
Adaptive Just-in-time Value Class Optimization

Transparent Data Structure Inlining for Fast Execution

Tobias Pape
Hasso Plattner Institute
Universtiy of Potsdam

tobias.pape@hpi.de

Carl Friedrich Bolz
Software Development Team

King’s College London
cfbolz@gmx.de

Robert Hirschfeld
Hasso Plattner Institute
Universtiy of Potsdam
hirschfeld@hpi.de

ABSTRACT
The performance of value classes is highly dependent on how they
are represented in the virtual machine. Value class instances are im-
mutable, have no identity, and can only refer to other value classes
or primitives and since they should be very lightweight and fast,
it is important to optimize them well. In this paper we present a
technique to detect and compress commonly occurring patterns of
value class usage to improve memory usage and performance. micro-
benchmarks show two to ten-fold speedup of a small prototypical
implementation over the implementation of value classes in other
object-oriented language implementations.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Data types and struc-
tures, Dynamic storage management; D.3.4 [Processors]: Code gen-
eration, Compilers

Keywords
Meta-tracing, JIT, Data Structure Optimization, Value Classes

1. INTRODUCTION
Objects are at the heart of object-oriented languages and the

choice of how to represent them in memory is crucial for the perfor-
mance of a language implementation [3, 27]. The standard way of
representing objects involves an indirection for references to other
objects, e.g. by using direct pointers or object tables. Typical best
practices of object-oriented modeling and design—such as delega-
tion or the composite design pattern—have an influence on per-
formance with such representations. Every additional indirection
between delegators and delegates or composites and their parts has
the overhead of a new object. This includes memory consumption,
but also execution time to navigate the referenced objects.

In this paper we propose an object layout that stores nested object
groups in a compacted, linearized fashion. To simplify the problem,
we restrict ourselves to optimizing value classes [2]. Value classes
are immutable classes without identity that only store other value

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SAC’15 April 13–17, 2015, Salamanca, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3196-8/15/04. . . $15.00.
https://dx.doi.org/10.1145/2695664.2695837

classes or primitive data. Value classes are available in Java [31],
Scala [28], and .Net [25], to name a few.

Composite structures involving value classes have certain usage
patterns. This is obvious in linked lists (a single list element probably
references another list element and so forth) or trees (a tree node
references a number of other nodes or a value). Data structures
with such patterns can be transformed into lower-level structures
more suitable to the machine model. While simple variants of such
patterns can be statically inferred, many become apparent only at
run-time. In particular, recursive structures often exhibit patterns that
are opaque to static inference, e.g. while a tree apparently may have
sub-nodes, it is statically unknown whether trees are used as deep
trees or rather flat ones, or which kind of values are stored in the
tree in practice. However, each case could be optimized differently.
Hence our optimization approach works at run-time in conjunction
with a just-in-time (jit) compiler.

In this paper, we describe the following contributions:

• We propose an approach for finding patterns in value class
usage at run-time.

• We present a compressed layout for value classes that makes
use of the patterns to store value classes more efficiently.

• We report on the performance of micro-benchmarks for a
small prototype language.

The paper is structured as follows: section 2 gives brief intro-
ductions to tracing jit compilers [6]. In section 3, we present our
approach to just-in-time optimization of data structures. A proof-
of-concept implementation is briefly presented in section 4 and its
performance is evaluated in section 5. Our approach is put into con-
text in section 6 and we conclude in section 7.

2. TRACING JUST-IN-TIME COMPILERS
Just-in-time (jit) compilation has become a mainstream technique

for, among other reasons, speeding up the execution of programs at
run-time. After its first application to Lisp in the 1960s, many other
language implementations have benefitted from jit compilers—from
APL, Fortran, or Smalltalk and Self [1] to today’s popular languages
such as Java [29] or JavaScript [24].

One approach to writing jit compilers is using tracing. A trac-
ing jit compiler records the steps an interpreter takes to obtain an
instruction sequence called trace and then uses this trace instead
of the interpreter to execute the same part of that program [26] at
higher speed. Tracing produces specialized instruction sequences,
e.g. for one path in if–then–else constructs; missed branches still
use the interpreter. Tracing jit compilers have been successfully
used for optimizing native code [4] and also for efficiently executing
object-oriented programs [19].

https://dx.doi.org/10.1145/2695664.2695837

Meta-tracing takes this approach one step further by observing
the execution of the interpreter instead of the execution of the appli-
cation program. Hence, a resulting trace is not specific to a particular
application but the underlying interpreter [10, 13]. Therefore, it is
not necessary for a language implementer to program a optimized
language-specific jit compiler but rather to provide a straightfor-
ward language-specific interpreter in RPython, a subset of Python
that allows type inference. Hints to the meta-tracing jit enable fine-
tuning of the resulting jit compiler [9]. RPython’s tracing JIT also
contains a very powerful escape analysis [7], which is an important
building block for the optimization described in this paper.

3. OPTIMIZATION APPROACH
Our optimization detects common patterns of how instances of value
classes (value objects for short) reference each other. It then intro-
duces short forms for these patterns, which we call shapes, that make
it possible to represent these patterns more efficiently in memory.
This physical representation of the data structures is separated from
the interface visible to programmers.

A straightforward value object representation would be a chunk of
memory that stores a pointer to the class of the value object, followed
by its contents that typically consist of pointers to all the fields of
that value object. We call the contents the storage of the value object.
The class describes the storage, e.g. how many fields there are and
how they are to be interpreted. This representation corresponds very
closely to the programmers’ view on value classes.

In our approach, the storage area remains, but the pointer to the
class is replaced by a pointer to the shape. As with the regular rep-
resentation, the shape determines the class of the value object and
hence the meaning of its contents. Two examples for this separation
can be found in Figure 1. For every value class there is a default
shape that has no additional information compared with directly
storing the class. If the default shape was always used, the represen-
tation would be completely equivalent to the straightforward one.

The difference from the straightforward representation is that a
shape does not necessarily describe only the class of the value object.
Rather, a shape can additionally describe the shape of referenced
value objects, recursively. If a referenced value object’s shape is not
specified in the referencing object’s shape, it is stored as a reference
in the storage. If the shape is specified, that value object’s content is
inlined into the referencing value object’s storage. That way, refer-
enced values are stored compactly, i.e. in spatial proximity without
overhead such as headers or a pointer between them, and hence with
less memory consuption compared to storage without compaction.
This process can be applied recursively.

To actually save memory, a shape has to be shared by significant
number of value objects. Indeed, if every shape were used by only
one object, the memory use would not be improved. Therefore, a
new shape should only be introduced after run-time profiling ensures
that it occurs often enough.

To understand the rest of the system, we now need to look at (a)
how structure patterns are recognized, (b) howthe construction of
values ensures the proper usage of shapes, and (c) how the field
reading of inlined fields is implemented.

3.1 Shapes and their recognition
A shape (in all figures) describes the abstract, structural rep-

resentation of composite value objects and is shared between all
identically structured value objects of the same value class, denoted
by its name1.

1We refer a value class by its name and the arity of its type in a
Prolog style, e.g. Node/2 for binary node objects.

Shapes can be recursive; they consist of sub-shapes for each field
in a value object’s storage. A special, non-recursive type of shapes
denotes unaltered access to object content (direct access, H in all
figures) and termination of shape recursion. Value objects with these
shapes are treated as black boxes, e.g. scalar data or unoptimized
objects that are stored directly. This is depicted in the bottom part
of Figure 1; all three nodes in the list share the same shape, which
denotes that each node consists of two references with direct access
shapes. The same holds for the nodes of the tree in that figure, but
with three references.

Storing the shape of value objects may seem redundant given that
the shape matches what it tries to describe. This only holds as long as
no optimization has taken place. In this case, a value object’s shape
is the default shape of its value class and solely consist of direct
access sub-shapes. The shapes in Figure 1 are the default shapes for
their value classes.

Further, a mapping of replacement options for inlining (the trans-
formation rules), and profiling data built up during object creation
to aid the creation of new transformation rules (the history) are sup-
plementary structures that we use to aid the inlining process.

3.1.1 History
The immutability of value objects demands that all to-be-

referenced value objects that will constitute the content of a new
value object have already been constructed beforehand. Hence, their
shapes will be available at construction time and we can count occur-
rences of sub-shapes at specific positions in the value object. That
way, we obtain a histogram of all possible shapes a referenced value
object can have. In Figure 2, e.g. for shape s1 at position 1, the shape
s1 itself has been encountered 17 times as sub-shape, while shape
s2 has been encountered 3 times as sub-shape in that position.

When a certain threshold of encounters has been reached, we
generate a new transformation rule.

3.1.2 Transformation rules and recognition
The transformation rules are mappings Shape×Position×Shape→

Shape that drive the inlining process. When constructing a new value
object, they are consulted by the inlining algorithm. These mappings
can be specified prior to program execution or inferred dynamically
based on shape history.

Upon value object creation, just after updating the shape history,
we check whether the sub-shape counters hit a certain threshold,
and if so, proceed to create a new shape that combines the value
object’s current shape with the sub-shape that hit the threshold. In
this new shape, we replace the direct access sub-shape at the position
of the threshold hit with the sub-shape found in the history entry.
The position of the hit, the sub-shape at that position, and the newly
created shape are then recorded as new rule in the transformations
table. Considering Figure 2 as example, shape s2 would be the result
of turning the history entry (s1, 1, s1, 17) into the transformation
rule (s1, 1,s1)7→s2. The structure of shape s2 is the structure of shape
s1 but with another s1 structure in the final position.

We call the process of recording the shape history and inferring
transformation rules shape recognition.

3.2 Compaction though inlining
Since value objects are immutable, compaction is required only

when creating new ones. With this premise, our optimization tech-
nique works by inlining the to-be-referenced value objects into the
to-be-created value object upon its creation.

3.2.1 Inlining

1 2
⊥
n

1 2 ⊥n
pr
og
ra
m
m
in
g

la
ng
ua
ge

ru
nt
im
e

en
vi
ro
nm

en
t

a

⊥⊥b

c ⊥⊥e

⊥⊥d

⊥
⊥
b

⊥
⊥
ea c

⊥
⊥
d

▼▼▼
Node/3

▼▼
Node/2

Node Node Node

Node

Node Node

Node Node

Figure 1: Value class representation for a linked list and a tree. Top: the language view; bottom: runtime environment view with
storage and shape

0, n
…

1,

171,

3

history

…▼ ▼
Node/2 Node/2

▼ ▼

▼s1 s2 sn …

0,
…

1,

1,

transformations

s1

s1

…

s1

s2

… …

…

s2

…

s2

s1

…

s1

s1

Figure 2: Shapes and supplementary data structures: transfor-
mations describe replacement rules for inlining; history pro-
vides a histogram of all encountered sub-shapes at a certain
position

When a new value object is created, we handle the default shape
s for the type and the value object’s new content c as specified in the
algorithm in Figure 4. We iterate over the given new content and for
each to-be-referenced value object oi at position i and its sub-shape
so, we look up a replacement shape in the transformations table. If
the table contains a mapping, the replacement shape s′ is assumed as
the shape of the to-be-created value object. At that point, the storage
of the current value object ci is spliced into the current content c
instead of the current value object ci itself; the value object ci is
now inlined. After a successful inlining, the new shape s′ becomes
the to-be-created value object’s shape s and the current content is
reiterated from start to allow for possible other transformations due
to the shape change. That way, transition chains are possible that may
quickly lead to shapes of deeply nested structures. Once no further
transitions are found, the value object’s shape s and the current
content c are returned as the shape and storage of the new value
object.

The effect of this process is shown simplified with the example in
Figure 3: creating a new node consisting of “1” and a rest list as in
the figure. We start with a list of “1” and the rest list as initial content
for the new value object and shape s1 as the initial default shape. We
iterate over the list and encounter “1” at position 0. For this example,
we assume that the transformation table does not contain a mapping
for “1” at position 0, thus s′ will be s and we continue with the next
position. At position 1, we find the rest list with the sub-shape s1. In
the transformation table, the entry for (s1, 1, s1) holds a replacement
shape, s2. Thus, we inline the current value object’s storage into the
current content as c′, which now has three elements. Note that it is
not the shape of the rest list sc that is changed but rather the shape
s of the to-be-created value object. The content, now c, is reiterated

but no further transformations are found. The resulting value object
is that to the right in Figure 3.

The shape of thusly optimized value objects are themselves sub-
ject to the shape-recognition process and eventually, transition rules
to more optimized shapes can be created in the default shapes for
the value classes. Thus, more specific shapes are directly available
for the inlining process. Value objects can be more directly transi-
tioned into the most optimized shape compared to working off a
long transition chain.

This inlining technique has two main advantages. First and fore-
most, inlined value objects take up less space than individual, inter-
referenced value objects. But even more, the shape of a value object
provides structural information in a manner the meta-tracing jit
compiler can speculate on. This is crucial for optimizing the access
to references of a value object.

3.3 Transparent field access
While optimization of data structures takes place during construc-

tion, we have to apply the reverse during deconstruction, i.e. when
accessing a value object referenced by another. This is no longer
trivial, as several (formerly referenced) value objects may have been
inlined into their referencing value objects. Therefore, we construct
new value objects whenever a reference is navigated, essentially
reifying it. We use the information a value object’s shape provides
to identify which parts of the value object’s storage comprise the
value object to be reified. The structural information allows a direct
mapping from the language view of the data structure to the actually
stored elements. In Figure 5, the structural information in the shape
of the leftmost list allow the reasoning that the first element of the
storage is equivalent to the head of the language level node value
object and the remaining three storage elements are equivalent to the
tail of that value object, as recored in the shape. Hence the middle
view in that figure; both the element “1” and the rest list have been
reified. The same goes for the rightmost view.

Note that this reification is completely transparent to the program-
mers. Taking, e.g. the tail of a node value object or accessing the
third element of a ternary tree repeatedly, the operations remain the
same on the language level, no matter what is the inlining status of
the value objects on the implementation level.

3.4 Benefits
With the inlining approach, fewer value objects need to be created

for long living data structures, since the references to the now-inlined
value objects are elided. Combining this with the reification and the
shape recognition, more memory is saved the longer a program runs;
the shapes will be tailored to fit the specific application running. That
said, there may be cases where no memory can be saved, especially
in programs that only work on primitive data, non-composite data
structures, or with a high amount of sharing between data structures.

2
1 3

⊥
n1 + 2 3

⊥
n

▼▼
Node/2 Node/2

▼ ▼
▼ ▼▼

Node/2

Figure 3: When creating a new node value object that should contain “1” and the list as shown, a new value object that merges the
“1” with the “2” object and a different shape is created instead.

Input: s : Shape, c : [Object]
i← 0
while i < |c| do

o← ci

so ← o{shape}

s′ ← transformationss,i,so
or s

if s′ , s then
c′ ←

[
c0,...,i−1, o{storage}, ci+1,...,|c|

]
s← s′

// rewind over new storage:
i← 0, c← c′

else
i← i + 1

end
end
return s, o

Figure 4: Merging composite objects based on shape

4. IMPLEMENTATION IN RPYTHON WITH
A TRACING JIT COMPILER

We implemented our optimization approach in a simple execu-
tion model2. It provides a λ-calculus with pattern matching as the
sole control structure and is implemented as a direct application
of the cek-machine [17]. The only structured data types currently
available are value classes. We used the RPython tool chain to in-
corporate its meta-tracing jit compiler [6]. The implementation has
been carefullly unit-tested during development to make sure that
various complex substitutions and compactions work correctly.

The presence of the jit compiler is necessary to begin with, be-
cause the approach just presented, i.e. shape recognition, inlining,
and reified reference access combined, does not yield a performance
increase on its own. In fact, implementing the approach naïvely
yields significantly worse performance than leaving it out altogether,
due to the constant check of the transformation rules every time a
new value object is created. Additionally, reading inlined fields of
compacted value objects results in the allocation of intermediate data
structures. This is of course not the case in the naïve representation.

To improve performance, the jit compiler needs to reduce the
overhead of these operations. The first step is to treat the transfor-
mation tables as constant when a function is compiled. This allows
the jit compiler to compile value object creation down to a series
of type checks for the types of the referenced value objects. While
the transformation tables are not constant per se, we instruct the jit
compiler to treat them as such for all practical purposes.

Second, we have to avoid the otherwise necessary reification of
referenced value objects when it is being read from a value object
it has been inlined into. For that, the observation that most of these
intermediate value objects are actually short-lived is crucial; most

2availiable at https://bitbucket.org/krono/lamb

value object are created just to be either immediately discarded or
consumed in another, typically larger data structure. As a concrete
example, typical linked list operations deconstruct the list they are
working on. Hence, if the tail is read off a linked list node which has
the tail inlined (as the transition from left to middle in Figure 5) and
needs to be reified, that tail is usually soon deconstructed itself into
its head and tail components (as the transition from middle to right
in the same figure). This allows the tracing jit compiler to optimize
the reading of fields that need reification. Since the value objects
allocated when reifying a field are short-lived, the built-in escape
analysis [8] will fully remove their allocation and thus remove the
overhead of reification.

5. RESULTS
We report the performance of five micro-benchmarks, i.e. their

execution time and their maximal memory consumption (resident
set size). The benchmarks chosen are append, filter, map, and re-
verse on very long linked lists and the creation and complete prefix
traversal of a binary tree. Due to the limited feature scope of our pro-
totype, more sophisticated applications are currently not available
for benchmarking.

In the left part of Figure 6, the execution time of all benchmarks is
reported. Our implementation, labeled prototype ◦ , is significantly
faster—from two to ten times faster—for all but the tree benchmark,
where our implementation is second to just the ahead-of-time (aot)
compiled OCaml version. However, the other two RPython-based
implementations are likewise significantly slower than expected; the
Pycket interpreter uses the same cek execution model as our imple-
mentation. It is possible that not the value class implementation but
the interpreter style is responsible for most of the execution time.
Nevertheless, our implementation is still significantly faster than
both RPython-based implementations. For memory consumption,
shown in the right part of Figure 6, our implementation always uses
significantly less memory than the other implementations.

One key reason for our prototype’s performance is the interaction
between escape analysis and the compacted storage. The bench-
marks exhibit a certain usage pattern, in particular, the access to a
list element is typically followed by inserting this element into a
new list, with possibly processing it. The tracing jit compiler and its
escape analysis can infer that no reification of the actual value object
is necessary and, furthermore, that a certain number of such oper-
ations occur consecutively. Hence, operations can happen en bloc,
e.g. for a list inlined n levels deep, reverse can operate in n-chunks
of items.

Our approach makes use of three parameters that may influence
performance:
Maximum object size Only value objects up to this size are con-
sidered for inlinig. Setting this to to zero disables our optimization,
setting it to a very high number might result in very large value
object at runtime, which might be undesirable. We used a maximum
size of 7 fields for our measurements.

https://bitbucket.org/krono/lamb

1

3
2

⊥
…
n 2

3
n

⊥
…

1 3

⊥
…
n2

Node/2 Node/2

▼ ▼

▼ ▼ ▼
Node/2 Node/2

…
Node/2

…
Node/2

…

▼

▼ ▼

▼

Figure 5: Referenced value object reification. Accessing the second item 2 of the list l ← Node/2[1,Node/2[2,Node/2[3, . . .]]] by two
operations head(tail(l)) results in two differently reified rest lists to be created. Note how the shapes of the rest lists differ.

Maximum shape depth The number recursive shape occurences
per value object is bounded by this parameter. Setting this to a low
value may not catch all optimizable object shapes, setting it to a very
high number may lead to an excessive number of shapes at runtime
should there be a lot of value objects with no fields at all. We used a
maximum depth of 7 shapes for our measurements.
Substitution threshold The threshold for transformation rule cre-
ation (as in section 3.1.2), when set to a zeor or a very low value
can lead to excessive transformation rule creation for value object
combinations that are only rarely used. A very high number might
inhibit the creation of such rules at all and practically disables our
optimization. We used a threshold of 17 shape occurences for our
measurements.

The results suggest that our approach is viable and warrants ap-
plication to other programming languages.

Setup.
Hardware The processor used was an Intel Xeon E5410 (Harper-
town) clocked at 2.33 GHz with 2×6 MB cache; 16 GB of RAM
were available. All runs are un-parallelized, hence the number of
cores (four) was irrelevant to the experiment. Although virtualized
on Xen, the machine was dedicated to the benchmarks.
Software The machine ran Ubuntu 12.04.4 LTS with a 64 bit Linux
3.2.0. The benchmarking framework ReBench3 was used to carry
out all execution of the benchmarks and collection of measurements.
RPython as of revision 5a423327c96a served for translation.
Compared Implementations We included OCaml 4 , Racket � ,
Pycket + , and PyPy � in the comparison. For all these, value
classes or equivalent means supporting immutable data are avail-
iable. OCaml provides a concept similar to value classes with its
algebraic data types and its execution model bears similarities to
our implementation. OCaml produces native binaries. Racket’s cons
cells, structs and classes can act as value classes. Racket acts as
virtual machine with hand-written jit compiler. Pycket [12] is a
RPython implementation of Racket and provides a meta-tracing jit
compiler. PyPy is the RPython implementation of Python and has
a meta-tracing jit compiler. While Python has no actual concept of
value classes, we used regular classes without mutating them. PyPy
is then able to handle them as value classes. We intended to also in-
clude the standard Python (CPython) but it was too slow and would
have rendered the comparison meaningless.
Methodology Every benchmark was run ten times uninterrupted at
highest priority, in a new process. The execution time (total time)
was measured in-system and, hence, does not include start-up; how-
ever, warm-up was not separated, so jit compiler execution time is
included in the numbers. The maximal memory consumption (res-
ident set size) was measured out-of-system and may hence include
set-up costs. We report the arithmetic mean of the ten runs. The
error was negligible. We provide all numbers in the appendix. Our
benchmarking code and infrastructure are publicly available.4

3https://github.com/smarr/ReBench
4https://bitbucket.org/krono/lamb-bench

6. RELATED WORK
From a data structure optimization point of view, value classes

are similar to algebraic data types as found in languages in the ML
family. Hence, optimizations done to this category of data structures
are relevant to value classes, too.

Wimmer has proposed object inlining [37] as a general data struc-
ture optimization for structured objects in Java. Superficially, this
approach is similar to this work, yet object inlining is restricted to
statically typed object oriented languages like Java, as the approach
needs full knowledge of all class layouts until just before jit compi-
lation. Moreover, object inlining is bound to create one “optimized
path” per class.

Language-level optimization. The idea to improve data struc-
tures to gain execution speed was proposed especially to improve op-
erations on linked lists in functional languages, e.g. by unrolling [32].
Typically, those optimizations are restricted to linked lists of cons-
cells.

One of the key effects in our optimization is avoiding to allocate
intermediate data structures. In that respect, hash consing [16, 18,
23], as used in functional languages for a long time, is related to this
work. However, hash consing typically works at the language level
using libraries, coding conventions, or source-to-source transforma-
tions. It is not adaptable at run-time.

Ahead-of-time optimization. Deforestation [21, 34, 36] has
the aim to eliminate intermediate data structures and is in this respect
related to our approach. However, deforestation deliberately works
through program transformation and does not incorporate dynamic
usage information. It is typically only available to statically typed
functional languages, such as ML.

Just-in-time compilers. Compiling to native code at run-time,
i.e. jit compilation, is a prevalent and extensively studied technique,
found in several different, but chiefly object-oriented, dynamically-
typed languages [1]. Prominent examples include the Smalltalk-80
bytecode-to-native-code compiler by Deutsch and Schiffman [15],
and the optimizing jit compiler of Self, with type specialization
and speculative inlining [14]. These concepts were later used in the
HotSpot jit compiler [29] for Java.

The prevalence of web browsers has made jit compilation an
important topic for JavaScript implementations, e.g. the int V8
JavaScript implementation [24].
Nota bene: The map transitions for hidden classes used in V8 [22]
and inspired by Self [14], are in principle similar to our notion of
transformation rules. As well as objects in V8 start with a default
hidden class and follow map transitions to their most optimal hidden
class, the transformation rules in our approach change the shape of a
value object from its default shape to its most optimized one during
the value object’s creation.

https://github.com/smarr/ReBench
https://bitbucket.org/krono/lamb-bench

● ● ● ● ●
0

2

4

6

8

10

12

14

16

18

20

append filter map reverse tree

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Implementation

● Prototype

OCaml

Racket

Pycket

Pypy

● ● ● ● ●
0
1

3

5

7

9

11

13

15

append filter map reverse tree

M
e
m

o
ry

 c
o

n
s
u

m
p

ti
o

n
 (

G
B

)

Implementation

● Prototype

OCaml

Racket

Pycket

Pypy

Figure 6: Benchmarking results. Each bar shows the arithmetic mean of ten runs for execution time (left) and memory consumption
(right). Lower is better.

Tracing jit compilers as introduced by Mitchell [26] have seen
implementations for Java [19], JavaScript [20], or Lua5, to name
a few. In the context of a JavaScript implementation, the SPUR
project [5] provided a tracing jit compiler for Microsoft’s Common
Intermediate Language (cil).

Tracing an interpreter that runs a program instead of tracing the
program itself it the core idea of meta-tracing jit compilers, pio-
neered in the DynamoRIO project [33]. PyPy [10, 30] is a meta-
circular Python implementation that uses a meta-tracing jit com-
piler. Provided through the RPython tool chain, other language im-
plementations can benefit from a meta-tracing, e.g. Smalltalk [11],
Haskell [35], PHP6, or R7.The meta-tracing jit used in this work is
provided by RPython, as well.

7. CONCLUSION AND FUTURE WORK
Our approach to just-in-time optimization of value classes pro-

vides very good initial results both for execution time and mem-
ory consumption for a small prototype implementation on selected
micro-benchmarks. They are promising and motivate us to investi-
gate the matter further.

Immediate next steps include the integration of our approach into
existing programming language implementations. Here, languages
that already have an implementation with a meta-tracing jit com-
piler would be obvious candidates. Then, larger and more real-world
benchmarks can be tackled.

Our aim is then to broaden the scope of our approach beyond
value classes. We want to support objects that have identity as well
as mutable objects. Yet, in the context of our optimization, these
need more in-depth investigation.

Acknowledgments
We gratefully acknowledge the financial support of HPI’s Research
School and the Hasso Plattner Design Thinking Research Program
(HPDTRP). Carl Friedrich Bolz is supported by the EPSRC Cooler
grant EP/K01790X/1. We thank Alan Borning for comments on a
draft version of this paper.

References
[1] J. Aycock. “A Brief History of Just-in-time”. In: ACM Com-

puting Surveys 35.2 (June 2003), pp. 97–113.
5http://luajit.org
6http://hippyvm.com/
7https://bitbucket.org/roy_andrew/rapydo

[2] D. F. Bacon. “Kava: a Java dialect with a uniform object
model for lightweight classes”. In: Concurrency and Com-
putation: Practice and Experience 15.3-5 (Feb. 12, 2003),
pp. 185–206.

[3] D. Bacon, S. Fink, and D. Grove. “Space- and Time-Efficient
Implementation of the Java Object Model”. In: ECOOP 2002
Object-Oriented Programming. Ed. by B. Magnusson. Vol. 2374.
Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, May 29, 2002, pp. 13–27.

[4] V. Bala, E. Duesterwald, and S. Banerjia. “Dynamo: A Trans-
parent Dynamic Optimization System”. In: ACM SIGPLAN
Notices 35.5 (2000), pp. 1–12.

[5] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W.
Schulte, N. Tillmann, and H. Venter. “SPUR: A Trace-based
JIT Compiler for CIL”. In: SIGPLAN Notices 45.10 (Oct.
2010), pp. 708–725.

[6] C. F. Bolz. “Meta-tracing just-in-time compilation for RPy-
thon”. PhD thesis. Mathematisch-Naturwissenschaftliche Fa-
kultät, Heinrich Heine Universität Düsseldorf, 2012.

[7] C. F. Bolz, A. Cuni, M. Fijalkowski, M. Leuschel, S. Pedroni,
and A. Rigo. “Allocation Removal by Partial Evaluation in a
Tracing JIT”. In: Proc. PEPM (2011), pp. 43–52.

[8] C. F. Bolz, A. Cuni, M. Fijalkowski, M. Leuschel, S. Pedroni,
and A. Rigo. “Allocation Removal by Partial Evaluation in
a Tracing JIT”. In: Proceedings of the 20th ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation.
PEPM ’11. Austin, Texas, USA: ACM, 2011, pp. 43–52.

[9] C. F. Bolz, A. Cuni, M. Fijalkowski, M. Leuschel, S. Pedroni,
and A. Rigo. “Runtime Feedback in a Meta-Tracing JIT for
Efficient Dynamic Languages”. In: Proc. ICOOOLPS. 2011,
9:1–9:8.

[10] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. “Tracing
the Meta-level: PyPy’s Tracing JIT Compiler”. In: Proceed-
ings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Program-
ming Systems. ICOOOLPS ’09. Genova, Italy: ACM, 2009,
pp. 18–25.

http://luajit.org
http://hippyvm.com/
https://bitbucket.org/roy_andrew/rapydo

[11] C. F. Bolz, A. Kuhn, A. Lienhard, N. D. Matsakis, O. Nier-
strasz, L. Renggli, A. Rigo, and T. Verwaest. “Back to the
Future in One Week Implementing a Smalltalk VM in PyPy”.
In: Self-Sustaining Systems. Vol. 5146. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2008, pp. 123–
139.

[12] C. F. Bolz, T. Pape, J. Siek, and S. Tobin-Hochstadt. “Meta-
tracing makes a fast Racket”. In: Dyla’14. Edinburgh, United
Kingdom, June 2014.

[13] C. F. Bolz and L. Tratt. “The impact of meta-tracing on VM
design and implementation”. In: Science of Computer Pro-
gramming (2013).

[14] C. Chambers, D. Ungar, and E. Lee. “An efficient imple-
mentation of Self, a dynamically-typed object-oriented lan-
guage based on prototypes”. In: SIGPLAN Notices 24.10
(Sept. 1989), pp. 49–70.

[15] L. P. Deutsch and A. M. Schiffman. “Efficient Implementa-
tion of the Smalltalk-80 System”. In: Proceedings of the 11th
ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. POPL ’84. Salt Lake City, Utah, USA:
ACM, 1984, pp. 297–302.

[16] A. P. Ershov. “On Programming of Arithmetic Operations”.
In: Communications of the ACM 1.8 (Aug. 1958), pp. 3–6.

[17] M. Felleisen and D. P. Friedman. “Control operators, the
SECD-machine and the -calculus”. In: Proceedings of the 2nd
Working Conference on Formal Description of Programming
Concepts - III. Ed. by M. Wirsing. Elsevier, 1987, pp. 193–
217.

[18] J.-C. Filliâtre and S. Conchon. “Type-safe Modular Hash-
consing”. In: Proceedings of the 2006 Workshop on ML. ML ’06.
Portland, Oregon, USA: ACM, 2006, pp. 12–19.

[19] A. Gal, C. W. Probst, and M. Franz. “HotpathVM: An Ef-
fective JIT Compiler for Resource-Constrained Devices”. In:
Proceedings of the 2nd International Conference on Virtual
Execution Environments. VEE ’06. Ottawa, Ontario, Canada:
ACM, June 14, 2006, pp. 144–153.

[20] A. Gal et al. “Trace-based Just-in-time Type Specialization
for Dynamic Languages”. In: SIGPLAN Notices 44.6 (June
2009), pp. 465–478.

[21] A. Gill, J. Launchbury, and S. L. Peyton Jones. “A Short Cut
to Deforestation”. In: Proceedings of the Conference on Func-
tional Programming Languages and Computer Architecture.
FPCA ’93. Copenhagen, Denmark: ACM, 1993, pp. 223–232.

[22] Google, Inc. Chrome V8 Documentation: Design Elements.
Sept. 17, 2012. url: https://developers.google.com/
v8/design (visited on 09/11/2014).

[23] E. Goto. Monocopy and Associative Algorithms in Extended
Lisp. Technical Report TR-74-03. University of Tokyo, Japan,
1974.

[24] M. Hölttä. Crankshafting from the ground up. Tech. rep. Google,
Aug. 2013.

[25] Microsoft Developer Network. Common Type System. Aug. 22,
2014. url: http : / / msdn . microsoft . com / en - us /
library/zcx1eb1e(d=default,l=en-us,v=vs.110)
.aspx (visited on 09/15/2014).

[26] J. G. Mitchell. “The Design and Construction of Flexible
and Efficient Interactive Programming Systems”. PhD thesis.
Pittsburgh, PA, USA: Carnegie Mellon University, 1970.

[27] M. E. Noth. “Exploding Java Objects for Performance”. PhD
thesis. University of Washington, 2003.

[28] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S.
Micheloud, N. Mihaylov, M. Schinz, E. Stenman, and M.
Zenger. An overview of the Scala programming language.
Tech. rep. LAP-REPORT-2006-0001. Lausanne, Switzerland:
EFPL, 2006.

[29] M. Paleczny, C. A. Vick, and C. Click. “The Java HotSpot
Server Compiler”. In: Proceedings of the 2001 Symposium
on Java Virtual Machine Research and Technology Sympo-
sium - Volume 1. JVM’01. Monterey, California: USENIX
Association, Apr. 24, 2001.

[30] A. Rigo and S. Pedroni. “PyPy’s approach to virtual machine
construction”. In: Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, lan-
guages, and applications. OOPSLA ’06. Portland, Oregon,
USA: ACM, 2006, pp. 944–953.

[31] J. Rose. JEP 169: Value Objects. July 10, 2014. url: http:
//openjdk.java.net/jeps/169 (visited on 09/15/2014).

[32] Z. Shao, J. H. Reppy, and A. W. Appel. “Unrolling lists”. In:
SIGPLAN Lisp Pointers VII.3 (July 1994), pp. 185–195.

[33] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and S.
Amarasinghe. “Dynamic Native Optimization of Interpreters”.
In: Proceedings of the 2003 Workshop on Interpreters, Virtual
Machines and Emulators. IVME ’03. San Diego, California:
ACM, June 8, 2003, pp. 50–57.

[34] A. Takano and E. Meijer. “Shortcut Deforestation in Cal-
culational Form”. In: Proceedings of the Seventh Interna-
tional Conference on Functional Programming Languages
and Computer Architecture. FPCA ’95. La Jolla, California,
USA: ACM, 1995, pp. 306–313.

[35] E. W. Thomassen. “Trace-based just-in-time compiler for
Haskell with RPython”. MA thesis. Norwegian University
of Science and Technology Trondheim, 2013.

[36] P. Wadler. “Deforestation: transforming programs to elimi-
nate trees”. In: Theoretical Computer Science 73.2 (1990),
pp. 231–248.

[37] C. Wimmer. “Automatic object inlining in a Java virtual ma-
chine”. PhD thesis. Linz, Austria: Johannes Kepler Univer-
sität, 2008.

APPENDIX

https://developers.google.com/v8/design
https://developers.google.com/v8/design
http://msdn.microsoft.com/en-us/library/zcx1eb1e(d=default,l=en-us,v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/zcx1eb1e(d=default,l=en-us,v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/zcx1eb1e(d=default,l=en-us,v=vs.110).aspx
http://openjdk.java.net/jeps/169
http://openjdk.java.net/jeps/169

Table
1:A

llbenchm
ark

results.W
e

give
m

eansofexecution
tim

e
and

m
em

ory
consum

ption
along

w
ith

the
confidence

intervalshow
ing

the
95

%
confidence

level.
B

enchm
ark

Prototype
O

C
am

l
R

acket
Pycket

Pypy
tim

e
m

em
ory

tim
e

m
em

ory
tim

e
m

em
ory

tim
e

m
em

ory
tim

e
m

em
ory

append
3538

±
51m

s
2387

M
B
±

5kB
7502

±
12m

s
3576

M
B
±

5kB
5078

±
22m

s
5378

M
B
±

188kB
5954

±
160m

s
5287

M
B
±

129kB
11408

±
87m

s
9074

M
B

±
5kB

filter
439

±
8m

s
433

M
B
±

5kB
1106

±
15m

s
850

M
B
±

8kB
2094

±
11m

s
1848

M
B
±

195kB
1352

±
8m

s
1398

M
B
±

96kB
3313

±
32m

s
2399

M
B
±

10kB
m

ap
2365

±
32m

s
1134

M
B
±

5kB
3241

±
7m

s
1607

M
B
±

7kB
3276

±
17m

s
2116

M
B
±

131kB
2526

±
35m

s
2249

M
B
±

105kB
5495

±
85m

s
3490

M
B

±
9kB

reverse
530
±

15m
s

743
M

B
±

5kB
2765

±
34m

s
3136

M
B
±

6kB
5448

±
48m

s
5010

M
B

±
35kB

3685
±

40m
s

4405
M

B
±

95kB
5333

±
23m

s
13726

M
B
±

18kB
tree

5324
±

57m
s

134
M

B
±

694kB
4670

±
42m

s
595

M
B
±

10kB
6852

±
28m

s
1285

M
B
±

10503kB
8739

±
68m

s
1939

M
B
±

20kB
19576

±
77m

s
3446

M
B
±

6842kB

	Introduction
	Tracing Just-In-Time Compilers
	Optimization Approach
	Shapes and their recognition
	History
	Transformation rules and recognition

	Compaction though inlining
	Inlining

	Transparent field access
	Benefits

	Implementation in RPython with a tracing JIT compiler
	Results
	Related Work
	Conclusion and Future Work

