
Context-oriented Programming for Mobile Devices:
JCop on Android

Christopher Schuster
Department of Computer Science

University of California, Davis, USA
cschuster@ucdavis.edu

Malte Appeltauer Robert Hirschfeld
Software Architecture Group

Hasso-Plattner-Institut, Germany
{first.last}@hpi.uni-potsdam.de

ABSTRACT
The behavior of mobile applications is particularly affected
by their execution context, such as location and state a the
mobile device. Among other approaches, context-oriented
programming can help to achieve context-dependent behav-
ior without sacrificing modularity or adhering to a certain
framework or library by enabling fine-grained adaptation of
default behavior per control-flow.

However, context information relevant for mobile applica-
tions is mostly defined by external events and sensor data
rather than by code and control flow. To accommodate this,
the JCop language provides a more declarative approach by
pointcut-like adaptation rules.

In this paper, we explain how we applied JCop to the de-
velopment of Android applications for which we extended
the language semantics for static contexts and modified the
compiler. Additionally, we outline the successful implemen-
tation of a simple, proof-of-concept mobile application using
our approach and report on promising early evaluation re-
sults.

Keywords
Mobile applications, context-oriented programming, dy-
namic adaption

1. INTRODUCTION
A recent trend in mobile computing is to equip user de-

vices with more and more computational capabilities, graph-
ics acceleration, memory capacity and sensors. These ad-
vancements in hardware are accompanied by the rise of in-
creasingly sophisticated mobile applications. Most of these
applications are either explicitly or implicitly affected by the
context and state of the mobile device and/or the user. Ex-
amples for the former case are location-based applications
which provide the user with directions or other kinds of ser-
vices that are closely related to the user’s current location.
The latter case is true for all applications depending on an
Internet connection to deliver a service to the user.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP’11, July 25, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0891-5/11/07 ...$10.00.

Besides location and Internet availability, there are other
factors that a mobile application programmer has to take
into account in order to adapt the application’s behavior,
such as battery status, current time, uplink and downlink
bandwidth, mobility, sound volume, screen brightness, the
user’s language, preferences and his or her intent. There
are various ways for the programmer to address these issues
and implement context-sensitive behavior. However, most
approaches so far have drawbacks regarding the application
architecture and modularity because they require the pro-
grammer to structure the code in a certain way which is
tied to the context-oriented middleware used. Section 5.2
lists some of these alternatives.

Instead of providing a framework or an API for the pro-
grammer to deal with the context, we present in this pa-
per a more declarative approach at programming language
level that uses context-oriented programming (COP) and
pointcut-based activation of adaptations which is less invad-
ing and more modularized than frameworks and libraries.
Therefore, we applied the Java-based JCop language [2] to
the Android system. Android’s architecture required modi-
fications in both the language definition and the compiler’s
byte code generation.

Section 2 introduces the Android platform and the JCop
language. Section 3 describes our approach and briefly
outlines its implementation including some practical issues.
Early performance results and a short evaluation is then
given in Section 4. Related work is summarized in Section 5.
Finally, as this implementation is a first step into a new di-
rection, there are many ideas and opportunities for improve-
ment as explained in Section 6, which also gives some closing
remarks.

2. FOUNDATIONS AND MOTIVATION

2.1 The JCop Language
The JCop language [2] extends Java with COP constructs.

It allows for the explicit representation of execution context-
dependent behavioral variations. These variations are en-
capsulated into partial methods that are defined in layers
- special objects that can dynamically control method dis-
patch. To change the dispatch of a method m from its default
implementation to one of its variations, the corresponding
layer can be activated for the control flow of a specific exe-
cution. Layer activation can be defined either explicitly (by
surrounding a method call with a with block), or declarative
(using pointcuts and context objects).

1 public class PhoneCall {
2 public void onIncomingCall() {
3 ...
4 ring();
5 }
6 }
7

8 public layer SilentMode {
9 public void PhoneCall.onIncomingCall() {

10 vibrate();
11 }
12 }
13

14 public context ClassRoom {
15 when(enteredClassroom()) :
16 with(SilentMode);
17

18 private boolean enteredClassRoom() {
19 // check GPS location
20 }
21 }

Listing 1: JCop example using explicit layer activa-
tion.

The example in Listing 1 shows a usage of these constructs
on a phone application. By default, the phone rings on
incoming phone call (Line 4). However, in some contexts
(e.g., on entering a a classroom), this basic behavior should
be replaced by silent mode vibration. The layer SilentMode

provides a partial method for onIncomingCall that replaces
the ringing with vibration (Lines 8–12). Layer activation
is controlled by the ClassRoom context object. It contains a
declarative activation of the layer (Lines 15–16) and an aux-
iliary method that accesses sensors to determine the current
location (Lines 18–20). A thorough presentation of JCop
can be found in previous work [2].

2.2 Android
Android is a Java-based software stack for mobile devices

including an operating system, middleware, such as tele-
phony, location, and notification managers, a mobile ap-
plication framework and core applications, such as a Web
browser and text messaging. The Android application
framework offers, among others, access to the device hard-
ware and location information; both can be used to gather
context information. Android applications are instances of
one of four component types: single screen applications (ac-
tivities), background processes (services), content providers
or event listeners (broadcast receivers). Android does not
use a standard Java virtual machine (VM) but a register-
based VM called Dalvik VM that has been optimized specif-
ically for mobile devices.

2.3 Challenges for a JCop-Android
Integration

Programming Android applications involves adhering to
the coding guidelines and using a special compiler to gen-
erate Dalvik bytecode. Both of these restrictions affect the
way COP can be applied to Android.

In order to run a mobile application on Android, the code
has to implement specific interfaces, declare specific permis-
sions and callbacks, subclass specific framework components
and override certain methods. Additionally, the application
programmer has no direct control over the main event loop

1 public class DownloadEntryTask ... {
2 public Entry doIt(...) {
3 client = AndroidHttpClient.newInstance("");
4 Entry e = loadEntry(main);
5 loadPicture(e, main);
6 return e;
7 }
8 }

Listing 2: Straight-forward implemenation in Java

and has to keep a separation between code that is to be
executed by a non-blocking graphical user interface thread
and a blocking background computation thread. This makes
thread-level activation of contexts as normally used with
JCop difficult. Every callback could possibly be executed
by another, unrelated thread which means that the control
flow is not the best criteria for context activation. An
alternative way will be presented in Section 3.

Furthermore, the Dalvik VM has certain restrictions that
are relevant for implementing COP. First of all, it currently
does not support custom classloaders, dynamic code gener-
ation and bytecode manipulation at runtime. This means
that a COP solution can only use static weaving and cannot
rely on any of these dynamic features for context activa-
tion/deactivation. Secondly, the Davlik VM does not use
normal stack-based Java bytecode, but instead expects spe-
cial bytecode generated from compiled Java class files by
the dx tool. Theoretically, the dx tool can also convert byte-
code that was not generated by javac but it makes certain
assumptions that might not be always true, e.g. that the
generated method call instruction avoids the virtual method
table for constructors and private method calls.

3. APPLYING JCOP TO ANDROID

3.1 The APOD Mobile Application
The best way to describe the approach is by proving a

simple example Android application and the way it was im-
plemented by using COP. Suppose a mobile device user is
interested in science and wants an application that automat-
ically downloads and displays the current Astronomy Pic-
ture of the Day (APOD) as published by NASA alongside
a short descriptive text. This application was implemented
for the Android platform as a simple graphical user interface
that asynchronously downloads the current APOD from the
Web. The simplified code for a straight-forward implemen-
tation is shown in Listing 2.

This version is not context-aware which means that it
would just crash without an error message if Web access
is not available. An improved version would first check the
online/offline state of the device and then display an offline
entry, e.g. by using a conditional if branch. Even bet-
ter would be a solution that downloads APOD in a high
resolution if and only if the downlink bandwidth is large
enough, e.g. when the mobile device uses WiFi. There are
many more extensions that would improve the user expe-
rience by being more context-oriented. However, a naive
implementation would just use many conditional branches
which can lead to duplicate code and unreadable code espe-
cially when multiple, unrelated context-sensitive variables
have to be taken into account.

1 public layer OfflineEntry {
2 public Entry DownloadEntryTask
3 .loadEntry(Context ctx) {
4 return new Entry("No network available");
5 }
6 }
7 public static context NetworkContext {
8 when (!Network.connected()) :
9 with (OfflineEntry);

10 }

Listing 3: JCop solution

By using COP language constructs, the code becomes
more modular, but the layer activation itself can usually not
be located in the application code since the relevant param-
eters of the context like the current state or location of the
mobile device are managed independently from the applica-
tion and can change at any time. Therefore, we used the
pointcut language of JCop as described in Section 2.1. It
provides the advantage of declarative layer activation and
deactivation based on a boolean expression. By using a
static method for accessing the current network state and
a layer to adapt the download entry, a network-sensitive so-
lution for the example application would be implemented as
shown in Listing 3.

3.2 Static Contexts
There is one important difference between this solution

and the code displayed in Listing 1. As mentioned in
Section 2.3, the application programmer’s control over the
threads and callbacks in Android is limited. This means
that even with automatic layer activation and deactivation,
the application code gets executed by different threads with
different currently active contexts.

One solution for the example would be to manually acti-
vate the NetworkContext each time the control flow reaches
the application code, e.g. at the beginning of each call-
back method. This can easily be done by providing the ap-
plication programmer with special Android subclasses that
have guaranteed context activation. However, this approach
would be very similar to the existing framework approaches
for context-handling as presented in Section 5 and too in-
trusive for the application programmer.

Instead, we introduced ‘static’ contexts which are always
active and potentially affect every running thread in the sys-
tem. This is specifically aimed at cases like the one given
in Listing 3 where the context is not connected with certain
code fragments or control flows within the code, but instead
serves as a global context-dependent behavioral adaption
affecting the whole application. This new semantic for con-
texts was then implemented by extending the JCop language
with an optional static Java modifier for JCop context dec-
larations. This only affects one application instance because
applications in Android are separated into processes with
each process having its own virtual machine. However, it is
noteworthy that this model is primarily targeted at coarse
behavior adaption based on a global, relatively stable con-
text because changes in the layer activation of the static
context will not affect currently executing layered methods
after the condition clause was evaluated.

3.3 Generating Correct Dalvik Bytecode
Apart from the language extension, the code generation

of JCop was also changed in order to get the example appli-
cation running on an Android device. One modification in-
volved changing the flags of the generated class file while an-
other one dealt with an issue of the invokevirtual Java byte-
code instruction. As mentioned in Section 2.3, the Dalvik
VM expects private method calls to circumvent the virtual
method table, because these methods cannot be overridden
in subclasses and can therefore use link-time binding. In
contrast to the standard Java VM, these methods do not
even have entries in the virtual method table which results
in the invokevirtual instruction jumping to another method
than was originally intended. This restriction can either be
met by changing the code generation of JCop (which in-
ternally uses AspectJ) or by treating private methods as
protected after the first compilation. For the prototype, the
latter method was chosen due to simplicity.

4. FIRST RESULTS

4.1 Applicability
With the adjustments described in Section 3, the example

Android application was successfully compiled and installed
on an Android device. The current, early version of JCop for
Android has support for COP based on the network connec-
tion state which was sufficient for implementing the example
application. If the phone was connected by WiFi, then the
high resolution APOD was downloaded; if there was no In-
ternet connection, then a placeholder was displayed together
with an error message; in all other cases, the normal down-
load code is executed. Due to the way JCop is implemented,
this condition is checked at every layered method call that
is affected by the active set of layers. This might lead to
multiple checks in a very short amount of time. To avoid
getting this information repeatedly from the operating sys-
tem, which, depending on the operating system’s caching
strategy, might involve reading the sensor values from hard-
ware at a unnecessary high rate, the device-related context
variables are cached for a specific time, for example 1 second
in the current JCop implementation for Android. Alterna-
tively, it would also be possible to subscribe to the Android
OS for events relevant to the application and update the
cached context variables accordingly but this is an imple-
mentation detail.

Additional context-dependent variations can simply be
implemented by adding a layer definition with partial meth-
ods and another rule in the context definition describing the
condition and the list of layers. The rest of the application
code does not have to be modified which shows how COP
can be used to increase modularity in mobile applications.

4.2 Micro Benchmarks
For evaluating the approach, not only the functional prop-

erties of JCop for Android, but also non-functional proper-
ties like performance and memory consumption have to be
considered. Therefore, we conducted micro-benchmarks to
compare JCop/Android method dispatch throughput with
plain Java. JCop’s layer-aware method dispatch imple-
mented based on its predecessor ContextJ [1]. The compiler
transforms layers and partial methods into plain classes and
forwarding methods. Given a list of active layers L, execu-
tion of a layered method o.m will first lookup the (thread-

Approach Runtime
No context-dependency 2901ms
Conditional if branching 2959ms
JCop on Android 3450ms

Table 1: Measured runtime performance

local) layer list for the first layer providing a suitable partial
method. If no such method exists, the base method (that is
located in o) is called. If a partial method exists, the call is
dispatched to the layer that in turn calls its partial method
implementation (located in o).

In the example application, no difference in runtime per-
formance could be measured. However, in the example there
is only one context-sensitive method call which is executed
only once per program execution. To get more meaningful
results we set up a micro-benchmark running on a virtual
Android 2.3.1 device inside the Android Emulator on an In-
tel Core Duo processor with 1.66 GHz running a Linux 2.6.35
kernel. For reference, the first context-insensitive executes
1000 calls to method A followed by 1000 calls to method B.
The second implementation executes a loop with 2000 itera-
tions, each time deciding whether to call A or B based on a
state variable. The third result then uses JCop for Android
to execute 2000 context-dependent method calls to A with
1000 of these calls layered by B1.

The results of this benchmark are given in Table 1 and
suggest that, in this simple case, the context-dependent
method dispatch has a runtime performance comparable to
that of a straight-forward implementation using conditional
branches. This similarity in runtime reflects the mechanism
used by JCop to achieve context-dependent behavior. How-
ever, these results might be different for systems with more
layers and more context definitions because these might in-
troduce overhead for checking additional conditions.

5. RELATED WORK
In the following, we discuss related work from the lan-

guage design and context management perspective.

5.1 COP Languages for Java
The first ideas about a COP extension to Java have been

presented [6] to improve the accessibility of the ContextL
code discussed in that paper. Core COP functionality has
been implemented by the language prototypes ContextJ* [8]
and ContextLogicAJ [3] and by the ContextJ [1] extension
that supports language constructs and concrete syntax for
layer declaration within classes and explicit layer composi-
tion. All three approaches only provide explicit layer activa-
tion and no means for declarative composition rules as JCop
does.

The EventCJ [9] language is closely related to JCop.
Much like JCop, it makes use of pointcuts and events for
layer activation. However, layer activation and event han-
dling own a slightly different semantics. Declarative layer
activation is defined by transition rules whereas JCop ex-
pects an explicit list of layers to be (de)activated at a join
point.

1The benchmark source code is available at
https://www.hpi.uni-potsdam.de/swa/trac/Cop/attachment/
wiki/JCop4Android/jcop4android_benchmark_v0.3.zip

5.2 Context Management Systems
Du and Wang presented a solution [7] that also helps

the programmer with context-aware code on mobile devices.
Their solution invokes methods at each state transition.
These transitions can be seen as the entrance and exit of dif-
ferent contexts and are defined in an XML file. A context is
defined by one or more ranges of sensor values. Some draw-
backs of this solution are, that it requires the programmer
to achieve context-awareness solely by the use of callbacks,
that the context has to be representable by a set of sensor
values2 and that these sensors are read at a certain interval
even when the application does not need the context to be
updated. JCop for Android solves this problem by reading
sensor values only on demand and no more than once per
second.

There are also context-oriented middleware that have a
different focus than COP and therefore do not provide the
right granularity in defining the control-dependent behav-
ior, e.g. Aura [4] is more task-oriented and does not provide
context-awareness for just a few lines of code. Solutions like
CARMEN [5] on the other side, are using policies and pro-
files to change the behavior of an application depending on
the context. This is also used to mitigate between appli-
cations that are competing for the resources of the mobile
device and therefore the application programmer has no full
and unrestricted control over context rules defined by the
system or the user.

Android itself provides support for handling the context.
Besides accessing the mobile device state synchronously, it is
also possible to subscribe to certain events that announce a
change of the context, e.g. by using the PhoneStateListener,
certain callbacks are called on each state change. This
makes it possible to develop context-aware applications but
requires either manually accessing the context at each de-
cision point or structure the code so that context changes
cause state changes in the application. Both of these strate-
gies are adequate for small and simple applications but can
become tedious in case of large, heavily context-sensitive ap-
plications.

6. FUTURE WORK
The performance evaluation discussed in Section 4.2 are

promising but certainly a little bit too simplistic. A more
thorough benchmark has to be used in order to evaluate the
performance in more realistic scenarios with a larger code-
base and more context-dependent behavioral adaptations,
but that is beyond the scope of this paper.

Furthermore, the claims of increased modularity by COP
in comparison with framework/library approaches are not
backed by measurable numbers. Future work could focus
on the code quality and could use the means of code metrics
like the cyclomatic complexity, class cohesion or simply lines
of code.

The Android example in Section 3 only dealt with a sim-
ple contextual variable, the network connection state. Other
parameters like sensor data and especially the GPS location
as part of the context are an important research topic with
many opportunities for applying COP in a declarative man-
ner.

2Additionally, not all relevant context parameters can nat-
urally represented as numbers, e.g. the user’s preferences or
intents.

As mentioned in Section 4, the results of device-related pa-
rameters are cached for one second to avoid redundant sen-
sor readings. Depending on the application, the sensor and
the intent of the programmer, this caching duration might
be too long or not long enough. Future versions of JCop for
Android should be more flexible in that regard and finding
the right sensor check interval would be an interesting topic
for future work.

Regarding the static contexts introduced in Section 3.2,
the presented language extension basically allows the scope
of a context to be the whole application instance rather than
a specific control flow. A more general approach would allow
the deployment of contexts for other scopes as well.

In conclusion, the context of the user and the mobile de-
vice plays a very important role for mobile applications.
COP offers the right means to efficiently and elegantly im-
plement context-awareness to deal with the dynamically
changing context and to improve the user experience. The
solution presented in this paper demonstrates how JCop was
applied to Android in order to enable COP for mobile de-
vices. The early results presented in this paper are very
promising and should be further investigated.

7. REFERENCES
[1] Malte Appeltauer, Robert Hirschfeld, Michael Haupt,

and Hidehiko Masuhara. ContextJ - Context-oriented
Programming for Java. Computer Software of The
Japan Society for Software Science and Technology,
28(1):1 272–1 292, 2011.

[2] Malte Appeltauer, Robert Hirschfeld, Hidehiko
Masuhara, Michael Haupt, and Kazunori Kawauchi.
Event-specific software composition in context-oriented
programming. In Proceedings of the 9th International
Conference on Software Composition, Lecture Notes in
Computer Science, pages 50–65, Berlin, Heidelberg,
Germany, 2010. Springer-Verlag.

[3] Malte Appeltauer, Robert Hirschfeld, and Tobias Rho.
Dedicated Programming Support for Context-aware
Ubiquitous Applications. In UBICOMM 2008:
Proceedings of the 2nd International Conference on
Mobile Ubiquitous Computing, Systems, Services and
Technologies, pages 38–43, Washington, DC, USA,
2008. IEEE Computer Society Press.

[4] Matthias Baldauf and Schahram Dustdar. A Survey on
Context-aware systems. International Journal of Ad
Hoc and Ubiquitous Computing, page 2004, 2004.

[5] P. Bellavista, A. Corradi, R. Montanari, and
C. Stefanelli. Context-aware middleware for resource
management in the wireless Internet. Software
Engineering, IEEE Transactions on, 29(12):1086 –
1099, 2003.

[6] Pascal Costanza, Robert Hirschfeld, and Wolfgang De
Meuter. Efficient Layer Activation for Switching
Context-dependent Behavior. In David E. Lightfoot
and Clemens A. Szyperski, editors, Modular
Programming Languages, 7th Joint Modular Languages
Conference, JMLC 2006, volume 4228 of Lecture Notes
in Computer Science, pages 84–103, Berlin, Heidelberg,
Germany, September 19 2006. Springer-Verlag.

[7] Weichang Du and Lei Wang. Context-aware application
programming for mobile devices. In Proceedings of the
2008 C3S2E conference, C3S2E ’08, pages 215–227,
New York, NY, USA, 2008. ACM.

[8] Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented Programming. Journal of
Object Technology, 7(3):125–151, March-April 2008.

[9] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. Eventcj: a context-oriented programming
language with declarative event-based context
transition. In Proceedings of the tenth international
conference on Aspect-oriented software development,
AOSD ’11, pages 253–264, New York, NY, USA, 2011.
ACM.

