

Abstraction of Process Specifications

4 Correctness of Process Specifications

Process specifications define allowed process execution scenarios. As a result of
creative modeling practices, models can contain errors, e.g., have scenarios with
improper termination or contain activities that can never become enabled and, hence,
executed. The basic correctness criterion for process specifications, originally defined
for WF-nets, is behavioral soundness. In a sound process, for each activity from a
specification there exists an execution scenario (a process instance) which contains
this activity. Moreover, one can uniquely recognize the events of starting and finalizing
a process instance. SESE fragments have proven useful when decomposing the task
of analyzing behavioral correctness of process specifications. For instance, if a SESE
fragment of a process specification was shown to be sound, in the context of overall
model correctness it can be addressed as a single edge passing control flow from its
entry to its exit [4,10].

check
passed

check
failedinsufficient

resources

S1
S2

S3

L1

P2

S4

S5

S6

L2

S8

S7

P1

P3S9

S10

start stop

Allocate

resources

Confirm

order

Update

order

statistics

Arrange

delivery

Decrease

quality

class

Repair

defect

Produce

item

Discard

item

Figure 5: (2, 0)-decomposition of the process specification (BPMN notation)

The connectivity property of process graphs, in particular (2, 0)- and (0, 2)-
decompositions of process specifications, are extensively studied in literature for the
purpose of SESE fragments discovery [2,7,9,11]. However, these techniques cannot
be applied to an arbitrary structural class of process specifications in a straight-forward
manner. Figure 5 shows the (2, 0)-decomposition of a process specification. Observe
that not all (2, 0)-fragments form SESE fragments, the ones enclosed into the regions
with a dashed borderline do not have a dedicated entry and/or exit nodes, whereas
fragments enclosed in the regions with a dotted borderline are SESE fragments. The
primary reason for this is that the process specification contains “mixed” gateways, i.e.,
control flow routing nodes with multiple incoming and multiple outgoing edges. Despite
the fact that the process from Figure 5 appears to be block structured it can expose
complex execution scenarios with control flow entering and leaving structured block
patterns through both gateways which mark the block. In [4], we show that such complex
behavior can be localized by examining structural patterns in “hidden” unstructured

2-6 Fall 2009 Workshop

5 CONCLUSIONS

regions of control flow. As an outcome, the correctness of the behavior of process
specifications within these regions can be validated in linear time.

S1

P1

S3S2

L1

S4

P2

S6S5

L2

S8S7

P3

S10S9

Figure 6: The tree of the
triconnected components of
the process from Figure 5

Figure 6 provides an alternative view on (2, 0)-
decomposition of the process specification from Figure 5.
Here, each node represents a (2, 0)-fragment and edges
hint at containment relation of fragments. For instance,
fragment P1 is contained in fragment S1, and contains
fragments S2 and S3. Observe that one obtains a tree
structure and that fragment names hint at their structural
class, e.g., S for sequence, P for parallel block (struc-
turally, but not semantically), and L for loops, cf., [4].

In the process specification from Figure 5, fragments
S5, L1, L2, and P2 are non-SESE fragments, the corre-
sponding fragment nodes are highlighted with dark grey
background in Figure 6. Together with fragments that are
represented by adjacent nodes in Figure 6 the control flow region constitutes a SESE
fragment of hidden complex behavior with entry and exit nodes of fragment S2. The
region is highlighted with grey background in Figure 6.

In [4], we observe that process behavior within above descried regions is determined
by loop fragments, i.e., by fragments L1 and L2 in the running example. A (2, 0)-fragment
is a non-SESE fragment if and only if it has a boundary node that is a mixed gateway
which has at least one incoming and at least one outgoing edge both among internal
and external fragment edges. Moreover, a non-SESE fragment is either a loop fragment,
or it shares a boundary node with a loop fragment. In the class of free-choice process
specifications, the boundary nodes of a loop fragment cannot introduce concurrency to
the process instance of a sound process specification. Hence, the boundary nodes of
L1 and L2 fragments in process specification from Figure 5 must implement exclusive-
or semantics. Furthermore, as loops share boundary nodes with other non-SESE
fragments they imply behavioral constraints on all (2, 0)-fragments of the region. For
further information, cf., [4].

5 Conclusions

In our research we develop methods which allow the derivation of high abstraction level
process specifications from detailed ones. In order to discover fragments suitable for
abstraction, we employ structure of process specifications, which are usually formalized
as directed graphs. As an outcome, developed techniques can be generalized to any
process modeling notation which uses directed graphs as the underlying formalism.

It is a highly intellectual task to bring a process specification to a level of abstraction
that fulfills emergent engineering needs without a single perfect solution. By employing
the technique for the discovery of abstraction fragments, one can approach the problem
as a manual engineering effort. Besides, when it is sufficient to fulfill certain use
case, cf., [6], one can define the principles for the semi-automated or fully automated
composition of individual abstractions.

Fall 2009 Workshop 2-7

Abstraction of Process Specifications

As future steps aimed at strengthening the achieved results, we plan to validate the
applicability of the connectivity-based process graph decomposition framework for the
purpose of process abstraction with industry partners and to look for process abstraction
use cases for which automated control mechanisms can be proposed. Finally, studies
regarding the methodology of abstractions need to complement technical results.

References

[1] Carsten Gutwenger and Petra Mutzel. A Linear Time Implementation of SPQR-
Trees. In GD, pages 77–90, London, UK, 2001. Springer Verlag.

[2] Richard Johnson. Efficient Program Analysis using Dependence Flow Graphs.
PhD thesis, Cornell University, Ithaca, NY, USA, 1995.

[3] Richard Johnson, David Pearson, and Keshav Pingali. The Program Structure Tree:
Computing Control Regions in Linear Time. pages 171–185. ACM Press, 1994.

[4] Artem Polyvyanyy, Luciano Garcı́a-Bañuelos, and Mathias Weske. Unveiling
Hidden Unstructured Regions in Process Models. In CoopIS, Vilamoura, Algarve-
Portugal, November 2009. Springer Verlag.

[5] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. Process Model Abstrac-
tion: A Slider Approach. In EDOC, pages 325–331, Munich, Germany, September
2008. IEEE Computer Society.

[6] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. Reducing Complexity of
Large EPCs. In MobIS: EPK, pages 195–207, Saarbruecken, Germany, November
2008. GI.

[7] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. On Application of Struc-
tural Decomposition for Process Model Abstraction. In BPSC, Leipzig, Germany,
2009. GI.

[8] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. The Triconnected Ab-
straction of Process Models. In BPM, Ulm, Germany, September 2009. Springer
Verlag.

[9] Robert E. Tarjan and Jacobo Valdes. Prime Subprogram Parsing of a Program. In
POPL, pages 95–105, New York, NY, USA, 1980. ACM.

[10] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and More Focused
Control-Flow Analysis for Business Process Models Through SESE Decomposition.
In ICSOC, pages 43–55. Springer Verlag, September 2007.

[11] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The Refined Process Structure
Tree. In BPM, pages 100–115, Milan, Italy, September 2008.

2-8 Fall 2009 Workshop

Information Integration in Services
Computing

Mohammed AbuJarour

mohammed.abujarour@hpi.uni-potsdam.de

Information integration has been the typical approach to data-driven applications
in several domains, such as, enterprise applications. Applying information integration
techniques in SOA is not straightforward, because of the lack of adequate resources.
In this work, we propose a novel approach and platform to alleviate this problem and
investigate the benefits of information integration in SOA applications. This idea has
been partially incorporated in the PoSR project successfully [2].

1 Introduction

Service-Oriented Architecture (SOA) has changed the way in which IT serves business
needs. Major service providers tend to provide Web Service interfaces to their services
over the Web, e.g., Amazon, flickr, Yahoo!, eBay. This increasing number of Web
Services poses challenges and creates opportunities in both business and IT. Business
bodies need to utilize each possible opportunity to increase their profits and market
shares. Moreover, business bodies need flexible, adaptive and scalable solutions. SOA
has emerged as a solution for such challenging requirements.

Service Management has been a vital issue in SOA. This is handled by Service
Registry and Repository, which also plays the role of broker between a service provider
and a service consumer. However, managing Web Services and their associated infor-
mation is no longer an easy job that could be achieved using a traditional middleware
solution, such as a UDDI registry. This is due to the increasing complexity of services
and their associated information [11]. On the one hand, the types of service meta-
data are versatile, e.g., XML, BPEL, XSLT, WSRP, etc, and a single service could be
described in more than one type. On the other hand, Web Services usually lack ade-
quate formal descriptions.

This increasing complexity of service information influences service discovery and
selection in SOA applications, where a service consumer queries a service registry for
a required service that achieves a specific task. A service registry needs to consider as
many service description artifacts as possible to provide a precise result list to the ser-
vice consumer. When the service consumer, such as human, application, service, etc.,
receives a result list for its query, it would like to select the most suitable service from
the returned result list efficiently and effectively. Making the right choice is not straight-
forward because several factors should be considered, e.g., price, quality, reputation,
etc. Service description that is gathered from service providers and consumers is the

Fall 2009 Workshop 3-1

Information Integration in Services Computing

main source to determine which service to select. We view this task as an information
integration task, as we explain in Section 3.

The remainder of this report is organized as follows. Section 2 introduces the re-
search context and gives further details about the research problem and challenges.
We explain our proposed approach in Section 3. Then, we highlight the significant re-
search works in this field in Section 4. After that, we summarize this report and show
our future steps in Section 5.

2 Research Context

In this section, we describe our research context. We start by introducing our research
problem, then outline major research challenges, in addition to our expected contribu-
tions.

2.1 Research Problem

The available tools and frameworks that help service providers deploy their systems as
Web Services and the popular Software-as-a-Service trend have helped increasing the
number of services provided in the form of Web Services. Nevertheless, this easiness
in service creation has complicated the problem of service reusability because those
services usually lack enough description artifacts that help service consumers select
the most appropriate service for their needs.

The complexity of SOA systems hinders employing SOA in several domains, in
particular in real-time applications. Ideally, a service consumer issues a service call to
a service provider, in order to invoke a specific service. The service provider returns the
result of that query to the service consumer. In real word scenarios, this is not usually
the case. A service might be no longer available, unavailable at the moment of its call,
or unable to serve this request. Reacting to this situation pushes complexity inside the
SOA application. In our approach, this complexity is hidden inside the service broker
component, as shown in Section 3.2.

SOA has been proposed to bridge the gap between business and IT environments.
But, SOA environments (both business and IT) are dynamic by nature. Typically, ser-
vices appear and disappear often. To respond to such a situation – while achieving
maximum business benefits – a service consumer needs to use a reliable service reg-
istry, use several service registries, or deploy a complex application, which reacts to
expected failures or exceptions. Unexpected failures or exceptions remain threats to
application’s sustainability and reliability.

In our research, we aim at enriching service descriptions, maximizing the benefits
of existing descriptions, and integrating all available resources to provide the highest
precision for service discovery and selection. Our research statement is summarized
in this question: How to enrich, integrate, and manage service descriptions efficiently
and what are the benefits of enriching service descriptions in SOA?

3-2 Fall 2009 Workshop

3 OUR APPROACH: NON-TRADITIONAL INFORMATION INTEGRATION

2.2 Research Challenges

The key challenges that drive our research include:

Dynamic SOA and business environments: Business needs and conditions are al-
ways changing by nature. To respond to these changes, services and service
providers have to adapt by modifying their services or providing new services in
a time-effective manner.

Increasing complexity: This complexity of services is due to the increasing number
of tools, frameworks, domains, and business needs that support or require Web
Services. In most cases, this is reflected in the lack of adequate service descrip-
tion artifacts.

Heterogeneity: Different techniques and formats are used to describe and provide
services. Different parties in SOA environments may have different notions of the
same concept, e.g., reputation, business objects. Furthermore, different scales
could be used to describe the same notion, e.g., trust level.

Inadequate criteria for service discovery and selection: Full-text search is usually
used by service registries as a means of service lookup, but the quality of the
result list depends on the information used to lookup a service. Furthermore,
non-functional requirements of the services should be considered in the lookup
process to make service discovery more comprehensive.

The expected contributions of this work include:

• A set of techniques to enrich service descriptions.

• Model of service data quality.

• A novel approach to enhance service selection and discovery.

• Assessment methods of service discovery by service consumers.

• An integration environment for SOA applications.

• A smart service registry and repository, coined “Deposr”.

3 Our Approach: Non-traditional Information Integra-
tion

In our approach, there is a substantial difference between information integration in
SOA and traditional information integration. This difference leis in the heterogeneous
types of data, on which we apply our information integration techniques. For example,
WSDL files have structured and semi-structured data, whereas, a category (metadata)
is a simple label. On the other hand, service’s quality measures can be represented
as a complex matrix. Integrating all these versatile types of information requires more

Fall 2009 Workshop 3-3

Information Integration in Services Computing

than traditional information integration techniques, as we explain in this section, where
we give more details about our proposed approach to information integration in SOA.
We start with an overview of the proposed environment and its expected features, then
we show further implementation details.

3.1 Deposr: An Information Integration Environment

Our SOA information integration system is coined “Deposr”. The three layers of Deposr
are depicted in Figure 1. The storage layer (Layer 1) manages all relevant information
about the services, such as services’ data, metadata, community annotations. Several
internal functions are required to acquire and manage this amount of data, such as val-
idate and update service data, integrate community annotations. This set of functions
is provided via Layer 2. On top of the storage and internal functions layers, Layer 3 pro-
vides several useful features for service consumers, such as service lookup, service
recommendation, service quality assessment. In the sequel, we explain these layers in
a bottom-top order.

The Storage Layer controls several classes and types of information about the ser-
vices that are managed by Deposr. Data class includes structural and semi-structural
data, such as WSDL and WADL files. This class is typically provided or acquired
from service providers. The second class, metadata, includes information about the
managed services, such as invocation frequency, information about service providers,
category. This class is derived from services’ data and their calls. Invocation metadata
is gathered by analyzing services invocations, which helps us get more information
about each service, its inputs and outputs, in which context it is being invoked, and in
conjunction with which other services it is being invoked. Additionally, users who would
like to help Deposr improve the quality of its features and assess the quality of ser-
vice discovery could also provide explicit feedback and annotations about the services
that they have used. This information falls in the community annotations class. Fur-
thermore, a consumer’s profile tracks service usage history where information about
previous services’ invocations by each consumer is tracked and gathered. This infor-
mation is helpful for the consumer and for other similar consumers. We can make use of
this history of invocations to rank the list of retrieved services according to consumer’s
preferences (tastes) that we derive from its previous service usage. Other similar con-
sumers – in terms of preferences and tastes – could also get more accurate results
based on the behavior of similar consumers, which is derived from usage history.

To manage, control, and integrate the different types of storage information, and to
provide the essential and value-added features of Deposr, several internal functions are
required. This set of internal functions represents the Internal Functions Layer, Layer
2 in Figure 1. Part of these internal functions control the different types of information in
the Storage Layer, such as validate and update service data, manage service informa-
tion and user interface and description. Other internal functions create or extract new
information about services from services invocations and community annotations. This
latter set of internal functions provides a set of techniques to enrich service descrip-
tions. Bringing all these classes of information require a service data quality assurance
internal function that performs required information quality techniques on the level of

3-4 Fall 2009 Workshop

3 OUR APPROACH: NON-TRADITIONAL INFORMATION INTEGRATION

Figure 1: The Architecture of Deposr

the information in the Storage Layer.
Fundamental and value-added features of Deposr are made available via the API

Layer; Layer 3. Service lookup is a fundamental feature that enables service con-
sumers find services, which fulfill their needs. As we use enriched service descrip-
tions and employ new models to fulfill non-functional requirements, this enhances ser-
vice selection and discovery. Result aggregation has been a popular research trend:
search results from several systems are aggregated in one list, to obtain more accurate
and comprehensive results. For instance, Metacrawler (http://www.metacrawler.com)
submits user queries to several search engines, e.g. Google, Yahoo!, Windows Live
(Bing), and Ask, and aggregates the different individual result lists, it gets back from
those engines, into a single result list. This principle can also be adapted to data Web
Services, where the results of several similar services’ invocations are aggregated into
a single result list, e.g., news items. Nevertheless, the aggregation of several result lists
is not practically useful if the resulting aggregated list is simply too long. This limitation
is handled by adapting the principles of focused retrieval. The task of focused retrieval
is to specify the most relevant parts of each item in the result list and report them in-
stead of reporting the entire items to the user. By tracking consumers usage history,
we can apply a service recommendation feature, where service consumers get a list
of recommended services or services that were used by similar consumers. Deposr
allows service providers to add their services to the system manually. Additionally, we
employ crawling techniques and other heuristics that we have developed to automat-
ically gather Web Services on the Web. This set of features help service consumers
respond to the dynamic changes in SOA and business environments by keeping their

Fall 2009 Workshop 3-5

Information Integration in Services Computing

(a) Traditional service registries (b) The role of Service Invocation Proxy

Figure 2: The traditional role of service registry and the extended role of the Service
Invocation Proxy

information up-to-date.
The unified service description, which we get from the different types of service

information, helps us provide and evaluate more quality attributes to provide an en-
hanced set of service quality assessment. Service discovery is usually based on func-
tional requirements, e.g., the operation of each service. Nevertheless, non-functional
requirements, e.g., reliability, accuracy, accessibility, consistency, timeliness, availabil-
ity, relevancy, efficiency, usability, security, trust, etc., are vital criteria, especially in
business. Several approaches have been proposed to handle this issue. Some ap-
proaches use information provided by the service provider to evaluate Quality of Ser-
vice (QoS) attributes for that specific service provider [6]. Other approaches make use
of service consumers’ ratings for the used services [7]. In our approach, we combine
both approaches and augment them with a third source of information to evaluate QoS
attributes for a service provider, a service, and a service consumer (e.g., reputation).
This source is the invocation metadata, which we derive from service invocation anal-
ysis.

3.2 Web Service Invocation Proxy

Traditionally, a Service Registry and Repository (see Figure 2 (a)) acts as a broker
between service consumer and service provider. The role of the service registry ends
when the suitable service is discovered by the service consumer. Afterwards, the ser-
vice consumer contacts the service provider to request achieving the required task.

In our research, we propose an extended architecture where a service invocation
proxy acts as a mediator between service consumers and service providers. This
extended architecture is depicted in Figure 2 (b). A service consumer queries the
service registry to find an appropriate service. After that, the service consumer sends
a request to the service invocation proxy to use the selected service. The service
invocation proxy issues a service call to the service provider to invoke the service and
sends the result back to the service consumer. If the service is no longer available, the
service invocation proxy notifies the service consumer with a list of alternative services.

3-6 Fall 2009 Workshop

3 OUR APPROACH: NON-TRADITIONAL INFORMATION INTEGRATION

If the selected service is not available at the moment, or the issued service call takes
much time, then the service broker can suggest making another call to a similar service
transparently.

The proposed architecture has several advantages. It hides the complexity of SOA
applications by moving some complex tasks, e.g., fault tolerance, which would be
achieved by each SOA application separately, into the service broker. Moving such
tasks into the service broker enables it to achieve them more efficiently because it
can access more service calls and their associated invocation information. Another
advantage of this architecture would be caching. Suppose that hundreds of service
consumers issue separate service calls to a few weather forecast services. If the ser-
vice invocation proxy is deployed in this scenario, then the number of service calls will
be reduced by providing a cached copy of the service result from previous service calls.
This will reduce network traffic and load on services.

The storage layer of Deposr, as depicted in Figure 1, is served by the service reg-
istry component and the service invocation proxy. The data and metadata are managed
by the registry, whereas the invocation metadata, usage history, and community anno-
tations are managed by the service invocation proxy (Figure 2 (b)). Both components,
service registry and service invocation proxy, are the main source of data used to pro-
vide internal functions and API’s.

3.3 Invocation Analysis

Invocations are either automatic invocations or invocations done by service consumers.
For new services, automatic invocations would be necessary to generate information
about the new service, so that, for instance, quality measures of that particular service
can be carried out. Invocation analysis are achieved through Web Service Invocation
Proxy, as we described in Section 3.2. On the other hand, tracking users’ invocations
of services through the system can be a useful source of information. Each service call
is tracked and “sampled” to extract metadata about the invoked service.

Invocation analysis are especially beneficial for new services which have not yet
been evaluated by service consumers and lack enough information, which is necessary
to achieve a precise service discovery. Moreover, for services that have been already
used and evaluated by service consumers, our approach is still beneficial because
a combined source of information is used to measure service quality and enhance
the quality of service discovery. Additionally, invocation analysis helps alleviate the
increasing complexity in SOA by sampling so many service calls issued by several
service consumers in diverse domains by gathering more information that can be used
to understand these services better.

To illustrate the value of invocation analysis, we introduce a simple example to ser-
vice quality. Buying an item online includes two broad activities: ordering the item and
shipping the ordered item. Usually, different service providers are in charge of each
activity. In most cases, more than one service provider can achieve the same task.
See Figure 3. Two service providers (B and C) can ship the ordered item, but the buyer
decides which one to choose. Suppose that service provider (A) and service provider
(B) have a business partnership, which is reflected in handling the item from (A) to (B)

Fall 2009 Workshop 3-7

Information Integration in Services Computing

Figure 3: A composite service for ordering and shipping an item online.

in less time, say in the same day. On the other hand, delivering the item from (A) to (C)
takes 2-3 days. Furthermore, suppose that both providers (B) and (C) take the same
time to deliver the item to the buyer, say 3 days. Shipping the item through (B) takes
around 3 days, whereas, shipping the same order via (C) takes 5-6 days. Following
the traditional SOA approach where the entire composite service is viewed as a single
service, the total time required to execute this service call will be 3 days, in the case of
(B) and 5-6 days in the case of (C). This gives (B) advantage over (C) with respect to
time, but this is not accurate, because both providers (B and C) need 3 days to deliver
the item.

Applying our approach gives different results. By analyzing each individual service
call, we can evaluate quality attributes for each service separately. Additionally, ana-
lyzing several service invocations issued by service consumers help us provide more
accurate quality measures for each service.

4 Related Work: Service Brokers

In this report, we only highlight most relevant projects and papers in this field. For a
detailed overview of related work, please, refer to [1].

Public UDDI Business Registries were shutdown, because they did not prevail in the
domain of public Web Services [9]. ebXML registries, e.g., FreebXML [4], were pro-
posed by OASIS (http://www.oasis-open.org) to handle this issue. Existing service
registries and repositories still have limitations, e.g., inadequate functions, support-
ing limited Web Service types, etc. IBM’s WebSphere Service Registry and Reposi-
tory does not support all service metadata, e.g., WSRP [5]. SUN’s Service Registry
and Repository is based on both ebXML and UDDI, but is limited to Web Services
only [10]. Centrasite is based on UDDI and limited to Web Services inside the organi-
zation only [3]. FreebXML is an open source registry, which is based on ebXML [4].

3-8 Fall 2009 Workshop

REFERENCES

The notion of proxies in SOA was introduced in [8] as an agent-oriented, integrated
component in service consumers to evaluate the reputation, and level of trustworthi-
ness of services and service providers, respectively.

5 Summary and Future Work

The increasing number of web services and the easiness of creating Web Services
from existing software applications have been increasing the complexity of SOA sys-
tems and making service discovery and selection, evaluating service quality, and pro-
viding fundamental and value-added features more and more challenging. The main
reason for these limitations is the lack of enough information and descriptions associ-
ated with these services. In addition to other reasons that help complicate the problem
further, such as the dynamic nature of SOA and business environments. In this report,
we introduced a new integration environment for SOA applications, where we integrate
different sources of information about services to provide the required features and
value-added features in SOA.

All parties involved in a SOA application are taken into consideration and infor-
mation from these parities is gathered. This information includes data from service
providers, e.g., WSDL, metadata which is stored in the registry, e.g., category, commu-
nity annotations and consumers feedback, invocation metadata, and usage history. All
these different types of information are then used to create a unified service description
for each service using non-traditional information integration techniques.

One important aspect in this context is privacy and information security. Therefore,
this architecture fits better for SOA applications inside the boundaries of a single or-
ganization. Further schemes for privacy and information security are part of our future
work.

References

[1] Mohammed AbuJarour. On a Model for a Service Database. Technical report,
Hasso-Plattner-Institut, Potsdam, Germany, October 2008.

[2] AbuJarour M. et al. Posr: A Comprehensive System for Aggregating and Using
Web Services. In Proceedings of the 2009 IEEE Congress on Services, USA,
2009.

[3] Centrasite Community. Centrasite Registry. http://www.centrasite.org.

[4] FreebXML. ebXML Registry-Repository. http://ebxmlrr.sourceforge.net.

[5] IBM. WebSphere Service Registry and Repository. http://www.ibm.com/

software/integration/wsrr.

Fall 2009 Workshop 3-9

Information Integration in Services Computing

[6] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. QoS Computation and Policing in
Dynamic Web Service Selection. In WWW Alt. ’04, pages 66–73, New York, NY,
USA, 2004. ACM.

[7] Zaki Malik and Athman Bouguettaya. RATEWeb: Reputation Assessment for Trust
Establishment among Web services. VLDB J., 18(4):885–911, 2009.

[8] E. Michael Maximilien and Munindar P. Singh. Toward Autonomic Web Services
Trust and Selection. In ICSOC ’04, pages 212–221, New York, NY, USA, 2004.
ACM.

[9] Steinmetz N. et al. D1.1 Requirement Analysis and Architectural Plan. Technical
report, Service Finder, October 2008.

[10] SUN Microsystems. SUN’s Service Registry. http://www.sun.com/products/

soa/registry.

[11] Sun Microsystems. Effective SOA Deployment Using an SOA Registry
Repository. http: // www. sun. com/ products/ soa/ registry/ soa_ registry_

wp. pdf , 2005. White paper.

3-10 Fall 2009 Workshop

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

Declarative and Event-based
Context-oriented Programming

Malte Appeltauer
Software Architecture Group

Hasso-Plattner-Institut

malte.appeltauer@hpi.uni-potsdam.de

The original context-oriented programming approach does not provide dedicated
means for the representation of event-specific context-dependent behavior. In this re-
port, we motivate both the need for event-specific context-dependent behavior and
appropriate constructs provided with our JCop programming language extension in its
support. We present both a reimplementaion of an example discussed previously to
show the improvement achieved based on the application of our newly introduced lan-
guage constructs and a service-based application which we set up to evaluate JCop in
a distributed environment.

1 Introduction

With the increasing demand of personalization and mobility of applications, context
awareness gets a distinguishing feature for software systems. Context-aware appli-
cations consider context-information, which can be any information computationally
accessible, for individual computation. Depending on their context, actors regard a
software system from different perspectives. Actors can be objects of the system itself,
software developers, or end-users. More formally, a context is constituted by predicates
that evaluate its presence and a set of behavioral variations that reflect the context-
specific behavior. Context-specific behavior variations are often crosscutting concerns
whose implementation is scattered over a decomposition. Therefore, a major task for
context representation is the modularization of these crosscutting concerns. Besides
modularization, context-specific concerns require means for fine-grained expression of
their composition.

Context-oriented programming [5] (COP) is an approach to represent context-
specific concerns that focuses on dynamic composition of control flows. COP allows for
the definition of layers, cross-cutting modules that encapsulate behavioral variations.
Layers are composed at run-time to the system behavior that is required in a certain
context. In general, a context can appear at any point in an execution graph. Moreover,
at the same time, several clients can regard an object from within different contexts. For
these control-flow specific contexts, COP provides the with statement, a construct that
allows for the composition of layers for the dynamic extent of a specific computation.

In this paper, we report on our recent research on context-oriented programming.
We present JCop, a COP-based programming language with explicit support for event-

Fall 2009 Workshop 4-1

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

Declarative and Event-based Context-oriented Programming

specific context. Moreover, we discuss the development of context-aware service-
based systems and their implementation using COP.

Section 2 gives an overview of COP and ContextJ. Section 3 motivates the need for
explicit support of event-based context that is addressed by JCop, which is presented
in Section 4. Section 5 reports on another thread of our research, the adoption of COP
in service-based applications. A summary and next steps are provided by Section 6.

2 Context-oriented Programming for Java

Our research is based on the context-oriented programming approach. In the following,
we give an overview of COP and ContextJ [2–4], our earlier COP language extension
to Java.

2.1 Context-oriented Programming

Context-oriented programming [5] (COP) addresses the development of systems,
whose behavior varies depending on their context of use. In most cases, a behav-
ioral variation is not implemented by a single object; instead, it is distributed over a
team of collaborating objects. Such distributed functionality is denoted as crosscutting
concern [6]. The modularization and composition of crosscutting concerns requires
additional language abstractions beyond object-oriented programming. COP allows for
the convenient expression of behavioral variations that cut across a system’s domi-
nant decomposition. Context-dependent functionality is explicitly represented and can
be dynamically composed at run-time. Context that requires a composition of behav-
ioral variations can be everything that is computationally accessible [5], such as state,
control flow, or properties of the system’s environment.

Layers. Behavioral variations are implemented by layered methods that consists of
a base method definition and at least one partial method definition, which is defined
in a layer. A base method denotes the Java method definition that is executed when
no active layer provides a corresponding partial method. A partial method definition
implements the functionality of a behavioral variation that extends or overrides a base
method definition for the time the layer is active.

Dynamic composition. Layers can be composed at run-time. Invocations of layered
methods are first send to their active partial method definitions. During its execution,
a behavioral variation can proceed to a corresponding partial method in another active
layer or, if such method does not exist, to the base method definition. If more than
one active layer provides a partial definition for a layered method, the order of layer
activation defines the proceed chain, in which the layer activated last is accessed first.
Per default, layer activation is scoped per thread and to the dynamic extent of a block
of statements.

4-2 Fall 2009 Workshop

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

3 EVENT-BASED CONTEXT-SPECIFIC BEHAVIOR

2.2 ContextJ

The ContextJ1 [2–4] programming language is an extension to Java and features the
layers-in-class style [5]: each class affected by a layer L contains a declaration of L that
contains partial methods for its class. Thus, classes contain their own context-specific
variations.

A layer definition consists of an identifier and a list of method definitions. These
definitions specify either new methods that are visible in the scope of their layer, or
partial method definitions, whose signature must correspond to a base method in the
hierarchy of the enclosing class. During layer activation, invocations of this method are
dispatched to the definition provided by this layer.

The built-in pseudo method proceed can be used to explicitly invoke the next par-
tial method definition (or the base method). Both the return type and the expected
arguments of proceed conform to the method’s signature.

To control scoped layer activation, ContextJ provides the with block statement that
can be used in method bodies. It consists of list of expressions of the built-in type
contextj.lang.Layer. The without block construct, as counterpart to with, is used
for explicitly disabling layer execution for a certain control flow.

3 Event-based Context-specific Behavior

In this section, we present a case study in which we first apply ContextJ, our earlier
COP language, and discuss its strength and weaknesses in the domain of event-based
systems. In Section 4 we will revisit this example using our new language abstractions
provided by JCop.

3.1 Motivation

Besides control-flow specific contexts, which is addressed by COP’s with statement,
event-specific context can influence a system’s behavior. We observe two key prop-
erties that distinguish event- and control-flow specific context: First, context enter and
exit is control-flow independent. For instance, a mobile phone could change its behav-
ior, i.e, changing display brightness and disconnecting network connections, when its
battery power decreases 10% and as long as the power stays lower than 20%. For
this period of time, any computation of the cell phone should use the respective lay-
ers. Second, events can constitute a new context asynchronously. Such asynchronous
context changes that cause immediate system adaption may lead to inconsistent com-
putations.

With the abstractions of state-of-the-art COP languages, event-specific context can-
not be represented without scattering layer composition statements over the program.
Furthermore, for event-specific layer activation we need a save mechanism that does
not lead to inconsistent state.

1ContextJ is available for download at http://www.hpi.uni-potsdam.de/swa/cop

Fall 2009 Workshop 4-3

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

Declarative and Event-based Context-oriented Programming

1 import layer RTFWidgets;

2 import layer CodeWidgets;

3

4 public class CJEditWindow

5 extends QMainWindow {

6 ...

7 layer RTFWidgets {

8 private QMenu formatMenu;

9 private FormatToolBar formatToolBar;

10

11 after private void showMenus () {

12 ...

13 }

14 after private void showToolBars () {

15 ...

16 }

17 after private void hideWidgets () {

18 ...

19 }

20 after private void showWidgets () {

21 ...

22 }

23 }

24 }

1 public class CJEditWindow

2 extends QMainWindow {

3 ...

4 void onCursorPositionChanged () {

5 with (getLayersOfPreviousBlock ()) {

6 hideWidgets ();

7 }

8 with (getLayersOfCurrentBlock ()) {

9 showWidgets ();

10 }}

11 void onPrint () {

12 with (getLayersOfPreviousBlock ()) {

13 ...

14 }}

15 void onSave () {

16 with (getLayersOfPreviousBlock ()) {

17 ...

18 }}

19 void onFileNew () {

20 with (getLayersOfPreviousBlock ()) {

21 ...

22 }}

23 }

Figure 1: left: Layered specification of task-dependent GUI Widgets. right: Layer
compositions within event handlers.

3.2 Case-Study: CJEdit

In a case study, we develop an event-based context-dependent GUI application using
ContextJ. CJEdit is a programming environment that supports rich text comments within
ContextJ programs.

3.2.1 CJEdit

The CJEdit editor is equipped with syntax highlighting, an outline view, and a compi-
lation/execution toolbar. In addition, it allows to format ContextJ compilation units with
rich text comments. For this task, the editor provides rich text formatting features, such
as font family, size, style, and color modifications. Through the combination of rich text
and source code, CJEdit documents are single-source, executable representations of
code and documentation. Both activities require different functionality, therefore our
application supports focusing on the actual task at hand by offering only relevant tools,
menus, and widgets. A context switch between text editing and programming features
is either directly triggered by the user, or on text cursor change: While writing new text,
the user can enter the programming mode by pushing a toolbar button. Whenever the
text cursor is moved through the document from text to code and vice versa, the GUI
elements are changed accordingly.

4-4 Fall 2009 Workshop

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

3 EVENT-BASED CONTEXT-SPECIFIC BEHAVIOR

3.2.2 Implementation

CJEdit is implemented using ContextJ and the Qt Jambi GUI Framework. The editor
consists of approximately 1400 lines of code, where most parts are written with plain
Java constructs and the help of the Qt GUI Designer. The overlay of task-specific user
interfaces and behavior is implemented in ContextJ. The system contains layers that
encapsulate rich text and programming widgets such as toolbars and their correspond-
ing behavior.

Figure 1 (left) shows the implementation of a layer that encapsulates widgets for
the rich text edit-specific user interfaces. It provides partial methods that are executed
after the execution of their base methods. On a task switch, the system hides specific
GUI elements by calling hideWidgets and invokes the showWidgets, showMenus, and
showToolBars methods. Thus, the layers extend hideWidgets with a partial method
that removes the layer-specific widgets.

The editor’s underlying document tree represents each text line as a text block node.
Each block holds a list of layers that should be activated when it is focused. By default,
blocks refer to the layers responsible for rich text behavior. If the user switches to the
programming activity (by pressing the ’code environment’ button in the toolbar), the
following text blocks are linked with programming environment-specific layers.

Layers are recomposed whenever the type of the focused block changes from rich
text to code block, and vice versa. This change is explicitly activated by entering or
leaving the programming activity (by pressing the code button) or on moving the text
cursor between blocks of different types.

For the dynamic extent of the recomposition, the layer list of the current block is
activated. The composition is triggered by the onCursorPositionChanged event, as
depicted in Figure 1 (right). First, hideWidgets is invoked in the context of layers of
the previous block to remove their specific widgets. The GUI elements are then recom-
posed with the layer composition of the current block.

3.3 Lessons Learned

The two main behavioral variations implemented in our example, namely rich text edit-
ing and program development have been implemented using layers. The layers contain
partial method definitions that implement the variations of the default behavior of cer-
tain methods. The user-based behavioral switch can be mapped directly to dynamic
layer composition.

Besides these benefits, we had to consider some characteristics of GUI-based pro-
gramming that led to additional challenges for the ContextJ-based implementation. The
two most important findings are explained in the following.

First, user interaction with GUI behavior is less control flow-centric but rather event-
driven. This complicates dynamic extent-based layer composition as proposed origi-
nally by COP. On user interaction – such as printing the document, writing new text,
or moving the text cursor through the document – the layers of the current block must
be activated in their respective control flows. In the source code, this issue is man-
ifested as repeated with statements in the event callback methods, which itself is a

Fall 2009 Workshop 4-5

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

Declarative and Event-based Context-oriented Programming

crosscutting concern. Another issue is the intrinsic difference between declarative GUI
specifications and dynamic behavioral variations. The exclusive specification of layer-
specific widgets is not sufficient, we also need auxiliary methods such as showWidgets

and hideWidgets, and explicitly trigger their execution after layer activation. In an more
declarative solution, we would only need to specify the GUI variations and add them to
the internal structure. With the activation of a layer, the layered state of this structure
would be activated, too.

Based on these findings, we developed a programming language that is capable of
the original COP features and additional abstractions for event-based context.

4 Event-based Context Representation with JCop

Based on the experiences discussed in the previous section, we present the JCop lan-
guage that extends ContextJ with new composition mechanisms for a more declarative
expression of event-specific context activation. In the following, we revisit our CJEdit
application using the JCop’s new language constructs.

4.1 Modularization

Layers can either be defined within the classes for which they provide behavioral vari-
ations (layer-in-class), or in a dedicated top-level layer similar to an aspect (layer-in-
class) [1, 5]. Besides the structural differences of the two declaration styles, layer-
in-class can access and extend the host object’s internal state and methods, while
class-in-layer are restricted to public interfaces. Developers can decide per situation if
they prefer to define a layer within it’s host object, allowing private member access, or
to declare all partial definitions of a layer as one layer module to reduce scattering.

Besides partial methods known from ContextJ, partial fields override the state of
their base definition and persist these state over layer deactivations. In additions, layers
can contain auxiliary methods and fields that are only visible within the scope of their
layer.

4.2 Declarative Layer Composition

JCop adopts control-flow specific layer activation from ContextJ. As we identified in our
case-study, some layer activations have multiple entry points, requiring repetition of
identical with statements. To avoid this cross-cutting concern, JCop supports declar-
ative with statements. Using a pointcut-like construct adopted from aspect-oriented
programming, a layer composition can be bound to multiple (join-)points. The following
listing depicts the use of declarative with statements in CJEdit.

1 on(* *. onPrint (..)) ||

2 on(* *. onSave (..)) ||

3 on(* *. onFileNew (..)) {

4 with(getLayersOfCurrentBlock ());

5 }

4-6 Fall 2009 Workshop

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

4 EVENT-BASED CONTEXT REPRESENTATION WITH JCOP

The statement declares that the dynamic extent of the executions onPrint,
onSave, and onFileNew is executed with the layer composition returned by
getLayersOfCurrentBlock().

4.3 First-class Event-based Context

Using declarative with statements solves the issue of scattered with statements, but
although we have reduced code repetition, we still need to handle the context change
event within the business logic of our text editor. For instance, the editor provides meth-
ods to access the layers of the current and previous text node, which need to be stored
by the application. For a better separation of concerns and an even more declarative
description of context change, JCop provides event-based layer composition which is
based on declarative layer composition. The next listing presents two declarative with
statements using when to express the event that triggers context activation.

1 (on(* *. onPrint (..)) || on(* *. onSave (..)) || on(* *. onFileNew (..))) &&

2 when(TextEditor.getInstance (). getBlock () == BlockType.Programming) {

3 with(CodeWidgetes , SyntaxHighlighting , Outline);

4 }

5

6 (on(* *. onPrint (..)) || on(* *. onSave (..)) || on(* *. onFileNew (..))) &&

7 when(TextEditor.getInstance (). getBlock () == BlockType.Commenting) {

8 with(RTFWidgets);

9 }

The on expressions specify the method executions whose dynamic extents use a
layer composition. The when predicate specifies a runtime condition that must be ful-
filled. In many cases we can omit the declaration of the start of our dynamic extent.
A shorthand notation that only describes the event predicate for our CJEdit example
would be:

1 when(TextEditor.getInstance (). getBlock (). getType () == BlockType.Programming) {

2 with(CodeWidgetes , SyntaxHighlighting , Outline);

3 }

4

5 when(TextEditor.getInstance (). getBlock (). getType () == BlockType.Commenting) {

6 with(RTFWidgets);

7 }

JCop provides a first-class context construct as a dedicated location for the com-
position statements shown above. In addition to composition statements, contexts can
contain auxiliary methods and fields The following listing shows a first-class context
specification for the programming context.

1 context Programming {

2 when(getBlockType () == BlockType.Programming) {

3 with(CodeWidgetes , SyntaxHighlighting , Outline);

4 }

5

6 private BlockType getBlockType () {

7 TextEditor te = TextEditor.getInstance ();

8 return te.getBlock (). getType ();

9 }

10 }

Fall 2009 Workshop 4-7

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

Declarative and Event-based Context-oriented Programming

Figure 2: Architecture of the ticket shop system.

5 Using JCop for the Development of a Service-based
Ticket Shop

As in any software system, the behavior of a service component can depend on context
information. However,

Therefore, we investigate, weather our language abstractions are applicable for
service-based systems. In the following, we report on our first results in developing
a service-based application using JCop.

5.1 Motivation

Service-based systems are mostly heterogeneous environments, including services
that are implemented in different languages and run on machines with different prop-
erties. In addition, different types of client applications, such as rich clients, mobile
clients, and Web-based clients, can use the same service infrastructure from different
execution contexts. Especially mobile clients often provide context information that is
relevant for computation.

To evaluate the properties of COP language abstractions in a service-oriented sce-
nario, we implement a service-based ticket shop that adopts a ticket shop use-case
by W3C [8]2. A travel agency offers to book vacation packages including train tickets
and hotels. Service providers are providing Web services to query their offerings and
perform reservations. TrainBookingService employs LocationService for the com-
putation of train connections. To purchase tickets, credit card companies are providing
services to guarantee payments made by consumers.

To create a heterogeneous service environment, we implement our application in
Python and Java using RPC libraries, and provide two different clients. Our Web

2The system has been developed in collaboration with Michael Perscheid. We will both share this
infrastructure as a base for our research experiments.

4-8 Fall 2009 Workshop

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

6 SUMMARY AND NEXT STEPS

Figure 3: Layer compositions during a service call.

client is based on Smalltalk/Seaside [7], the rich client is a Java/Swing applica-
tion. Figure 2 presents the application’s key components. TrainBookingService and
HotelBookingService offer methods to lookup and book the their respective products.
Both services use CreditCardTransactionService to accomplish bookings.

5.2 Context-aware Behavior

The ticket shop example contains several context-dependent concerns that we imple-
ment using COP. Context can either affect only one module or larger parts of the sys-
tem, including several services. In the first case, the scope of a layer composition
begins and ends within the same module without crossing distribution boundaries.

In the second case, the dynamic extent of a layer composition includes calls to other
services. Due to loose coupling, we cannot anticipate that another service provides
the same layers as the consumer. Thus, passing the current layer composition to the
service is inappropriate. Instead, the service should be informed about the context
of the service call in an abstract way. The service can then decide how it varies its
response according to this information.

An example for the latter case is CreditCardTransactionService can be called
using RSA or Elgamal cryptography, see Figure 3. Which of them is used depends
on context information of the consumer that is exposed to the service. The encryption
context is passed as an additional parameter. The credit card service composes its
layers according to this context information.

6 Summary and Next Steps

In this report, we motivate the explicit support of event-based behavioral variations in
context-oriented programming language extensions. We discuss the benefits and some
shortcomings of this implementation, which led us to the design of JCop, a COP-based
language that adopts ideas of aspect-oriented programming for a more declarative

Fall 2009 Workshop 4-9

DRAFT compiled: 2009-12-16 17:00(local time) — SVN-

Declarative and Event-based Context-oriented Programming

representation of event-based context. Furthermore, we report on the implementation
of a service-based ticket-shop scenario using COP.

In future work, we will extend the event-based context specification presented in this
report to support asynchronous context enter and exit predicates. In addition to control-
flow- and event- specific context, we will develop a semantics of object-specific context
that is relevant, for instance, in role-based scenarios. Furthermore, we will evaluate
the concepts developed in the course of this thesis. As a part of this evaluation, we will
extend our ticket shop scenario and develop a framework for context propagation over
distribution boundaries.

References

[1] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael Per-
scheid. A Comparison of Context-oriented Programming Languages. In COP ’09:
International Workshop on Context-Oriented Programming, pages 1–6, New York,
NY, USA, 2009. ACM Press.

[2] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara. Con-
textJ - Context-oriented Programming for Java. 2009. submitted.

[3] Malte Appeltauer, Robert Hirschfeld, and Hidehiko Masuhara. Improving the Devel-
opment of Context-dependent Java Applications with ContextJ. In COP ’09: Inter-
national Workshop on Context-Oriented Programming, pages 1–5, New York, NY,
USA, 2009. ACM Press.

[4] Malte Appeltauer, Robert Hirschfeld, and Tobias Rho. Dedicated Programming
Support for Context-aware Ubiquitous Applications. In UBICOMM 2008: Proceed-
ings of the 2nd International Conference on Mobile Ubiquitous Computing, Sys-
tems, Services and Technologies, pages 38–43, Washington, DC, USA, 2008. IEEE
Computer Society Press.

[5] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented Pro-
gramming. Journal of Object Technology, 7(3):125–151, March-April 2008.

[6] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented Programming. In Proceed-
ings 11th European Conference on Object-Oriented Programming, volume 1241,
pages 220–242. Springer-Verlag, 1997.

[7] Michael Perscheid, David Tibbe, Martin Beck, Stefan Berger, Peter Osburg, Jeff
Eastman, Michael Haupt, and Robert Hirschfeld. An Introduction to Seaside. Soft-
ware Architecture Group, Hasso-Plattner-Institut, April 2008.

[8] W3C. Web service use case: Travel reservation, March 2002.
http://www.w3.org/2002/06/ws-example.

4-10 Fall 2009 Workshop

