
Edit Transactions
Dynamically Scoped Change Sets for Controlled Updates in Live Programming

Toni Mattisa, Patrick Reina, and Robert Hirschfelda

a Hasso Plattner Institute, University of Potsdam, Germany

Abstract Live programming environments enable programmers to edit a running program and obtain im-
mediate feedback on each individual change. The liveness quality is valued by programmers to help work in
small steps and continuously add or correct small functionality while maintaining the impression of a direct
connection between each edit operation and its manifestation at run-time. Such immediacy may conflict with
the desire to perform a combined set of intermediate steps, like a refactoring, without instantly taking effect
after each individual edit operation. This becomes important when an incomplete sequence of small-scale
changes can easily break the running program.

State-of-the-art solutions focus on retroactive recovery mechanisms, such as debugging or version control.
In contrast, we propose a proactive approach: Multiple individual changes to the program are collected in
an Edit Transaction, which can be made effective if deemed complete. Upon activation, the combined steps
become visible together.

Edit Transactions are capable of dynamic scoping, allowing a set of changes to be tested in isolation before
being extended to the running application. This enables a live programming workflow with full control over
change granularity, immediate feedback on tests, delayed effect on the running application, and undos at the
right level of granularity.

We present an implementation of Edit Transactions along with Edit-Transaction-aware tools in Squeak/S-
malltalk. We asses this implementation by conducting a case study with and without the new tool support,
comparing programming activities, errors, and detours for implementing new functionality in a running sim-
ulation. We conclude that workflows using Edit Transactions have the potential to increase confidence in a
change, reduce potential for run-time errors, and eventually make live programming more predictable and
engaging.

ACM CCS 2012
Software and its engineering → Development frameworks and environments; Object oriented
development;

Keywords Live Programming, Tool Support, Immediate Feedback, Squeak/Smalltalk, Edit Transactions

The Art, Science, and Engineering of Programming

Submitted December 2, 2016

Published April 1, 2017

doi 10.22152/programming-journal.org/2017/1/13

© Toni Mattis, Patrick Rein, and Robert Hirschfeld
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 1, no. 2, 2017, article 13; 32 pages.

https://doi.org/10.22152/programming-journal.org/2017/1/13
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Edit Transactions

1 Introduction

Programming environments can be classified according to the timeliness of run-time
feedback. Environments that provide immediate feedback for any change at run-time
are called live programming environments [26]. Examples include Lively [13], Self [28],
some LISP environments, Squeak/Smalltalk [9, 12], and educational environments
like Scratch [20], and Etoys [8].

Immediate feedback sustains the impression of causality between change of source
code and change in run-time behavior, e.g. a previously failed unit test succeeding
right after the programmer saves that change, or a button having an effect when
clicked after updating its event handler. This immediacy often makes it difficult to
work on a more complex change, involving more than a single edit step, such as a
refactoring or implementation of a cross-cutting concern, without facing the imminent
danger of breaking the running program.

For example, if programmers decide to insert a call to a method that has not been
implemented yet, they could do so in non-live environments and implement the
missing method later before they run the program. In Smalltalk, for example, the code
referring to a planned, but not yet implemented method, may fail at any moment if it
is part of the control flow of a running program. This forces programmers to pause
their work on the call site, implement the missing method first, and then return to
the original method to save the code.

From the perspective of the programming environment, the feedback cycle can be
modeled as a two-stage process [19]:
1. Adaptation, the phase where a changed translation unit, e.g. a method in Smalltalk,

is translated to its executable representation. The feedback programmers obtain in
this phase is restricted to compile-time errors.

2. Emergence, the phase where the control flow reaches the newly translated program
parts and executes them, possibly causing a change in behavior that becomes
visible.
In this model of immediate feedback, the problem manifests itself as the fact that

the frequency of emergence is directly linked to the granularity of adaptation, i.e. after
each method change in Smalltalk, the newly compiled method becomes reachable
by the control flow. The following proposal focuses on separating emergence from
adaptation to allow programmers to change a desired number of translation units,
while giving full control of the time and scope of emergence to programmers.

Most contemporary programming environments are equipped with advanced de-
bugging facilities that enable to fix errors as they occur or revert the program to a
previous version that worked, but all of these facilities can only react to a failure
already emerging.

1.1 Changes as Edit Transactions

Rather than retroactively repairing a program after it failed, we propose to proactively
prevent changes from becoming automatically and globally effective. We aim at

13-2

Toni Mattis, Patrick Rein, and Robert Hirschfeld

situations where it is clear from the start that multiple locations across the program
need to be modified.

Our approach considers program execution and modification as concurrent activities
on the program’s representation, i.e classes and methods in class-based object-oriented
programming, and models them as Edit Transactions with atomicity properties, isola-
tion, and scope.
We give programmers explicit control over the scope where Edit Transactions are

active. By allowing a different composition of active Edit Transactions in different
control flows, programmers can explore new behavior resulting from recent changes,
such as running unit tests, without affecting an already running program.

We present an implementation in Squeak/Smalltalk based on dynamically scoped
views on state, methods, and classes, such that running programs are presented a
view into the system containing the old representation, but development tools and
test runners may already use and give feedback on a future version. Once the Edit
Transaction is activated globally, every control flow will atomically consider the new
program representation.

1.2 Case Study

We demonstrate Edit Transactions through a case study on a graphical actor-based
disease spreading simulation running in Squeak/Smalltalk. We implement the concept
of recovering from infections using an Edit Transaction based workflow and compare
it to a workflow without Edit Transactions. We show which types of errors occurred
in the two workflows and describe notable differences in the programming practice,
such as the order in which methods were changed. We also discuss the impact of Edit
Transactions on the responsiveness of the programming system.

1.3 Structure of this Work

In the following, we first introduce the concept of Edit Transactions in section 2. Based
on this conceptual description, section 3 demonstrate how Edit Transactions can be
integrated into the programming workflow through conceptual tools. In section 4
we describe our implementation of Edit Transactions for the Squeak/Smalltalk en-
vironment which we use to illustrate the concept in the case study documented in
section 5. Section 6 points out limitations of existing meta programming facilities we
encountered in designing and implementing Edit Transactions and outlines future
research directions. In section 7 we compare Edit Transactions to related approaches
and section 8 concludes the paper.

13-3

Edit Transactions

1 Simulation >> mainloop
2 [running] whileTrue: [
3 self ball step.
4 self wait: 10]
5
6 Ball >> step
7 self bounce; move; gravitate ⇐=(1)
8
9 Ball >> move
10 self position: (self position + self speed)
11
12 Ball >> gravitate ⇐=(2)
13 self speed y: (self speed y - Simulation gravity)
14
15 Ball >> bounce [...] Check edges and reflect

original changed

Figure 1 Smalltalk code running a bouncing ball simulation. A composite change marked
by⇐= should add gravity. Both changes should become effective at same time,
but in Smalltalk, the first change would already take effect after step is updated
and crash the simulation.

2 Edit Transactions

2.1 Introductory Example

As an introductory example, consider a game that involves a ball moving over the
screen and bouncing off the edges of its container. Smalltalk code for this scenario
is given in figure 1. As is customary in live programming, the game is constantly
running. The next step is to implement gravity via a separate method gravitate that
adds acceleration (see figure 1).

In Smalltalk, the granularity of change is a method, which means that updating the
step method to call gravitate would take effect immediately and trigger an exception
complaining that the message is not understood. Even worse, if there were multiple
stepping objects, each object would fail individually and raise an exception. The
workarounds are either implementing the method first and then call it, which requires
foresight, or halting the simulation, which sacrifices liveness.
We propose a different workflow, in which programmers can tell the editor that a

composite change is going to happen, similar to starting a transaction in a database.
We call this part staging. Then, programmers save the modified step method, which
already gives feedback on the syntactical correctness. If auto-testing is active, unit tests
would already run and signal that step raises an exception. After implementing gravitate,
programmers can activate both changes atomically. If the outcome is unexpected,
e.g. gravity has the wrong direction, both changes can be deactivated immediately. If
everything is fine, both changes can be committed to the code base, which we call
merge.
This concept of combining fine-grained adaptation that is partially live with a

controlled granularity and scope of emergence will be called Edit Transaction and is
defined below.

13-4

Toni Mattis, Patrick Rein, and Robert Hirschfeld

2.2 The Concept of Edit Transactions

An Edit Transaction is defined as a set of changes to a program’s meta-objects (defined
below) with a guarantee that all changes come into effect simultaneously (atomicity)
and can be undone immediately. The life cycle of a Edit Transaction is characterized
by the following concepts which can be regarded as operations applicable to the set
of changes it represents:

Staging While an Edit Transaction is staged, it collects changes to the program and
prevents them from modifying the underlying base system.

Activation In a defined scope, an arbitrary set of Edit Transactions can be activated,
which emulates the corresponding sequence of composite changes being applied
atomically. The scope can be extended over time to other threads and control flows
to obtain feedback. Deactivation undoes the changes atomically.

Merging If the flexibility of an Edit Transaction is not needed any more, it can be
merged into the base system and become permanent part of the program.

Aborting If the captured changes are not needed anymore the Edit Transaction can
also be aborted. This will, if applicable, un-stage, deactivate, and delete the Edit
Transaction from the system.

Activation, deactivation, and merging are subject to concurrency control to guar-
antee certain isolation and consistency properties for currently executing programs.
Further, while an Edit Transaction is staged, the following two operations are possible:

Add a new version of a meta-object The change to the meta-object becomes part of the
Edit Transaction. The new version can also represent a meta-object which does not
exist in the unmodified system. There is always only one version per meta-object
in a transaction.

Removing a meta-object If the transaction includes a version for the meta-object, this
version is removed. Otherwise, a removal of a meta-object is recorded in the
transaction.

2.3 Meta-object Changes

In the context of this work, meta-objects are the objects a program consists of, i.e.
classes and methods in class-based object-oriented environments. This definition is
independent from the meta-objects’ representation, e.g. whether they exist as source
code files or as first-class object within the running execution environment, because in
a live programming environment both should be conceptually the same and properly
synchronized to reflect code changes at run-time.

Edit Transactions are concerned with capturing changes to meta-objects. In a class-
based environment, we consider the following change operations that can be made
by editing tools:

Creation, deletion, renaming of a class
Changes to the class hierarchy
Creation, deletion, renaming of a field in a class

13-5

Edit Transactions

Creation, deletion, renaming of a method

In case the environment makes use of other programming models and modularity
concepts, such as packages, actors, layers, roles, etc., those need to be considered as
meta-objects as well. This work will focus on class and method modifications.

Invariants When recording changes to an Edit Transaction, we need to make sure
some invariants are met before an Edit Transaction is valid and can be activated during
program execution:
Hierarchy Invariant Each class has exactly one inheritance path to the top class. A

multiple inheritance approach would involve a more sophisticated method dispatch
which is beyond the scope of this work.

Field Invariant A field name may appear at most once in the inheritance path from
any class to the top class.

While these invariants are concerned with the static program structure and inherent
to most object-oriented environments, we impose additional invariants on an Edit
Transaction during run-time, which are more specific to live programming environ-
ments:
Class Preservation Invariant Each object maintains its class over the whole lifetime.

That means, a class will remain in the system (possibly anonymous) as long as it
has instances after deletion.

Information Preservation Invariant Each object preserves the most recent value as-
signed to each of its fields independently of activation or deactivation of an Edit
Transaction removing or adding this particular field. This ensures that an object’s
field is still readable even if an Edit Transaction deleting this field has been active in
a different control flow; and guarantees that an assigned value is not lost because
the Edit Transaction adding this field has temporarily been deactivated.

Changing methods We assume that the smallest unit of change regarding behavior is
a method, i.e. after updating and saving any code within a method, the executable
representation of the whole method is updated. For each modified method, the top-
most staged Edit Transaction stores both the executable representation of the new
method and the source code it was compiled from.
Effectively, Edit Transactions add another dimension of dispatch. When an object

receives a message, the default behavior is checking whether the class itself responds
to this message, i.e. has a method for it. If not, the lookup recurses into the superclass,
eventually finding a method to invoke or raising an appropriate exception after
reaching the top of the class hierarchy. With a set of active Edit Transactions, the
dispatch at each class needs to first look if any of the Edit Transactions has a modified
method for this class before proceeding to the unmodified class and subsequently
traverse the Edit Transaction stack again at the superclass.
Since an Edit Transaction can contain a method previously not understood by the

class, we can trivially add a method by storing it to the Edit Transaction under the new
message selector. Method removal means to install an indicator in an Edit Transaction

13-6

Toni Mattis, Patrick Rein, and Robert Hirschfeld

that the given message needs to be dispatched to the superclass immediately and not
to the current class.

If the same method is being updated multiple times within a single Edit Transaction,
only the most recently compiled version is retained.

Changing fields For each modified class, the staged Edit Transaction needs to store
which fields have been added and removed. Effectively, activating an Edit Transaction
overlays all instances of the changed class with a new view on their state. This requires
the same level of dynamicity regarding field access which we assume for method
dispatch.

Additionally, we need to maintain the field invariant, which can be achieved using
at least the following two approaches:
1. Strict: An Edit Transaction can only add a field to a class if it neither exists in the

inheritance path to the top nor in the subtree of subclasses of this class, except
it also contains a field removal for the conflicting field (e.g. it represents a full
pull-up field refactoring).

2. Relaxed: Field addition and removal can stack, i.e. existing fields may be re-added
and shadow the field with the same name, while non-existing fields can be deleted
without causing an effect. More elaborate edge-cases occur when multiple Edit
Transactions are stacked, which we will deal with in section 2.4.
For this work, we opt for the second, relaxed model, as it allows a more permissive

composition of Edit Transactions at run-time instead of forcing the developer to resolve
all conflicts before a change is complete. For the change to be persisted in the base
system, we need to make sure the field invariant holds eventually, i.e. by actually
removing conflicting fields in subclasses if the environment requires this.

Changing the class hierarchy An Edit Transaction should record the change to the
superclass of a class. As with field changes, we need to re-establish the field invariant
in either of the ways proposed for field changes. Concerning methods, we require a
late-bound super call that enables us to request the method resolution order from the
active Edit Transactions. Depending on how far-reaching the required change to the
method resolution mechanism is, we need to take care of the hierarchy invariant too,
e.g. by keeping deleted classes alive as long as classes in different Edit Transactions
inherit from them. Often this is done by the runtime environment anyways.

Altering the environment Adding, deleting, and renaming classes are environment-
changing operations, i.e. concern a partial mapping E(n) = c from a (global) class
name n to a (first-class) class c. Instances maintain their class, as they should refer to
classes by identity and not by name. In case of deletion, instances continue to exist
and behave like the last known version of their class (class preservation invariant), but
no new instances can be created by referring to the class name since E(n) = nil. An
Edit Transaction contains a differential environment E∆, such that the environment Ē
presented to the control flow after activation satisfies Ē(n) = E∆(n) if n ∈ domain(E∆)
else E(n).

13-7

Edit Transactions

2.4 Activation, Staging, and Dependencies

An Edit Transaction can be staged and activated independently. First, we describe a
scenario where only a single Edit Transaction is maintained:

Write access If there is a staged Edit Transaction, each change to any meta-object is
being captured by this Edit Transaction. Underlying meta-objects of the base system
remain untouched. If no Edit Transaction is staged, the base system is adapted as
usual. Technically, Edit-Transaction-aware tools require read access to the source code
and write access to source and executable representation of meta-objects, hence a
staged Edit Transaction is being used to provide the work-in-progress snapshot on the
source code without affecting execution until activated.

Read access While an Edit Transaction is active, all meta-objects appear as changed
in the respective Edit Transaction. E.g. method resolution will dispatch to the changed
method rather than the version present in the base system, and newly added object
state is accessible. Only unchanged meta-objects are re-used from the base system.

Stacking Edit Transactions We do not restrict our approach to having a single Edit
Transaction overlaying the base system. We allow the introduction of a new Edit
Transaction layered on top of a stack of existing ones for both staging and activation.
Only the most recently staged Edit Transaction captures changes. At run-time, multiple
stacked and active Edit Transactions appear as if the changes they contain are applied
to the base system in their order of activation, which means that the meta-object
versions in the more recently activated Edit Transaction have precedence over the next
lower level.

It may be the case that different Edit Transactionsmodify the same meta-objects, e.g.
a newer Edit Transaction adding class members deleted in a previous Edit Transaction,
or removing previously added members, as Transaction 2 in figure 2(1 – 2) does. This
creates dependencies.
As long as all dependencies are fulfilled by reproducing the staging order during

activation, the composition is safe and indistinguishable from having the changes
applied directly to the base system. However, we wish to retain full flexibility in acti-
vating, deactivating, re-ordering, staging, and un-staging Edit Transactions to develop,
test, and combine them in isolation. This may lead to unsafe compositions, such as
the one in figure 2 (3) where the deactivation of Transaction 1 broke dependencies
Transaction 2 relied on.

Similar to the design choices we were faced with while maintaining the field
invariant, we consider two models:
1. Strict: Dependencies are tracked and enforced at activation time, i.e. Edit Transac-

tionswith unsatisfied dependencies cannot be activated or force atomic co-activation
of their dependencies.

2. Relaxed: Edit Transactions may activate as any subset and any order and conflicts
emerge as run-time errors, are resolved using a specific protocol, or have no effect
at all if the dependency is irrelevant.

13-8

Toni Mattis, Patrick Rein, and Robert Hirschfeld

Class C a b

Class C ca

Transaction 1:

Class C a b

Class C ca

Transaction 1:

Class C

Transaction 2:

a c

Class C a b

Class C

Transaction 2:

a c

Class C a b

Class C

Transaction 2:

a c

Class C

Transaction 3:

a

Class C cb Class C a* b Class C a* b Class C b

Class C a b

Class C

Transaction 2b:

a

a

Class C b

1 2 3 4 4b

Run-time View:

Base System

Figure 2 Dependencies and conflicts on an example class. The top shows the run-time view
on the class at different stages, the base system is at the bottom. (1) Transaction
1, deleting field a and adding c, is activated. (2) Transaction 2 re-adds a (not the
same a, but a new field with the same name), deletes c, implicitly creating depen-
dencies (solid arrows). (3) Transaction 1 is deactivated or discarded, breaking
dependencies of Transaction 2. Our mitigation strategy shadows a at this point
and the deletion has no effect. (4) The doubly-added a is removed by a third
Edit Transaction, both original and shadowing a are invisible now since lookup
stops at the deletion. (4b) Deletion takes place in the same Edit Transaction as
addition, overwriting the add operation since both are mutually exclusive per
Edit Transaction, and hiding the old a, since top-down lookup stops with deletion.

Since changes to methods, fields, and inheritance heavily rely on late-bound, dynamic
dispatch, and dependency management adds a significant complexity, we opt for the
relaxed model and resolve conflicts at run-time.

Conflict Resolution We decide to use a conflict resolution strategy of least surprise.
The most recently performed action in the most recently activated Edit Transaction
which modifies a conflicting meta-object should “win” to save programmers from
having to consider more changes down the stack.
Adding an already existing meta-object, as in figure 2 (3) will be resolved by

shadowing the old meta-object. This way, Transaction 2 has the same behavior as when
the field had been removed in between, and does not suddenly expose old data in the
former field a. Methods are less of an issue, as they do not hold instance data.
Deletions will stop the top-down lookup for a named meta-object immediately.

Hence, it does not matter if a meta-object did not exist before, like member c in
figure 2 (3), or has been added multiple times, as a in figure 2 (4), where an already
shadowed a is being deleted by Transaction 3.

Adding and deleting meta-objects aremutually exclusive operations per Edit Transac-
tion. The last action performed in a staged Edit Transaction is the one effective during
activation. For example, in figure 2 (4b), programmers might want to delete the field
a again in the same Edit Transaction instead of a separate one, thereby discarding
the add operation as if it never happened. The overall behavior stays the same: only
member b is visible at run-time.

13-9

Edit Transactions

2.5 Scoping

An important feature of Edit Transactions is their capability to change their activation
scope over time. We propose the following types of scope changes:

Block-local activation A specific set of Edit Transactions is being activated for the
duration of a code block. After the control flow exits the block, the previous activation
state is restored. This code block may, for example, run tests or execute a user-
provided code snippet under consideration of the changes accumulated in the active
Edit Transactions.

Thread-local activation When an instance of the currently edited program is running
concurrently, changes can be pushed to the active control flow (thread). The other
activity makes use of the changed meta-objects as soon as possible to maintain
immediate feedback, but as late as necessary to keep the change atomic. Different
considerations on a suitable point for Edit Transaction activation are discussed in
section 2.6. Thread-local activation and deactivation permanently override block-local
activation, e.g. exiting a block where certain Edit Transaction has been activated does
not automatically deactivate this Edit Transaction when it has been thread-locally
activated during the block.

2.6 Concurrency Control

Since we require the changes captured inside an Edit Transaction to emerge atomically,
we need to take special care of pushing changes to other control flows, as the following
examples demonstrate:

1. Given three methods M1,M2, and M3, consider a thread having the call stack
[M3, M2, M1].1 We now have an Edit Transaction containing changes to M2 and M3.
While control flow is in M3, we can replace neither M3 nor M2. Even if control flow
returned to M2 we should not replace M3 since there is the chance that M3 is called
again and would dispatch to the newer version while the old M2 is still executing,
thereby violating our requirement that changes come into effect atomically.

2. Consider M1 performing an iteration that repeatedly calls M2. If we update M2,
that iteration changes behavior. If M1 is a stepwise update function in a grid-based
simulation and iterates over grid cells, we would simulate a part of the grid with
an old update and the rest with a newer one.

These two observations give rise to consistency levels that decide at which points it
is safe to activate an Edit Transaction:

Method-level consistency Control flow can switch to the changed meta-objects as
soon as the next method is being dispatched. This only guarantees that executing

1 Top of stack is left to stay consistent with cons-style list notation, i.e. [TOS|Tail]

13-10

Toni Mattis, Patrick Rein, and Robert Hirschfeld

6 2 rPackage TrafficSimulation

TrafficSimulation class

Car class

step

subscribe

addCar: aCar

addRoad: aRoad

step

accelerate

decelerate

Change: step, ... 6

TrafficSimulation step

self cars do: [:each | | nearby |

nearby := self carsNear: each.

each carsNearby: nearby.

each step]

Activate 6 Merge Test Change: step, ... 5

step ...

accelerate, decelerate ...

subscribe ...

r

r

r

new change+

Figure 3 Schematic program editor with program structure and code editor. Edit Transac-
tions are indicated by color, the field in the top-left corner indicates which Edit
Transaction is staged. Edit Transaction activation and tool support inside the Edit
Transaction can be controlled from the editor. On the right, the drop-down menu
hidden behind the staged Edit Transaction indicator allows to activate, deactivate,
add, and delete Edit Transactions.

methods on the call stack continue to execute their old code (which is the default
behavior in many live programming environments), but recursive methods can already
dispatch to newer versions of themselves.

Reentrant consistency Changes get applied from the moment where the call stack
does not intersect with the set of changes, i.e. the moment when the last method
modified by the Edit Transaction returns, all changes are installed and become effective.
This would address the first example above. Reentrant consistency is analogous to the
passiveness criteria that are part of the notion of quiescence[14] and tranquility[29],
except nodes are methods here.

Manual consistency The second example above depends on domain-specific seman-
tics. It is up to the programmer to place explicit atomic regions in the code using a
language feature or library call. If consistency level is set to manual, activating Edit
Transactions are delayed until the atomic region is left.

Parallel activation Since a program can run multiple threads and we want to give
the programmer the chance to atomically activate an Edit Transaction across a subset
of (or all) threads, we need to install a barrier once a thread reaches updateable state
(depending on the consistency level). The last thread entering this barrier causes the
Edit Transaction to activate on all threads and release the barrier.

13-11

Edit Transactions

3 Tool Support

3.1 Program Editor

We suggest a slight extension of existing editing tools of the environment, like il-
lustrated in figure 3. The following actions should be possible within a program
editor:

Create, stage, and un-stage Edit Transactions to control which in-progress view on
the program is seen and modified by the editor.
Activate and deactivate a selection of (or all) staged Edit Transactions and extend
the activation scope to a running program or the complete environment. Meaningful
scopes can be proposed by the tool or added by the programmer.
Discard an Edit Transaction. It will deactivate globally and changes are lost.
Merge the selected Edit Transaction, either with the Edit Transaction one below or
with the base system.

3.2 Testing

One of the most important mechanisms to obtain feedback on program changes is
unit testing, either initiated manually or automatically triggered by changes to the
program. Therefore, we propose a tight coupling with a test runner.

Synchronized test runner Opening a test runner from the current editor links the Edit
Transaction activations of both tools, i.e. the test runner tests exactly the perspective
taken by the editor. If the test runner is set to auto-test, each change in the corre-
sponding program editor will cause tests to run. Analogously, debugging a failing test
will happen in the scope of the currently selected Edit Transactions, i.e. code changes
done in the debugger or test runner are collected by the same Edit Transaction as in
the program editor.

Automating Edit Transaction actions on passing or failing tests When all tests pass, we
suggest to let the programmer select if the successfully tested Edit Transaction should
activate automatically or at least activate a shortcut or button to activate or merge. This
would require coverage of the changes captured by this Edit Transaction, otherwise
the test results give no feedback on these changes.

3.3 External Changes

Tools capable of loading external changes, such as version control software integrated
in the live programming environment, might be set up to load their changes into
a separate Edit Transaction. This way, changes can be reviewed and tested within
a program editor or test runner. The new behavior can subsequently be activated
globally with the option to quickly undo the changes in case of problems.

13-12

Toni Mattis, Patrick Rein, and Robert Hirschfeld

4 Implementation

We describe an implementation for Edit Transactions in the class-based object-oriented
live programming environment Squeak/Smalltalk. We make use of the existing meta-
object protocol to implement Edit Transaction behavior without changes to the virtual
machine.

4.1 Capturing Method Changes

Augmented method dispatch In Smalltalk, a class maintains a method dictionary
mapping message selectors to CompiledMethod objects. A CompiledMethod contains the
executable form of a method, i.e. its bytecode and layout of the stack frame, and is
interpreted by the Smalltalk virtual machine.

If the object encountered after method lookup is not a CompiledMethod, the message
run: selector with: arguments in: receiver is sent to this supposedly method-like object with
the original message selector, an array containing the original arguments, and the
receiver passed as arguments.2

This object as method strategy allows us to add a new dimension of dispatch: Instead
of a CompiledMethod object, our implementation uses MultiVersionMethod objects, which
internally store a mapping from tags to CompiledMethod objects (see figure 4). The tags
identify the Edit Transactions that have changed this particular method. The run:with:in:
method asks the current thread (activeProcess in Smalltalk) which Edit Transactions
are active, selects the tag attributed to the top-most Edit Transaction that has changes
in this method, and forwards the call to the associated CompiledMethod version.

Trade-offs When it comes to live programming environments, we always prefer im-
mediacy of feedback over long-term computational efficiency during development.
This trade-off presents itself in our method dispatch implementation, as Edit Trans-
action activation and deactivation is as instant as adding and removing an element
from a list, while we accept a per-call overhead. With modern virtual machines that
support just-in-time compilation, this overhead would be eliminated if the activation
stack stays constant for several thousand calls [18].

Changing methods In order to capture method changes, we adapt the compile meth-
ods of the metaclass ClassDescription to handle MultiVersionMethod objects in the method
dictionary. If a CompiledMethod in the method dictionary is being replaced, the meta-
class moves it to the MultiVersionMethod under the #base tag identifying the case when
no Edit Transaction is active and adds a new CompiledMethod indexed by the top-most
active Edit Transaction. Every subsequent change to the same method within the same
Edit Transaction overwrites this CompiledMethod.

2 Note that this is similar to Python’s __call__, except that original receiver and selector are
additionally passed through by the runtime.

13-13

Edit Transactions

Class Ball

Dictionary methodDict

CompiledMethod#move

MultiVersionMethod#step

CompiledMethod#T1

CompiledMethod#T2

Process activeProcess

Stack activeTransactions

#base

#T2

1. message

step

2. lookup #step

3. run:with:in

4. top

5. Lookup #T2

6. execute CompiledMethod

Figure 4 Method dispatch with Edit Transactions as additional dispatch dimension and the
data structures used in Squeak/Smalltalk. In this example, one of two Edit Trans-
actions is active and the step method has been modified in both. Arrows indicate
the order in which data is being consulted to retrieve the actual CompiledMethod
containing the executable bytecode in reaction to receiving the step message.

Staging is managed by program editing tools. They are expected to pass the identifier
of the Edit Transaction that should capture the recompiled method as additional
argument to the compile methods.

4.2 Capturing Field Changes

Private fields and single storage In Smalltalk, field access is restricted to methods of
the class and statically bound to a specific memory offset in the instance at compile
time. Adding, removing, renaming, or reordering fields would require instances to
migrate to a new memory layout, possibly losing information, which would be a
side-effect to avoid. Another Smalltalk-specific peculiarity occurs if a field is being
removed but still referenced by a method. In this case, the field will be removed from
all instances and redirected to a single storage, i.e. all instances read and write the
same value. There is one single storage per class and name combination.

Adding and aliasing fields Whenever a field is added, the currently staged Edit Trans-
action records the respective field as modified and thereby indicates to the compiler
to use dynamic field lookup on this particular field. For each new field, a unique alias
is assigned. Aliasing is used to distinguish between fields with the same name added
in different Edit Transactions and realizes shadowing in case of conflicting activation.
This allows us to emulate the Smalltalk behavior of losing the value attached to

a field if it is being removed and re-added, but at the same time maintains our
information preservation invariant, i.e. a control flow where the Edit Transaction
removing the field is not active does still have access to the old field values.

Old methods not modified cannot know about the newly added field and therefore
remain untouched, while new methods using this field get compiled with dynamic
field lookup.

13-14

Toni Mattis, Patrick Rein, and Robert Hirschfeld

Listing 1 Edited and generated code after introducing dynamic field lookup in an Edit
Transaction. Instance variable a has been added inside a staged Edit Transaction
before.

1 MyClass >> inc "Code edited by and displayed to programmers"
2 a := a + 1
3
4 MyClass >> inc "Generated code in a staged Edit Transaction"
5 Storage at: self set: #a to: ((Storage at: self get: #a) + 1)

Dynamic field lookup In our implementation, the compile methods replace static
binding by dynamic lookup when an instance variable occurs in an Edit Transaction
using an upfront transformation of the parse tree. The dynamic lookup is a call
equivalent to Storage at: self get: #name, with #name being the symbol representing the
field name. Dynamic writing is Storage at: self set: #name to: value. An example is shown
in listing 1. The content of these dynamic fields is managed by the Storage and not
necessarily co-located with the instance.
During lookup, the topmost Edit Transaction is asked for the modification state of

the field in the respective class. In case of a removed field, lookup proceeds with the
superclasses inside the same Edit Transaction. If any field definition is encountered,
its alias will be retrieved. If no addition or removal has been identified, lookup repeats
with the underlying Edit Transactions and eventually the base system. If an alias was
successfully retrieved, it is combined with the instance’s identity and used as key
in the Storage object to read or write the value, otherwise the corresponding single
storage location will be used, which is identified by class name and field name.

Deleting fields For deletion, we consider two cases: Deletion of a field which has
been added within the same Edit Transaction will just remove the field from the Edit
Transaction again, methods already compiled with dynamic lookup for this field will be
recompiled and the self replaced by the reserved identity for single storage. Any new
method referring to this field results in a compile-time error. In the second case, the
removed field was in the underlying base system, which means, we need to recompile
even methods originally not in the Edit Transaction to refer to single storage when
accessing this variable and put their recompiled version into the Edit Transaction.
All in all, instance state changes referring to not-yet committed field changes are

kept separate from the instance seen by the base system, yet we can emulate a different
instance layout dynamically at control-flows where an Edit Transaction is active (see
figure 5).

4.3 Scoping Edit Transactions

Methods and environments dispatch according to a stack of active Edit Transactions.
This stack is part of the Process class, which represents the concept of threads. This
association of transaction stacks with Processes allows programmers to debug code
of transactions in separate processes. This is of particular interest in combination
with the Morphic framework of Squeak/Smalltalk [16]. In case of an exception in the

13-15

Edit Transactions

C single storage

Class C [base]

a bfields:

methods:

inc
a := a + 1

Class C [1]

c [1]add:

delete: a

Class C [2]

a [2]add:

Instance : C

a b c [1] a [2]

Instance : C

a b c [1] a [2]

Instance : C

a b c [1] a [2]

 r r

a r

a a

a

Change 1 Change 2

Change 1
active

Change 2
active

1

2

3

Control
flows

1
2

3

Figure 5 Field dispatch with Edit Transactions. The same instance of class C is shown
in three different control flows having none, one or two changes active. The
variable a referred to by the inc method is being dispatched as shown by the
dotted green arrows in the respective control flows. Numbers in square brackets
indicate aliasing and are not part of the identifier name. Shaded fields are not
visible.

UI process, the process is suspended and the environment opens a debugger for it.
Additionally, a new UI process is spawned which has an empty transactions stack. If
the exception was caused by code in one of the active transactions, the new process
will thus not throw the exception again.

Block-local activation is implemented by the BlockClosure class, so that given code
like [self step] inTransactions: #(tag1 tag2) pushes the Edit Transactions corresponding to
the given tags on the stack of Process activeProcess.

4.4 Implementing Consistency

In our implementation, method-level consistency is trivial: Just adding and removing
Edit Transactions from the activation stack at the target Process instance takes effect
at the next method dispatch.
Implementing reentrant consistency can be achieved by creating a BlockClosure,

which would set the activation stack if evaluated. The target activation state is captured
within this block closure. If the target Process instance is the active process, we can
retrieve the current call stack context using thisContext, otherwise, we request the
suspendedContext of the process. These context objects represent our stack frames
that need to be scanned for any method involved with the Edit Transactions to be
activated. Traversal is done by recursively following the sender variable. The sender of
the topmost context from which on no conflicting method has been found is stored
and the block closure converted to a context using the asContext method. The stored

13-16

Toni Mattis, Patrick Rein, and Robert Hirschfeld

Listing 2 Example code modified dur-
ing execution

1 Simulation >> mainloop
2 [self running] whileTrue: [self step]
3
4 Simulation >> step
5 self balls do: [:each |
6 each move]
7
8 Ball >> move
9 self pos: (self pos + self speed) ⇐=

Listing 3 Modified example code in an
Edit Transaction

1 Simulation >> mainloop
2 [self running] whileTrue: [self step]
3
4 Simulation >> step
5 self balls do: [:each |
6 each bounce; move]
7
8 Ball >> move
9 self pos: (self pos + self speed);
10 speed: (self speed * self drag)

mainloop sender pc locals

step sender pc locals

move sender pc locals

mainloop sender pc locals

step sender pc locals

move sender pc locals

[update] sender

step2

move2

1
2

Figure 6 Asynchronous Edit Transaction activation via stack-frame insertion. mainloop
repeatedly calls step, which in turn calls move (1); the thread’s call stack halted
at listing 2, line 9 (⇐=) is shown (the sender field refers to the context to be
returned to). An Edit Transaction updating both step and move (listing 3) should
be activated, which causes the temporary context [update] to be inserted on top
of step. If step returns, [update] activates the change and returns to mainloop,
such that the next call (2) executes the updated methods from listing 3.

context’s sender is set to the result of this call, whose sender is in turn set to the stored
context’s original sender, thereby intercepting the return of this context. Since the
intercepted return may also return a value, we need to instruct the closure to pass
through this value by returning thisContext at: 2 (the stack frame location where the
last return has been stored). The result is illustrated in figure 6.
Manual consistency is provided by the method Process activeProcess update, which

simply overwrites the current stack of Edit Transactions with a pending stack of Edit
Transactions. Instead of the active process, this method can be invoked externally on
any process, bypassing consistency guarantees.

4.5 Tool Support

We use the data-flow based tool-building framework Vivide [25] to construct a browser
similar to those known from Smalltalk environments.
The program editor as illustrated in figure 7 is constructed in a way that it might

edit any Edit Transaction and view the source code through an arbitrary subset of
Edit Transactions without actually running inside any active Edit Transactions itself.
The outer left user interface elements give the programmer control over the existing

13-17

Edit Transactions

Figure 7 A screen shot of the Edit Transactions browser showing the view on the system
as described by the “Infection Logic” transaction. The outer left user interface
elements allow programmers to control the state of transactions. All changes
applied in the code pane at the bottom are captured in the topmost transaction
in the lower list on the left (in this case “Infection Logic”).

transactions in the system (upper list) and the staged ones (the lower list). The buttons
in between the lists state or un-stage transactions. These transactions are selected
for all transaction browsers in the current user interface process. To globally activate
transactions, developers can use the “Activate” and “Deactivate” buttons. The “Test”
button executes any tests in the package selected in the second column in the scope
of the staged transactions. If a change to a method or a class definition is saved, it is
applied within the topmost Edit Transaction in the lower transactions list.

5 Case Study

To investigate the potential impact of Edit Transactions, we conducted a preliminary
exploratory case study [21, 22]. The objective was to determine pointers for improve-
ment of the design and relevant aspects for a thorough evaluation. The case we studied
is that of adding a new feature to a simulation. The same feature was once imple-
mented using standard tools and once using Edit Transactions. The concrete research
question we wanted to answer was how our approach changes the programming
practices and experience. To collect data, we took video recordings and manually
logged when debuggers were displayed, the type of exception which caused the
debugger to open up, and how the underlying issue was resolved. We also noted
any notable programming practices based on subjective judgment (e.g. which tools
were used together). The case was executed by one of the authors who has more
than five years of experience using Squeak/Smalltalk and is familiar with the pitfalls

13-18

Toni Mattis, Patrick Rein, and Robert Hirschfeld

of a live programming environment. Further, the programmer also took part in the
development of the tool and thus there was no additional training.
In the following sections, we describe the application and task used in the case

study, the observations for both variations, and the impact of Edit Transactions on the
responsiveness of the environment.

5.1 Case: Disease Spreading Simulation

The case was conducted with a simulation of the spreading of diseases between people.
It is based on Person objects doing a random walk on a world map. Their infection
status is modeled as a Boolean instance variable called infected. Persons can either get
a spontaneous infection or they can get infected by an infected person nearby. The
simulation is implemented in the Morphic framework [16] for developing graphical
applications. The framework provides the stepping mechanism which periodically
calls the step method on all Morph objects implementing it. The main part of the
simulation logic is implemented in the step method of the Person class. The simulation
was initialized with 750 Person objects. In both variations, the task was to modify the
source code while the simulation was running next to the programming tools.

New Feature: Recovering from Various Infections The task for the case was to add
recovering to the simulation. The recovery should take different amounts of time
depending on the type of infection. This implied a number of technical changes
which needed to be implemented. These technical adaptations are the assignment
to be fulfilled. First, the infection status has to change from a Boolean variable to a
reference to Infection objects. Accordingly, all methods assuming the infection status
was a Boolean value have to be adapted. Also, basic infection classes have to be added.
To bring the logic together, we must add a call from the step method of a Person to its
infection and we have to add methods to handle a full recovery.

5.2 Workflow without Edit Transactions

The first type of error is access to uninitialized or lost state. This first occurred, when
we replaced the infected instance variable with the infection variable. By doing so,
we accidentally destroyed the information on whether a person is infected. Thus,
immediately after saving the changed class definition, the environment opened several
debuggers, one for each Person object trying to access its obsolete infected variable.
To control the flood of incoming debuggers, we closed the simulation. Re-adding the
instance variable would not have helped at this point as the state was already lost.
This kind of error occurred again, when we added the recoveryTimer instance variable
to the infection class and used it in a method. To not loose the simulation state, we
tried to initialize the old objects by executing a code snippet. However, as debuggers
capture the keyboard focus when they become visible and debuggers were appearing
with a high frequency we could not edit any text. To resolve the issue, we had to
restart the simulation. The second class of errors occurred when we used messages
in a method which were not implemented yet. When this type of error occurred

13-19

Edit Transactions

while the simulation was running, again a lot of debuggers opened. Often, we could
resolve the issue without closing the simulation by quickly removing the call to the
unimplemented method.
We made the following observations on the programming practices. First, most

of the time two class browsers were open. The second browser was used whenever
there was a change in the first browser which would cause the simulation to crash
because of unimplemented messages. In such cases, the programmer switched to
the second browser to implement the required messages and only then saved the
method in the first browser. Regarding the implementation strategy of new behavior,
we observed that the programmer first implemented a set of interacting methods and
only in the end added the calls triggering the set of methods to the running methods.
Also, we observed that the programmer pro-actively restarted the simulation to create
a consistent application state through forcing the execution of initialization methods.

5.3 Workflow with Edit Transactions

When using Edit Transactions, the first type of error we encountered was that of
uninitialized instance variables again. In one instance, we activated a Edit Transaction
which contained the replacement of the infected variable. This time only one debugger
opened up and the simulation kept on running. As the debugger does currently not
support evaluating code in the context of the process being debugged, we could not
initialize the uninitialized objects directly from within the debugger. We resolved
this by adding a method to Person which initializes all Person objects and then added
this method to the stepping callback. We activated the Edit Transaction for a short
period of time and afterwards removed this method again. Beside these state-related
exceptions, several debuggers opened up due to messages which were used but not
yet implemented. All of these cases only opened one debugger window and kept the
simulation running.
We observed the following practices in combination with Edit Transactions. In

general, before activating a transaction, the programmer edited several methods
and reviewed the change. The activation of transactions was often only for a short
period of time to see whether the change was working at all. Further, during the
whole session only one class browser was used, although there was the option to open
more browsers. Most of the time only one transaction was used to implement the
current task. The programmer used one transaction to implement the switch from
representing an infection as a Boolean value to an object. After finishing and merging
this change, the programmer used another transaction to implement the recovery
logic. During the recovery implementation, the programmer temporarily added a
transaction which added logging statements displaying the distribution of infections
in the population to validate the recovery logic. On several occasions, the programmer
applied the method to initialize added instance variables as described for the first
error type. This was possible because of the atomic activation of a transaction which
includes added state as well as the added call to a temporary initialization method.

13-20

Toni Mattis, Patrick Rein, and Robert Hirschfeld

Responsiveness of the environment In a self-sustaining live programming environ-
ment, any penalty on the execution speed of the application can also affect the
development tools. We noticed that the development tools became less responsive
when using Edit Transactions.

While a thorough quantitative investigation of the execution times is beyond the
scope of this case study, we briefly investigated the perceived degradation of respon-
siveness. Running the simulation with an open class browser resulted in a rendering
frequency between 18 and 26 frames per second (fps). Adding a field to the class
Person added no penalty except for a short drop in fps for several seconds. When
running the simulation with edit transactions the frame rate dropped. Creating a
transaction which adds one field caused the frame rate to drop down to 8 to 14 fps.
This happens as by adding a field, the transaction adds dispatch logic to almost all
methods of the Person class. Activating the transaction did not affect the frame rate
any further. Also adding a second transaction had no further effect.

These observations are supported by preliminary benchmarks showing the potential
overhead for method calls and state access (for details see appendix A). The current
measurements suggest a constant slow-down of a factor of 40 for calls to methods
which are modified in a transaction in the system independent of the number of active
transactions. Further, there is a slow-down of factor 36 for a method accessing one
instance variable added in a transaction up to a factor of 2288 for a method accessing
ten instance variables.
Edit Transactions are a concept designed for live programming environments. So,

while the observed degradation of responsiveness did not massively disturb the live
programming experience, future implementations of Edit Transactions have to take
the impact on the performance of the system into consideration.

6 Discussion and Future Work

6.1 Limitations of the Implementation

The concept of Edit Transactions has not been fully implemented yet in our prototype.
To conduct the case study, we have implemented support for all meta-object changes
except changes to the class hierarchy. Super calls are statically bound at compile time
in Squeak/Smalltalk, leaving almost no chance to dispatch the super call dynamically
with regard to the activation without changing the virtual machine itself. Additionally,
there is currently no graphical way of extending the scope to specific threads. This
needs to be done programmatically.
The workflow itself could be streamlined by introducing keyboard shortcuts, e.g.

ctrl+shift+s to save to a new Edit Transaction instead of the normal ctrl+s to
save the method to the base system or currently staged Edit Transaction.

13-21

Edit Transactions

6.2 Research Questions for Quantitative Evaluation

We presented a case study to gain initial insight into a live programming workflow
with customizable change granularity and scope, but no hypotheses have been tested
in this design and engineering phase of our research yet.
Of particular interest for us is the question, whether test-driven methods benefit

from Edit Transactions, since we suspect a mixture of immediate feedback on test
runs and a safety-net given by Edit Transactions to reduce the number of errors and
setbacks. Testable null hypotheses would include the assumption of observing an equal
number of errors caused by an implementation task, equal degrees of task completion,
and equal time to completion compared to a fully immediate workflow. Additionally,
we are interested whether programmers would spend a higher proportion of their
time coding alongside a running program, which would indicate a higher continuity
of feedback and thereby increase liveness according to multiple perspectives on what
liveness means [4, 26, 27]. Negative results on these hypotheses might suggest that
unmediated emergence of changes, despite being at continuous risk of breaking the
program, is still the best feedback so far.

6.3 Related and Future Language Concepts

Some solutions we implemented can be viewed as isolated language concepts which we
prototypically introduced. Some of them resemble ideas from literature, while others
could be proposed as stand-alone concepts in future work with Edit Transactions being
an example use case for them. The following subsection summarizes these insights.

Shape-shifting instances By making field access dynamic and dispatching the lookup
through a stack of views, we can present the same object differently to different control
flows. Fields can be hidden, but information is being preserved. We disambiguate
between fields with the same name but different meaning by transparently aliasing
them depending on the active view. Views on instances are composable. While the
concept is quite specific, it could extend context-oriented programming [10] in a
way that is similar to the partial objects proposed in L [11], except we do not deal
with explicit visibility but resolve conflicts as they emerge during composition (see
section 2.4).

Dynamic re-classification Dynamically changing the inheritance hierarchy depending
on active Edit Transactions has been addressed recently using just-in-time inheri-
tance [5]. This particular approach persistently changes the representation of objects
to adhere to a different superclass precedence in multiple inheritance scenarios. With
Edit Transactions, in comparison, a class can be switching to any new superclass
independently of a multiple inheritance scheme, and the new perspective should only
be transiently emulated within certain control flows. We see some future work in
exploring dynamic and scoped reclassification of objects.

13-22

Toni Mattis, Patrick Rein, and Robert Hirschfeld

Polymorphic identifiers The concept of polymorphic identifiers [30] generalizes left-
hand values and associates them with schema handlers that deal with how a value is
written to read from the storage location pointed to by the identifier. If identifiers for
methods, instance variables, and global variables (e.g. classes) were polymorphic, we
could easily install schema handlers capable of dispatching through a stack of active
Edit Transactions. Also, write access to meta-objects could be captured in a modular
fashion by replacing or extending schema handlers.

Mirrors for Edit Transaction-aware reflection At the moment, using reflection capabili-
ties will bypass any abstraction we created with our Edit Transaction implementation;
there is no reflective API providing an “inside view” given a stack of active Edit Trans-
actions. As an example, iterating over instance variables does not reflect changes by
active Edit Transactions, since they are not co-located with the object. We could adapt
each reflective method, which would be cumbersome and not modular.

A more principled reflection facility aremirrors [3], where reflection capabilities are
provided by a separate meta-object model. Since we might want to present a program
using reflection an “inside view” of the system, we could implement specialized Edit
Transaction-aware mirrors for normal reflection. The view dynamically generated
by activating Edit Transactions would affect corresponding inside mirrors as well.
Interesting future work might emerge from the idea of switching between inside and
outside view of an abstraction like Edit Transactions, e.g. for debugging purposes.

7 Related Work

Version Control Systems Version Control Systems (VCS) like Git ,3 Apache Subver-
sion ,4 or Mercurial 5 are based on similar ideas, but their usage scenarios are different.
One analogy that can be drawn is the correspondence of active Edit Transactions to
revisions or commits in a VCS, deactivation to reverting a commit, and a staged but not
yet active Edit Transaction to the working copy. The stash operation known from Git is
similar to un-staging an Edit Transaction. Extending the scope of an Edit Transaction
activation can be regarded as pushing (in the Git/Mercurial sense) that commit to a
remote copy, such as a continuous integration server, or a deployment server where the
jointly committed and tested behavior emerges in the running application. Activating
Edit Transactions out of order resembles doing a rebase operation on the respective
commits. A major difference is the fact that Edit Transactions are explicitly designed
to forget history once they are merged. Future work could include synchronizing an
Edit Transaction merge with a VCS commit, which might yield “natural” commit sizes.
The other way around is possible in our implementation, since pulling a commit can
do all necessary recompilation inside a staged Edit Transaction, thereby allowing to
explore this commit in the running program.

3 https://git-scm.com/ (retrieved 2017-02-28)
4 https://subversion.apache.org/ (retrieved 2017-02-28)
5 https://www.mercurial-scm.org/ (retrieved 2017-02-28)

13-23

https://git-scm.com/
https://subversion.apache.org/
https://www.mercurial-scm.org/

Edit Transactions

Change-oriented Programming Change-oriented programming promotes the idea of
making changes to the system description a first-class citizen accessible to the pro-
gramming system and programmers alike [7, 23]. Thus, modifying a system becomes
a matter of applying changes to the system description. As a result, the programming
system or the programmer can reflect and work with changes, such as grouping them
or replaying them in other settings [7, 17]. Edit Transactions combine this idea of
reified changes with dynamic scoping. However, while change-oriented environments
promote interactions with changes, Edit Transactions are a necessary mean to allow
for an improve live programming workflow.

Changeboxes As an instance of change-oriented programming, Changeboxes provide
an object model representing changes as first-class instances in the environment [6,
32]. Part of this model is an extensive change specification, which encodes primitive
actions (e.g. define, rename, and remove), composite actions (e.g. pull-up method
and other refactorings) and their corresponding targets in the program (e.g. a class,
method, or field). In order to scope a Changebox to a particular programming session
and develop and run code inside a specific version, a thread-local context with the
current Changebox is involved in method dispatch and environment lookups. This
implementation strategy served as basis for our Edit Transaction implementation.
Changeboxes have similar tool support to Edit Transactions, such as a Changebox-
aware editor, debugger, and test runner.

A major distinction between both approaches is the goal of making program changes
and intent retroactively accessible with Changeboxes, while Edit Transactions are
designed for temporary containment of future behavior. An Edit Transaction flattens
the result of a composite change, and, in contrast to Changeboxes, existing objects
are not bound to a particular version and can be dynamically accessed from the
perspective of the currently active Edit Transactions.

CoExist The CoExist project proposed an environment which creates a new version
for every individual change [24] . The Co-Exist environment allows programmers to
go back in time, run multiple versions simultaneously, and compare them not only
as code, but also as running instances. Granularity can be modified retroactively by
grouping multiple correlated changes, which can even be used as change sets in a
version control system. On the one hand, programmers are freed from remembering
to explicitly manage a Edit Transaction, on the other hand they cannot choose to defer
changes from being applied instantly, only revert in case of failure. A combination of
both scenarios gives rise to promising future work.

First-class Contexts Wernli et al.[31] propose a more explicit way of updating a
system at run-time. Their contexts do not only capture change to meta-objects but also
how to migrate application objects between versions. Once an update is deployed,
new threads start within the updated context, while old threads still operate based on
the old meta-objects. Objects can exist simultaneously in multiple representations, the
last updated representation invalidates representations from other versions, reading
an invalid representation lazily synchronizes it from a valid one.

13-24

Toni Mattis, Patrick Rein, and Robert Hirschfeld

The concept allows a similar workflow to Edit Transactions, such as extending
the scope of an update, and allowing multiple control flows to coexist in different
versions while sharing instances. The synchronization protocol required for an update
makes the concept significantly more expressive at the cost of having to implement
synchronization and migration. For example, the semantics of a field in a class may
change and a migration can update that field for all instances.

Another trade-off is migration of instances versus late binding of state. The former
creates update overhead but minimizes run-time overhead, which is desirable for
deploying an update to a production system. The latter, which we preferred in our
case, trades per-lookup overhead for immediate feedback as discussed in section 4.1.

PIE The personal information system (PIE) included mechanisms through which “de-
scriptions of alternative software designs can be readily created and manipulated” [2].
The stated intent was to enable developers to compare design alternatives more
easily. One of the central design principles also applies to Edit Transactions: “... there
should exist a descriptive level at which objects can be described without actually
affecting the objects themselves.” Our staged Edit Transactions in the browser enable
such a workflow of viewing various alternatives without affecting the behavior of the
objects. At the same time, our intent is different as we focus on improving the live
programming experience of editing a system while it is running. This leads to our
requirements of maintaining consistency when activating a Edit Transaction.

Development Layers A particular problem in collaborative, self-sustaining program-
ming environments, such as Lively [13], is, that a breaking change to a development
tool effectively breaks the tool for everyone, including the developer itself. The concept
of development layers [15] allows to scope changes to tools by using context-oriented
programming [10] and putting them inside a layer. A separate tool can now control
when such layer is active. Development layers do not support back-merging into
the base system and only handle behavior changes in a prototype-based environ-
ment (JavaScript), however, they served as inspiration for the development of Edit
Transactions as dynamically activated changes in a live programming system.

8 Conclusion

In this work, we propose Edit Transactions to address the fragility that comes with
immediate feedback when making changes to running programs.

Conceptually, Edit Transactions decouple the adaptation stage in live programming
environments from emergence, allowing time and scope of emergence to be precisely
controlled by programmers. We described the implementation of Edit Transactions
and associated tool support in Squeak/Smalltalk, and discussed a number of insights
regarding which parts of our implementation constitute programming concepts on
their own or can be considered as applications of existing concepts.

From a programmers’ perspective, Edit Transactions introduce a two-stage workflow
into live programing in which programmers collect a number of changes to the Edit

13-25

Edit Transactions

Transaction before deliberately activating the new behavior in running programs. Our
case study gives insights into a programming experience that constantly balances
immediacy against the need for grouped changes and the associated safety net.
Additionally, we retain some types of immediate feedback that work well in isolation,
such as automated unit testing, and allow running programs to instantly fall back to
a previous version whenever the newly activated change causes an error.

So far, Edit Transactions show potential to increase confidence in a change, prevent
some classes of run-time errors of live systems, and eventually make live programming
a more predictable and engaging activity.

Acknowledgements We gratefully acknowledge the financial support of the Research
School for Service-oriented Systems Engineering of the Hasso Plattner Institute and
the Hasso Plattner Design Thinking Research Program. We thank Stefan Ramson for
discussions of earlier versions of this submission.

References

[1] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael
Perscheid. “A Comparison of Context-oriented Programming Languages”. In:
International Workshop on Context-Oriented Programming (COP) 2009. Genova,
Italy: ACM, 2009, 6:1–6:6. isbn: 978-1-60558-538-3. doi: 10.1145/1562112.1562118.
url: http://doi.acm.org/10.1145/1562112.1562118.

[2] Daniel G. Bobrow and Ira P. Goldstein. “Representing Design Alternatives”. In:
Proceedings of the Conference on Artifical Intelligence and Simulation of Behavior
(AISB) 1980. 1980.

[3] Gilad Bracha and David Ungar. “Mirrors: Design Principles for Meta-Level
Facilities of Object-Oriented Programming Languages”. In: Proceedings of the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. OOPSLA ’04. New York, NY, USA: ACM, 2004,
pages 331–344. isbn: 978-1-58113-831-3. doi: 10.1145/1028976.1029004.

[4] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid,
Michal Moskal, Nikolai Tillmann, and Jun Kato. “It’s Alive! Continuous Feedback
in UI Programming”. In: Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’13. New York, NY,
USA: ACM, 2013, pages 95–104. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.
2462170.

[5] Mattias De Wael, Janwillem Swalens, and Wolfgang De Meuter. “Just-in-Time
Inheritance: A Dynamic and Implicit Multiple Inheritance Mechanism”. In:
Proceedings of the 12th Symposium on Dynamic Languages. DLS 2016. New York,
NY, USA: ACM, 2016, pages 37–47. isbn: 978-1-4503-4445-6. doi: 10.1145/
2989225.2989229.

13-26

https://doi.org/10.1145/1562112.1562118
http://doi.acm.org/10.1145/1562112.1562118
https://doi.org/10.1145/1028976.1029004
https://doi.org/10.1145/2491956.2462170
https://doi.org/10.1145/2491956.2462170
https://doi.org/10.1145/2989225.2989229
https://doi.org/10.1145/2989225.2989229

Toni Mattis, Patrick Rein, and Robert Hirschfeld

[6] Marcus Denker, Tudor Gırba, Adrian Lienhard, Oscar Nierstrasz, Lukas Renggli,
and Pascal Zumkehr. “Encapsulating and Exploiting Change with Changeboxes”.
In: Proceedings of the 2007 International Conference on Dynamic Languages: In
Conjunction with the 15th International Smalltalk Joint Conference 2007. ICDL
’07. Lugano, Switzerland: ACM, 2007, pages 25–49. isbn: 978-1-60558-084-5.
doi: 10.1145/1352678.1352681. url: http://doi.acm.org/10.1145/1352678.1352681.

[7] Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paesschen, and Theo
D’Hondt. “Change-oriented Software Engineering”. In: Proceedings of the 2007
International Conference on Dynamic Languages: In Conjunction with the 15th
International Smalltalk Joint Conference 2007. ICDL ’07. Lugano, Switzerland:
ACM, 2007, pages 3–24. isbn: 978-1-60558-084-5. doi: 10.1145/1352678.1352680.
url: http://doi.acm.org/10.1145/1352678.1352680.

[8] Bert Freudenberg, Yoshiki Ohshima, and Scott Wallace. “Etoys for One Laptop
Per Child”. In: Proceedings of the 2009 Seventh International Conference on
Creating, Connecting and Collaborating Through Computing. C5 ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pages 57–64. isbn: 978-0-7695-3620-0.
doi: 10.1109/C5.2009.9.

[9] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Imple-
mentation. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1983. isbn: 0-201-11371-6.

[10] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. “Context-Oriented
Programming”. In: Journal of Object Technology, March-April 2008, ETH Zurich
7.3 (2008), pages 125–151. doi: 10.5381/jot.2008.7.3.a4.

[11] Robert Hirschfeld, Hidehiko Masuhara, Atsushi Igarashi, and Tim Felgentreff.
“Visibility of Context-Oriented Behavior and State in L”. In: Information and
Media Technologies, Japan Society for Software Science and Technology 32.3 (Aug.
2015), pages 149–158. doi: 10.11185/imt.11.11.

[12] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back to
the Future: The Story of Squeak, a Practical Smalltalk Written in Itself”. In: Pro-
ceedings of the 12th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications. OOPSLA ’97. New York, NY, USA: ACM,
1997, pages 318–326. isbn: 978-0-89791-908-1. doi: 10.1145/263698.263754.

[13] Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld, Robert Krahn, Jens Lincke,
Marko Röder, Antero Taivalsaari, and Tommi Mikkonen. “A World of Active
Objects for Work and Play: The First Ten Years of Lively”. In: Proceedings of the
2016 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. Onward! 2016. New York, NY, USA: ACM, 2016,
pages 238–249. isbn: 978-1-4503-4076-2. doi: 10.1145/2986012.2986029.

[14] Jeff Kramer and Jeff Magee. “The Evolving Philosophers Problem: Dynamic
Change Management”. In: IEEE Transactions on Software Engineering 16.11 (Nov.
1990), pages 1293–1306. issn: 0098-5589. doi: 10.1109/32.60317.

13-27

https://doi.org/10.1145/1352678.1352681
http://doi.acm.org/10.1145/1352678.1352681
https://doi.org/10.1145/1352678.1352680
http://doi.acm.org/10.1145/1352678.1352680
https://doi.org/10.1109/C5.2009.9
https://doi.org/10.5381/jot.2008.7.3.a4
https://doi.org/10.11185/imt.11.11
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/2986012.2986029
https://doi.org/10.1109/32.60317

Edit Transactions

[15] Jens Lincke and Robert Hirschfeld. “Scoping Changes in Self-Supporting De-
velopment Environments Using Context-Oriented Programming”. In: Proceed-
ings of the International Workshop on Context-Oriented Programming. COP
’12. New York, NY, USA: ACM, 2012, 2:1–2:6. isbn: 978-1-4503-1276-9. doi:
10.1145/2307436.2307438.

[16] John H. Maloney and Randall B. Smith. “Directness and Liveness in the Morphic
User Interface Construction Environment”. In: Proceedings of the 8th Annual
ACM Symposium on User Interface and Software Technology. UIST ’95. New York,
NY, USA: ACM, 1995, pages 21–28. isbn: 978-0-89791-709-4. doi: 10.1145/215585.
215636.

[17] Stanislav Negara and Darko Marinov. “Towards a Change-oriented Program-
ming Environment”. PhD thesis. University of Illinois, 2013.

[18] Tobias Pape, Tim Felgentreff, and Robert Hirschfeld. “Optimizing Sideways
Composition: Fast Context-Oriented Programming in ContextPyPy”. In: Pro-
ceedings of the 8th International Workshop on Context-Oriented Programming.
COP’16. New York, NY, USA: ACM, 2016, pages 13–20. isbn: 978-1-4503-4440-1.
doi: 10.1145/2951965.2951967.

[19] Patrick Rein, Robert Hirschfeld, and Marcel Taeumel. “Gramada: Immediacy
in Programming Language Development”. In: Proceedings of the 2016 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. Onward! 2016. New York, NY, USA: ACM, 2016,
pages 165–179. isbn: 978-1-4503-4076-2. doi: 10.1145/2986012.2986022.

[20] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. “Scratch: Programming for All”. In: Commun. ACM
52.11 (Nov. 2009), pages 60–67. issn: 0001-0782. doi: 10.1145/1592761.1592779.

[21] Colin Robson. Real World Research. 2nd. Blackwell Publishing, 2002. isbn:
0-631-21305-8.

[22] Per Runeson and Martin Höst. “Guidelines for Conducting and Reporting Case
Study Research in Software Engineering”. In: Empirical Software Engineering
14.2 (Apr. 2009), page 131. issn: 1382-3256, 1573-7616. doi: 10.1007/s10664-008-
9102-8.

[23] Quinten David Soetens, Peter Ebraert, and Serge Demeyer. “Avoiding Bugs
Pro-actively by Change-oriented Programming”. In: Proceedings of the Workshop
on Testing Object-Oriented Systems (ETOOS) 2010. ETOOS ’10. Maribor, Slovenia:
ACM, 2010, 7:1–7:7. isbn: 978-1-4503-0538-9. doi: 10.1145/1890692.1890699.
url: http://doi.acm.org/10.1145/1890692.1890699.

[24] Bastian Steinert, Damien Cassou, and Robert Hirschfeld. “CoExist: Overcom-
ing Aversion to Change”. In: Proceedings of the 8th Symposium on Dynamic
Languages. DLS ’12. New York, NY, USA: ACM, 2012, pages 107–118. isbn: 978-
1-4503-1564-7. doi: 10.1145/2384577.2384591.

13-28

https://doi.org/10.1145/2307436.2307438
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/2951965.2951967
https://doi.org/10.1145/2986012.2986022
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/1890692.1890699
http://doi.acm.org/10.1145/1890692.1890699
https://doi.org/10.1145/2384577.2384591

Toni Mattis, Patrick Rein, and Robert Hirschfeld

[25] Marcel Taeumel, Tim Felgentreff, and Robert Hirschfeld. “Applying Data-Driven
Tool Development to Context-Oriented Languages”. In: Proceedings of 6th
International Workshop on Context-Oriented Programming. COP’14. New York,
NY, USA: ACM, 2014, 1:1–1:7. isbn: 978-1-4503-2861-6. doi: 10.1145/2637066.
2637067.

[26] Steven L. Tanimoto. “A Perspective on the Evolution of Live Programming”.
In: 2013 1st International Workshop on Live Programming (LIVE). May 2013,
pages 31–34. doi: 10.1109/LIVE.2013.6617346.

[27] David Ungar, Henry Lieberman, and Christopher Fry. “Debugging and the
Experience of Immediacy”. In: Commun. ACM 40.4 (Apr. 1997), pages 38–43.
issn: 0001-0782. doi: 10.1145/248448.248457.

[28] David Ungar and Randall B. Smith. “Self: The Power of Simplicity”. In: Con-
ference Proceedings on Object-Oriented Programming Systems, Languages and
Applications. OOPSLA ’87. New York, NY, USA: ACM, 1987, pages 227–242. isbn:
978-0-89791-247-1. doi: 10.1145/38765.38828.

[29] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. “An
Alternative to Quiescence: Tranquility”. In: 2006 22nd IEEE International Con-
ference on Software Maintenance. 2006 22nd IEEE International Conference on
Software Maintenance. Sept. 2006, pages 73–82. doi: 10.1109/ICSM.2006.11.

[30] Marcel Weiher and Robert Hirschfeld. “Polymorphic Identifiers: Uniform Re-
source Access in Objective-Smalltalk”. In: Proceedings of the 9th Symposium
on Dynamic Languages. DLS ’13. New York, NY, USA: ACM, 2013, pages 61–72.
isbn: 978-1-4503-2433-5. doi: 10.1145/2508168.2508169.

[31] Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz. “Incremental Dynamic
Updates with First-Class Contexts.” In: The Journal of Object Technology 12.3
(2013), 1:1. doi: 10.5381/jot.2013.12.3.a1.

[32] Pascal Zumkehr. “Changeboxes – Modeling Change as a First-class Entity”.
Master’s thesis. University of Bern, 2007.

A Micro Benchmarks for Method Call and State Access Overhead

In order to determine the overhead imposed by the new dispatch dimension we
conducted micro-benchmarks. We conducted benchmarks measuring the overhead for
method calls as well as for accessing instance variables. As transactions can be seen
as COP layers, we used an existing set of COP dispatch benchmarks [1]. It consists of
a benchmark class with 10 fields named field1 to field10. The class implements ten
methods, which are named method1 to method10. Each method increments the value
of the first n fields, so method3 accesses field1, field2, and field3. For measuring the
impact of transactions, we add 9 transactions which each contain an implementation
of method1 which behaves as one of method2 to method10. So, method1 with the active
transaction2 also accesses field1, field2, and field3. Subsequently, these transactions
are activated.

13-29

https://doi.org/10.1145/2637066.2637067
https://doi.org/10.1145/2637066.2637067
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/38765.38828
https://doi.org/10.1109/ICSM.2006.11
https://doi.org/10.1145/2508168.2508169
https://doi.org/10.5381/jot.2013.12.3.a1

Edit Transactions

The state benchmarks are based on the same idea. There is another benchmark
class which has one instance variable (called field1) and one method (called method1)
which increments this field. Further, there are nine transactions which add several
instance variables and a new implementation of method1 which increments all of
these fields. The transactions are subsequently activated.

A.1 Setup

We took then measurements of the duration of 1,000,000 method calls and took the
median of the results. For the basic method call case we measured the duration of calls
to method1 to method10. For the method call with transactions case, we measured
the duration of calls to method1 with subsequently more active transactions with the
top-most transaction providing the intended behavior. Similarly, for the state access
with transactions benchmark, we measured the duration of calls to the method1 of
the state benchmark class with subsequently more active transactions.
During the benchmark run, the garbage collector was disabled. All benchmarks

were executed on the following system:
Intel CPU i5-4690 @ 3.5 GHz, 4 Logical cores
7926 MB Main Memory
Ubuntu 15.10
Squeak 5.1 Update #16548
Croquet Closure Cog[Spur] VM revision 201608171728

A.2 Discussion of Results

Table 1 shows the benchmark results. The slow-down for the method call benchmark
remains around a factor of 40 and seems independent of the number of active transac-
tions. Notably, even without any active transaction, the mere presence of transactions
containing changes for the benchmarked method already causes the slow-down. This
is expected, as modifications to a method implies a MultiVersionMethod which adds
extra overhead to the dispatch process. At the same time, it can also be explained by
the dispatch algorithm implemented in MultiVersionMethods which checks the base
system last.

The slow-down factor of the state access benchmark increases with the number of
active transactions. As the benchmarks were executed on a virtual machine apply-
ing optimizations through just-in-time compilation, the observed increase might be
attributed to these optimizations. Further benchmarks are required to clarify these
aspects as well as any variations in the method call benchmark.

13-30

Toni Mattis, Patrick Rein, and Robert Hirschfeld

Table 1 Benchmark results for method call overhead or state access overhead. The Without
column lists the median durations for method calls without any active transactions,
the Call column the median durations for method calls with active transactions,
and the State column lists the durations for method calls with transactions adding
state. The slow-down columns are relative to the basic durations.

Results in ms (Standard Deviation) Slow-down

No of Transactions Without Call State Call State

0 14 (6.26) 579 (5.21) 515 (9.85) 41.36 36.79
1 15 (0.00) 610 (2.74) 5,854 (11.75) 40.67 390.27
2 16 (0.42) 654 (1.49) 11,789 (41.95) 40.88 736.81
3 17 (0.00) 683 (1.23) 18,328 (21.32) 40.18 1078.12
4 17 (0.53) 696 (1.52) 21,989 (42.98) 40.94 1293.47
5 18 (0.42) 717 (0.85) 27,653 (51.31) 39.83 1536.28
6 20 (0.00) 737 (1.51) 33,179 (19.39) 36.85 1658.95
7 21 (0.00) 839 (0.82) 38,830 (36.77) 39.95 1849.05
8 21 (0.00) 795 (1.08) 44,368 (64.10) 37.86 2112.76
9 22 (0.00) 822 (3.20) 50,339 (69.76) 37.36 2288.17

13-31

Edit Transactions

About the authors

Toni Mattis Is a doctoral researcher at the Software Architec-
ture Group. His research interests include live programming and
repository mining.

Patrick Rein Is a doctoral researcher at the Software Architec-
ture Group. His research interests include live programming and
programming systems.

Robert Hirschfeld is a Professor of Computer Science at the Hasso
Plattner Institute at the University of Potsdam, Germany. His Soft-
ware Architecture Group is concerned with fundamental elements
and structures of software.

13-32

	1 Introduction
	1.1 Changes as Edit Transactions
	1.2 Case Study
	1.3 Structure of this Work

	2 Edit Transactions
	2.1 Introductory Example
	2.2 The Concept of Edit Transactions
	2.3 Meta-object Changes
	2.4 Activation, Staging, and Dependencies
	2.5 Scoping
	2.6 Concurrency Control

	3 Tool Support
	3.1 Program Editor
	3.2 Testing
	3.3 External Changes

	4 Implementation
	4.1 Capturing Method Changes
	4.2 Capturing Field Changes
	4.3 Scoping Edit Transactions
	4.4 Implementing Consistency
	4.5 Tool Support

	5 Case Study
	5.1 Case: Disease Spreading Simulation
	5.2 Workflow without Edit Transactions
	5.3 Workflow with Edit Transactions

	6 Discussion and Future Work
	6.1 Limitations of the Implementation
	6.2 Research Questions for Quantitative Evaluation
	6.3 Related and Future Language Concepts

	7 Related Work
	8 Conclusion
	A Micro Benchmarks for Method Call and State Access Overhead
	A.1 Setup
	A.2 Discussion of Results

	About the authors

