
The VIVIDE Programming Environment
Connecting Run-time Information With Programmers’ System Knowledge

Marcel Taeumel Bastian Steinert Robert Hirschfeld
Hasso Plattner Institute

University of Potsdam, Germany
{first.last}@hpi.uni-potsdam.de

Abstract
Programmers benefit from concrete program run-time infor-
mation during code-centric comprehension activities. Unfor-
tunately, state-of-the-art programming environments distract
programmers from their task-oriented thinking by forcing
them to cope with (1) tool-driven run-time information ac-
cess and with (2) tool-driven changing information views.
However, current research projects address these problems
with new concepts for capturing run-time behavior as needed
and for organizing all information on-screen according to the
programmers’ mental model.

Unfortunately, there has been no attempt that tries to com-
bine available solutions into one single approach. We pro-
pose a new concept for programming environments, which
allow programmers to work in a task-oriented way: Run-
time information is collected automatically using tests; In-
formation is displayed consistently in self-contained editors
arranged on a horizontal boundless tape. We illustrate prac-
ticability with an implementation in Squeak/Smalltalk.

We believe that such environments will allow program-
mers to explore program-related information without notice-
able tool switches and hence context switches. Having this,
the cognitive effort will be reduced and thus programmers
will make fewer false conclusions and eventually save time.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments—integrated environ-
ments

General Terms Human Factors

Keywords Programming environments, program compre-
hension, source code, dynamic analysis, concurrent views,
navigation
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1. Introduction
De facto, programmers have to maintain large software sys-
tems and hence to understand source code of existing sys-
tem parts [5][35]. When reading source code, programmers
draw from their current system knowledge and reason about
the underlying intent. Such code-centric program compre-
hension activities can be difficult because of non-descriptive
identifiers. For example, names for classes, methods, and
variables are part of a problem domain the programmer is
often not fully knowledgeable with. Unfortunately, descrip-
tive information is often unavailable. Hence, programmers
simulate code execution mentally to understand the system
part in detail.

Programmers benefit from reading information about
program run-time behavior [14] to verify and extend their
current system knowledge and hence reduce cognitive ef-
fort. By doing so, they can directly match abstract source
code with concrete run-time information to understand the
system as is. A common practice exposes program run-time
state at selected points in execution time. Such log-based and
breakpoint-based approaches rely on effective and efficient
tool support.

Programmers benefit from using integrated programming
environments [29][13], which integrate tools for browsing
source code with tools for exploring program run-time. Un-
fortunately, working within these environments is rather dis-
tracting from the actual comprehension activity for two rea-
sons: (1) programmers cannot access run-time information
directly when questions arise and (2) information views are
arranged in an unintuitive way requiring much effort for sep-
arating the known from the unknown. Fortunately, several
research projects address these issues by introducing new
concepts for capturing run-time behavior without program-
mers’ attention [26][24][30][20] and new concepts that al-
low for arranging information in a way that better reflects
programmers’ mental model of the system [7][3][18]. To our
best knowledge [6][31], there has been no attempt that tries
to combine results from both fields into one single program-
ming environment.
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We think that programming environments should not only
integrate tools for improved data exchange on a technical
level, but furthermore should allow programmers to work
in a task-oriented way and hence integrate their activities.
If environments are more user-centric and less tool-driven,
this will imply a better support in directly accessing, explor-
ing, and understanding program run-time information to im-
mediately answer questions that arise during comprehension
activities.

In this paper, we make the following contributions:

• A concept for seamless integration of tools into one envi-
ronment that provides views on both static and dynamic
program-related information and hence that presents a
system as one single unit.

• VIVIDE—our prototypical implementation of this con-
cept that illustrates its practicability using an example
comprehension task.

After this introduction to the problem domain, section 2
illustrates a motivating comprehension activity and recaps
limitations of traditional programming environments in
more detail while associating current research results that
we build upon. As the main part, section 3 explains our
conceptual solution including our notion of run-time data,
an appropriate visualization metaphor, and a simple inter-
action model. To show practicability, section 4 presents
VIVIDE—our research prototype of future programming
environments—and explains several implementation details.
Following that, section 5 summarizes related work and hence
the way other research projects try to address those prob-
lems. Finally, section 6 draws conclusions and sketches open
hypotheses.

2. A Motivating Scenario
Programmers are likely to get distracted from their cur-
rent program comprehension activity when trying to ac-
cess, explore, and understand program run-time behavior
within modern programming environments like Eclipse1 or
Visual Studio2. They incidentally perform context switches
in thinking because they cannot directly access and process
the required information but first need to find a way for that
within the environment. As a result, programmers tend to
favor drawing from the own experience and to simulate the
program control flow in mind. In the end, this increases the
cognitive load for programmers and hence is prone to errors.

Within traditional programming environments, run-time
information is accessed via edit-compile-run cycles: Pro-
grammers have (1) to decide where to write logging state-
ments or to set breakpoints, (2) to recompile the program
if necessary, and (3) to choose appropriate program entry
points that seem to reach the desired point in execution. In

1 http://www.eclipse.org
2 http://www.microsoft.com/visualstudio/en-us

1 encodeOn: aDocument

2 ”Encode the receivers attribute onto aDocument.
Note that this implementation requires those two
checks for true and false exactly the way they are
here, to reliably encode boolean attributes in an
XHTML−compliant way.”

3
4 self keysAndValuesDo: [:key :value |

5 value == false ifFalse: [

6 aDocument

7 nextPut: Character space;

8 nextPutAll: key;

9 nextPutAll: ’="’.

10 value == true

11 ifTrue: [aDocument nextPutAll: key]

12 ifFalse: [aDocument print: value].

13 aDocument nextPutAll: ’"’]].

Listing 1. A source code example taken from the
Seaside 3.0 web framework. The method is part of the class
WAHtmlAttributes, which is a hash map.

each step, information is presented in different views that
are loosely-coupled and hence require visual reorientation.
Generally speaking, programmers get distracted constantly
by the environment.

In this section, we illustrate the problem in detail by
using a source code example from the web framework
Seaside 3.03 [19][9]. The main reason for context switches
seems to be twofold: (1) programmers need to make deci-
sions about how to access run-time information and (2) pro-
grammers need to cope with changing views (or dedicated
sub-tools like debuggers) within the environment. After that,
we conclude what integration really should employ in pro-
gramming environments.

2.1 A Non-descriptive Method
The programmer wants to understand the rendering system
of Seaside and hence the way how HTML code is gener-
ated. After browsing several categories of classes that are
promisingly named after domain concepts (i.e., “Seaside-
Core-Rendering” and “Seaside-Core-Document”), she dis-
covers the class WAHtmlAttributes. Basically, she is knowl-
edgeable with this kind of hash map and how it is generally
used in the domain of a web framework. But then, she reads
through the method named encodeOn: as shown in listing 1.
After trying to understand the comment (line 2), she won-
ders, in which situations the inner false-branch (line 12) is
reached. Several questions arise:

1. How does aDocument look like at run-time?

2. In which scope is this method called?

3. Is the conditional branch in line 12 ever reached and
which concrete implementation of print: is called then?

3 http://www.seaside.st
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First attempt She wants to approach the first question with
log-based debugging. Therefore, she adds a simple logging
statement in line 3 because she knows that every object has
a textual representation: “Transcript show: aDocument.”

Now she needs to decide how to run the framework in
a way that encodeOn: is called. Tests seem to be appro-
priate because frameworks do not have any feasible main
entry points per se like normal programs do. There is a
test case called WAHtmlAttributesTest that seems suitable
and that contains 8 tests. She chooses one named testAt

but is unlucky with that choice because her method is not
called. Eventually, the test testAtPut produces console out-
put: “a WAHtmlDocument”. This result is not satisfying and
she needs more detailed run-time information to answer the
first question.

There are 2 out of 8 tests in the test case that do not cover
this method. So there is a probability of 25 percent to choose
the wrong test here. Actually, there are even 68 tests in the
system that cover the method and hence are possible entry
points.

Second attempt Now, she wants to try out breakpoint-
based debugging to answer both the first and the second
question. She sets a breakpoint at line 4. This time, she al-
ready knows which test to choose; the debugger stops the
execution at the desired place. There, an object explorer
appears and reveals detailed information about the state of
aDocument. She gets distracted because the environment re-
arranges the position of the source code on the screen (Fig-
ure 1). Additionally, a view with the current call stack pro-
vides information about the calling methods and hence the
scope that she was looking for.

After that, she continues the debugging session call-by-
call until the inner false-branch (line 12) is reached. For-
tunately, the current test does cover this branch. She dis-
covers that this will always be the case if value is a text
such as “foo”. Then, the print: method of WAXmlDocument
is called. Eventually, the whole algorithm in this method be-
comes clear.

Reflection on Attempts Depending on the kind of run-
time information that is needed, the log-based attempt could
still be more efficient. Modern programming environments
display information in many changing views (e.g., Eclipse’s
perspectives) and programmers may tend to favor focusing
one single static console window over interacting with many
appearing and disappearing support windows, e.g., caused
by the debugger. That is why these two attempts are common
practice for program comprehension activities. In the end,
this trade-off can distract the programmer and hence be time-
consuming.

2.2 Distraction 1: Meta-level Decisions
Whenever programmers want to access run-time informa-
tion, they need to make two decisions that are meta to the
comprehension question they are trying to answer:

Central
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Console, Tasks, Search
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Console, Tasks, Search
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Object

Explorer

Figure 1. Perspectives in Eclipse can be noticeably different
by default. Both screen dimensions are freely-used for lay-
outing. Hence, information recalling can be hampered, e.g.,
when switching from the default perspective (left) to the de-
bugging perspective (right).

1. Where and how to write (extensive) logging statements
or to set (conditional) breakpoints?

2. Which (kind of) program entry point and hence input
values to choose?

The example in section 2.1 illustrated, how the first deci-
sion can be approached iteratively depending on the kind of
run-time information programmers are interested in. Experi-
ence can shorten the amount of time that is needed to come
to this decision.

The second decision addresses reachability and repro-
ducibility. Program comprehension is an iterative process
and the compile-edit-run cycle, as mentioned above, is
used for step-wise refinement and thus answering questions.
Hence, programmers need to access reproducible results to
understand a system part. The possibilities range from fully-
manual (hence potentially not reproducible) application runs
over replaying recorded user actions to the execution of
scripted tests that cover the source code of interest. This
decision needs to be tool-supported; otherwise a trial-and-
error approach will be time-consuming like it is in traditional
programming environments.

Current research results reveal that run-time information
can be captured and provided automatically. Röthlisberger
et al. [26] created SENSEO—an Eclipse plugin that embeds
valuable information about program behavior efficiently col-
lected during, e.g., test runs. Steinert et al. [30] extended the
Squeak/Smalltalk programming environment to be able to
open a debugger for any method of interest by automatically
selecting and executing a covering test. Perscheid et al. [20]
developed a time- and memory-efficient approach to access
run-time information without programmers’ attention rang-
ing from lightweight call trees to detailed object states. Poth-
ier et al. [22] also describe a practical approach to enhance
traditional debugging with accessing additional run-time in-
formation in a scalable way.
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2.3 Distraction 2: Changing Information Views
While browsing code, programmers get used to many views
for information ranging from specific method sources over
class definitions to general system outlines. Once run-time
information needs to be accessed, this accustomed situation
often changes visually [17], e.g.:

• The environment may rearrange all open views in the de-
bugging mode to integrate new views like object explor-
ers and call stacks. This “feature” is called perspectives
in Eclipse (Figure 1).

• The console window may need to be resized manually
in order to see all important outputs. Hence, source code
views need to back off temporarily.

• The (graphical) program may appear in front of the envi-
ronment and hide important parts of the source code.

In any case, programmers need to refocus and look for
known and unknown information to be connected in mind.
This process often involves many user interactions and hence
can be time-consuming. A connection between run-time
information, source code and hence programmer’s system
knowledge needs to be (re-)established. Modern program-
ming environments do not support this efficiently.

Current research results reveal promising approaches for
arranging program-related information on the screen. Brag-
don et al. [3] created CODE BUBBLES—a new front-end
for Eclipse that arranges simple, self-contained bubbles
representing source code artifacts on a scrollable, two-
dimensional canvas. There is a similar implementation for
Visual Studio called DEBUGGER CANVAS4. Olivero et al. [18]
created GAUCHO—a new front-end for Pharo/Smalltalk that
arranges source code artifacts in nestable containers called
pampas’.

2.4 The Problem: A Lack of Activity Integration
Until now, integrated programming environments have been
represented a single application that hosts many supportive
tools for reading, modifying, and debugging source code.
Having this, fundamental programming tasks are supported
consistently and hence ease the exchange of essential data
between sub-tools like code editors, debuggers, command
lines, and output consoles. An appealing graphical user in-
terface underlines this picture of an apparently effective and
efficient environment—But what should integration really
employ?

“We shape our tools. And then our tools shape us.”
—Marshall McLuhan

Traditional programming environments have one funda-
mental flaw: they are still just fancy text editors that provide
ways to enrich only one central view on source code. Pro-
grammers have to learn how to map their current activity

4 http://msdn.microsoft.com/en-us/devlabs/debuggercanvas

onto this inappropriate user interface metaphor [25]. When
doing so, they are not working within the environment but
use the environment to accomplish their task in a distracting
way.

When comprehending programs, programmers benefit
from accessing and processing both source code and run-
time information. Hence, programming environments need
to support data-centric activities and not just provide tool-
centric opportunities. This means, that programmers should
be able to freely-navigate within the space of all program-
related static and dynamic information in a non-distracting
way as needed.

3. A User-centric Programming Environment
In this section, we present our concept for programming en-
vironments that reduce the number of context switches when
accessing run-time information during program comprehen-
sion activities. Within this environment, programmers stay
focused in their task-/problem-oriented thinking and do not
have to make tool-driven decisions that are distracting and
hence time-consuming. A clear, consistent user interface ab-
stracts from technical details and integrates with program-
mers’ activities in a user-centric way by directly supporting
answering questions in understanding whenever they arise.

Unger et al. identified three different types of immedi-
acy [34] that programming environments should support to
keep programmers focused on their task: temporal, spatial,
and semantic immediacy:

• Temporal immediacy addresses the delay between per-
forming an action and receiving a feedback in the envi-
ronment.

• Spatial immediacy addresses the visual distance of re-
lated information on-screen.

• Semantic immediacy addresses the number of user inter-
actions (e.g., mouse clicks) needed to access a desired
information.

At first, we address the problem of meta-level decisions
by explaining our notion of run-time information and how
to capture and provide it automatically. This corresponds
to temporal immediacy. Then, we address the problem of
changing views and present a visualization based on a scrol-
lable tape with embedded editors to display needed informa-
tion in a simple, clear, and predictable way. Hence, spatial
and semantic immediacy are ensured.

3.1 Capturing Example Run-time Information
Our notion of run-time information encompasses exempli-
fied program behavior to support code-centric comprehen-
sion tasks. In the strict sense, we want to collect informa-
tion about method calls—namely object states (i.e., callers,
callees, arguments, results) and behavioral traces (i.e., call
trees). We do not target concrete debugging scenarios where
defects have to be found; the awareness of specific failing
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Figure 2. Our concept for integrated programming environments. Editors are arranged from the left to the right either in a
fixed portion of the screen space or on a horizontal boundless tape that is accessible through a scrollable container. Overlays
visualize relations between editors. Any kind of editor can be placed multiple times on the tape.

tests would be important for that [21]. Furthermore, exam-
ples of indifferent origin should help to map abstract source
code to concrete program behavior and hence to verify and
extend system knowledge at an exemplary but valuable level.

Tests are well-suited program entry points that produce
representative control flows and hence valuable informa-
tion about program behavior [30][20][21]. In fact, writing
tests is known to be supportive during software develop-
ment [2][1]. By having these defined program entry points,
dynamic analysis techniques [6][24][20] are able to capture
run-time information without requiring programmers’ at-
tention. Programmers can focus their comprehension activ-
ity and query run-time information directly when needed—
assuming that tests cover the method of interest.

Test coverage is an important aspect in this approach.
Normally, coverage is measured with the number of methods
covered in percent, but considering conditional branches at
sub-method level [8], a coverage of 100% could still not be
sufficient. Generally speaking, the more tests there are that
cover a method, the more run-time information can be pro-
vided and hence the more programmers’ understanding can
be supported. From a pragmatic perspective, any available
information is valuable. Although the amount of accessible
run-time information is not quantifiable in percent, an appli-
cation of the well-known Pareto principle would imply that
even 20% of accessible program behavior could help to un-
derstand the underlying intent to a degree of 80%. All in all,
test should be used to capture example run-time information
in programming environments.

There is a shift of responsibility considering run-time
information access from programmers to the environment.
Hence, tests need to be deterministic. Until now, repro-
ducibility of run-time information has been more impor-
tant from a programmer’s perspective than from a technical
perspective. Programmers may need to recall the same in-
formation several times during step-wise refinement of com-
prehension questions depending on their mental capacity. In
our concept, programmers do not have to think of ways to

achieve reproducible results anymore but implementations
of such environments do have to. Direct information access
means that programmers are aware of the number of, for
example, mouse clicks they have to perform and hence they
will notice how long the response times are, until the desired
information becomes visible on the screen. The size of this
time frame has an impact on when to lose focus on the cur-
rent activity5. The problem is that dynamic analysis can be
expensive considering time- and memory-consumption [15].
Hence, implementations of our concept need to pay attention
to performance issues and may consider partial tracing ap-
proaches [32][23][20]. Therefore, reproducible results rely
on deterministic tests.

All kinds of program comprehension questions that we
address can be reduced to automatic capturing, querying,
and post-processing of object states and behavioral traces
in the context of a specific method call. Post-processing
varies from simply accessing example data to aggregating
all information for providing ranges of possible variations in
a broader scope.

3.2 Displaying Source Code and Run-time Information
The visualization part in our concept tries to mask the pres-
ence of dedicated sub-tools and hence tries to combine
source code and run-time information in a way that directly
integrates with programmers’ comprehension activities. For
this, the desktop metaphor, which tries to imitate real-world
artifacts and activities in graphical user interfaces, is consid-
ered as inappropriate because programming environments
have no representations of artifacts or activities in the real-
world [25].

We put each self-contained portion of information (e.g., a
class’ methods, an object state, or a call tree) into one rect-
angular view—called editor. Editors are arranged on a hor-
izontal unbounded tape side by side. Connections between
visible information are displayed via overlays.

5 Shneiderman et al. [28, p. 445] argue that a response delay of 1 second
does still not distract the user from simple and frequent tasks.
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Horizontal Tape Modern wide-screen monitors offer an
image ratio of 16:10 or 16:9. Having this, the primary (since
largest) screen axis is the horizontal one and programmers
need to think about how to make efficient use of the avail-
able screen space. Since source code lines are rarely longer
than 100 characters, this kind of information tends to spread
along the vertical axis leaving much whitespace to the left
or to the right. Traditional programming environments sur-
round this central code area with freely-arrangeable views
for, e.g., system outlines, documentation, or run-time infor-
mation to make use of whitespace. This leaves both screen
dimensions open for different kinds of information that pro-
grammers may have to look for.

Our concept proposes a horizontal unbounded tape that is
embedded into a scrollable area as shown in figure 2 to make
efficient use of wide-screen monitors. On this tape, editors
are freely-arrangeable from the left to the right. This assigns
a clear level of information granularity to each screen axis:
the horizontal is reserved for different kinds of information
(e.g., source code, call trees, object states) and the vertical
exposes details for each kind (e.g., chronologically ordered
call nodes). Hence, programmers should be able to recall
information more quickly.

Besides the tape, part of the screen space is reserved for
editors that should always be visible: the fixed area. Having
this, the environment organizes information in a two-level
hierarchy:

1. Is the information always visible or potentially hidden?

2. Is the information to the left or right of the current view?

Still, these constraints allow for an unrestricted explo-
ration of the system while avoiding programmers to get dis-
tracted when positioning information on the screen. Addi-
tionally, new editors that are about to appear can be posi-
tioned in a more predictable manner for programmers.

Simple Editors Each editor contains details for one pri-
mary kind of information. This can be displayed in a central
list, table, tree, or other visualization. For example, class ed-
itors can show a list of open methods, system overviews can
show tree-like outlines of captions, call trees can show con-
crete behavioral traces, object explorers can compare object
states before and after an exemplary method call.

In addition, pop-up menus and tooltips can reveal other
(secondary) kinds of information that are directly associated.
For example, the tooltip for each node in a call tree can show
the called method’s source code. Having this, programmers
can directly connect abstract source code with concrete run-
time information and hence verify/extend their current sys-
tem knowledge.

Different to views in traditional programming environ-
ments, all editors in our concept are of equal priority for
program comprehension activities. Editors for source code
are not more important than editors for run-time information
and vice versa. There is no central source code editor per se.

Connecting Overlays All editors on the tape are arranged
side by side and hence do not indicate any relation between
them visually. However, there are such relations, for exam-
ple:

• the navigation history caused by step-wise refinement
during the comprehension process

• direct connections between visible source code and cor-
responding run-time information

Besides the tape and editors, our concept uses overlays as
a third technique to illustrate those relations and hence al-
lows programmers to recall information more quickly while
reducing the cognitive load.

3.3 Interacting Within the Environment
In our concept, direct access to run-time information means
to provide supportive information to an arising comprehen-
sion question with as few user interactions (e.g., mouse
clicks) as possible. Having this, we believe that program-
mers will keep on exploring the program itself instead of
exploring the environment. To achieve this, our concept con-
siders common starting points for comprehension activities
and simple queries using a consistent vocabulary in pop-up
menus to navigate between different kinds of information.

Starting Points Code-centric program comprehension starts
with source code reading and looking for promising bea-
cons [35]. This could mean to browse overviews of system
parts or detailed sources of methods. To achieve this, editors
that show the appropriate information need to be directly ac-
cessible using search mechanisms. In the first place, a text-
based search is sufficient because programmers start with
looking for identifiers (e.g., class names or method signa-
tures) that seem to correspond with domain concepts when
exploring systems [29]. When getting more knowledgeable
in a system, this search could be extended to make use of
run-time information.

However, this concept tries to reduce the complexity of
queries. Programmers should not have to translate rather
complex comprehension questions into the complicated vo-
cabulary of environments.

Simple Queries Simplicity is important when directly ac-
cessing run-time information. At first, programmers need to
transform their question into one out of three elementary
purposes:

• Browse Code ... to navigate to static information
• Explore Object ... to navigate to dynamic information
• View Trace ... to navigate to dynamic information

This transformation is supposed to be straightforward be-
cause programmers are aware of these fundamental kinds of
information in object-oriented programs. This simple vocab-
ulary should be visualized with pop-up menus and integrated
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into all editors consistently. By doing so, programmers are
free to decide whether, for example, given pieces of run-time
information benefit from additional run-time data or source
code.

Methods that are covered by many tests provide many
examples for run-time behavior. Hence, all accessible infor-
mation should be aggregated to make it perceivable for pro-
grammers. More sophisticated queries would be necessary.
For example, such ranges of variations in object states or
behavioral traces could be accessible through pop-up menus
that allow for interaction that is more extensive. In general,
any visualization should follow the Visual Information Seek-
ing Mantra as proposed by Shneiderman [27]: “Overview
first, zoom and filter, then details-on-demand.” Eventually,
any comprehension activity can include concrete examples
even when starting with an overview of all available run-
time information about the methods of interest.

3.4 Concept Summary
Our concept has no explicit notion of a compile-edit-run
cycle because tests are executed and traced without pro-
grammers’ attention. All information is presented using self-
contained editors on a horizontal unbounded tape. Over-
lays visualize relations between visible information. Clearly
defined starting points in conjunction with simple queries
for both source code and run-time information avoid time-
consuming context switches. Hence, temporal, spatial, and
semantic immediacy [34] are ensured. Programmers are sup-
ported to focus program comprehension activities instead of
making distracting tool-driven meta-level decisions.

4. The VIVIDE Programming Environment
This section presents VIVIDE—our research prototype that
implements our concept for task-oriented programming en-
vironments, which directly integrate with programmers’
comprehension activities. It is written in Squeak/Smalltalk6

and includes many of the ideas presented in section 3: the
horizontal tape for efficient screen space usage, several ed-
itors for browsing source code and run-time information,
and pop-up menus for simple navigation within the space of
available information. At the moment, there are no overlays
that make relations between editors explicit.

At first, we replay the motivating scenario from sec-
tion 2.1—but this time using our prototype. The resulting
screen contents are shown in figure 3. After that, we ex-
plain several implementation details about how to keep the
response times low when using our prototype.

4.1 A Non-descriptive Method—Revised Attempt
The programmer wants to understand the rendering system
of Seaside and hence the way how HTML code is generated.
Therefore, she browses several identifiers of class categories,
classes, and methods with the package viewer (A). Then,

6 http://www.squeak.org

she discovers the class WAHtmlAttributes in “Seaside-Core-
Document”. Basically, she is knowledgeable with this kind
of hash map and how it is generally used in the domain of
a web framework. But then, she reads through the method
named encodeOn: shown in a tooltip and opens a source
code editor (B). After trying to understand the comment,
she wonders, in which situations the inner false-branch is
reached.

In a first step to comprehend this method, she explores an
instance of aDocument by choosing the test testAtPut that
covers this method via an attached pop-up menu:

As expected, an object explorer (C) appears to the right
of the source code on the tape and displays example run-
time information about how aDocument is modified during
such a method call. There, she discovers that the text “foo”
is written into the object.

Then still without pondering about debugging and pro-
gram entry points, she opens an example call tree (D) using
the pop-up menu again (i.e., “View Trace”). There, she in-
vestigates the calling context and discovers, that the inner
false-branch is called, too.

After recalling all visible information about the method
on the tape, the algorithm becomes clear. As a last step,
she makes use of embedded links and sees that the print:

method of the class WAXmlDocument is called in the inner
false-branch:

At the and, she is still focused on the task to under-
stand the rendering system of Seaside because all required
program-related information were directly accessible.

Reflection on Attempt The comprehension activity is sup-
ported with well-defined starting points. Beacons in the
source code are enhanced with simple queries to directly
navigate to helpful run-time information. This information
is captured and presented immediately, hence keeping the
programmer focused. During the whole activity, all editors
on the horizontal tape allow for externalizing the mental
model of the program.
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A B C D

Figure 3. VIVIDE—our research prototype that implements our concept for new programming environments. The example
session shows: (A) a system outline in the fixed area, (B) source code of the class WAHtmlAttributes, (C) an object state
comparison for aDocument before and after the call of encodeOn:, (D) a call tree showing an exemplary calling context.

4.2 Keeping Response Times Low
As proposed in the concept section 3.1, VIVIDE aims to pro-
vide temporal immediacy and captures run-time information
using test runs as appropriate application entry points. The
approach is based on the time- and memory-efficient imple-
mentation of Perscheid et al. [20]. It consists of two subse-
quent steps:

Shallow Analysis The first step executes all relevant tests
and traces few information about every method call to be
able to reconstruct the whole control flow in chronologi-
cal order. The resulting lightweight call tree can directly
be viewed in the corresponding editor.

Refinement Analysis The second step is repeated several
times and hence relies on deterministic control flows.
Tests are executed again and selected nodes in associated
call trees are enriched with object state copies to be used
in editors, e.g., the object explorer.

Their implementation is optimized for tracing one test
at a time. Since VIVIDE provides run-time information for
method calls, it has to trace all tests that cover a specific
method. After adapting the algorithm for this use case, our
prototype provides appropriate response times below 1 sec-
ond on average, which is sufficient to avoid user frustration
for such simple and frequent tasks [28, p. 445].

Seaside 3.0.5 includes 696 tests that cover only 34% of
all 5104 methods. However, if a method is covered, 20 tests
will pass this method on an average. This means, that about
20 tests will have to be traced in the shallow analysis step un-

less already cached. Measurements78 revealed that this takes
300 ms on average for all tests that cover a method. Hence,
programmers are not distracted by a noticeable unresponsive
user interface.

The coverage information is collected based on the ap-
proach of Steinert et al. [30] in a separate run of all avail-
able tests creating appropriate references between tests and
methods. Both approaches use METHOD WRAPPERS [4] to
modify program behavior accordingly. Any method call can
be intercepted and tracing code can be inserted.

The editors and the tape in VIVIDE are implemented with
the Morphic framework [16]. Conceptually, every graphi-
cal object (e.g., windows or buttons) on the screen consists
of hierarchically composed morphs. For performance rea-
sons, this object-oriented approach is sometimes softened,
e.g., for text rendering, where single glyphs are directly
processed using low-level drawing operations. Accordingly,
VIVIDE optimizes smooth scrolling operations on the un-
bounded tape with caching a static representation of all edi-
tors in a single picture. Having this, programmers can easily
notice, when new editors appear, and fluently recall all visi-
ble information.

5. Related Work
This section summarizes several related projects that aim
for improving programming activities with new or extended
environments.

7 Intel Core i5-750, 4 GB RAM, Windows 7 Professional SP1, Squeak 4.2,
Squeak VM 4.1.1
8 VIVIDE is a 32-bit single core application.
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The SELF environment [33] directly supports the pro-
grammer during exploration and comprehension activities
of program behavior. Like in Squeak/Smalltalk, program
run-time is omnipresent in this environment. Every object
provides an outline that reveals information about its run-
time state and known methods, i.e., the source code. How-
ever, this fine-grained access lacks overview capabilities.
VIVIDE provides reasonable starting points for comprehen-
sion tasks to give programmers an overview of the system
part. In subsequent steps, they can explore more detailed in-
formation up to single methods and objects.

Bragdon et al. created the CODE BUBBLES [3] environ-
ment, which arranges portions of program-related informa-
tion using bubbles on an unlimited, two-dimensional, hori-
zontal canvas. Programmers can arrange bubbles manually
as needed during comprehension activities. VIVIDE pro-
vides a more guided approach that allows programmers to
arrange editors with fewer interactions and to more easily
perceive information because of the well-defined roles of the
horizontal and vertical screen axes.

Olivero et al. created GAUCHO [18], which arranges
source code artifacts using fine-grained shapes represent-
ing packages, classes, and methods in nestable containers.
Hence, an unlimited space to store information is available.
VIVIDE provides a two-level hierarchy to organize infor-
mation using the fixed area and the left-right-arrangement
of editors. We believe this is sufficient to group informa-
tion while requiring less user interactions for navigation.
We think that a hierarchy with more levels is not beneficial
and can impede information recalling and hence increase the
cognitive effort.

Karrer et al. created a new graphical interface for Xcode9

called STACKSPLORER [10]. While editing source code
files, the environment provides fan-in and fan-out informa-
tion about methods. This allows for navigating possible con-
trol flows with ease. However, they only make use of static
analysis techniques and do not consider concrete run-time
information as VIVIDE does.

Ko et al. introduced WHYLINE [12], a tool for support-
ing debugging activities with the idea of directly answer-
ing questions that programmers have in mind. These ques-
tions simply address exploration of object states, e.g., why
instance variable X was set to Y. VIVIDE provides simple
queries to navigate source code and run-time information,
hence also avoids the need for programmers to make com-
plicated translations between their intent and available tool
features.

Kersten et al. created MYLYN10, a plugin for Eclipse
that makes tasks being treated first-class in the environment.
It is based on a degree-of-interest model [11] and allows
programmers to group task-related artifacts to tidy up the
user interface. This supports programmers to keep focus on

9 http://developer.apple.com/xcode
10 http://www.eclipse.org/mylyn

relevant system parts. In a similar way, VIVIDE supports this
with a clear arrangement of editors on the tape.

6. Conclusions
Run-time information supports programmers in understand-
ing the intent of abstract source code. When working with
traditional programming environments, programmers are
likely to get distracted from their task-oriented thinking and
incidentally perform context switches because tool-driven
meta-level decisions impede direct information accessing
and processing.

In this paper, we proposed a new approach for program-
ming environments that directly integrate with program-
mers’ comprehension activities based on available research
results. In our VIVIDE prototype, we showed that program-
mers do not notice tool switches and hence avoid context
switches in thinking. They can work in a task-oriented way
because:

1. Having coverage information, tests are used to capture
run-time behavior (e.g., call trees and object states) with-
out programmers’ attention on demand in a time- and
memory-efficient way.

2. Static (e.g., source code and system models) and dy-
namic (e.g., behavioral traces) information is arranged
intuitively in self-contained editors on a horizontal un-
bounded tape. Simple queries allow programmers to nav-
igate freely within the space of program-related data.

We believe that if programmers work within such pro-
gramming environments, they will come to fewer false con-
clusions and hence will make fewer mistakes during com-
prehension activities. Hence, we believe that they will ac-
complish tasks in a shorter period of time.
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