of dynamic
and static metrics:

• number of method executions – how many times a particular
method has been executed.
• number of different object receivers – on how many different

objects a particular method has been executed.
• number of lines of code – how complex the method is. We use

the method code source length as a simple proxy for complex-
ity.

The intuition behind our test coverage tool is to indicate what
are the “complex” parts of a system that are “lightly” tested, and

what are the “apparently simple” components that are “extensively”
tested. There is clearly no magic metric that will precisely identify
such a complex or simple software component. However, corre-
lating a complexity metric (i.e., number of lines of code in our
case) with how much a component has been tested (i.e., number
of executions and number of different receivers) provides a good
indication about the quality of the test coverage.

Instantiating SPY. The very first step to build our test coverage
tool is to subclass the relevant classes. TestCoverage, TCPackage,
TCClass, and TCMethod, respectively, subclass Profiler, Package-
Spy, ClassSpy and MethodSpy.

Profiler subclass: #TestCoverage

PackageSpy subclass: #TCPackage

ClassSpy subclass: #TCClass

MethodSpy subclass: #TCMethod
instanceVariableNames: ’numberOfExecutions receiverTable’

TCMethod defines two variables, numberOfExecutions and re-
ceiverTable. The former variable is initialized as 0 and is incre-
mented for each method invocation. The latter keeps track of the
number of receiver objects on which the method has been executed.
Recording the hash value of each receiver object can be easily im-
plemented to provide a good approximation of the number of re-
ceivers in most cases.

TCMethod >> initialize
super initialize.
numberOfExecutions := 0.
receiverTable := BoundedSet maxSize: 100

The class BoundedSet is a subclass of Set in which the number
of different values is no greater than a limit. In our case, no more
than 100 different elements may be inserted in a bounded set.
This value is actually arbitrary and depends very much on how
the related metric will be used. In our environment, for the types
of programs we write, given the resources we can expend, we
have not been able to devise a way to efficiently and easily keep
track of all receiver objects of a method call. Using an ordered
collection in which we insert the object receiver at each invocation
is not practically exploitable. There is a number of reasons for
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this. As soon as a method is called many times, e.g., one million
times, then one million elements have been added to the collection.
Allowing the ordered collection to grow up to one million elements
significantly slows down the overall program execution. In addition
to this, identifying the number of different elements in a list with
one million elements is also slow. The same schema applies for all
the recursively called methods.

The method beforeRun:with:in: is executed before the original
method. We simply increment the execution counter, and record
the receiver.

TCMethod>> beforeRun: selector with: args in: receiver
numberOfExecutions := numberOfExecutions + 1.
receiverTable at: receiver hash put: true.

A number of utility methods are then necessary:

TCMethod>> isCovered
ˆ numberOfExecutions > 0

TCMethod>> numberOfExecutions
ˆ numberOfExecutions

TCMethod>> numberOfDifferentReceivers
ˆ (receiverTable select: #notNil) size

The ratio of executed methods and covered classes are defined
on TestCoverage:

TestCoverage>> ratioExecutedMethods
ˆ ((self allMethods select: #isCovered) size /

self allMethods size) asFloat

TestCoverage>> ratioCoveredClasses
ˆ ((self allClasses

select: [ :cls | cls methods anySatisfy: #isCovered ]) size /
self allClasses size) asFloat

The method allClasses is defined on Profiler, the superclass of
TestCoverage.

3.3 Running Spy
Our TestCoverage tool can be run using the profile:inPackagesNamed:
class method. In this example, we run it on the test cases of the
Mondrian visualization framework.

coverage :=
TestCoverage

profile: [ MOViewRendererTest buildSuite run ]
inPackage: ’Mondrian’

Executing the code above returns an instance of TestCoverage.

3.4 Visualizing Runtime Information
The Mondrian visualization engine framework [16] easily produces
visualizations. Mondrian is a visualization engine that offers a rich
domain specific language to define graph-based rendering. Each
element of a graph (i.e., node and edge) has a shape that defines
its visual aspect. Nodes may be ordered using a layout. Consider
the method:

TestCoverage>> viewBasicOn: view
view nodes: self allClasses forEach: [ :each |

view shape rectangle
height: #numberOfLinesOfCode;
width: [ :m | (m numberOfDifferentReceivers + 1) log * 10 ];
linearFillColor:

[ :m | ((m numberOfExecutions + 1) log * 10) asInteger ]
within: self allMethods;
borderColor:

[:m | m isCovered
ifTrue: [ Color black ] ifFalse: [ Color red ] ].

view interaction action: #inspect.
view nodes: (each methods

sortedAs: #numberOfLinesOfCode).
view gridLayout gapSize: 2.

].
view edgesFrom: #superclass.
view treeLayout

The visualization is rendered by evaluating:

coverage viewBasic

An excerpt of the visualization obtained is depicted in Figure 3.
The displayed class hierarchy represents Mondrian shapes. The
root is MOShape. The visualization has the following character-
istics:

• Outer boxes are classes.
• Edges between classes represent class inheritance relationships.

A superclass appears above and a subclass below a particular
class node. A tree layout is used to order classes which is
adequate since Smalltalk uses single inheritance.
• Inner boxes are methods. Methods are sorted according to their

source code length.
• White boxes with a red border are methods that have not been

executed when running the coverage.
• The height of a method is the number of lines of code.
• The width of a method is the number of different receivers. We

use a logarithmic scale to accommodate the variability of this
metric.
• The color of a method is the number of method executions. We

use a logarithmic scale also for this metric.

From what is depicted in Figure 3, a number of patterns can be
visually identified:

• Some classes contain red methods only. This means that the
class is absent from all the execution scenarios specified in the
tests.
• Red methods that are tall and thin are long, untested methods.

They are excellent targets for new test additions.
• Gray methods (few executions) and narrow methods (few re-

ceivers) are probably good candidates for further testing.
• Dark and large methods are extensively tested.
• Horizontally flat methods are very extensively tested more since

they contain just a few lines of code and are still executed many
times.

As it is the case for most software visualizations, the goal of
our test coverage visualization is not to precisely locate software
deficiency. Rather, it aims at assisting the programmer to identify
candidates for software improvement. In this case, the visualization
pinpoints red methods, and thin, gray methods, as likely candidates
to consider in order to improve the coverage of the code by tests.

3.5 Call graph and execution time
Profiler defines an instance method getTimeAndCallGraph which
simply returns false. By overriding this method in a subclass to
make it return true, the execution time (in milliseconds and per-
centage) and the call graph for each method is computed during the
block execution.

TestCoverage>> getTimeAndCallGraph
”Each instance of TCMethod contains information about
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Figure 3. Test coverage visualization

execution time and outgoing and incoming calls”
ˆ true

The call graph and execution time is estimated by regularly sam-
pling the method call stack. For that very purpose, SPY contains a
class called Sampling, which is a simplified version of Message-

Tally9. Each method spy will now store the execution time it took,
as well as a list of outgoing calls and incoming calls.

By determining the method call graph from these incoming and
outgoing calls, all packages involved during the block evaluation
are easily identified. The profiling can now be realized using the
profile: method. There is no need to provide a package name to
extract the call graph of the execution.

coverage :=
TestCoverage

profile: [ MOViewRendererTest buildSuite run ]

Now that the method call graph is computed, we can add an
entry point to a new visualization. The script defined in TestCov-
erage>> viewBasicOn: may be refined with a new menu item for
methods:

...
view interaction action: #inspect;

item: ’view call graph’ action: #viewBasic.
view nodes: (each methods

sortedAs: #numberOfLinesOfCode).
...

For a user-selected method, the following script renders the
method call graph, using the outgoingCalls method of MethodSpy:

9 Sampling is not represented in Figure 2 since a user is not expected to use
it directly.

TCMethod>> viewBasicOn: view
| methods |
methods := self withAllOutgoingCalls asSet.
view shape rectangle

height: #numberOfLinesOfCode;
width: [:m | (m numberOfDifferentReceivers + 1) log * 10 ];
linearFillColor: [ :m | ((m numberOfExecutions + 1) log * 10)

asInteger ]
within: self package allMethods;
borderColor: [ :m | m isCovered

ifTrue: [ Color black ]
ifFalse: [ Color red ] ].

view nodes: methods.
view shape arrowedLine width: 2.
view edges: methods from: #yourself toAll: #outgoingCalls.
view treeLayout

The visualization we provide may be enriched with information
about the method execution time. Overriding the printOn: method
will change the text that is displayed by Mondrian when hovering
the mouse over a node.

TCMethod>> printOn: stream
super printOn: stream.
stream nextPutAll: self executionTime printString, ’ ms’

By right-clicking on a method node, a menu item render the
call graph for the method (Figure 4). Methods are ordered from
top to down. The arrowed edges represent the control flow between
methods.

3.6 Summary
This section presented a simple application of SPY. It described the
essential steps to create a code profiler: (i) recovering the required
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Figure 4. Call graph of the method MOViewRenderer>> testTranslation

profiling information by instantiating the framework; (ii) visualiz-
ing this information with Mondrian; (iii) gathering further execu-
tion and call graph information; and (iv) visualizing this additional
information.

Effective profiling visualizations may be produced using Mon-
drian. The fact that the profiling information follows the code
structure leads to comprehensive and familiar visualizations that
are easy to implement as the profiling information’s representation
matches the one often used by Mondrian visualizations.

4. Applications
In this section, we present some of the profiling tools we built on
top of SPY.

4.1 Extracting types from unit tests
As a first application of SPY, we proposed a mechanism for ex-
tracting type information from the execution of unit tests10 [4]. For
a given program written in Smalltalk, we can deduce the type infor-
mation from executing the associated unit tests., as has been pro-
posed by other researchers as well [18]. The idea is summarized
as follows: (i) we instrument an application to record the runtime
types of the arguments and return values of methods; (ii) we run
the unit tests associated with the application; and (iii) we deduce
the type information from what has been collected. The idea is to
record the type of each message argument and return value to later
deduce the most specialized types for each argument and return
type. We refer to the most specialized type as the most direct su-
pertype that is common for a set of classes. Method signatures of

10 http://www.moosetechnology.org/tools/Spy/Keri

the base program are then determined by the values provided to and
returned by method calls while the tests are being executed.

As a concrete use case, we exploit the extracted type informa-
tion to find software faults. Type information combined with test
coverage helps developers identifying methods that were not in-
voked with all possible type parameters. By covering these missing
cases, we identified and fixed four anomalies in Mondrian.

4.2 Time profiling blueprints
As a second application, we proposed a time execution profiler11.
Time profiling blueprints are graphical representations meant to
help programmers (i) assess the program execution time distribu-
tion and (ii) identify and fix bottlenecks in a given program execu-
tion. The essence of profiling blueprints is to enable a better com-
parison of elements constituting the program structure and behav-
ior. To render information, these blueprints use a graph metaphor,
composed of nodes and edges.

The size of a node gives hints about its importance in the
execution. When nodes represent methods, a large node means that
the program execution spends “a lot of time” in this method. The
expression “a lot of time” is then quantified by visually comparing
the height and/or the width of the node against other nodes.

Color is used to either transmit a boolean property (e.g., a gray
node represents a method that always returns the same value) or a
metric (e.g., a color gradient is mapped to the number of times a
method has been invoked).

We propose two blueprints that help identify opportunities for
code optimization: the structural profiling blueprint visualizes the
distribution of the CPU effort along the program structure and

11 http://www.moosetechnology.org/tools/Spy/Kai
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Figure 5. Integration of profiling information into the Pharo IDE

the behavioral profiling blueprint along the method call graph.
These blueprints provide hints to programmers to refactor their
program along the following two principles: (i) make often-used
methods faster and (ii) call slow methods less often. The metrics
we adopted in this paper help developers finding methods that are
either unlikely to perform a side effect or always return the same
result, good candidates for simple caching-based optimizations.

4.3 Profiling differentiation
The use of profiling information might be taken a step further by
profiling different versions of an application. Spotting differences
between them provides insights on the causes of slowdowns, and
what should be improved next. Comparing, e.g., time profiling
throughout a package’s history allows one to confirm an optimiza-
tion trial as an improvement and to find the potential bottlenecks
that remain. The package Hip helps us in this task. Hip allows one to
build a collection of history profiles, following a schema similar to
the Hismo model [10]. Each method, class, and package profile can
access the profiles of its previous and next version. Queries about
metrics may be then formulated (e.g., has a metric increased?) as
well as “differential measurements”12 (e.g., how much has a metric
increased?).

Hip provides facilities to automatically profile a block through-
out a set of package versions available from a Monticello13 repos-
itory by loading each version, profiling it, and adding the gathered
profiling information to a Hip version collection structure.

Hip opens the door to a wide range of options to visualize the
evolution of a program’s runtime behavior. As an example, we pro-
pose a semaphore-like view that helps to identify bottlenecks. For a
particular profiled object and version, Hip assigns one of five colors.
In the case of a metric such as the execution time—where lower is
better—source artifacts with a lower metric value compared to the
previous version are colored green; those with a greater value red;
unchanged artifacts are colored in white; removed ones black; and
new ones yellow. The emphasis is on red and green artifacts for
obvious reasons, and also on yellow artifacts, as from that version

12 This term is commonly employed in electronic and voltage measurement.
We consider it to be descriptive in our context.
13 Monticello is the version control mechanism commonly employed in
Pharo.

onward the developers should put focus on newly created artifacts,
as they were not available before.

4.4 IDE integration
The primary tool developers use to develop and maintain software
systems is the integrated development environment (IDE). For this
reason we integrate profiling information gathered by SPY into
Pharo’s IDE which is implemented using the OmniBrowser frame-
work [3]. As soon as a system’s test suite has been executed with
SPY, the IDE can access the test coverage information using the
following statement:

Profiler profilerAt: #testCoverage

The Pharo IDE exploits the profiling information resulting from
the execution of tests to highlight in the source code perspectives
methods and classes that have been covered by the system’s test
suite. The same color scheme as introduced in Section 3.4 is used to
highlight the source artifacts. A non-executed method is colored red
to raise the awareness for untested code while methods colored dark
(e.g., in a gradient from gray to black) have been executed often and
are hence tested extensively. Gray methods, that is, methods that
have not been executed often by the test suite, are good candidates
to look at in detail in order to reveal whether they could benefit from
more extensive testing. Visualizing profiling information directly in
the IDE hence helps developers to easily locate methods that should
be better covered with tests to improve a system’s test coverage.
Figure 5 illustrates how profiling information is visualized in the
Pharo IDE.

5. Conclusion
SPY is a profiling framework for the Pharo Smalltalk environment
designed to easily build application profilers. Profiling output is
structured along the static structure of the analyzed program com-
posed of packages, classes and methods. The core of SPY is com-
posed of four classes, Profiler, PackageSpy, ClassSpy and Method-
Spy. These classes represent the profiler itself and profiling infor-
mation for packages, classes and methods.

Once the data about a program’s execution is gathered by SPY,
one can explore the data by visualizing it using a dedicated visual-
ization framework such as Mondrian.
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However, SPY is not cost free. Mondrian tests are 3 times
slower when the coverage is computed. Future effort of SPY will
be dedicated to reducing information gathering overhead based
on bytecode transformation [8] and DTrace14. When method time
execution matter, the user has always the option to rely on a second
profiling “pass” triggered with the getTimeAndCallGraph option.
The piece of code to profile is then executed a second time, using a
sampling approach, less costly, but also less precise.

We have shown by a simple example how one can instantiate
SPY for a given problem, such as building a code coverage tool.
Furthermore, we have demonstrated the flexibility of SPY by pre-
senting three additional applications we built on top of it, namely
a type extraction profiler, a time profiling visualization tool, and an
evolutionary time profiling visualization tool. Finally, we demon-
strated that the information gathered via SPY is useful beyond vi-
sualization, as we integrated our code coverage profiler with the
regular IDE, allowing a more direct interaction between the source
code and its dynamic aspects.
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Abstract
Agile programming aware computer scientists know how much
productivity they owe to their development environments, and more
precisely to advanced debuggers. Indeed, debuggers are mandatory
to support an optimistic do-fix-rerun approach.

This development scheme does not make sense in hardware
design where agile has a different meaning; it refers to reconfig-
urable architectures. Despite such architectures support tailoring
and refactoring application circuits and promote short development
cycles, the overall programing scheme still conforms to waterfall
models and component based integration.

This paper presents a path to offer probe-based development
to hardware designers, and introduces our Red Pill environment
that merges several abstraction levels ranging from C like parallel
coding to hardware realization embedding debug facility. Red Pill
is developed using VisualWorks and reproduces some of Cincom
Smalltalk browser well known features that traditionally lack when
validating circuits.

General Terms Agile programming, Debugging, Reconfigurable
computing

Keywords System-on-Chip, Modeling, Testing Methodology,
Software Engineering, Morpheus.

1. Introduction
1.1 The red pill issue
Smalltalkers are software experts, and as so, are often poorly aware
of the underlying hardware they use when running their appli-
cations. Nevertheless, by ignoring Virtual Machine structure and
physical platform characteristics, software experts deprive them-
selves from potential massive speedups.

In addition, despite promoting reuse and expertise captured
through design patterns and guidelines, they clearly fail in sharing
their expertise with electrical engineers. As an example, setting
up a cycle accurate bit accurate (CABA) simulator - that is very
valuable and hard to get working in an efficient way - is a simple
matter of combining several design patterns : template method,
observer, state, visitor, composite. Similarly, providing a unified
object view of several computer-aided design tool suite would be
very a significant improve in term of usability and reusability.

However, several recent works have reported the use of (sim-
plified) CORBA architecture to favor interoperability at low level
[14, 11] or a growing interest for dynamic languages as specifi-
cation platforms. Besides, a noticeable shift in the panel sessions
topics of hardware designers conferences happened these last two
years [3], what must be analyzed a promising move. Also, some
educational conferences encourage cross-expertise curricula [15].

Obviously, one perfect example of such a missing win-win ap-
proach lies in adapting the debug facilities provided within ad-
vanced environment such as Smalltalk to hardware debugging. This
requires to merge multi-level executable specifications (code, ab-
stract syntax trees, graphs of primitive operators, netlists, etc.).

This translation from code to circuit in an automated manner
is referred as HLS (High Level Synthesis). Not only gaining these
tools to HLS would help the hardware designers to speed up their
development process but this would offer a direct path to implement
portions of high-level code as hardware circuit operating at two
orders of magnitude faster then original software.

Every software designer is offered the choice to remain in his
everyday life - and to focus on purely software issues - or to learn
what the Matrix is. The real question is : will we take the red pill?

1.2 Reconfigurable architecture : entering the matrix
Reconfigurable architectures can be seen as hardware frameworks
embedding resources (computation, communication, memories)
that are further combined to form a circuit. To illustrate the nature
of the architectures and the way they operate, one can say they
act as skeletons providing a connecting scheme between elements,
with computing block responsible for the inversion of control. The
topology generally exhibits regularity so that reconfigurable archi-
tectures are sometimes referred as cells matrix.

The circuit implements an application in space, compared to a
software solution that scales up in time. To figure out this intrinsic
difference in kind, twice a bigger application takes roughly twice
area on a reconfigurable architecture and twice execution time on
a processor. This explains why some applications offer tremendous
speed-up while other ones take no benefit from a hardware imple-
mentation. The more parallel and regular an application appears,
the better it fits to a hardware solution.

Compared to classical hardware support, the reconfigurable ar-
chitecture’s agility comes from the ability to reconfigure the ar-
chitecture - potentially in the field, partially, and on the fly - what
means to re-allocate resources to form a new circuit. This favors
fast prototyping and early circuit implementation - even prior to
full specification availability. This carries the same benefits as soft-
ware late binding (early availability, reuse, tailoring).

Despite being admitted that reconfigurable architectures in-
crease the designer productivity by providing flexible hardware
support, productivity remains strongly dependent on development
environment and ease of validation.

1.3 There is only one real truth: causality
Software validation mainly covers two activities: testing and de-
bugging. Testing refers to the error detection, as an example us-
ing characterization tests, while debugging is the task of tracking
the causes of a failure. This carries the obvious need for strong

Selected Papers of the Int. Workshop on Smalltalk Technologies, Barcelona, Spain, September 14, 2010

29



observability and controllability but also abstract analysis and fast
changes. Observability ensures the designer knows what is going
on. Controllability is the ability to control the execution flow. Ab-
stract analysis means offering a programmer oriented view of the
execution by preserving the programming model (e.g. source code
vs byte-code, variables vs registers, etc.). Abstract analysis speeds
up understanding by focusing on key aspects. Changes are required
to fix some deviations.

Debugging means identifying and understanding the devia-
tions, to allow fixing their consequences by invalidating their
cause. Hence, debugging is a very iterative process looping over
hypothesis-experiment-conclusion cycles.

As software agile programming promotes a just-fit approach,
debugging has come to be a key piece of the designer toolbox. Be-
cause any evolution may cause a regression, and because only the
debugger can provide a significant insight, even component based/
platform based development makes massive use of the debugging
environment.

Software debugging happens through multiple back and for-
ward navigation steps into the stack of contexts/current state. A
common practice consists in scrolling down back in the history
stack, assigning a value to a variable, then going back to the fu-
ture looking forward to observing the impact of changes over the
execution.

On the opposite, when designing a hardware product, the main
design scheme conforms to waterfall, with early decisions that shall
be revised as little as possible. Out of dynamic languages world, de-
bugging is definitively not a mainstream way of development, but
a stage that designers suffer. This comes from extremely long cy-
cles time compared to software, with specific issues in testing, as
operating testing at speed often requires to test in-situ. Time has
now come for electronic design automation (EDA) tool suite to of-
fer advanced debugging functionality to preserve the reconfigurable
architectures time-to-market benefit. This happened 20 to 30 years
ago for software engineering, when software designers shifted from
assembly code hand writing to compilers and comprehensive de-
buggers use.

This paper presents the Red Pill tool, our contribution to this
group effort. Red Pill brings ideas from typical Smalltalk-like IDEs
to the world of reconfigurable hardware, especially assertion based
debugging. It also takes advantage of Smalltalk polymorphism
to support domain variability (reconfigurable target), and benefits
from a wide legacy work [7]. Red Pills intents both to concur to
open the hardware up to the ”lambda” dynamic language developer
and both to offer a real IDE for hardware development.

The rest of the paper is structured as follows: section 2 is a
comparative study of debugging techniques, section 3 focuses on
the Red Pill while section 5 summaries some interesting results.

2. Debugging techniques: a comparative review
Nowadays, most common methods for hardware design validation
are based on software or hardware simulation with RTL (Register
Transfer Level) as the highest abstraction level, despite RTL is
pretty close to assembly code.

Software simulation is a widely used debugging method since it
is cost affordable and provides complete controllability and observ-
ability. But it suffers from performance drawbacks when simulating
large and complex designs.

To overcome the speed problem validation can be done directly
in hardware (built-in self test). Of course, despite being efficient for
error detection, embedding testing does not fully support debug-
ging activity. One challenge is, once detected a deviation, to restore
observability on demand, to let the designer control the execution
flow (step-by-step, continue, etc.), to allow running multiple sce-
nario, and finally to support design evolution.

2.1 What good is a phone call if you’re unable to speak?
Be it software or hardware oriented, efficient debugging relies on
probes to provide a way to check the state (observe) of the system
at a specific point.

When validating software, a probe does not change the source
code design, but will affect the timing of the program execution.
Similarly, using an electronic probe does not change the design of
an electronic circuit but, when used, it may change the circuit’s
characteristics slightly. There are two basic types of probes: watch-
point, which logs status information without disturbing the execu-
tion, and breakpoint, which interrupts processing.

During software execution, a breakpoint immediately opens the
system debugger when triggered. It shows the last several functions
executed and the top function in the stack is the function containing
the breakpoint. The debugger tool allows extensive exploration of
the history of execution flow, code or variables’s value changes
on the fly, and program execution control. After a breakpoint has
triggered a function can be continued, executed step by step with
or without diving into functions call.

To preserve its speed advantage, a hardware that is being de-
bugged cannot offer full observability, nor execution stack like
traveling. Observability means more than simply getting access to
current state of internal signals. This would require some logging
mechanism that are not scalable and would slow down the execu-
tion. As a consequence, the hardware designer has almost no infor-
mation regarding the past states of the circuit. This feature really
lacks as understanding the circuit’s current state cannot spring up
out of previous states blindness.

One fundamental difference between software and hardware de-
bug lies in that software debug approaches an intellectual game
whereas hardware debug is still a pain. This comes from the dif-
ficulty to gain both observability and controllability. As a conse-
quence, software debug is much more integrated as a development
technique.

2.2 Hardware observability : to hell and back
When debugging circuits, designers can use embedded logic an-
alyzers [1] or connect some IOs to a mixed-signal oscilloscope
(MSO). The logic analyzes offer an insight to understand the be-
havior of the reconfigurable circuit (e.g FPGA standing for Field
Programmable Logic Arrays), in the context of the surrounding sys-
tem. This goes through connecting some internal signals to physical
pins, only a small number of which are commonly available. Agi-
lent Technologies however provides a software solution that over-
comes some of these limitations by offering dynamic probes [17].

Another solution lies in bitstream instrumentation [5][18]. Xil-
inx ATC2 cores [19] can be added either during the design stage
or within a post-synthesized netlist (similar to byte-code transfor-
mation [4]), to offer access to any internal signal and communi-
cation with external MSO. From a Smalltalk point of view, this is
similar to request the designer to load a parcel in order to support
Transcript show: operations.

ChipScope [21] is another solution to reflect activity after sig-
nals capture. Also some FPGAs offer some read back capability
[20, 8, 12], and internal signals can be retraced. In a sense, Chip-
scope is more or less a Smalltalk inspector, but that would be avail-
able, as an example, only on Squeak, not on VisualWorks. It brings
nice features, at the expense of linking the legacy to one platform.

These several solutions brought pieces of the observability de-
signers missed for years in reflecting the FPGA internal state. Al-
though, these functionalities remain available at a very low-level,
compared to functional specification, and debugging requires more
than just observability. Besides, some timing windows are critical
as there happen the critical operations (inter process synchroniza-
tion, looping, conditions, etc) while digging into some other should
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