
Scoping Changes in Self-supporting Development
Environments using Context-oriented Programming

Jens Lincke Robert Hirschfeld
Hasso-Plattner-Institut

Universität Potsdam, Germany
{firstname.surname}@hpi.uni-potsdam.de

ABSTRACT
Interactive development in self-supporting systems like
Smalltalk or the Lively Kernel allows for an explorative and
direct development workflow. Because of the immediate and
direct feedback loops, changes to core behavior can lead to
accidentally breaking the programming tools themselves. By
separating the tools from the objects they work on, this fa-
tal self referentiality can be avoided, but at the expense of
interactive development. In this paper we show how context-
oriented programming (COP) can be used to separate tools
from the objects under development. Instead of directly
modifying meta-structures, changes should go into layers
on top of these structures. Since layers can be scoped at
run-time, changes do not affect the programming tools. We
demonstrate this approach by showing examples of adapting
core behavior in our self-supporting development environ-
ment Webwerkstatt with ContextJS, our COP extension for
JavaScript.

1. INTRODUCTION
Creating and evolving tools while they are used is com-

mon practice among programmers: Writing shell scripts or
extending text editors to optimize the programmers work-
flow are the most common examples. Self-supporting de-
velopment environments such as Smalltalk [6], Self [18],
Emacs [17], Squeak [9], and Lively Kernel [10] are systems
where developers can evolve their environment while they
are using it. All of these environments keep the software de-
velopment tools such as editors, debuggers, or code browser
in the same environment as the objects and meta-objects
they are working on. This allows for a direct development
style with short feedback loops. A good motivation for such
interactive programming styles gives Bret Victor in his talk
on Inventing on Principle [19], where changes to the source
code can immediately be observed in the running program
side by side.

Having such tight interaction between tools and meta-
structures such as classes can make the development of core

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP’12, June 11, 2012, Beijing, China
Copyright 2012 ACM 978-1-4503-1276-9/12/06 ...$5.00.

behavior difficult if tools are changing the classes or methods
they are depending on. Errors or debug statements in some
core part of the system may break the whole development
environment and force a restart. Developers can get used to
such behavior, create workarounds, or become overly careful
when changing core parts of the system.

In this paper we propose to use context-oriented program-
ming (COP) as a technique to isolate changes to the core
system during development. Instead of modifying classes di-
rectly at run-time, changes should be applied to layers, that
can then be scoped to specific parts of the system. With
these layers new features can be tried out. When they meet
the developers’ needs, they can be applied to other parts of
the system or even activated globally.

The remainder of the paper is structured as follows: Sec-
tion 2 discusses different approaches of separating the tools
from the objects they work on. Section 3 describes how
COP layers can be used to scope changes during develop-
ment. Section 4 illustrates this approach with examples.
Section 5 describes tools that can support such a process.
Section 6 discusses related work and section 7 concludes.

2. SELF-SUPPORTING DEVELOPMENT
ENVIRONMENTS

This section presents three alternative workflows in self-
supporting development environments. We show the prob-
lems of insufficient separation between tools and objects and
discuss two approaches that address these.

2.1 No Separation
Figure 1 shows a very abstract overview of self-supporting

development environments [8] such as Squeak [9] and Lively
Kernel [10]. The environment has to be bootstrapped at
some point. The developer can then start creating and mod-
ifying meta-objects such as classes. Because this happens
at run-time, developers will get feedback from the objects
while they are interactively programming. The changes to
the meta-objects are typically also persisted outside of the
development environment in some kind of code repository.

Since tools, meta-objects, and objects are in the same
environment, there are no extra levels of indirection: the
tools can be simple and powerful. But at the same time
having no levels of indirection can be problematic and even
fatal if the developers want to work on objects such as core
classes that directly or indirectly affect the tools themselves.
The tools depend on those core classes. Introducing an error
or having an intermediate broken state is fatal for the whole

Code

Environment

ObjectsTools

Classes

bootstrap

change

feedback

persistence

depend

Figure 1: Abstract flow of changes and feedback in
a self-supporting development environment

environment. That is why developers have to be careful
with what they write, when they are modifying those shared
objects.

2.2 Separate Runtime Environment
A general approach to separate the tools from the ob-

jects they work on is to separate the runtime environment
of the tools from the runtime environment of the objects.
Development Environments such as Eclipse [5] fit into such
a scenario as depicted in Figure 2.

The development tools run in a separate environment and
mainly work on static code. To interact with objects, the
system under development has to be bootstrapped by exter-
nal code. The tools can still interact with the objects under
development, but only through interprocess communication,
which is more complicated to implement than direct access
to objects.

Having such a separation makes it hard to modify the
tools on the go. That is how tools become products which
are hard to shape during their usage.

2.3 Separate Meta-Objects
An other approach to allow tools and objects in the same

environment is to use different sets of meta-objects as shown
in Figure 3. The tools can have direct access to the objects
and change even core parts of the system. Since they mod-
ify a different version of the meta-objects and not their own,
the tools cannot be used to break themselves anymore just
by accident. Systems like ChangeBoxes [4] can be used to
develop in such a way. One limitation of it is that objects
are coupled tightly to one version of their meta-class. This
means that the scope of the behavioral variation cannot be
extended to preexisting objects. New behavior is only avail-
able for objects instantiated afterwards.

Classes

Code

Runtime
Environment

ObjectsTools

Classes

bootstrap

change

feedback

persistence

bootstrap

Development
Environment

dependdepend

Figure 2: Separated tool environment

Code

Environment

ObjectsTools

Classes

bootstrap

change

feedback

persistence

Classes'
clone

A B

dependdepend

Figure 3: Separated Meta-structures and object sets

Classes

Code

Environment

ObjectsTools

bootstrap

change

persistence

DevLayer

scopefeedback

dependdepend

Figure 4: Development with Scoped Behavioral
Adaptations

3. USING SCOPED BEHAVIORAL
ADAPTATIONS FOR EVOLVING
SELF-SUPPORTING DEVELOPMENT
ENVIRONMENTS

In this section we show how to employ COP in the pro-
cess of evolving self-supporting development environments
as shown in Figure 4. The programmers don’t modify the
core classes and methods directly, but use COP layers, that
can be scoped to only affect the behavior of the objects un-
der construction.

3.1 ContextJS
In the following examples, we use ContextJS [12, 13, 11],

our library-based COP extension to JavaScript. ContextJS
is a JavaScript library and implemented with method wrap-
pers [2]. It allows defining behavioral variations to objects
and scoping them in various ways.

3.2 Separating Changes in Layers
In the following example, an anonymous object with the

property n and a function count is created and assigned to
the global variable EventCounter:

EventCounter = {
n: 0,
count: function(evt) {
this.n = this.n + 1;

}
}

If this EventCounter is used by tools in a self-
supporting development environment, changing it could
be dangerous. Objects and behavior can be changed
at any time in JavaScript. If developers are inter-

ested which events are counted, they could add an
alert statement into the count method. The alert
statement can be used to display values to the user:

EventCounter.count = function(evt) {
alert("evt: " + evt);
this.n = this.n + 1;

}

But this might instantly bring the system to a halt, if it
is used by the tools because of the potentially many alerts.

By using COP and defining the new behavior in a layer,
the problem can be circumvented as follows:

cop.create("DevLayer").refineObject(EventCounter, {
count: function(evt) {
alert("evt: " + evt);
this.n = this.n + 1;

}
})

The layer hides the original behavior and without proceed-
ing to the base behavior. Since we do not add a new cross-
cutting concern here, but work on the base method source,
there is not need to proceed to other partial methods of the
layers or the base system.

3.3 Scoping Changes - Layer Activation
To actually affect the system, the DevLayer1 can then be

scoped in various ways as needed. The standard mechanism
in COP is the dynamical scoping:

cop.withLayers([DevLayer], function() {
// a call of EventCounter.count() in this scope
// will execute the new behavior in DevLayer

})

In interactive environments, most control flows are trig-
gered by events. Other scoping mechanisms such object spe-
cific and structural scoping [12] are better suited to activate
the new behavior. Figures 6 and 7 demonstrate such layer
activations.

If the developers are satisfied with their new behavior,
they might want to apply it to the whole environment. They
can do so by activating the layer globally. If they discover
an error they can still deactivate the layer and fall back to
the old behavior.

DevLayer.beGlobal();
// -> activate layer for all objects, even the tools

DevLayer.beNotGlobal();
// -> deactivate layer if necessary

3.4 Merging Changes back into the Base Sys-
tem

When the developers have tested their new be-
havior with the whole environment, they might de-
cide to merge their changes back into the base sys-
tem. We have added some filtering to our exam-
ple, that should be integrated into the base system:

1cop.create creates the layer and assigns it to a global vari-
able

Figure 5: A layer used during the development, that
visualizes move events of the mouse. The layer is
globally activated. When the mouse is moved over
any object including the workspace with the code,
the red rectangles are shown.

cop.create("DevLayer").refineObject(EventCounter, {
count: function(evt) {
if (evt.type === ’mousedown’) {
this.n = this.n + 1;

};
}

})

This merging step has still to be executed manually, but
since the layer can be directly mapped on the original struc-
tures, this process is straight forward:

EventCounter = {
n: 0,
count: function(evt) {
if (evt.type === ’mousedown’) {
this.n = this.n + 1;

};
}

}

If the partial layer definition contains a proceed statement,
merging will become more complex, but automatically com-
bining several partial layers and the base system is still pos-
sible. We already used a similar technique in a more efficient
ContextJS implementation [11].

4. EXAMPLES IN WEBWERKSTATT
We have gained experience using development layers when

evolving Lively Kernel in our self-supporting development
environment Webwerkstatt [14]. This section shows three
small examples that illustrate such usages.

4.1 Example 1: Visualizing Events
The first example shows how layers are used during devel-

opment to scope the effects of debugging code.
Figure 5 shows how code was added to the base system

to see where mouse move events are fired. Adding such
debugging code to core behavior can be problematic, as it
also affects the tools such as the workspace. Figure 6 shows
how by using object specific and structural scoping mecha-
nisms such adaptations of the base system can be scoped,
so that the debugging behavior is only active for some spe-
cific objects in the system (in that case the yellow rectangle
called DebugArea). The layer is structurally scoped, by us-
ing setWithLayers. This scoping mechanism is not general,

Figure 6: The ShowMouseMoveLayer which is de-
fined in the right workspace is only activated for the
yellow rectangle on the left. The layer is structurally
scoped by activating the layer for the DebugArea.

Figure 7: A workspace with the text coloring source
and an example instance.

but a domain-specific scoping mechanism introduced by the
Morphic [15] framework used for Lively Kernel.

4.2 Example 2: Text Coloring
An example of a behavioral adaptation in the develop-

ment environment is the feature of text coloring via key-
board shortcuts. Figure 7 shows the complete source in a
workspace and the text object, on which the new feature
was interactively tried out. The layer is refining the key-
board processing method and will color the current selection
if specific shortcuts are pressed.

This is a good example where shaping the tools happens
directly while they are used. Besides its simplicity, the ex-
ample also includes modifying the keyboard behavior of all
text objects, which can break the whole environment. Us-
ing layers allows to directly and interactively develop the
features locally and immediately use it in the whole system
afterwards.

4.3 Example 3: Developing Autocompletion
A more complex example is the development of source

code completion for the development environment as shown
in Figure 8. This feature is still under development and not
yet part of the core development system. It adapts over 10
methods in two classes, but the figure shows only the area
where the new behavior can be tried out and the workspace
with the code under development. By using layers, the fea-
ture that could interfere with the workspace itself can be
developed locally and tried out in other places by changing
the scope of the layer.

Figure 8: A snapshot of developing autocompletion
of source code, showing a workspace and an area
where the new code is activated.

5. PROPOSED TOOL SUPPORT
The workflow in the previous sections is purely based

on standard ContextJS syntax and developers have to con-
sciously follow it. They have to actively write their new
behavior as layers and scope the new behavior to see the
effects but thereby exclude their own tools. If some point
of the manual process is not followed, the developers will
risk losing parts of their work by accidentally breaking their
tools. We propose to move this process into tools to lift
mental burdens from the developers.

5.1 Capturing Changes
An enhanced tool support should provide developers with

the default view of the system. The view should allow them
to directly change classes and methods as they are used to.
The system captures these changes but does not apply them
directly to the meta-structures, such as editing a method of
a class, but adds the change implicitly to a layer. Such a
layer can then be scoped, so that its effect cannot break
the tools by accident. Figure 9 shows three levels of tools
support:

• (A) No tool support, layers have to be defined explic-
itly.

• (B) The development layer is defined by the workspace,
the new behavior is defined in terms of normal class
definition syntax. This way developers need not to
learn about a new syntax but can stick to their normal
ways of modifying classes.

• (C) The development layer is defined by a Smalltalk
like, code browser: The user interface and not the syn-
tax is responsible for where the belongs to.

5.2 Interactive Layer Composition
Besides tools that support developers in creating lay-

ers, there is a need for tools that allow interactively
(de-)activating and scoping of layers. A tool like the one
sketched in Figure 10 could allow for faster experimentation
with different compositions of development layers.

DevLayerA

DevLayerB

DevLayerC

…

Global | ObjectA | ...
select scope

(de-)activate layers

Figure 10: Tool support that allows to directly
(de-)activate development layers for a specific scope.

6. RELATED WORK
Any system that allows for dynamically scoped behavioral

variations should be able to employ these mechanism dur-
ing development in self-supporting environments. We used
context-oriented programming [3, 7] as an approach for scop-
ing behavioral adaptations at run-time. For an overview of
existing COP implementation in various languages see [1].

The problem of breaking tools during the development of
interface code was explicitly mentioned as an application of
perspectives in the subjective programming language Us [16].
Us changes message passing of Self [18] to incorporate per-
spectives on layers. In one of their examples they describe
how perspectives are used to try out and combine different
changes. The authors describe a fallback approach for a de-
bugger to a safer perspective, but the approach seems to be
not implemented or evaluated.

ChangeBoxes [4] are a mechanism that allows to manage
multiple development branches of an application within a
single, running application. This mechanism could basically
be used to work with tools of one branch on tools in an-
other branch, so that the tools cannot break themselves as
discussed in section 2.3. But the authors do not apply their
approach to this domain.

7. CONCLUSION AND FUTURE WORK
Evolving tools in self-supporting development environ-

ments can on the one hand be more direct and more inter-
active than in more separated environments. On the other
hand it can be more dangerous, because changing core parts
of the system can also lead to accidentally breaking it. In our
approach to developing in self-supporting development en-
vironments, instead of changing classes directly, we applied
context-oriented programming to mitigate this problem by
encapsulating changes into layers, which allow to try them
out safely.

To illustrate our approach, we showed examples from our
work on evolving the Lively Kernel in our self-supporting
development environment Webwerkstatt.

Since this workflow relies on developers actively employing
layers, as part of future work we want to support an auto-
matic and implicit creation of layered methods. Merging
layers with the base system is manual work, which should
be automated by tool support in the future.

A

Class Browser Xworkspace Xworkspace X

cop.createLayer("DevLayerA")
.refineClass(Foo, {
 bar: function() {
 // …
 },
 // …
})

Foo.addMethods({
 bar: function() {
 // …
 },
 // …
})

DevLayerA

function() {
 // …
}

Foo
Foo2

bar
bar2
bar3

DevLayerA

B C

Class SyntaxCOP Layer Definition Syntax

Layer Name Layer Name

Class Names Method Names

Method Body

Explicit COP usage Capturing with class syntax Capturing with tools

Figure 9: Tool support for development layers

Acknowledgements
This work has been supported by the HPI-Stanford Design
Thinking Research Program.

8. REFERENCES
[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke,

and M. Perscheid. A Comparison of Context-oriented
Programming Languages. In Proceedings of the
Workshop on Context-oriented Programming (COP),
co-located with ECOOP 2009, Genoa, Italy. ACM,
2009.

[2] J. Brant, B. Foote, R. Johnson, and D. Roberts.
Wrappers to the Rescue. In E. Jul, editor, ECOOP’98
— Object-Oriented Programming, volume 1445 of
Lecture Notes in Computer Science, pages 396–417.
Springer Berlin / Heidelberg, 1998.
10.1007/BFb0054101.

[3] P. Costanza and R. Hirschfeld. Language Constructs
for Context-oriented Programming: An Overview of
ContextL. In DLS ’05: Proceedings of the 2005
symposium on Dynamic languages, pages 1–10, New
York, NY, USA, 2005. ACM.

[4] M. Denker, T. Gı̂rba, A. Lienhard, O. Nierstrasz,
L. Renggli, and P. Zumkehr. Encapsulating and
Exploiting Change with Changeboxes. In ICDL ’07:
Proceedings of the 2007 international conference on
Dynamic languages, pages 25–49, New York, NY,
USA, 2007. ACM.

[5] E. Gamma and K. Beck. Contributing to Eclipse:
Principles, Patterns, and Plugins. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA,
USA, 2003.

[6] A. Goldberg. SMALLTALK-80: The Interactive
Programming Environment. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1984.

[7] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented Programming. Journal of Object
Technology, 7(3):125–151, March - April 2008.

[8] R. Hirschfeld and K. Rose, editors. Self-Sustaining
Systems, First Workshop, S3 2008, Potsdam,
Germany, May 15-16, 2008, Revised Selected Papers,
volume 5146 of Lecture Notes in Computer Science.
Springer, 2008.

[9] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself. ACM SIGPLAN
Notices, 32(10):318–326, 1997.

[10] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and
T. Mikkonen. The Lively Kernel A Self-Supporting
System on a Web Page. In S3 2008, LNCS 5146.
Springer-Verlag Berlin Heidelberg, 2008.

[11] R. Krahn, J. Lincke, and R. Hirschfeld. Efficient Layer
Activation in ContextJS. In Proceedings of the
Conference on Creating, Connecting and Collaborating
through Computing (C5). IEEE, 2012.

[12] J. Lincke, M. Appeltauer, B. Steinert, and
R. Hirschfeld. An Open Implementation for
Context-oriented Layer Composition in ContextJS.
Science of Computer Programming, 2011.

[13] J. Lincke, R. Krahn, and R. Hirschfeld. Implementing
Scoped Method Tracing with ContextJS. In Workshop
on Context-oriented Programming (COP) 2011,
co-located with ECOOP 2011, Lancaster, UK, COP
’11, pages 6:1–6:6. ACM, 2011.

[14] J. Lincke, R. Krahn, D. Ingalls, M. Roder, and
R. Hirschfeld. The Lively PartsBin–A Cloud-Based
Repository for Collaborative Development of Active
Web Content. volume 0, pages 693–701, Los Alamitos,
CA, USA, 2012. IEEE Computer Society.

[15] J. H. Maloney and R. B. Smith. Directness and
Liveness in the Morphic User Interface Construction
Environment. In UIST ’95: Proceedings of the 8th
annual ACM symposium on User interface and
software technology, pages 21–28. ACM, 1995.

[16] R. B. Smith and D. Ungar. A Simple and Unifying
Approach to Subjective Objects. Theory and Practice
of Object Systems, 2(3):161–178, 1996.

[17] R. Stallman. EMACS the Extensible, Customizable
Self-documenting Display Editor, volume 2. ACM,
1981.

[18] D. Ungar and R. B. Smith. Self: The Power of
Simplicity. Lisp and symbolic computation,
4(3):187–205, 1991.

[19] B. Victor. Inventing on Principle. Invited Talk at
Canadian University Software Engineering Conference
(CUSEC), January 2012.

