
All in One: Rapid Game Prototyping in a Single View
Eva Krebs

Hasso Plattner Institute, University of
Potsdam

Potsdam, Germany
eva.krebs@hpi.de

Tom Beckmann
Hasso Plattner Institute
Potsdam, Germany

tom.beckmann@hpi.uni-potsdam.de

Leonard Geier
Hasso Plattner Institute
Potsdam, Germany

leonard.geier@student.hpi.uni-
potsdam.de

Jonathan Grenda
Hasso-Plattner-Institut

Potsdam, Brandenburg, Germany
jonathan.grenda@student.hpi.uni-

potsdam.de

Stefan Ramson
Hasso Plattner Institute
Potsdam, Germany

stefan.ramson@gmail.com

Robert Hirschfeld
Hasso Plattner Institute
Potsdam, Germany

robert.hirschfeld@hpi.uni-
potsdam.de

Abstract
Creating games involves frequent prototyping to quickly obtain
feedback. In this paper, we explore the impact of removing a tra-
ditional game engine’s separation of scene and game logic that
supports scalability to large projects and, instead, combine scene
and game logic in a single view. In our tool, Pronto, designers con-
nect game objects with visual representations of behavior to define
game logic in the scene view, thus exposing any concern of the
prototype to the designer within one click. To explore the impli-
cations of the trade-off between scalability and speed of access,
we conducted a cognitive walkthrough and an explorative user
study comparing prototyping in the Godot game engine and in
Pronto. Godot’s separate views made it appear more structured and
reliable to users, while Pronto’s scattered game logic accelerated
editing and gave users the impression of progressing faster in their
implementation.

CCS Concepts
• Human-centered computing → Empirical studies in interaction
design; Systems and tools for interaction design; • Software
and its engineering → Visual languages.

Keywords
game programming, game prototyping, visual programming

ACM Reference Format:
Eva Krebs, Tom Beckmann, Leonard Geier, Jonathan Grenda, Stefan Ramson,
and Robert Hirschfeld. 2025. All in One: Rapid Game Prototyping in a Single
View. In CHI Conference on Human Factors in Computing Systems (CHI ’25),
April 26–May 01, 2025, Yokohama, Japan. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3706598.3714251

This work is licensed under a Creative Commons Attribution 4.0 International License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3714251

1 Introduction
Games improve through iteration: as a rule of thumb, when design-
ers get to iterate more and obtain feedback on their decisions faster,
the resulting game mechanics will improve [33]. Often, designers

choose a digital prototyping tool for that purpose, as it allows them
to create prototypes with the same interactions as the final prod-
uct. Common to digital game prototyping tools is that they draw a
deliberate line between game objects and game logic: objects are
defined in a scene view, and game logic is defined in a separate
code view that references the objects of the scene.

This separation allows games to scale in complexity. Complex
game logic can be spread across multiple files or abstractions and
can be applied to multiple game objects in the scene. In contrast, if
the game logic is combined with game objects in the same scene,
the logic would be tied to individual objects in the scene, mak-
ing reuse and abstraction more difficult. However, by separating
game logic and scene view, the engine necessarily introduces con-
text switches, navigation, and complexity when users have to map
between objects and game logic in the different views.

In this paper, we investigate trading the potential to scale to
complex projects for speed of access to all prototype parts. To this
end, we designed Pronto, an adaptation of the Godot game engine
to facilitate the rapid creation of throw-away prototypes of game
mechanics. Pronto builds on the following concept:

Game logic is expressed as visual connections be-
tween game objects in the game scene. Functionality
without inherent visual representation in Godot is
made visual through special game objects we call Be-
haviors.

Consequently, all game logic and game objects are in a single
view, allowing designers to reach any part of their design they may
want to adapt in a single step. This removes the otherwise present
navigation and mapping overhead, but it does so at the expense of
the tool’s ability to scale to complex games.

We conducted two studies to understand the trade-offs resulting
from the behavior concept and Pronto in general. First, a cognitive
walkthrough based on the Cognitive Dimensions of Notations [10],
and second, an explorative user study that compares the creation
of game prototypes in Pronto and in Godot. We find that Pronto
supports users in prototyping rapidly and encourages trying out
new ideas. At the same time, Godot offered better documentation
and appeared more beginner-friendly.

In the remainder of the paper, we first present methods of game
prototyping and relate them to our approach (section 2). We then
describe the behavior concept and example projects for Pronto

https://orcid.org/0000-0002-9089-7784
https://orcid.org/0000-0003-0015-1717
https://orcid.org/0000-0002-9206-8146
https://orcid.org/0009-0005-5304-0326
https://orcid.org/0000-0002-0913-1264
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3706598.3714251
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3714251
https://potsdam.de
mailto:stefan.ramson@gmail.com
https://potsdam.de
https://potsdam.de
https://tom.beckmann@hpi.uni-potsdam.de
https://eva.krebs@hpi.de
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706598.3714251&domain=pdf&date_stamp=2025-04-25

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Krebs, Beckmann, Geier, Grenda, Ramson, Hirschfeld

(section 3). We report our cognitive walkthrough (section 4) and
our user study (section 5). We discuss our findings and potential
future work (section 6).

2 Background and Related Work
As outlined in section 1, prototyping is essential to the game design
process. Prototyping comes into play for various aspects of a game.
The "elemental tetrad" of game design [33] divides a game into four
aspects: aesthetics, technology, mechanics, and story. Designers
may create prototypes for any of the four aspects to externalize
their ideas or to mitigate risk in their design process by obtaining
feedback or assessing feasibility [20].

Prototypes take various shapes. To understand aesthetics, de-
signers may create mood boards. To understand the design of their
story, they may create storyboards or dialog scripts. To understand
technical risks, they may employ technical spikes that implement
the bare minimum to attempt to demonstrate a technical capabil-
ity [9, 17].

Pronto’s focus is on creating prototypes that assess mechanics.
Here, designers commonly start with paper prototyping, a method
that allows rapid iteration as rules are agreed upon by the tester
and designer and can thus be changed on a moment’s notice [33]. In
contrast, in digital prototypes, rules are programmed into the game
and thus require changing the game logic to adapt. However, there
are game mechanics that cannot easily be expressed through paper:
if the prototyping goal is to assess how well players can use reflexes
to react to visible changes in the game response times must be in
real-time [1]. As an example, a designer may want to validate if
attack moves in a combat game like Super Smash Bros.1 are not too
fast to be able to dodge or block. If a human test conductor would
have to simulate the full game on paper, it will necessarily feel
very different when compared to the perfectly even and consistent
movements of a computer-controlled character.

When creating a prototype for mechanics, designers will ei-
ther modify an existing game or draft relevant of a game from
scratch [17]. General-purpose game engines such as Godot 2 or
Unreal 3 facilitate this process but may also require more techni-
cal decisions than is desirable to answer the prototype designer’s
question. Reuse of existing games is an often used method, but it
requires write-access to an existing game that serves as an adequate
base, as is possible through modding of many popular games. Even
given write access, it is still a consideration whether working from
scratch as opposed to modding serves the prototyping goal better:
the designer may deem the size of changes too large for modding
to make sense to realize their vision.

Specialized game engines or programming environments can
facilitate rapid creation of prototypes but are limited to certain
types or genres of games. They offer higher-level primitives that are
targeted at common challenges within their domain. For instance,
RPG Maker 4 includes facilities specifically for the creation of 2D
role-playing games. For story-focused games, other tools facilitate
the rapid iteration of conversation trees [7].

1https://www.smashbros.com/, last accessed: 2025-02-11
2https://godotengine.org, last accessed: 2024-09-10
3https://www.unrealengine.com, last accessed: 2024-09-10
4https://www.rpgmakerweb.com/, last accessed: 2024-12-09

Other environments support the rapid creation of 2D games more
general way, including systems such as GameMaker 5 , Scratch [28],
Snap 6 , or AgentSheets [27]. In the 3D space, games that allow
creating games include Dreams 7 and Roblox 8 . Here, players can
enter a creation mode that typically allows them to select objects,
open a programming editor, and define rules for their behavior.
Other systems facilitate creating games for XR [35], tangible en-
vironments [21], or mobile devices [32]. Often, these systems also
incorporate visual programming elements, such as nodes-and-wire
programming, to remove technical hurdles faced by designers.

As an alternative, prior work has explored using high-level mod-
eling techniques to specify behavior [30, 31]. Here, game designers
specify state charts or similar models to define the interaction
between objects. A generator then derives source code for an ex-
ecutable game. Using models allows some design decisions to be
more easily changed, supporting faster prototyping.

We designed Pronto to evaluate the conscious intertwining of
game elements with visual programming elements in one scene.
This contrasts the previously mentioned specialized game engines:
except for limited special cases, behavior is defined as separate
windows, popups, or panes. Pronto’s design attempts to close the
gap at the expense of a more cluttered scene design view. Some
programming systems have considered similar steps. For example,
Boxer [6] or Lively Fabrik [16] also mix functional user interface
elements with programming primitives that define their behavior
in one view. Both aim to support user comprehension and direct
access by end-users. In this way, their goal differs from Pronto’s,
where the combination in a single view is designed to facilitate
rapid prototyping. Still, some design aspects align, such as the
immediate access to the entire system’s functionality and use of
visual representations that suit the users’ mental model better.

In the context of graphical user interface (GUI) development, a
variety of tools and approaches exist that are designed to support
the rapid development of interactive elements. For instance, Rapid
Application Development (RAD) [2] is a development approach in
the domain of business applications aimed at applications of high
interactivity but low computational complexity, where iteration
speed is prioritized [2]. RAD advocates the use of visual tools for
purposes of accelerating the development process, for instance by
leveraging code generation or GUI builders [3]. GUI builders typi-
cally establish a link between a visual interface designed for user
interface creation and an underlying code base through named ref-
erences. Integrated development environments, such as QtCreator,
support code generation based on interactions in the GUI builder
to further facilitate the transition between visual and textual.

Similarly, image-based development environments [12], such as
many Smalltalk or Lisp dialects, are designed for an exploratory
programming [26] approach to software development. For instance,
in Self’s Morphic [18, 19], logic and (visual) application exist in the
same process and are displayed in the same window. Programmers
edit textual code through dedicated inspector windows that can
be opened on an object. Connections among objects and between

5https://gamemaker.io, last accessed: 2024-09-10
6https://snap.berkeley.edu, last accessed: 2024-09-10
7https://www.playstation.com/en-us/games/dreams/, last accessed: 2024-09-10
8https://www.roblox.com/, last accessed: 2024-12-09

https://www.smashbros.com/
https://godotengine.org
https://www.unrealengine.com
https://www.rpgmakerweb.com/
https://gamemaker.io
https://snap.berkeley.edu
https://www.playstation.com/en-us/games/dreams/
https://www.roblox.com/

All in One: Rapid Game Prototyping in a Single View CHI ’25, April 26–May 01, 2025, Yokohama, Japan

objects and code are thus not modeled explicitly through connec-
tions as in Pronto but implicitly through references in variables. The
Etoys [13] programming system similarly targets interactive, visual
applications, and further pushes intertwining of visual application
and logic: references to objects are established through a context
menu on an object or by dragging it, yielding a block that represents
the object. Code is placed in the scene as objects and, while open,
will even be considered for collision detection of moving objects. In
this way, Etoys emphasizes a "sandbox-style" development environ-
ment designed for experimentation, often employed in educational
contexts [8].

An early prototype of Pronto has been discussed at the Psychol-
ogy of Programming Interest Group [15]. This work significantly
extends the scope of Pronto through high-level components that
tackle recurring aspects of game prototyping, such as implementing
a health bar or platform controls. Further, an important new aspect
concerns bridging the gap between scene editor and game view:
the Live Value HUD allows developers to make adjustments to their
prototype directly in the game while playing the game. The early
prototype had not been been evaluated beyond an initial experi-
ence report. This paper adds an evaluation of the system through a
cognitive walkthrough and an explorative user study.

3 A Prototyping Tool for Godot
Pronto is an extension of the Godot game engine. Pronto forms a
superset in terms of features: users of Pronto have access to all
functionality of Godot. In this section, we will first outline user
interactions within Godot and then how interactions in Pronto work
to demonstrate how they differ.

3.1 The Godot Game Engine
At the core of Godot is a scene tree of nodes. Godot offers an
extensive library of node subclasses for various purposes, such
as showing an image, moving a node in 2D space according to
simulated physics, or playing spatial sound. Designers create games
by composing instances of node subclasses in the scene tree or
creating their own subclass of a node class.

Nodes are always placed within a scene. A scene can be instanti-
ated in another scene. Modifying the original scene will propagate
changes to all instances. One scene is the main scene that will be
displayed when the game starts.

Godot heavily uses the composition of nodes to derive rela-
tionships implicitly: adding a collision shape node as a child of a
character body node assigns this shape to the body. When moving
nodes in the scene, children move with their parent.

Godot’s user interface is made up of five major parts:

(1) The scene tree is shown as a tree view with collapsible sub-
trees. This view allows selecting nodes and changing the
hierarchy, such as moving a subtree to be a child of another
node.

(2) The scene view shows a 2D or 3D preview of the game scene.
The scene view contains visual representations of all nodes
that have a position in space. It omits nodes without a po-
sition in space, such as a node for ubiquitous background
music, which can only be accessed from the scene tree.

Figure 1: The scene view of the Godot game engine. The tabs
at the very top allow switching the scene view to the code
editor where users define game logic.

(3) The inspector allows editing properties of selected nodes, as
determined by the node’s class. These include the color of a
rectangle, the velocity of a custom car node, or the text of a
label.

(4) The code editor is accessible as a separate tab that replaces the
scene view, or in a separate window. It displays the code for
a game’s custom nodes or the documentation of any built-in
node.

(5) The game view opens in a separate window and shows the
running game.

The tree view and inspector appear as sidebars on the left and right
of the scene view or code editor, as seen in Figure 1.

When working on a game, users typically switch between three
views: the scene view, the code editor, and the game view. As an
example of the workflow in Godot, we want to create a door that
disappears when a button is clicked, or the "A" key is pressed. For
that purpose, we first set up the scene as illustrated in Figure 2.
We create three rectangles for the walls and a door, name them
appropriately, and color them gray and white respectively in the
inspector.

Next, we attach a script to the door game object. When creating
the script, the code editor replaces the scene view. In the code editor,
we type the code also shown in Figure 2. The code connects the
button’s "pressed" signal to an anonymous function that addresses
the door by name in the scene tree and deletes it. On input, the
code checks if a key press occurred and whether the pressed key
was "A", and if so, proceeds to do the same. To test our game, we
launch it twice and try out the two ways of interacting with the
door in the game view.

3.2 Pronto
Pronto extends Godot with two essential additions: connections and
behaviors. We want to create the same door mechanic in Pronto
as shown in Figure 2. The complete walkthrough is illustrated in
Figure 3.

We begin with the same game object setup in the scene view
without creating a script. We select the game object triggering the
relevant signal, the button, and hover Pronto’s connection list (1).

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Krebs, Beckmann, Geier, Grenda, Ramson, Hirschfeld

Figure 2: At the top, we show an excerpt of the scene view
with our game objects setup. In the bottom left, the scene
tree illustrates the hierarchy of game objects. In the bottom
right, we see the code view with the script responsible for
managing the door.

Next, we start dragging the "pressed" signal and drop it onto the
door (2). While dragging a signal, game objects show markers
with their names as drop targets. These are grouped when many
objects are close to one another to prevent overlaps that would
make targeting difficult.

Once the user drops the signal on the door, a connection dialog
opens (3). Here, we configure the method to be called on the door
when the signal triggers, queue_free, which deletes the object. In
the dialog, we may also configure a condition that must be true for
the method to be called, or we can turn off the connection entirely.

When compared to the workflow in Godot, the connections in
the scene view provide spatial immediacy [37] for the expression
of logic next to the game objects that it is relevant for. Through the
connection dialog, we make the details of the connection visible
without requiring the user to switch views. By opening multiple
dialogs of different connections, users can compose views relevant
to their current use case, even if the concerns are spread across
multiple game objects and would thus have ended up in different
Godot script files. Once a dialog is closed, its connection remains
visible as an arrow labeled with the signal and method (4). It thus
provides an entry point for quickly modifying or comprehending
any part of the game’s logic.

Next, we also would like the door to open when the "A" key is
pressed. Godot does not have a built-in node that signals keystrokes,
instead relying on code as shown in Figure 2.

Instead, we instantiate a Pronto behavior, a Godot node subclass
that appears as an icon in the scene view. Pronto behaviors are a
visual representation of an intangible aspect relevant to the formu-
lation of game logic, such as keyboard input. Being Godot nodes,
behaviors possess methods, signals, and properties. For instance,
the Timer behavior has a property configuring its timeout duration,
a signal when the duration has elapsed, and a method to start the
timer.

As shown in (5), we instantiate a Key behavior that emits a signal
whenever a user-configured key is pressed. For visual clarity, we

Figure 3: Constructing a door that opens when a button or
key is pressed by creating connections. The same initial scene
is shown at the top of Figure 2.

position the Key behavior close to the door and create a connection
that calls queue_free as we did for the button.

3.3 Abstraction-level of Behaviors
Behaviors in Pronto augment what game logic can be expressed
through Pronto connections as they make intangible functionality
visible in the game scene and thus addressable through connections.
The library of behaviors is thus extensible and should serve the
needs of a specific prototype. In our exploration, we strived to create
a small library of composable behaviors to facilitate the creation of
complex games without having to learn a large list of specialized
behaviors.

The behaviors that emerged during that exploration can be cate-
gorized in five groups:

(1) Actions: making more methods accessible,
(2) Triggers: making more signals accessible,
(3) Data: managing state in the scene view,
(4) Visualization: visualizing an aspect to the player of the pro-

totype, and
(5) Utility: aiding the developer of the prototype in debugging.

Actions. Action behaviors cause some side effects when trig-
gered. For instance, the Move behavior moves its direct parent in
the cardinal directions or toward a point when triggered, or the
CameraShake behavior applies a decaying shake to the viewport.
All methods of Godot nodes can be used as actions, such as the
queue_free method used to delete a node. In addition, a Scene be-
havior makes methods available to Pronto that exists on Godot’s
scene singleton, such as restarting or quitting the game.

Triggers. Pronto includes three default temporal triggers: a Timer
behavior, an Always behavior, which triggers on every frame, and a
Ready behavior, which triggers when its parent node first enters the
game as part of its scene tree. Two triggers act on spatial conditions:

All in One: Rapid Game Prototyping in a Single View CHI ’25, April 26–May 01, 2025, Yokohama, Japan

a Collision behavior, which triggers when something collides with
its parent, and a Query behavior, which allows composing distance
filters, type filters, and code filters and triggers when nodes start
or stop matching the query. Finally, there are input triggers for the
mouse and keyboard. Both trigger signals when buttons are just
pressed, held, or released. As described, all signals of Godot nodes
can also be used as triggers, such as the animation_finished signal
of the AnimationPlayer node.

Data. For managing state, Pronto offers a Value behavior for
defining configurable constants, which shows a slider in the scene
view for fast access. A Store behavior is a dictionary for storing
arbitrary dynamic variables. A Bind behavior binds the value of
one property to another property with an optional transform ex-
pression. A StateMachine behavior allows users to define states and
transitions; signals trigger when states are left or entered, which
can be used to trigger other actions.

Visualization. A Placeholder behavior visually represents a game
object and automatically communicates collision information. It
can take the form of predefined shapes, such as rectangles, circles,
or triangles, or appear as icons or images. Pronto includes a library
of generic game icons for communicating common purposes of
objects. In addition, a label can be drawn across the shape or icon.
Second, a Line behavior draws a line between two nodes.

Utility. In a Watch behavior, users can enter arbitrary GDScript
expressions that are continuously evaluated, and the result is shown
underneath the watch. Similarly, an Inspect behavior shows the
current runtime value of any of its parent node’s properties. To
help organize the scene view, a Group behavior draws an outline
around all its child nodes and can display a label, allowing users to
segment their scene visually.

Trade-offs for Specialized Behaviors. During user testing, design-
ers created the same combinations of behaviors and game objects
repeatedly. This concerned, in particular, character movement in a
side-scrolling platformer. As a solution, we introduced a Platformer-
Controller behavior as a ready-to-use combination of a Move and
Controls behavior, including the required three connections for left,
right, and jump movement. Similarly, it became apparent that some
state that users were placing in Store behaviors had an inherent
visual representation in the game. This insight led to the addition of
a HealthBar behavior, which stores a maximum and current number
of health points and displays a corresponding visualization similar
to a progress-bar optionally labeled with the current value. These
specialized behaviors demonstrate the tension in the design goal of
keeping a small, composable number of behaviors—similarly, de-
signers working on many prototypes in a specific genre may want
to create a specialized behavior that facilitates a specific aspect of
that genre.

3.4 Composing Larger Scenes
Even prototypes will often require a moderate level of complexity
that makes working through copy-and-paste intractable. Godot
facilitates the instantiation of the same type of game object by
allowing users to create multiple scenes and instantiate them from
one another. However, this forces users to switch between scene

Figure 4: On game start, this scene will spawn a gardener.
The gardener has a Store behavior remembering the number
of vegetables collected by that gardener. On collision, we
increase the number.

views and requires a level of indirection when addressing them,
for example, through a tag that every instance of the game object
carries.

In Pronto, users instead use a special Spawner behavior as seen
in Figure 4. The Spawner is placed like every other behavior in the
single scene view. Using the Spawner, users can create linked copies
of the Spawner’s subtree and either place them in their scene at
edit-time or use a connection to trigger a method on the Spawner to
instantiate a linked copy while the game is running. Users can still
modify the properties of instantiated copies manually or through
code. A property modified on a copy will no longer be kept in sync
with the original.

The Spawner also facilitates local state, as illustrated in Figure 4.
Connections local to a Spawner subtree are instantiated in their
entirety. By instantiating and connecting to a local Store behavior,
users can state local to the subtree. Connections that enter or leave
the Spawner subtree are also duplicated. Consequently, users can
establish direct connections between local and global state, thus
facilitating top-down and bottom-up data flow without the need
for inversion of control, as would be the case with Godot’s default
scenes that use signals.

To further facilitate fast access, Pronto includes a set of utility
functions that facilitate access to local properties in the scene tree. A
closest(condition) function will locate the closest node that fulfills
the given condition. To find what we call the closest node, we start
at the node that called the function and traverse the node’s local
surrounding tree, starting with its own children in a breadth-first
manner and then continuing with its parents and their children.

3.5 Designing For a Single View
Godot users primarily switch between three views, as outlined in
subsection 3.1: the scene editor, the code editor, and the running
game. In Pronto, we combine scene editing and behavior definition
into one view.

Code is brought as close as possible to the place where it causes
the effect: connections between game objects and behaviors define
all game logic. Pronto encourages users to place all game objects
and behaviors in a single scene, so changing any aspect is only one
click away. Consequently, game prototypes reach an upper limit of

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Krebs, Beckmann, Geier, Grenda, Ramson, Hirschfeld

complexity that can still fit well in a scene. Otherwise, users end up
with the dreaded "spaghetti" of node-and-wire programming. As
Pronto was designed for rapid iteration of throw-away prototypes
that are for validating a single or very few mechanics at a time, the
design makes little effort to address the scaling issue, prioritizing
speed of access over hierarchies of logic that may scale better.

As one exception, the running game appears in a separate view.
In the running game, behaviors and connections are invisible, show-
ing only the game objects, allowing one to play the game without
distraction.

Editing the state of and playing the game in the same view would
be an ambiguous operation: When users edit the game state in the
engine, they edit the runtime state 𝑠0 of the game. As soon as the
game is started, the simulation modifies the game state, moving the
runtime state from 𝑠0 to some 𝑠𝑖 . Any modification of the game state
through the user in state 𝑠𝑖 will have to be mapped back to 𝑠0, which
is a necessarily ambiguous operation from the user’s perspective.

To bridge the gap less ambiguously, Pronto visualizes informa-
tion from the runtime into the scene view and exposes selected
information for editing in the game view. In terms of visualization,
Pronto shows the state of any Store underneath its representation.
Similarly, as described before, Watch and Inspect behaviors visual-
ize specific, user-requested runtime state. In addition, connection
arrows flash in red whenever their signal is fired.

In terms of editing, Pronto collects all Value behaviors on game
start, which represent any constants the other behaviors are using.
These are then gathered in a collapsible overlay on the game view
as sliders or input fields. Through this overlay, users can tweak
values without switching focus. Any changes in the game view to
a constant are propagated back to the engine, modifying 𝑠0. While
the game is still running, users can choose to reset all values to the
values they had at the game’s launch. In this way, Pronto constraints
the editing operations to those that are easier to reason about. At
the same time, the state can still diverge: if, for example, users
decrease the jump distance while in-game, they may have been able
to reach a point of the game map that would not have been possible
had the value been as low from the start of the game session.

To further support fast feedback loops, Pronto automatically
deploys the prototype scene as a web export through a single button
press. This way, playtesting can occur within a minute of a change
on anyone’s phone or laptop.

3.6 Prototyping Prototyping: Example Games
Initially, the authors validated that the core concept of connections
would work for creating prototypes. Then, we organized several
seminars, during which both we, the authors, and computer science
students taking our seminar used Pronto to prototype games.

Throughout the seminars, we asked students to work on games
with varying topics to test the limits of Pronto. Participants built
prototypes for game domains such as simulation, racing, platformer,
or turn-based games. While some prototypes only focussed on a
single mechanic, some participants tried to make an entire playable
game, including nice-to-have features such as a menu. Here, the
limits of Pronto in terms of the visual complexity of the scenes

became apparent. However, students still managed to create clones
of Ridiculous Fishing 9(see Figure 5) and Geometry Dash 10 .

Figure 5: A clone of Ridiculous Fishing made with Pronto.

4 Cognitive Walkthrough
Pronto is designed to explore the impact of combining game logic
and scene objects in a single view described in section 1 on the
prototyping workflow. To evaluate the impact, we designed a two-
staged explorative evaluation similar to prior work [40]. In the first
stage, we analyzed Pronto using a cognitive walkthrough, followed
by a user study described in section 5.

Figure 6: Overview of our evaluation concept based on prior
work [5, 14]. A detailed list of actions for one cognitive walk-
through is available in Appendix B.

4.1 Setup
To perform the cognitive walkthrough, we designated an expert,
a member of the Pronto development team, as an evaluator. That
evaluator performs a task and analyzes each step based on pre-
determined questions. The evaluator performed this process twice

9https://en.wikipedia.org/wiki/Ridiculous_Fishing, last accessed: 2024-09-06
10https://store.steampowered.com/app/322170/Geometry_Dash/, last accessed: 2024-
09-06

https://en.wikipedia.org/wiki/Ridiculous_Fishing
https://store.steampowered.com/app/322170/Geometry_Dash/

All in One: Rapid Game Prototyping in a Single View CHI ’25, April 26–May 01, 2025, Yokohama, Japan

over three days to capture any details that may have been missed in
the first walkthrough. For this evaluation, the following questions
were asked for each step of the task:

• Will the user try to achieve the right effect?
• Will the user notice that the correct action is available?
• Will the user associate the correct action with the effect they
are trying to achieve?

• If the correct action is performed, will the user see that
progress is being made toward a solution to their task?

In addition, we considered the cognitive dimensions of notations, a
set of heuristics on the usability of notations. For each of the dimen-
sions, we asked whether any restrictions or benefits are attributable
to it.

Definition of User. As learnability was not our focus, we described
the assumed user as an experienced Pronto user. However, the user
does not know the task to be completed and cannot prepare for
later sub-tasks while solving earlier ones.

Definition of Task. As a task, we selected a realistic scenario we
observed students perform when creating their prototypes. The user
is trying to create a rudimentary driving and sliding mechanic for a
top-down car game. We include checkpoints where the user wants
to playtest the prototype to evaluate their progress but otherwise
choose the most direct path to completion. The task involves three
subgoals:

• Implement a driving mechanic that allows the user to ac-
celerate, steer left and right, and break and make sure that
friction affects the car’s speed.

• Next, the user adds icy surfaces that prevent the user from
controlling their car while on top.

• Lastly, the user fine-tunes constants and the implementation
to ensure that the race course can be completed.

We summarize abstract steps required to solve the three sub-tasks
in Figure 8. In total, our procedure includes 64 concrete steps.

4.2 Results
We considered 17 questions per concrete action—four as shown
above and a selection of thirteen cognitive dimensions of nota-
tions [10]—for a total of 1,088 possible data points. Of those, we
noted impacts for 115 data points. The others showed no notable
deviation from the expected outcomes. In the following, we describe
the insights gained from the cognitive walkthrough. Where appli-
cable, we relate the insights to the relevant cognitive dimensions
of notations [10].

Insight 1: Behavior granularity. Pronto’s behavior library allowed
us to represent the functionality required for our task easily, con-
tributing to Closeness of Mapping (CDN), where we consider the
match between the notation and the problem domain. However, it
is not always straightforward to identify the right behaviors. For
input in our task example, Pronto offers a Controls and a Key be-
havior. The former exposes input using the classic two-axis WASD
keys, while the latter exposes input for arbitrary single keys. The
overlap based on their name and functionality is an issue of Role
Expressiveness (CDN), where users may struggle to identify the
right component of our tool to use.

Adding behaviors works the same as adding other Godot nodes,
contributing to consistency (CDN), where parts of the notation work
according to users’ expectations according to their existing knowl-
edge. Some behaviors act on their parent in the node hierarchy,
which Pronto indicates through an arrow in the scene view from
the behavior to the parent it acts on. However, as users change the
position in the node hierarchy, the position remains the same in
the scene view, a feature of Godot nodes to facilitate reorganizing
scenes. As users have to manually adapt the behavior’s position in
the scene view as well, this may introduce Viscosity (CDN), where
barriers in the notation make changes more effortful.

Insight 2: Refactoring connections. For the second subtask, the
controls are supposed to be suspended while on an ice surface.
We need to edit multiple connections and add a condition for that
purpose. In code, we would likely introduce a new method that
encapsulates the condition and can be used wherever needed. In
contrast, in Pronto we need to duplicate the condition or add a
Code behavior, which appears as overhead for a single line of code.
Subsequent edits of that condition require us to revisit the dupli-
cated copies, manifesting as Repetition Viscosity (CDN), where one
intended change has to be carried through multiple actions. On the
flip side, scattered code snippets contribute to the Visibility (CDN)
between cause and effect, where parts of the notation are made
identifiable and accessible. When we want to edit a functionality,
we locate the concerned game object and find the relevant behavior
through its large icon.

Insight 3: Game in a separate view. Changing a value in the Live
Value HUD syncs it back to the editor. While this facilitates tweaking
and persisting values experimentally in-game, it may also surprise
users if they meant to simply experiment with values, especially
since the game opens in a separate window. Further, the separate
window for the running game introduces a context switch when
game logic is changed that is not exposed in the Live Value HUD.

Insight 4: Drag-and-drop. Many relevant operations in Pronto
rely on drag-and-drop using a mouse, for instance, creating new
connections. While drag-and-drop is a direct and efficient way of
connecting elements in a user interface, it is also prone to erroneous
inputs and fatigue [34]. The user study in section 5 will analyze
whether this has a practical impact.

Insight 5: Quality of life. Several minor quality-of-life issues were
uncovered as well. For instance, documentation for behavior func-
tionality, methods, and signals is missing. Further, the node trigger-
ing the signal or the signal name to which a connection is connected
cannot be edited, forcing users to create a new connection and copy
over existing values. These aspects were not relevant enough to be
addressed during the development of Pronto but surfaced during
the cognitive walkthrough.

4.3 Threats to Validity
As the analysis has only been performed by a single expert, the
results may be skewed as no consensus or discussion took place to
align disagreements. The task design included 64 actions and should
thus give a broad overview of interactions with Pronto. However, of

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Krebs, Beckmann, Geier, Grenda, Ramson, Hirschfeld

the built-in behavior nodes, only 6 of 32 were required to complete
the task. In addition, we did not include any errors or usage slips.

The concrete list of steps that we analyzed splits high-level oper-
ations that require multiple actions, potentially creating blind spots
for an operation’s overall usability. To mitigate this, we structured
the actions required to solve the task hierarchically, divided into
abstract and concrete steps. This allowed analyzing potential issues
in both high-level intents and their execution.

5 User Study
We conducted a user study with eight participants to validate the
insights of the cognitive walkthrough and collect new insights
beyond those. In the study, participants worked on two game pro-
totypes, once in Pronto and once in unmodified Godot. We then
took observations and results from an ensuing interview and per-
formed a thematic analysis to identify the impact and trade-offs
that our behavior concept implies for the participants’ prototyping
workflow.

5.1 Study Design
We designed our study following best practices suggested by Ko
et al. [14] and illustrated the concept in Figure 6. Each run took
around 2.5 hours. Participants received 35€ as reimbursement for
their time. The study’s procedure is visualized in Figure 7. We
began with welcoming the participants, obtaining their consent,
gathering demographic data, and finally providing a 15-minute
training session. Next, the two tasks followed, each allocated for
one hour, separated by a five-minute break. We ended with a debrief
to allow participants to ask questions or leave last remarks about
the tools, tasks, or study.

Participants worked on one task in Godot and another in Pronto,
resulting in four total task-tool combinations as shown in Table 1.
We thus have two independent variables: the tool used and the task.
The dependent variable is the usability feedback captured in the
interviews.

To account for potential differences in skill, we opted for a within-
subjects analysis. To mitigate learning effects, we created two dif-
ferent but structurally comparable tasks. With these restrictions, a
regular Latin Square cannot be employed. We manually assigned
tools and tasks, controlling for roll-over effects. This creates four
valid task-tool combinations as depicted in Table 2, where every
combination is used twice, given our eight participants.

5.1.1 Tasks. Both tasks are structured into three subtasks. We
designed the tasks to present participants with new challenges
throughout, requiring them to adapt and tweak their implemen-
tation. Further, we invited them to adapt the results to suit their
preference to encourage additional iterations. To present changed
conditions that the participants must adapt to, we prepared a new
base scene for each subtask, which we call environment in the fol-
lowing.

We reused the task we analyzed in the cognitive walkthrough as
described in subsection 4.1 to facilitate a comparison and designed
a second, new task. The new task involves creating a dashing me-
chanic, a common movement option in platformer games. When

the dash action is invoked, the character briefly and rapidly accel-
erates in a direction determined by the player. The task involves
three subgoals:

• Implement a dash in a 2D side-scrolling platformer that al-
lows crossing a gap in a prepared level.

• Next, a new level is shown with an even wider gap but
with two platforms at different heights between the sides.
Participants now may have to adapt their dash to also go
vertically, not just horizontally.

• Lastly, a new level shows a parkour in which the character
has to reach a goal position. The participant is asked to fine-
tune the mechanic to ensure that the level is playable and
feels sufficiently challenging.

Participants were asked to stop working on their implementation
if they exceeded the given time frame by more than ten minutes. As
the tasks are designed so that the second and third subtasks require
iterating over the results of the first task, we were interested in
ensuring that participants reached the third task. Therefore, we
provided hints to participants if they ran into significant issues
where we deemed their eventual resolution unlikely to generate
interesting insights. We provided hints if the participant:

• was stuck for at least two minutes,
• showed an attempt to solve the problem on their own, and
• voiced the request for a hint or was prompted and agreed to
receive a hint from the researcher.

Our testing setup included an external monitor, a laptop, an
external keyboard, and a mouse. Participants were asked to adjust
any mouse sensitivity settings prior to the study. Additional task
details are in Appendix C.

5.1.2 Interview and Data Collection. After participants completed
each entire task, we conducted a semi-structured interview consist-
ing of 15 questions. We followed a similar procedure to Weninger
et al., who formulated one question per cognitive dimension [25]
(a mapping of used questions to cognitive dimensions can be found
in Appendix A). As their questions have not been published, we
formulated our own questions and refined them in multiple dis-
cussions. Based on the insights of the cognitive walkthrough, we
emphasize the Viscosity dimension.

During the study, we collected a screen recording and an au-
dio recording, as well as task completion times, task progress, and
the number of hints given. To prepare the interviews for analysis,
we automatically transcribed and manually corrected the audio
recordings, and added notes we took while observing the partici-
pants. Finally, we imported and analyzed the resulting transcripts
into MAXQDA, a program for qualitative analysis. As we were
looking for qualitative statements on how using Pronto and Godot
choose different trade-offs, we analyzed the data through a thematic
analysis [5] and identified themes that concerned each tool.

Pilot Study. In preparation for the study, we recruited three par-
ticipants for a pilot study. Their self-reported experience level varied
from self-rated beginner to expert. In addition to running through
our study script, we asked participants to complete a short feed-
back form regarding each task’s comprehensibility and perceived
difficulty. Each one of the participants attempted to complete two
tasks, one with Pronto and one with Godot. For the pilot study, we

All in One: Rapid Game Prototyping in a Single View CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 7: Timeline of the user study.

Table 1: Task-tool combinations

No. Task Tool
1 Dash Pronto
2 Dash Godot
3 Car Pronto
4 Car Godot

Table 2: Study conditions

Condition
First Task-Tool
Combination

Second Task-Tool
Combination

A Dash-Pronto Car-Godot
B Dash-Godot Car-Pronto
C Car-Pronto Dash-Godot
D Car-Godot Dash-Pronto

had initially allocated 30 minutes per task, which we raised to 45
minutes as no participant completed all sub-tasks. Of the six tested
tool-task combinations, one was rated too difficult, and another
was rated unsuitable for the time given, which we adapted for the
final study.

Participants. Our study design did not include extensive train-
ing, so our potential participant pool was limited to students who
had participated in the seminars where Pronto had been used. We
contacted 25 possible candidates, of whom eight volunteered to
participate. Seven identified as male, four were Bachelor students,
and four were Master students. Participants ranged in experience
from 4 to 7 years of software development, with no professional
game development experience but experience with various game
engines.

Five of the eight participants had taken part in a seminar designed
to test and extend Pronto’s boundaries for game prototyping. As part
of that seminar, they contributed extensions to behaviors. Notably,
creating or extending behaviors is expected even of regular users
of Pronto, as they identify use cases of their prototype they want to
better support in Pronto. As Pronto was in early stages during the
seminar, they also contributed quality of life and bug fixes. None of
the integral design aspects of Pronto discussed in this paper have
been co-developed by any of the participants.

5.2 Results
The average task completion rate was 89% (𝜎 = 15.76%), with all par-
ticipants reaching the third task. The completion rate was slightly
higher for tasks performed with Pronto (91.5%, 𝜎 = 14.72%) than
those attempted with Godot (87.2%, 𝜎 = 16.46%). On average, partic-
ipants who completed all sub-tasks required 38 minutes (𝜎 = 9.56).
In Pronto, participants took 40 minutes on average (𝜎 = 11.68) ex-
cluding two incomplete tasks, and 37 minutes on average (𝜎 = 9.49)
for Godot, excluding three incomplete tasks. We discuss the merit
of our quantitative vs. our qualitative insights in subsection 6.2.

Through the thematic analysis, we identified 15 themes, of which
11 are presented in this section. The four not chosen for represen-
tation in this paper either did not pass the verification step of the

thematic analysis or were not closely related enough to our research
questions. Quotes have been automatically translated from German
using DeepL and manually fixed. Where possible, we relate the
themes to relevant cognitive dimensions of notations (CDN) [10].

Pronto Theme 1: Pre-defined behaviors ease implementation and
reduce complexity. Five participants explicitly expressed how pre-
defined Behaviors would simplify expression of constructs they
usually perceive as cumbersome or complex to express. Pronto
appears to thus better match the level of Abstraction that users seek
and reduce Hard Mental Operations (CDN) for common tasks, where
users have to take note of extra steps in the notation to achieve
their desired goal.

"The Platform-Controller [...] and the Move-Behavior
are two nodes that reduce the amount of work re-
quired greatly and simplify small things."
"The Move node is great, simply say ’move up’ and it
just works."

Multiple statements also mentioned the ease of gathering player
input.

"Gathering input events and taking action, that was
easy."

Similarly, working with state through the Store Behavior was
praised. Wrapping state in a Behavior, too, appears to match users’
intuition and thus contribute to Consistency (CDN).

"The ’at()’ method was really handy."
"I found it pleasant, accessing Values and the Store
Behavior directly. I think that makes a lot of sense."

Pronto Theme 2: Distinction and interoperability of pre-defined
behaviors. We were able to confirm Insight 1 of the cognitive walk-
through, indicating that perceived overlap between roles of Be-
haviors would present a challenge. Three participants explicitly
criticized the PlatformerController and Move Behaviors, either being
unsure of which Behavior they should use or expecting them to
work together to achieve their desired goal. These Behaviors thus
appear to fail to meet the right level of Abstraction that users are
seeking and are lacking in their Role-expressiveness (CDN).

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Krebs, Beckmann, Geier, Grenda, Ramson, Hirschfeld

Table 3: Overview of participants’ task order and progress

First Task Second Task Participant Condition Tool Task Progress (%) Time (min) Hints Tool Task Progress (%) Time (min) Hints
1 A Pronto Dash 100 54 1 Godot Car 66 55 2
2 C Pronto Car 100 35 0 Godot Dash 66 55 2
3 D Godot Car 100 46 3 Pronto Dash 100 42 3
4 B Godot Dash 100 38 2 Pronto Car 100 49 3
5 C Pronto Car 66 55 2 Godot Dash 100 35 1
6 A Pronto Dash 66 55 5 Godot Car 66 55 0
7 B Godot Dash 100 40 1 Pronto Car 100 40 1
8 D Godot Car 100 25 0 Pronto Dash 100 19 1

"The Platform-Controller is the one thing that con-
fuses me the most when dealing with Pronto. The
relation between Move- and Platform-Controller, es-
pecially with the addition of gravity."
"I had the feeling [the Platform Controller] should
work with the Move-Behavior, but it didn’t synergize."

Pronto Theme 3: Runtime visualizations fulfill concrete need. Six
out of eight participants explicitly highlighted the usefulness of
runtime visualizations. The runtime visualizations allow users to
rapidly map between cause and effect for all interactions in the
game, supporting debugging and comprehension and thus Visibility
(CDN).

"It was obviously handy to immediately see if some-
thing was being triggered."
"I find it useful to see what method is being called."
"I think the most useful thing is the flashing of con-
nections during run-time because it is unambiguous,
and they jump out of the scene."

Pronto Theme 4: Readability and expressiveness of connections.
Six of the participants said that Pronto provided a concise overview
of their implementation progress through the visual connections in
the scene view, supporting Progressive Evaluation (CDN), where the
notation provides feedback for evaluating incomplete solutions.

However, five participants criticized the readability of the labels
along connection arrows. Label font size is tied to the zoom level
to ensure that users can still see scene objects, even when zoomed
out, and not just large text. Further, while the arrows are labeled
with details on what function the connection performs, its text is
truncated to a fixed character limit, sometimes omitting relevant
information.

"I need to zoom in quite a lot to be able to read this at
all."
"[Not making the text larger when zoomed out keeps
the scene] more organized, but not quite readable,
pixelated."
"I was just about to say it would be great to see the
current values [of Store behavior variables], but then
I zoomed in and saw that that already exists."

Also related to connections, the floating window concept for
editing connections generally worked well. When opening multiple

connections simultaneously, one participant criticized that it is
unclear which connection the dialog belongs to.

Pronto Theme 5: Insufficient documentation. A major limitation
of our cognitive walkthrough was that we assumed an expert user.
During the user study, the relevance of helping users recall the
functionality of Behaviors became apparent. Participants generally
wished for more extensive documentation. For instance, similar to
Behavior roles above, some signal names communicated ambiguous
roles:

"What the signals mean [...] I don’t know what the
difference between ’pressed’ and ’down’ is, whether
or not they are identical, no idea."
"It would help me to know what each of these does
when I hover over them, as currently, I can not see
that without looking at the documentation."

Pronto Theme 6: Invitation to (Rapid) Prototyping. During the
interviews, three participants decidedly stated that they suspect
the prototyping with Pronto to be faster than the alternative with
Godot.

"It was meaningfully faster than using just Godot."
"I considered myself to be rather quick, especially
when building things."

One participant noted that they spent almost the entirety of the
last sub-task in the running game tweaking values using the Live
Value HUD and did not have to switch back to the editor. Another
participant remarked:

"You could test everything relatively quickly, without
everything crashing."

Other participants commented that they felt encouraged to try
out different options and iterate more quickly, reducing Premature
Commitment (CDN), where decisions must occur in a certain order
or are not easily reversible. In particular, they pointed out that
the visual programming aspect of Pronto supported discovery and
sparked their creativity.

"You are more likely to see what possibilities you have
and what methods can be called. You can experiment
faster."
"I was less hesitant throwing things away, I don’t
know why."

All in One: Rapid Game Prototyping in a Single View CHI ’25, April 26–May 01, 2025, Yokohama, Japan

"You get inspired when you see the available pos-
sibilities. And you are encouraged to try out many
things when you can just simply theoretically dupli-
cate things or add them with a click and so on."

Godot Theme 1: Documentation. Through the feedback for Godot,
the participants highlighted how important good documentation
is for them. Half of the participants explicitly and positively com-
mented on the availability or level of detail of the Godot documen-
tation:

"I know that within Godot, I can access the docs
quickly. I find this comfortable, getting there with a
single click and looking at the definition of functions
to understand how to use them."
"I am a big fan of the immediately accessible complete
documentation of an object [...] and not just some sort
of pop-up [...]."

Godot Theme 2: Context switches slow down prototyping. For the
development with Godot, participants criticized context switches.

"This split also splits the train of thought into ’this is
the scene’ and ’this is the script belonging to it’ which
is not very intuitive."
"There is a clear separation between [scene] and
[scripts], which can be annoying, [...] and there is an
additional separation to the actually running game.
Which meant I was pretty busy with context switches."

Participants also criticized switches between editor and game,
in particular for purposes of tweaking values. Notably, Godot does
support live reloading of values in some cases without restarting
the game by switching to the editor and performing regular edits,
which these participants did not make use of.

"It is very annoying because I need to close the game,
look at the code, tweak the number by some sort of
factor, relaunch the game, and test again. This takes
time. This switching between Editor and Game and
Editor and Game back and forth."
"Like I said, integrating this and then changing pa-
rameters, playing [...] has probably cost me the most
time apart from debugging, or maybe even more than
debugging."

Godot Theme 3: Time and effort intensive debugging. Seven out
of the eight participants criticized the debugging tools or processes
in Godot, wishing for feedback that is better integrated with the
running game.

"I find it a bit annoying to [log variables to the console]
if I want to know their value. It would be great to be
able to say ’put yourself in the game window, so I
don’t have to look [in another window]."
"If I didn’t need print statements to see all the values
I am changing, [...] I could save two to three steps of
debugging."
"I would have liked for the values that I am changing
to be visible at all times."

In more general terms, the feedback Godot provides was cri-
tiqued by five of the eight participants.

"You don’t get, I think, anything visual unless you
build it yourself."
"I needed to figure out what was happening in the
method and that is not particularly easy in the visual-
ization [...]."

One participant requested explicit visualizations for built-in
methods that they perceived as complicated within the game view,
such as is_on_floor(), relating also to the following theme of com-
plex interfaces.

Godot Theme 4: Complex interfaces. Seven of the eight partici-
pants stated they struggled with one or more aspects of special-
ized knowledge related to implementing mechanics in Godot. Five
participants mentioned challenges with implementing physics or
physics-related aspects, especially simulating velocity in Godot’s
movement interface. This manifests as issues of Hard Mental Oper-
ations (CDN).

"The move_and_slide [interface] was confusing for me,
where you have to set the velocity [first]."
"Velocity did not work as I expected, but I couldn’t
even say what I expected."

Available Features and Change Requests. Participants were asked
to wish for a change or addition in each tool during the inter-
views. For Pronto, four participants (P1, P2, P4, P6) requested filters
or views that would allow them to hide certain parts of their im-
plementation in the scene to improve visual clarity for complex
prototypes. Two participants (P4, P5) asked for automatic arranging
of behaviors in the scene.

Several feature requests did already exist in Pronto, without the
participants realizing it, such as the toggled signal on the Key behav-
ior (P6). P7 requested to change the velocity of the Move behavior
dynamically, which can be accomplished through a connection
to the set(prop, value) method. Maybe surprisingly, only one par-
ticipant wished for more keyboard-centric interactions. All other
users reported or demonstrated no issues with the drag-and-drop
interactions used heavily in Pronto.

For Godot, P5 wished for the ability to change individual prop-
erties without relaunching the prototype. Another participant, P2,
requested an interface that provides the input vector for two axes.
Both features are already present in Godot.

5.3 Threats to Validity
In the ideal case, the user study would have been conducted with
enough participants to reach a saturation effect during the anal-
ysis [22], which we did not observe in our study. However, the
recruited eight participants covered every study condition twice.
As we focused on identifying usability problems through qualitative
analysis, the eight participants are within the range of five to ten par-
ticipants recommended by prior usability testing research [23, 39].
As outlined in subsubsection 5.1.2, five participants of the seminar
contributed new or modified Behaviors to Pronto’s codebase but not
to the core of Pronto or any of the design considerations discussed
here, leading to potential bias. If the study were repeated, it could

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Krebs, Beckmann, Geier, Grenda, Ramson, Hirschfeld

include training, which would allow the potential candidates for
recruiting to include more diversity in gender identity, age, and
level of education.

The 15 minutes of training we included to refresh the partici-
pants’ memories were not enough to bring them to the same level
of expertise they had while participating in the seminars. Multiple
participants identified a lack of experience with either tool as a
potential issue during the interviews. Two participants directly
mentioned a steeper reactivation curve for existing Pronto knowl-
edge.

To ensure that our insights were comparable and that we could
observe various common usage patterns across relevant features,
we gave participants fine-grained tasks designed to force specific
actions. This naturally constrained participants’ degrees of freedom
and may thus have prevented them from pursuing more creative
solutions.

6 Discussion and Future Work
We designed our cognitive walkthrough and user study to find
the impact of combining game logic and scene objects in a single
view through connections. In the following, we discuss our insights
to determine the merit of the design choice as opposed to a split
between scene and game logic, as found in Godot.

6.1 Bridge Between Visual and Textual
Programming

Choosing the right representation is an essential factor for design-
ing user interfaces that support creative tasks [41]. Pronto mixes
the direct manipulation and command language interaction styles:
for the connections, it employs a direct manipulation drag-and-
drop interface [34, p.231], which tends to be well-suited for explo-
ration, while the effects of a signal triggering are expressed through
GDScript code as a command language [34, p.329]. Based on our
evaluation, this mix appears to form an effective bridge between
visual and textual representations of code that matches the users’
desired abstraction level well, as evidenced by Pronto themes 1 and
6 in subsection 5.2, "Pre-defined Behaviors ease Implementation"
and "Invitation to Prototyping". Below we described how Pronto
supports aspects that visual tools are often lauded for, while also
exposing textual code where it appears to support expert users’
needs better.

Visual connections for event-driven expressions. The connections
appear as an intuitive way to formulate event-based "when ... then
..." statements to model the game’s control flow. This aligns with
findings that people tend to naturally formulate game rules in a
constraint or event-based manner [24] and would thus better sup-
port users in working creatively [29]. On the fine-granular level of
the effect or "then ...", users of Pronto formulate textual code instead.
On this level, users change the game state by calculating changed
values, for example through mathematical expressions. The mix
of visual expression for events and textual expression for effects
worked well for users with one exception: users criticized that they
not only want control-flow dependencies (events) visualized but
also some data dependencies (state accesses). Based on our own
use, we hypothesize that users would prefer not to manually draw
logical connections that can be inferred from text, but to have an

automatic connection appear when they reference a variable. For
example, when a value important to the game is read, such as a
score, they wished for connections between the State behavior stor-
ing the score and the connections that read or write the value. We
derive that users appear to conceptualize both temporal and logical
dependencies visually, whereas they conceptualize seemingly all
other expressions textually, akin to mathematical formulae. Pronto’s
mix of visual and textual would thus match the natural way users
prefer to express different forms of expressions. Concerning inter-
actions with the visual code as connections, we had hypothesized
in our cognitive walkthrough that heavy reliance on drag-and-drop
may pose an issue (Insight 4: Drag-and-drop) but the user study
did not confirm this hypothesis.

Palettes for authoring expressions. Another prominent feature
of visual programming environments is palettes: collections of all
elements of the visual notation. In Scratch [28] or Snap [11] these
appear as sidebars, filled with blocks that users can drag onto their
canvas. In other visual programming environments, similar con-
cepts to palettes are used to present collections of all elements of the
visual notation. For example, in the node-and-wire programming
environments of Unreal Blueprints [38] or Blender [4], palettes in-
stead appear as searchable menus that instantiate new nodes. Such
a "self-revealing" design, where the user interface clearly informs
users what can be done, appears to support discovery and exper-
imentation [29] and is thus especially desirable in a prototyping
context. In Pronto, we have two dialogs that act akin to palettes: first,
the list of behaviors informs users of what categories of actions or
events are exposed. Second, when formulating a connection, we
present the full lists of signals and methods that the involved nodes
expose to users. Users can thus draw a connection between two
objects they want to have interact with each other without having
to know their API. The system then presents the user how the two
connected objects can interact with one another through the list of
signals and methods.

6.2 The Single View Supports Rapid Prototyping
The insights of our evaluation point at multiple benefits of the com-
bination of game logic and scene in one view for rapid prototyping.
We describe our insights in the following.

Co-location of elements supports experimentation. Parallel explo-
ration of alternatives has been pointed out as an important aspect
of creative work [36]. The combination of logic and scene elements
enables users to select the full unit of a game object at once. This
form of co-location not only supports overview but users also per-
ceived it as useful for experimentation: through one select and
one duplicate action, they could create a full copy of their design
and begin changing aspects without losing their prior state. For
comparison, in Godot, users need to find and duplicate the right
subscene file, a script file, and then instantiate the new subscene
next to the original. Users pointed out the benefits of co-located el-
ements in Pronto through the statements collected in Pronto Theme
6 "Invitation to (Rapid) Prototyping" that express more willingness
to throw elements away and experiment.

Exposed magic numbers support experiments. Once a basic imple-
mentation of a prototype had been completed, users began tweaking

All in One: Rapid Game Prototyping in a Single View CHI ’25, April 26–May 01, 2025, Yokohama, Japan

parameters they introduced. Often, these were represented as sim-
ple "magic numbers" in their Godot scripts. Thus, even though
Godot supports live-reloading of scripts and values, tweaking pa-
rameters of multiple scripts that depend on one another requires
frequent switches between panels, scripts, or objects. In contrast, as
Pronto consolidates all game objects, their logic, and thus also their
magic numbers in one screen, participants were generally able to
access any relevant number without requiring switching panels. A
common pattern to circumvent this issue is to collect all relevant
parameters in a single global script in Godot. Users of Pronto benefit
even without this pattern, and thus can also experiment with values
they had not previously promoted to be in the global script.

Interfaces of behaviors matched users’ needs but may not general-
ize. Our cognitive walkthrough indicated in "Insight 1: Behavior
granularity" that the behaviors should match the tasks well but
may lead to some confusion due to overlapping responsibilities.
Indeed, our user study showed that behaviors matched the level of
granularity that participants were looking for while creating their
prototypes as documented in Pronto Theme 1: they neither exposed
too much nor too little detail. This is in contrast to Godot, as de-
scribed in Godot Theme 4 in subsection 5.2 ("Complex interfaces").
However, in the general case, two concerns with our approach
to behaviors became apparent through the study. First, behaviors
for a specific functionality may be missing and would have to be
created by the designer as part of or in preparation for the pro-
totyping session. Second, behaviors may not be at the adequate
level of abstraction: as of right now, behaviors act as primitives in
the system, such that users must either use the behavior as-is or
recreate its functionality from scratch using lower-level behaviors.
As an example, consider the high-level PlatformController behavior
that encapsulates input handling and causing movement. While
the behavior works well for basic platforming, it does not support
double-jumping, i.e., triggering a second jump while in the air. Con-
sequently, users would have to recreate its functionality using input
handling and movement behaviors instead. In many situations, this
limitation is likely even desirable: if the mechanic the user wants to
test is concerned with movement, the extra control gained from a
custom implementation could help, whereas the default movement
behavior can be helpful if the prototype is concerned with other
aspects. Still, in its current implementation, a mix of abstraction
levels manifested as an issue when users perceived an overlap, as
documented in Pronto theme 2, "Distinction and interoperability
of pre-defined behaviors". As part of future work, it would be in-
teresting to allow gradually lowering the level of abstraction of
behaviors. Designers could thus gain more control when they need
it by asking Pronto to display a single higher-level behavior as a
modifiable composition of multiple lower-level behaviors.

Feedback concerning prototyping speed. To determine quantita-
tively whether users were able to prototype faster is not possible
through the study we performed, as we only collected qualitative
insights. At the same time, assessing time to completion of a pro-
totype may be an undesirable or misleading metric [29], as much
of the design of Pronto aims to get users to experiment with their
design. In terms of a qualitative comparison between the Pronto and
Godot, participants expressed frustration about switching contexts

in Godot (Godot theme 2, "Context switches slow down prototyp-
ing"). They lauded Pronto for encouraging experimentation while
hinting at fast access to relevant parts as a possible reason, as doc-
umented in Pronto theme 6, "Invitation to Prototyping".

6.3 Runtime Visualizations for Debugging
The need to debug brings designers into a different mindset com-
pared to prototype creation or tweaking, where they either oppor-
tunistically attempt to find the defect in their game or follow a
structured approach to narrow down possible causes [42]. Godot
has excellent support for synchronizing changes in the editor to the
running game, which Pronto inherits. Using live-synchronization,
designers can quickly modify state or test hypotheses to narrow
down the problem space.

Still, participants of our studies pointed out how they preferred
debugging in Pronto, as expressed in Godot theme 3, "Time and
effort intensive debugging" and Pronto theme 3, "Runtime visual-
izations fulfills concrete need". Based on the observations we made,
we believe Pronto appears to better support debugging because of
its single scene view. Users appeared to make use of two advan-
tages: first, the entirety of their program’s logic can be seen on one
screen. As connections blink when activated, they have an efficient
way to find entry points for potential failures due to missing or
too frequent activations. Second, when users wanted to live-edit
or inspect properties in Godot, they still needed to switch scenes
or scripts, whereas in Pronto, the same live-editing and inspection
facilities are present but all objects are directly accessible.

Depending on the type of bug, the event-based connections no-
tation may make it harder to trace the issue, as it may sometimes
introduce indirections or additional dependencies. Further, using
Godot’s built-in step-wise debugger is impractical to trace connec-
tion activations, as users have to first traverse Pronto’s stackframes
for every activation. Semantic stepping [37] may present a solution
to this issue. During our study, no bugs that were obscured due to
the connections occurred, however.

6.4 Limitations of The Design
Pronto is explicitly designed for prototyping of a single or very
few mechanics in an isolated setting. This constraint allows it to
fit all concerns in the single scene view, which, as discussed, ap-
pears to bring many of the benefits that users experienced during
prototyping.

Readability of complex scenes. Issues manifested in particular
when users were trying to work with scenes that spread out far
on the screen or that contained many connections. When zoomed
out to see all connections, users were unable to read labels of con-
nections that communicate important aspects of the connections’
functionality, as documented in Pronto theme 4, "Readability of Con-
nections". The limit of what fits well on a single screen in Pronto
forms a ceiling of practical project complexity. We believe this ceil-
ing is higher in Godot because users are encouraged to introduce
their own abstractions: users will routinely create subscenes for
the player, enemies, or other relevant objects. Consequently, when
other users want to comprehend a game setup, they can benefit
from these game-specific abstractions. In contrast, as per Pronto’s

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Krebs, Beckmann, Geier, Grenda, Ramson, Hirschfeld

design, abstraction is not supported in the same way: all connec-
tions are visible at all times. This issue was hinted at in our cognitive
walkthrough as "Insight 2: Refactoring connections". While spatial
proximity and the connections themselves should help users realize
whether a connection is relevant or not for the aspect of the game
they want to understand, designers cannot just encapsulate and
thus hide a complex piece of game logic in a subscene.

Going beyond prototypes. As Pronto has access to all functionality
of Godot, there are no games that could only be expressed in Godot
but not in Pronto. Still, the design constraint of containing all game
logic in a single scene puts a natural limit to complexity of scenes.
We have observed users create games whose complexity surprised
us but the benefits that come with Pronto also diminish as users
exceed the screen space: connections were cutting across game
objects, making them difficult to duplicate, or many connections
fired after every action, making the visualization less useful.

Integrating with Godot. Pronto’s functionality, in theory, inte-
grates without issue into a regular Godot game development work-
flow: users can add behaviors and connections in subscenes, e.g.,
just for the player character, and reuse those scenes as part of a
larger game. While this would preserve many of the benefits users
appreciated when creating scenes, the debugging experience and
overview would necessarily suffer, as concerns get spread across
multiple files. It would be interesting future work to investigate
how users could spread behaviors across scenes and still gain the
benefits of Pronto reported in our study, for example by selecting
subscenes of interest to them to get runtime feedback for.

Generating textual code. To further integrate with common game
development workflows, the logic expressed through Pronto’s con-
nections could even be inlined in readable, generated textual code.
Connections are a combination of user-authored expressions and
Godot signals that cooperate with Godot nodes and behaviors. Gen-
erated code for the example in Figure 3 would thus take a form
akin to the following GDScript, where behaviors are instantiated
off-screen and connections are instead expressed through Godot
code that combines the user-authored snippets with a connect call:

extends Node2D

def _ready ():
$Button.connect (" pressed", $door , func():

$door.queue_free ())

var press = KeyBehavior.new()
press.key = "a"
press.connect (" pressed", $door , func():

$door.queue_free ())

7 Conclusion
In this paper, we investigated the effect of combining scene objects
and game logic in a single view to create throwaway prototypes
for game mechanics rapidly. We evaluated our implementation to
test this idea, Pronto, in a cognitive walkthrough and a user study
that compared the prototyping workflow in Pronto to Godot. Our
findings indicate that participants felt well supported by Pronto:

they appeared to experiment more than in Godot and reported
that they felt more efficient in creating and debugging prototypes.
Pronto’s mix of visual and textual code worked well in our study.
Issues occurred when users began to exceed the natural boundary
of Pronto’s design, the single screen. While Pronto remains usable,
the advantages begin to diminish when users construct complex
scenes with many connections or spread scenes out, such that they
no longer fit on one screen.

Based on these insights, we hope that more game prototyping
tools consider choosing a similar trade-off: tools may experiment
with designs that constrain users to a single screen to bring them
the benefits of immediate overview and access. They may also inves-
tigate the use of hybrid visual and textual notations, where visual
notations are used for those parts that users appear to conceptualize
visually and text otherwise.

References
[1] Tom Beckmann, Eva Krebs, Leonard Geier, Lukas Böhme, Stefan Ramson, and

Robert Hirschfeld. 2024. Ghost in The Paper: Player Reflex Testing with Compu-
tational Paper Prototypes. PPIG 2024 Proceedings 35th Annual Workshop (2024),
8–19. https://www.ppig.org/files/2024-PPIG-35th--proceedings.pdf

[2] Paul Beynon-Davies, C Carne, Hugh Mackay, and D Tudhope. 1999. Rapid appli-
cation development (RAD): An empirical review. European Journal of Information
Systems 8 (09 1999). doi:10.1057/palgrave.ejis.3000325

[3] Paul Beynon-Davies, Hugh Mackay, and Douglas Tudhope. 2000. ‘It’s
lots of bits of paper and ticks and post-it notes and things . . .’: a
case study of a rapid application development project. Information Sys-
tems Journal 10, 3 (2000), 195–216. doi:10.1046/j.1365-2575.2000.00080.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2575.2000.00080.x

[4] Blender Online Community. 1994. Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam. http://www.blender.org

[5] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychol-
ogy. Qualitative Research in Psychology 3, 2 (01 2006), 77–101. doi:10.1191/
1478088706qp063oa

[6] Andrea A. diSessa. 1985. A principled design for an integrated computational
environment. Hum.-Comput. Interact. 1, 1 (March 1985), 1–47. doi:10.1207/
s15327051hci0101_1

[7] Henrik Engström, Jenny Brusk, and Patrik Erlandsson. 2018. Prototyping Tools
for Game Writers. The Computer Games Journal 7, 3 (June 2018), 153–172. doi:10.
1007/s40869-018-0062-y

[8] Vanessa Freudenberg, Yoshiki Ohshima, and Scott Wallace. 2009. Etoys for
One Laptop Per Child. In 2009 Seventh International Conference on Creating,
Connecting and Collaborating through Computing. IEEE Computer Society, USA,
57–64. doi:10.1109/C5.2009.9

[9] Tracy Fullerton and Chris Swain. 2004. Game Design Workshop. CMP Books,
London, England.

[10] T. R. G. Green and M. Petre. 1996. Usability Analysis of Visual Programming
Environments: A ‘Cognitive Dimensions’ Framework. Journal of Visual Languages
& Computing 7, 2 (01 06 1996), 131–174. doi:10.1006/jvlc.1996.0009

[11] Brian Harvey and Jens Mönig. 2015. Lambda in blocks languages: Lessons learned.
In 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond). IEEE, USA, 35–38.
doi:10.1109/BLOCKS.2015.7368997

[12] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997.
Back to the future: the story of Squeak, a practical Smalltalk written in itself. In
Proceedings of the 12th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Atlanta, Georgia, USA) (OOPSLA ’97).
Association for Computing Machinery, New York, NY, USA, 318–326. doi:10.
1145/263698.263754

[13] Alan Kay. 2005. Squeak etoys, children & learning. online article 2006 (2005), 1–8.
http://www.squeakland.org/resources/articles

[14] Amy J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A practical guide
to controlled experiments of software engineering tools with human participants.
Empirical Software Engineering 20, 1 (01 02 2015), 110–141. doi:10.1007/s10664-
013-9279-3

[15] Eva Krebs, Tom Beckmann, Leonard Geier, Stefan Ramson, and Robert Hirschfeld.
2023. Pronto: Prototyping a Prototyping Tool for Game Mechanic Prototyping.
PPIG 2023 Proceedings 34th Annual Workshop (2023), 157–168. https://www.
ppig.org/files/2023-PPIG-34th--proceedings.pdf

[16] Jens Lincke, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. 2009. Lively Fabrik
A Web-based End-user Programming Environment. In 2009 Seventh International
Conference on Creating, Connecting and Collaborating through Computing, Vol. 36.

https://www.ppig.org/files/2024-PPIG-35th--proceedings.pdf
https://doi.org/10.1057/palgrave.ejis.3000325
https://doi.org/10.1046/j.1365-2575.2000.00080.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2575.2000.00080.x
http://www.blender.org
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1207/s15327051hci0101_1
https://doi.org/10.1207/s15327051hci0101_1
https://doi.org/10.1007/s40869-018-0062-y
https://doi.org/10.1007/s40869-018-0062-y
https://doi.org/10.1109/C5.2009.9
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1109/BLOCKS.2015.7368997
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
http://www.squeakland.org/resources/articles
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-013-9279-3
https://www.ppig.org/files/2023-PPIG-34th--proceedings.pdf
https://www.ppig.org/files/2023-PPIG-34th--proceedings.pdf

All in One: Rapid Game Prototyping in a Single View CHI ’25, April 26–May 01, 2025, Yokohama, Japan

IEEE, USA, 11–19. doi:10.1109/c5.2009.8
[17] Colleen Macklin and John Sharp. 2016. Games, Design and Play. Addison-Wesley

Educational, Boston, MA.
[18] John Maloney. 1995. Morphic: The self user interface framework. Self 4.0 Release

Documentation 1995 (1995), 1–27.
[19] John H. Maloney and Randall B. Smith. 1995. Directness and Liveness in the

Morphic User Interface Construction Environment. In Proceedings of the 8th
Annual ACM Symposium on User Interface and Software Technology (Pittsburgh,
Pennsylvania, USA) (UIST ’95). Association for Computing Machinery, New York,
NY, USA, 21–28. doi:10.1145/215585.215636

[20] Jon Manker and Mattias Arvola. 2011. Prototyping in game design: externalization
and internalization of game ideas. In Proceedings of the 2011 British Computer
Society Conference on Human-Computer Interaction, BCS-HCI 2011, Newcastle-
upon-Tyne, UK, July 4-8, 2011, Linda Little and Lynne M. Coventry (Eds.). ACM,
New York, NY, USA, 279–288. http://dl.acm.org/citation.cfm?id=2305366

[21] Javier Marco, Eva Cerezo, and Sandra Baldassarri. 2012. ToyVision: a toolkit for
prototyping tabletop tangible games. In Proceedings of the 4th ACM SIGCHI Sym-
posium on Engineering Interactive Computing Systems (Copenhagen, Denmark)
(EICS ’12). Association for Computing Machinery, New York, NY, USA, 71–80.
doi:10.1145/2305484.2305498

[22] Janice M. Morse. 1995. The Significance of Saturation. Qualitative Health Research
5, 2 (01 05 1995), 147–149. doi:10.1177/104973239500500201 Publisher: SAGE
Publications Inc.

[23] Jakob Nielsen and Thomas K. Landauer. 1993. A mathematical model of the
finding of usability problems. In Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems (New York, NY, USA) (CHI
’93). Association for Computing Machinery, New York, NY, USA, 206–213. doi:10.
1145/169059.169166

[24] John Pane, Chotirat Ratanamahatana, and Brad Myers. 2000. Studying the
language and structure in non-programmers’ solutions to programming prob-
lems. International Journal of Human Computer Studies 54 (10 2000), 237–264.
doi:10.1006/ijhc.2000.0410

[25] Marian Petre. 2006. Cognitive dimensions ‘beyond the notation’. Journal of Visual
Languages & Computing 17, 4 (01 08 2006), 292–301. doi:10.1016/j.jvlc.2006.04.003

[26] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2019. Exploratory and Live, Programming and Coding - A Literature Study Com-
paring Perspectives on Liveness. The Art, Science, and Engineering of Programming
3, 1 (2019), 1. doi:10.22152/programming-journal.org/2019/3/1

[27] Alex Repenning. 1993. Agentsheets: a tool for building domain-oriented visual
programming environments. In Proceedings of the INTERACT ’93 and CHI ’93 Con-
ference on Human Factors in Computing Systems (Amsterdam, The Netherlands)
(CHI ’93). Association for Computing Machinery, New York, NY, USA, 142–143.
doi:10.1145/169059.169119

[28] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun. ACM
52, 11 (nov 2009), 60–67. doi:10.1145/1592761.1592779

[29] Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch,
and Mike Eisenberg. 2005. Design Principles for Tools to Support Creative
Thinking. Report of Workshop on Creativity Support Tools 20 (01 01 2005).

[30] Emanuel Montero Reyno and José Á Carsí Cubel. 2009. Automatic prototyping
in model-driven game development. Comput. Entertain. 7, 2, Article 29 (jun 2009),
9 pages. doi:10.1145/1541895.1541909

[31] Emanuel Montero Reyno and José Á. Carsí Cubel. 2008. Model Driven Game
Development: 2D Platform Game Prototyping. In GAMEON’2008, (Covers Game
Methodology, Game Graphics, AI Behaviour, Game AI Analysis, AI Programming,
Neural Networks and Agent Based Simulation, Team Building, Education and Social
Networks), November 17-19, 2008, UPV, Valencia, Spain, Vicente J. Botti, Antonio
Barella, and Carlos Carrascosa (Eds.). EUROSIS, Belgium, 5–7.

[32] José Rouillard, Audrey Serna, Bertrand David, and René Chalon. 2014. Rapid
Prototyping for Mobile Serious Games. Springer International Publishing, USA,
194–205. doi:10.1007/978-3-319-07485-6_20

[33] Jesse Schell. 2015. The art of game design: a book of lenses. CRC Press, USA.
[34] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas

Elmqvist, and Nicholas Diakopoulos. 2016. Designing the User Interface: Strategies
for Effective Human-Computer Interaction (6th ed.). Pearson, London, UK.

[35] Iris Soute, Tudor Vacaretu, Jan De Wit, and Panos Markopoulos. 2017. Design and
Evaluation of RaPIDO, A Platform for Rapid Prototyping of Interactive Outdoor
Games. ACM Trans. Comput.-Hum. Interact. 24, 4, Article 28 (aug 2017), 30 pages.
doi:10.1145/3105704

[36] Michael Terry, Elizabeth D. Mynatt, Kumiyo Nakakoji, and Yasuhiro Yamamoto.
2004. Variation in element and action: supporting simultaneous development of
alternative solutions. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Vienna, Austria) (CHI ’04). Association for Computing
Machinery, New York, NY, USA, 711–718. doi:10.1145/985692.985782

[37] David Ungar, Henry Lieberman, and Christopher Fry. 1997. Debugging and the
experience of immediacy. Commun. ACM 40, 4 (April 1997), 38–43. doi:10.1145/

248448.248457
[38] Nicola Valcasara. 2015. Unreal Engine Game Development Blueprints. Packt

Publishing Ltd, Birmingham, UK.
[39] Robert A. Virzi. 1992. Refining the Test Phase of Usability Evaluation: How Many

Subjects Is Enough? Human Factors 34, 4 (01 08 1992), 457–468. doi:10.1177/
001872089203400407 Publisher: SAGE Publications Inc.

[40] Markus Weninger, Paul Grünbacher, Elias Gander, and Andreas Schörgenhumer.
2020. Evaluating an Interactive Memory Analysis Tool: Findings from a Cognitive
Walkthrough and a User Study. Proceedings of the ACM on Human-Computer
Interaction 4 (18 06 2020), 1–37. Issue EICS. doi:10.1145/3394977

[41] Yasuhiro Yamamoto and Kumiyo Nakakoji. 2005. Interaction design of tools for
fostering creativity in the early stages of information design. International Journal
of Human-Computer Studies 63, 4 (2005), 513–535. doi:10.1016/j.ijhcs.2005.04.023
Computer support for creativity.

[42] Andreas Zeller. 2005. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

A Interview Questions and Related Cognitive
Dimensions of Notation

Table 4 presents the set of questions used in our interviews. 13 of
these questions can be directly attributed to at least one Cognitive
Dimension. This follows a similar structure in prior work [40].

B Actions in the Cognitive Walkthrough
A visualization of the actions in the cognitive walkthrough is shown
in Figure 8.

Figure 8: Sequence of actions required to solve the cognitive
walkthrough’s task, labeled by sub-goal 1 through 3: creating
a top-down car with a sliding mechanic and special behavior
on ice terrain.

C Detailed Task Design
Dashing Mechanic Prototype. With Pronto’s strong focus on sup-

porting 2D game mechanic prototyping, the goal was to select two
typical mechanics one might see in a standard video game. The
first task chosen was the implementation of a dashing mechanic for

https://doi.org/10.1109/c5.2009.8
https://doi.org/10.1145/215585.215636
http://dl.acm.org/citation.cfm?id=2305366
https://doi.org/10.1145/2305484.2305498
https://doi.org/10.1177/104973239500500201
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166
https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1016/j.jvlc.2006.04.003
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/169059.169119
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1541895.1541909
https://doi.org/10.1007/978-3-319-07485-6_20
https://doi.org/10.1145/3105704
https://doi.org/10.1145/985692.985782
https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/248448.248457
https://doi.org/10.1177/001872089203400407
https://doi.org/10.1177/001872089203400407
https://doi.org/10.1145/3394977
https://doi.org/10.1016/j.ijhcs.2005.04.023

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Krebs, Beckmann, Geier, Grenda, Ramson, Hirschfeld

Table 4: Overview of our interview questions and their relationship to the Cognitive Dimensions of Notations

Dimension

Question

Vi
sc
os
ity

Vi
si
bi
lit
y

Ro
le
-e
xp

re
ss
iv
en
es
s

A
bs
tr
ac
tio

n
G
ra
di
en
t

Cl
os
en
es
s o

f M
ap
pi
ng

Co
ns
is
te
nc
y

D
iff
us
en
es
s

H
ar
d
M
en
ta
l O

pe
ra
tio

ns

Er
ro
r-
Pr
on

en
es
s

H
id
de
n
D
ep
en
de
nc
ie
s

Pr
em

at
ur
e
Co

m
m
itm

en
t

Pr
og

re
ss
iv
e
Ev

al
ua
tio

n

Se
co
nd

ar
y
N
ot
at
io
n

G
en
er
al

What is your opinion about the steps you had to take for creating your initial implementation (sub-task-1)
with the tool?

x

What was your process for adapting the mechanic to the new environment (sub-task-2 & 3)? x
What was it like to make multiple changes to your implementation (sub-task-2 & 3)? x
Could you please describe the tools expressiveness in the context of this task? x x
Briefly describe how you interacted with existing abstractions (predefined components, interfaces, lifecycle
methods) and what, if anything, you were missing?

x

Was there anything that surprised you about the tool you were using? x x
If anything, was there something that was unnecessarily extensive or complex to do? x x
If anything, what was especially easy to accomplish? x x
Did you encounter any errors? And if so, do you believe the tool could have helped to prevent them? x
What, if anything, would you want the tool to communicate more clearly? x
Did the tool support the order of your creative process or did you have to adapt your process to the tool’s? x
How well were you able to track your implementation progress for each subtask? x
Would you, and in what way, have benefited from additional ways to annotate, organize or structure your
implementation?

x

What was your overall impression of the experience? x
If you could change exactly one thing about the tool you were using, what would you change? x

an existing player character. Dashing, or the temporary and rapid
acceleration of a player’s character in the direction of choice, is a
common feature in many video games. Some even make this their
primary means of traversing levels. A select few games that have a
significant focus on dashing are the indie hit Celeste 11 , where the
player guides a young woman on her quest to climb an enormous
mountain, Ori and the Blind Forest 12 , where the player controls a
guardian spirit on a journey to restore a dying forest, and Enter the
Gungeon 13 , a top-down rougelike where dashing is one of the only
defensive moves available for escaping the hoard of bullets that are
shot the player’s way.

Sub-Task 1. During the study, participants must initially imple-
ment a dash to allow them to cross the gap between the two sides
from left to right. No further requirement is given. The player’s
jump alone does not allow for crossing the gap.

Sub-Task 2. Having implemented the initial dash, the participants
are now confronted with a much wider gap, including two platforms
of different heights that they must utilize to cross the gap. As
this would not be possible with a purely horizontal dash, the task
also required participants to implement dashing in at least eight
directions.

Sub-Task 3. Finally, the level changes again, and participants
must fine-tune their mechanic to traverse platforms of various sizes
and in different positions to reach a marked goal on the other side
of the screen. This level progression is visualized in Figure 9.

11https://www.celestegame.com/, last accessed: 2025-02-11
12https://www.orithegame.com/blind-forest/, last accessed: 2025-02-11
13https://enterthegungeon.com/, last accessed: 2025-02-11

Figure 9: Overview of dash task level changes from sub-task
to sub-task

Driving and Sliding Mechanic Prototype. Another mechanic often
found in games is the movement of vehicles. Driving can be an
integral part of various games and is often modified based on the
desired game effect, ranging from Mario Kart’s 14 arcade-like driving
and drifting all the way to SnowRunner’s 15 hyper-realistic traction
simulation.

Sub-Task 1. Presented with an empty level, participants must
implement driving for an existing car object. They are tasked with
ensuring the car can accelerate, brake, and steer. Additionally, the
car must have a capped top speed and be affected by friction.

14https://store.nintendo.de/de/mario-kart, last accessed: 2025-02-11
15https://www.focus-entmt.com/en/games/snowrunner%20, last accessed: 2025-02-11

https://www.celestegame.com/
https://www.orithegame.com/blind-forest/
https://enterthegungeon.com/
https://store.nintendo.de/de/mario-kart
https://www.focus-entmt.com/en/games/snowrunner%20

All in One: Rapid Game Prototyping in a Single View CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 10: Overview of car task level changes from sub-task
to sub-task

Sub-Task 2. Having done so, participants are presented with a
level that contains icy patches. When the car drives over the ice, all
controls need to be disabled, and the car should continue sliding
on the ice until it once again reaches a non-ice surface. Once this is
implemented and demonstrated, participants may move on to the
final sub-task.

Sub-Task 3. The level changes once more. Now, it contains a race
track as well as icy patches, and participants must continuously
tweak their driving mechanic to complete at least one lap without
leaving the track. This level progression is visualized in Figure 10.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 A Prototyping Tool for Godot
	3.1 The Godot Game Engine
	3.2 Pronto
	3.3 Abstraction-level of Behaviors
	3.4 Composing Larger Scenes
	3.5 Designing For a Single View
	3.6 Prototyping Prototyping: Example Games

	4 Cognitive Walkthrough
	4.1 Setup
	4.2 Results
	4.3 Threats to Validity

	5 User Study
	5.1 Study Design
	5.2 Results
	5.3 Threats to Validity

	6 Discussion and Future Work
	6.1 Bridge Between Visual and Textual Programming
	6.2 The Single View Supports Rapid Prototyping
	6.3 Runtime Visualizations for Debugging
	6.4 Limitations of The Design

	7 Conclusion
	References
	A Interview Questions and Related Cognitive Dimensions of Notation
	B Actions in the Cognitive Walkthrough
	C Detailed Task Design

