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ABSTRACT

Dynamic programming languages offer high expressiveness
and flexibility, improving programmer productivity. Still,
making dynamic programming languages available for em-
bedded systems is challenging because such environments
are often constrained in terms of memory or computational
power. For this, it is necessary to reduce the size of language
implementations (virtual machines, VMs) while at the same
time retaining good performance and robustness. Automatic
memory management deserves special attention because its
performance and space overhead have noticeable impact on
overall system usability. In this paper, we present NXTalk,
a VM and programming environment for the Smalltalk pro-
gramming language, making high-level object-oriented pro-
gramming available on Lego Mindstorms NXT robots. We
describe its VM implementation and evaluate its size and
performance characteristics.

Categories and Subject Descriptors

D.3.2 [Programming languages|: Smalltalk; C.3 [Special-
Purpose and Application-Based Systems|: Real-time

and embedded systems; D.3.4 [Programming Languages]:
Processors—Interpreters; D.4.7 [Operating Systems]: Or-

ganization and Design— Real-time systems and embedded sys-
tems

General Terms

Design, performance, languages

Keywords

Embedded system, resource-constrained device, dynamic pro-
gramming language, virtual machine, Smalltalk, Lego Mind-
storms NXT, Squeak

INTRODUCTION

Embedded systems are mostly programmed using static
programming languages. However, dynamic programming
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languages have long been applied successfully in this do-
main [20]. For example, the Smalltalk programming lan-
guage [10] was used to develop software for Tektronix os-
cilloscopes [7], and in chip manufacturing by Texas Instru-
ments [20]. More recently, Smalltalk has been used in, e. g.,
digital loudspeakers [2]; and Python has made and is mak-
ing appearances in mobile devices, e. g., Nokia Series 60 or
the Android? platform.

Special challenges, but also benefits, result when dynamic
languages are applied in the embedded systems domain. One
of the most crucial challenges is to make the high-level ab-
stractions that dynamic languages typically bring about ac-
tually work. Not only are memory and other resources of-
ten severely restricted, but there is also a permanent trade-
off between code size and performance. One has to admit,
though, that the benefits are strong in their own regard. Au-
tomated object layout, memory management and other ab-
stractions make programming and debugging for embedded
system environments much more convenient, which leads to
significantly shorter turn-around and product accomplish-
ment times [20].

The Lego Mindstorms NXT? is a low-cost and easily ac-
cessible platform for building robots. It is constrained espe-
cially in its memory equipment and represents an embedded
system platform with interesting characteristics. Its sys-
tem architecture is well documented® and invites beginners
as well as more experienced people to use it to work with
an embedded system. It is thus particularly well suited for
teaching both robotics and embedded systems programming.

This paper makes the following contributions:

e We introduce the NXTalk® project, which brings the
Smalltalk programming language to the NXT plat-
form. NXTalk unifies embedded systems programming
at a high level by using a dynamic object-oriented pro-
gramming language and its various advantages, and
easy access due to its excellent aptitude for teaching.

e We describe the implementation of the NXTalk virtual
machine. As opposed to many other dynamic language
implementations in constrained environments, NXTalk
provides the profound introspective and reflective ca-
pabilities typically found in other Smalltalk systems.

opensource.nokia.com/projects/pythonfors60/
code.google.com/android/
mindstorms.lego.com
mindstorms.lego.com/Overview/NXTreme.aspx
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e We present an evaluation of the NXTalk VM in terms
of execution performance and code size.

The remainder of this paper is structured as follows. In
the next section, we will first give a more detailed overview
of the NXTalk project and the software and hardware com-
ponents employed therein. In Sec.3, the NXTalk VM im-
plementation and programming environment are described,
followed by a programming example in Sec.4. The VM im-
plementation is evaluated in terms of characteristics relevant
to embedded systems in Sec. 5. Related work is discussed in
Sec. 6, and Sec.7 summarizes the paper and gives informa-
tion about future work.

2. BACKGROUND

The NXTalk project tries to combine the expressiveness
of Smalltalk with the Lego Mindstorms NXT robot in or-
der to provide a powerful environment for further research
on VMs for embedded systems and end-user programming.
In this section, we will give information about the two ele-
ments that are combined in NXTalk; namely, the Smalltalk
programming language, and the NXT platform.

2.1 Smalltalk and Squeak

Smalltalk is a dynamic object-oriented programming lan-
guage and programming environment [10]. Its pervasive ob-
ject metaphor manifests itself in the absence of language-
level control structures. Instead, late-bound messages are
used throughout the whole system. In order to achieve per-
formance, the compiler optimizes control structures at the
bytecode level by using inlining and thus avoiding method
invocations for them.

Squeak® is an open-source Smalltalk implementation, cre-
ated to meet the need for an educational development en-
vironment [12]. An additional authoring environment us-
ing Squeak’s and Smalltalk’s capabilities is Etoys’, espe-
cially developed for teaching children [1]. While Etoys al-
lows for easy graphical scripting of objects, its underlying
Smalltalk base encourages interested learners to further ex-
plore the full-featured programming environment. The focus
of Squeak—Ilike for most Smalltalk systems—is on writing as
much code as possible in Smalltalk itself in order to provide
a consistent system for researchers and students. Tools like
a debugger featuring hot code-replacement, unit testing and
powerful refactoring reduce development time dramatically.

2.2 Lego Mindstorms NXT

As a low-cost end-user product, the Lego Mindstorms
NXT robot comes with very restricted hardware compo-
nents. Programs running on it are constrained to only 64 kB
of RAM, backed up by 256 kB of non-volatile Flash memory.

Execution is driven by a 32-bit ARM7TDMI (AT91SAM7S256)

running at 48 MHz and an 8-bit Atmel AVR (ATmega48)
co-processor at 4 MHz. While the former fulfills the task
of program execution and coordination, the latter controls
motors and analog sensors.

Up to three motors and up to four sensors can be con-
nected to the NXT. The motors can also serve as rotation
sensors. The NXT is delivered with touch, noise, light, and
ultrasonic sensors. For further human interaction the NXT

6squeak .org
7squeakland. org
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brick® has four buttons, a 100x64 pixel monochrome LCD
display, and a small loudspeaker. A PC-based graphical
programming environment called NXT/G is also included.
Programs can be transferred to the NXT via USB or Blue-
tooth.

The NXT has no memory management unit. Instead,
Flash memory is hard-wired to be mapped at 1 MB and the
RAM at 2 MB. This means that every address pointing into
these two regions requires only up to 22 bits, wasting the
remaining 10 bits and leaving room for storing payload in
references at the cost of some bit masking.

The ARM processor is capable of two execution modes:
a normal one and the “Thumb mode” [17]. The former uses
four-byte instructions, the latter only two-byte encoded ones.
While this reduces code size, it disallows several optimized
process-and-shift instructions. Moreover, the ARM requires
a 2-byte alignment of data objects.

Flash memory supports writing in blocks of 256 bytes.
Reading from Flash is as fast as reading from RAM, but
writing to it is ten to a hundred times slower. RAM is
thus the preferred place for data modifications and the Flash
memory backing storage for immutable data like program
code.

2.3 NXOS

NXOS? [3] is a small operating system especially written
for the NXT system. It provides a thin abstraction layer
over the NXT hardware and the necessary device drivers.
Furthermore, it includes basic implementations for memory
management, scheduling and a Flash file system. One of
NXOS’ purposes is to be used as a base for higher level soft-
ware or VMs. Thus, it is highly modularized and compo-
nents like memory management can be replaced by custom
implementations.

3. THE NXTALK ENVIRONMENT

NXTalk is divided into two parts. The first is a VM run-
ning on the NXT brick, which we tried to make as small as
possible in order to leave more room for user applications.
Also, we preferred size optimizations over performance op-
timizations where they were applicable and did not hinder
overall system performance and usability too much. The sec-
ond is a programming environment built in Squeak that pro-
vides class libraries and facilities to build images for trans-
feral to the NXTalk VM on the brick.

3.1 The NXTalk Virtual Machine

NXTalk’s VM provides the execution environment for ap-
plications deployed to the NXT. Figure 1 shows its over-
all architecture. The main actor is the execution engine
with the interpreter, manipulating the objects in the object
space, called image. The object space is managed by the
memory management component. It takes care of object
allocation and automatic garbage collection. For communi-
cating with the different NXT components like sensors or
motors, NXTalk uses NXOS, presented in Sec.2.3. Since
Smalltalk implementations typically store all objects in an
image, NXTalk can abandon NXOS’ Flash file system: the
image is the only “file” that exists, and it is managed directly

8The NXT main unit is, basically being an oversized Lego
brick, often affectionately called “the brick”.
9nxt.natulte.net/nxos/trac
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Figure 1: Architecture of the NXTalk Virtual Ma-
chine.

in-memory. As NXTalk manages object allocation and deal-
location on its own, there is no need for using the memory
management of NXOS.

Our current implementation of NXTalk including NXOS
and its device drivers fits within 33 kB of Flash plus 9kB of
RAM using size-optimizing compiler settings and the ARM
Thumb mode.

3.1.1 Object Model

Smalltalk features a very simple object model that allows
the VM to treat the deployed applications and libraries as a
single collection of objects. Only some special object refer-
ences have to be stored along with the image, e. g., the image
entry point, which is represented in the form of an object
and a message. At VM startup, the interpreter is pointed
to the startup object as receiver and instructed to send the
given message to it in order to start image execution.

In order to achieve our size goals, objects have to be kept
very small. Typically, an object consists of a header, a class
reference and several instance variables referring to other
objects. Due to the ARM 32-bit architecture, every refer-
ence would consume four bytes. Nevertheless, it would also
waste 10 bits each time (cf. Sec.2.2). Thus, we decided to
store the address of each object only once in an object table
[10]. References to objects are then represented as indices
into this table. By limiting the maximum number of ob-
jects, we can store this index in two bytes. This pays off by
a 50 % space saving as soon as an object is referenced twice,
because each further reference takes up only two instead of
four bytes, thus compensating for the entry in the object
table.

Naturally, an object table brings about a certain impact
on performance due to the additional indirection it intro-
duces, but the remaining 10 bits can be used to store addi-
tional object meta-data, without further dereferencing the
real object pointers. For example, object header data like
mark bits or reference counts for garbage collection can be
moved here, thus eliminating the need for an object header.
The exact usage of these bits is described below.

Another data element typically stored in the object header
is the size of an object. For instances of classes with a fixed
size, this can easily be calculated by reading the class format.
Variable-sized instances like arrays still require an extra size
field in the object, which is dynamically included for them,
as shown in Figure 2.
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Figure 2: Object layout and object table.
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Figure 3: Usage of zero-based tagged integers.

Tagged Integers.

The size of a single object containing no instance variables
consists of two bytes for the class reference and four bytes
for its object table entry, amounting to six bytes. Num-
ber objects would require even more memory to store their
value. To eliminate this overhead, NXTalk encodes integers
small enough directly within the 16-bit object reference. To
distinguish between object table indices and integers, we use
the least significant bit as a tag, leaving 15 bits for both of
them, as visualized in Fig. 3.

If the tag bit is zero, the remaining bits represent the inte-
ger in two’s-complement format. Otherwise, they are inter-
preted as an object table index. This zero-tagging technique
allows to perform additions and subtractions without prior
decoding of the number, because the zeroed tag-bit is neu-
tral to these basic arithmetic operations [11].

In order to find the address belonging to an object refer-
ence, the VM has to shift the 16-bit value right by one to
retrieve the object table index. Table lookup itself shifts the
index to the left by two because the table entries are four
bytes wide. Thus, only a shift by one to the left is needed, if
the reference’s least significant bit is set to zero before. The
AND instruction is able to do both operations at once [17] if
the ARM is not especially set into Thumb mode.

Using this approach, NXTalk is able to provide integers
in the range from —2'* to 2'* — 1 without consuming any
additional space, while still allowing a hypothetical maxi-
mum of 2'° objects. This is sufficient given the amount of
memory available on the NXT. The NXTalk standard image
is 49.6 kB large and contains 3,054 objects. This amounts
to an average size of 16.6 bytes per object. Assuming this
average, 512kB of memory would be consumed by objects
in case all object table entries were used; i. e., twice as much
as the NXT offers. Thus, space exhaustion is not a risk.

Object Layouts.

In addition to the aforementioned generic object layout,
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Figure 4: Memory layout on the NXT.

the NXTalk VM needs to know about some special objects
and classes. For instance, knowledge of the class layout is
necessary, because the class of an object contains informa-
tion about the size of its instances, its superclass and the
messages understood by the object.

Methods and Blocks also are very special objects because
they contain elements of variable size. Nevertheless, the for-
mat of both is almost identical. Their classes define the ele-
ment size as one byte, but in fact, they start with a two-byte
method header represented by a tagged integer and a list of
literal references used in the method or block. Afterwards,
the bytecodes of the method follow.

The header itself encodes the counts of arguments and lo-
cal variables in four bits each, limiting both to a theoretical
maximum of 15. Six bits represent the literal count—i.e.,
the number of literal constants [10] contained in a method—
, which corresponds to 63 literals at most. These maxi-
mum counts are further restricted by the possible bytecode
operands described in Sec. 3.1.3. One last bit indicates that
this method is a primitive and uses the ten bits of the tem-
porary and the literal count to encode the number of the
primitive.

3.1.2 Memory Management

Automatic memory management for dynamic and object-
oriented languages in a constrained environment like the
NXT deserves special attention as its performance and be-
havior directly impact the system’s overall usability.

Object Management.

Basically, NXTalk’s object management is responsible for
two different entities: the object memory and the object ta-
ble. While the former grows from lower memory addresses
to higher ones, the latter grows from top to bottom of the
available memory and thus towards the object memory. Fig.
4 illustrates this. Furthermore, the object memory is divided
into a Flash memory and a RAM part, but the object ta-
ble is completely stored in RAM. While Flash memory only
contains old and long-living objects like classes and methods
including their literals, RAM is populated by newly created
objects and old objects which have been modified and thus
had to be moved to the RAM due to the slow flashing.

Obviously, the Flash part of the object space is modi-
fied very rarely, namely at system shutdown—which is when
the live object table is copied from RAM to Flash to make
it persistent—or application and class deployment. Thus,
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Figure 5: Free-list management.

when we refer to “object space” in the following, it is meant
as a synonym for the RAM part.

As already mentioned, new objects are created in RAM.
They are allocated at the end of RAM object space as long
as there is enough free memory. Vice-versa, the object table
grows from the top of the available RAM towards the bot-
tom. NXTalk hence assigns table indices in top-down order
beginning at the maximum value.

Although it is quite fast, this technique usually exhausts
memory very quickly and both memory regions meet some-
where in the middle. From this point on, a fallback allo-
cation algorithm scans the object space in order to find a
suitable object already freed by the garbage collection.

These free objects are managed using free-lists as shown in
Fig.5. If an object is detected not to be referenced any more,
its object table entry is marked. Afterwards, the object is
inserted into a linked list of free objects. To speed up the
lookup process, if free space is needed, NXTalk manages
multiple free-lists, which are ordered by the size of their
entries. It does so for sizes up to 30 bytes; larger entries are
kept in a single list. All in all, there are 16 free-lists, because
the minimal size of an object is two bytes, and every object
has to be two-byte aligned, as already mentioned in Sec. 2.2.

Inserting a deallocated object into a free-list is as easy as
setting the object’s first two bytes to the object table index
of the previous free-list head and announcing the object as
the new head. Thus, object deallocation is done in constant
time. However, to avoid fragmentation, the free-list for large
objects is always kept sorted by size. Thus, deallocation of
objects larger than 30 bytes has linear time complexity de-
pending on the number of already deallocated large objects.

On allocation without free memory at the end of the ob-
ject space, NXTalk tries to use the free-lists with sizes of at
least the required size. If a free entry is found, it is split up
if required and the available memory can be used. This allo-
cation scheme was already used by the original Smalltalk-80
implementation [10].

Memory fragmentation is not an issue, as the garbage col-
lector applies heap compaction [13]. If the heap is frag-
mented and not enough contiguous space is available for an
object at allocation time, the allocation request will lead to a
collection cycle, resulting in a compacted heap with enough
free space.

The described dynamic growth of the object space and the
object table allows NXTalk to support different application
allocation behaviors. A user program requiring many small
modifiable objects has a large object table, but small object
space. If it needs only few but big objects, the same RAM
region is separated differently. Memory occupied by the ob-
ject space in the latter case is used by the object table in
the former one.



Garbage Collection.

In order to find orphaned objects, NXTalk uses two well-
known algorithms [13]. Reference counting provides incre-
mental garbage collection but does not find all orphans. A
mark-and-compact traversing algorithm eliminates unused
objects and avoids fragmentation at the cost of a possibly
long system pause.

Upon object assignments, the VM increments or decre-
ments the involved objects’ reference counts. The count is
stored in five of the free bits of the object table entries as
shown in Fig. 2, thus allowing it to grow up to 31. If it
reaches this level, reference counting is deactivated for this
object. The actual reference count might be much higher
or even lower than 31 after that, but the reference-counting
collector does not take such objects into account any more.

If the reference count drops to zero, the object is automat-
ically deallocated. Also, the reference counts of the objects
it references are decremented. Obviously, this may lead to
cascaded deallocations which could introduce a full system
stop for some time. A possible solution is to simply stop
cascading after some amount of time or a specific number
of deallocations. We decided to let the programmer control
these parameters from within the NXTalk environment.

Reference counting is not able to detect cyclic dependen-
cies of objects. In order to collect such objects—and objects
with reference counts larger than 31—and to defragment
the object heap, we implemented a mark-and-compact algo-
rithm. Although it halts execution for some time, it is able
to definitely collect all unreferenced objects.

Mark-and-compact GC starts with a marking phase, in
which all living objects are marked as being reachable in
the object table by traversing their object references. The
algorithm starts with a root set consisting of the objects
currently accessible by the program code—i. e., all elements
on the stack including method activation frames.

As NXTalk’s GC only collects objects in RAM and to
speed up the marking phase, traversal is stopped when en-
countering Flash memory objects. Therefore, it is necessary
to add objects that were copied from Flash to RAM to the
root set. Otherwise, the mark phase might miss them, be-
cause live objects in RAM might be referenced by objects
in Flash only. Forcing the GC to mark these objects as live
ensures that no possibly living object is discarded.

Also, traversing the whole object graph can consume large
parts of the stack, which might even overflow. Thus, NXTalk
uses a slight modification of the Deutsch-Schorr-Waite (DSW)
algorithm [16] for non-recursive heap traversal. This algo-
rithm stores the back-reference in the object itself instead
of on the stack and iteratively traverses objects. Thus, it
does not need any further stack space. In order to remem-
ber which path of the list it took down in the traversal, the
original DSW algorithm uses one prefix bit. This is enough
because it regards list items as being of fixed size with two
fields.

NXTalk, however, has variably-sized objects. To keep
track of already visited instance fields, NXTalk reuses the
reference count bits in the object table entries, as they are
not in use during GC and can be restored with their correct
value later on. The collector stores the index of the in-
stance variable before continuing traversal for that instance
variable. After returning back to the object, it reloads the
variable’s index from the reference count bits and can find
the next instance variable. If the variable’s index is too big
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to fit in the five reference count bits, the value still has to be
pushed onto the stack. With this optimization, our mark-
ing phase consumes two bytes on the stack for each object
having more than 31 references to other objects.

The mark phase is followed by a compaction phase lin-
early scanning the object heap for marked living objects
and copying them to the beginning of RAM. As it also has
to update the object table, it needs to find the object table
index for a given object address. Searching the object table
for each given address would be too expensive, so NXTalk
replaces every class reference with the object’s table index
in a previous link-reversal step. This enables fast access to
the object table entry belonging to a specific object address.

In order to be able to restore the class references after com-
paction, they are saved within object address fields of the ob-
ject table as these are unused during the compaction phase.
Nevertheless, class information for objects is not available
during the following linear scan anymore. Thus, the size
cannot be retrieved for non-arrayed objects—necessary to
compute the address of the following object. NXTalk fills
the remaining free bits in the address fields of the object
table to store this payload in this step. Additionally, it re-
calculates the reference counts of living objects during the
iteration over the object table.

After link reversal, compaction is trivial: marked objects
are copied to the beginning of RAM one by one, overwriting
unused objects or free space. Class references and table
indices of the objects are updated. Afterwards, control is
returned to the interpreter, which continues execution.

This GC implementation’s time complexity linearly de-
pends on the number of objects in RAM. However, a general
insight is, that 64kB RAM cannot contain many objects.
The theoretical maximum is 32,768 because the minimum
size for an object is two bytes for its class reference. This
number is reduced by the operating system, some VM code,
stack regions, other Smalltalk objects necessary for the exe-
cution, and the growing object table.

3.1.3 Execution Model

Smalltalk has a very simple execution model. Neverthe-
less, due to its many reflective and introspective facilities,
several tradeoffs and optimizations have to be made in or-
der to gain enough performance on the NXT. The NXTalk
interpreter is stack-based and its main processing units are
methods, which are invoked by sending messages to objects.
After a correct method to execute is found, a new activa-
tion context is set up for it. Afterwards, the interpreter can
start to execute the method’s bytecodes until it is advised
to return to the preceding context or invoke a new one.

Method Lookup.

If the interpreter encounters a message send, it starts a
method lookup. To do so, it fetches the corresponding mes-
sage name (selector) from the method literals. Afterwards,
it determines the position of the receiver object on the stack
by examining the argument count of the selector and the
receiver’s class, which contains the method dictionary, can
be fetched. The method dictionary contains association ob-
jects, which map from a message selector to a method ref-
erence. As these objects are all accessible from Smalltalk
code by means of introspection, the interpreter has to deref-
erence them and also have knowledge about the involved
object structures on the heap.



If the method is not found in the receiver’s class, contin-
uing lookup along the superclass chain may lead to time-
consuming method lookups upon every message send. To
avoid this, NXTalk uses a method cache like the one used in
Squeak. The cache is organized as a hash table; selector and
receiver class are used to compute hash keys. Cache entries
contain (selector,class,method) tuples. Standard lookup is
performed only when the cache misses, and resolved meth-
ods are stored in the cache.

Stack Frames.

In Smalltalk, stack frames, called “contexts”, are accessi-
ble from everywhere. This allows for code influencing inter-
method control flow, e.g., exception handling, to reside on
the Smalltalk side entirely. Nevertheless, there is a crucial
overhead for the interpreter, because it has to create a new
frame object on the object heap upon every method or block
invocation.

As this would quickly exhaust memory and cause frequent
garbage collections, NXTalk uses a global frame pool. In-
stead of deallocating unused frames, they are pooled and
can be quickly reused later.

Constant-time allocation and deallocation of frames in the
pool are achieved by implementing it as a linked list, where
the context field acts as link to the next free frame. The
pool size does not exceed a certain limit, because a trade-
off between wasting memory and fast frame reification has
to be made. This limit should be based upon the typical
application stack depth and is configurable.

A sample stack layout is given in Fig. 6. Every participat-
ing object is allocated on the Smalltalk heap. The Current
Thread object links to the frame currently being executed
by the interpreter. Frame objects contain meta-information
about the method or block invocations they represent. The
sender chain of frame objects builds up the execution stack.

In the example, a method doSomething sends a message
to its receiver, passing a block as argument. The invoked
method in turn executes its block argument by sending it
the value: message. A VM primitive directly allocates a
block frame and directs interpreter execution to it.

The Current Thread object also links to an array that the
interpreter uses as the current stack. Thus, the interpreter
uses Smalltalk objects for managing its own execution state
while also allowing access to the available meta-data. In or-
der to speed up interpretation, the addresses of the involved
objects are cached between method invocations, garbage col-
lections and context switches.

Bytecodes.

The bytecode set of a language implementation affects
both execution speed and code size. In NXTalk, due to
Smalltalk’s consistent syntax, we only need 20 distinct op-
codes. We represent opcodes and their operands in a single-
byte packed format as shown in Tab. 1, resulting in smaller
and easier to interpret code.

This, of course, limits several aspects of the Smalltalk en-
vironment. One of our limitations is the maximum number
of local variables and arguments in methods to eight each.
Also, we introduced a maximum of 32 literals—i. e., immedi-
ate values or symbols used for message sends—per method.
This should be adequate for medium-sized methods and au-
tomatically encourage the programmer to use small meth-
ods, which are considered to be good style in Smalltalk [14].
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Opcode Representation
Block Return 11111111
Return 00000000
Dup 00000001
Pop 00000010
Push Self 00000011
Push Nil 00000100
Push True 00000101
Push False 00000110
Push thisContext 00000111
Push Argument 00001XXX
Push Temporary 00010XXX
Pop into Temporary 00011XXX
Push Instance Variable 001XXXXX
Pop into Instance Variable 010XXXXX
Push Literal 011XXXXX
Push Block 100XXXXX
Super Send 101XXXXX
Send 110XXXXX
Jump Forward if True 1110XXXX
Jump Backward 1111XXXX

Table 1: The NXTalk bytecode instruction set.

Small methods also support the two branch instructions,
which can jump 15 bytes at most. Backward jumps in
fact can only jump one byte less, because the Block Re-
turn opcode has the same shape as the maximum backward
jump opcode. These two jump instructions are used by the
NXTalk compiler for inlining control structures; if jumps are
too far, inlining is not used (cf. Sec. 3.2.2).

The final limitation is the possible maximum of 32 in-
stance variables for classes. This is more than sufficient in
our view, because a class with too many instance variables
indicates a “code smell” [8].

Scheduling.

While the original Smalltalk-80 implementation [10] used
cooperative green threads, NXTalk employs a preemptive
model. Although NXOS could provide its own scheduling
which provides multiple processes, green threads bear sev-
eral advantages in our case. First, threads can easily be
made a first-class language construct and yet consume less
memory. Furthermore, a green thread model is considered
to allow for faster context-switching, as less data needs to
be restored.

NXTalk’s interpreter preempts execution of the current
thread on every 1,000 bytecodes and transfers execution to
a scheduler thread. This frequency has been determined
empirically and proved to be a good compromise, but is
configurable from within the environment. The scheduler
is also written in Smalltalk and is able to access the active
threads as linked list of reified thread objects in the scheduler
instance. Every thread contains a reference to its stack and
the current stack frame, as shown in Fig. 6.

Being able to exchange the scheduling algorithm from
Smalltalk code enables programmers to dynamically adapt
system behavior. Also, they do not need to know C in order
to add new scheduling behavior to NXTalk. Nevertheless,
this openness of the system leads to certain performance
impacts, which are documented in Sec. 5.

3.1.4 Interaction with NXOS

While NXTalk does not use NXOS’ memory management
component, scheduler or file system, we still take advan-
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tage of the available and well-documented device drivers for
sensor and motor interaction. The “hardware call emula-
tion” building block in Fig. 1 is responsible for communicat-
ing with NXOS. Apart from the NXOS features we directly
use, the system deals with hardware initialization and sys-
tem bootstrapping. It sets up interrupts and takes care of
synchronization with the co-processor. This was not in the
scope of our work.

NXOS provides simple support for sensor interaction. Press-

ing a button does not result in an interrupt or event—the
NXT hardware architecture does not allow for interrupt se-
mantics. Instead, NXOS and consequently NXTalk have to
poll the button state or any other sensor data continuously.
For convenient sensor interaction, several VM primitives are
provided. They can be called from within the Smalltalk
image. Furthermore, threads may register themselves for
events from specific buttons or sensors. The virtual ma-
chine polls the available data every 500 bytecodes and, if
required, interrupts the current thread, continuing execu-
tion in a waiting thread. Those blocked threads are not in
the process list of the scheduler. Instead, they are in an
event-specific linked list, which is known to the interpreter.

3.2 The NXTalk Programming Environment

NXTalk uses Squeak as a programming environment. This
allows to reuse Squeak’s mature development tools like the
class browser or refactoring. A basic image can be built from
NXTalk’s system libraries and transferred to a NXTalk VM
residing on an NXT robot using a simple graphical tool. Af-
terwards, programmers are able to package their own appli-
cations or additional libraries and deploy them on the NXT
while NXTalk is running. A compiler transforms the classes
created in Squeak to the NXTalk format.

3.2.1 System Libraries

NXTalk provides several dedicated system libraries. Reusing

the existing Squeak libraries is not possible because they are
too heavy. NXTalk also requires slight modifications to the
class hierarchy and several methods. Therefore, any class
supposed to be transferred to the robot has to be a sub-
class of NXTalk’s own root class NXTObject. Nevertheless,
the base classes implement the same protocols as Squeak’s
libraries do and mirror their hierarchy to some extent.

The NXTalk system libraries provide extensive support for
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collections, streams and hardware components like sensors,
motors or the display. Exception handling is completely im-
plemented in Smalltalk and takes advantage of the stack
reflection mechanisms described in Sec. 3.1.3. Concurrency
support is based on the hard-wired connection of the sched-
uler and the VM. While the scheduler is responsible for man-
aging thread objects, the VM uses their data for execution.

An image builder tool invokes NXTalk’s packager and
compiler and combines the results into a full image runnable
by the VM. The image contains the kernel and system pack-
ages as well as automatically included special classes re-
quired for later package deployment.

3.2.2 Development Support

The NXTalk compiler inspects a Squeak class and con-
verts it and all of its methods into the appropriate NXTalk
objects. Being the last component to have access to code be-
fore it is transferred to the NXT, the compiler is responsible
for code size and performance improvements. As opposed
to the NXTalk VM, it has much more resources available
in order to perform advanced optimizations. Currently, the
compiler does not apply sophisticated analyses, but inlines
special message sends assuming they are sent to known re-
ceiver classes. This includes loops and conditional clauses.
If the jumps needed for these inlining rules are too far to fit
into the bytecodes, normal message sends are inserted. This
scheme is similar to Squeak’s inlining for frequently called
methods.

Application deployment is an important issue when cre-
ating a robot programming environment. As Squeak does
not include an application packaging mechanism, NXTalk
provides its own. A package in NXTalk is simply defined
by its package description. A description lists all delivered
classes, required packages and data objects used by a pack-
age. Possible package types are executable applications and
add-on-libraries. For convenience, everything installed on
the NXT resides in a package. Thus, a base image consists
of a kernel, collection, streaming and hardware package.

Once a package is built from its description, compiled
classes and data, it is ready for transfer to the NXT. The
resulting set of objects is serialized to a data stream using
the NXTalk libraries. The stream contents are sent to the
NXT, where the running image deserializes the package ob-
jects. Once the package classes are registered in the system



Figure 7: The Bumper robot.

dictionary, the code is available for further use. The system
standard application is able to include all present applica-
tions into its menu and present them to end-users.

As already mentioned, NXTalk source code is able to be
executed and debugged within Squeak to some extent. In
fact, both differ only in created hash values for an object and
classes and literal objects like numbers or strings not being
already transformed NXTalk objects. Assuming these flaws
are non-essential for an application, Squeak can simulate it
using graphical front-ends for the display, motors, sensors
and other hardware. In order to ease this duality, NXTalk
encapsulates hardware access within a special environment
object. While this is the system dictionary on the NXT, a
simulation engine can be inserted within Squeak.

4. PROGRAMMING EXAMPLE

In this section, we will briefly present the hardware config-
uration and NXTalk source code for a demonstrator robot.
The robot is intended to do the following:

e Drive straight ahead until an obstacle is noticed; in
that case, stop, back off in reverse direction, and turn
away before proceeding.

e Play random tunes at random intervals.
e Shut down if the cancel button is pushed.

e Shut down if the robot bumps into an obstacle that
was not noticed.

Each of these tasks is to be taken out by a separate process.

The robot can be seen in Fig. 7. It features an ultrasonic
sensor for obstacle detection (connected to port 3), a touch
sensor for triggering emergency shutdown (port 1), and two
motors (ports B and C).

The application is called “Bumper”, and it is implemented
in the class NXTBumper inheriting from NXTDriver and having
the instance members enumerated in Tab. 2. The NXTDriver
super class provides certain methods for robots with motors

ENINC N Nt
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Name Role

radar radar sensor object

touch touch sensor object

tunes musical tunes to play

driver driving process

music music playing process
crashWatcher | emergency shutdown process
main process waiting for cancel button
running indicate shutdown request

Table 2: Instance members of NXTBumper.

run
self
setup;
spawnProcesses;
shutdown
setup
radar := (NXTRadar port: 3) enable.
touch := (NXTTouchSensor port: 1) enable.
tunes := (NXTArray new: 2)
at: 1 put: 180 -> ’>8cdedcdepcp2cp’;
at: 2 put: 120 -> ’>2c4dd3c<8a2f’;
yourself
shutdown
radar disable.
radar := nil.
touch disable.
touch := nil

Listing 1: Methods for Bumper startup and shut-
down.

connected to ports B and C, allowing them to drive forward
and backward as well as to turn around.

4.1 Running

The code for the methods starting up and shutting down
the Bumper application is shown in Lst. 1. The setup method
is most interesting; it initializes sensor objects at the appro-
priate ports (see above) and also configures the array of mu-
sical tunes that can be played. For optimization purposes,
the tunes are stored as associations with the desired speed
as their key and the actual tune as their value. The tunes
are represented in strings whose format roughly corresponds
to that of PLAY commands in implementations of the BASIC
programming language.

The code for spawnProcesses is shown in Lst.2. This
method simply starts up the four desired processes and then
goes to sleep, waking up every 500ms to check whether a
shutdown has been requested.

4.2 Driving

spawnProcesses

running := true.

driver := [ self drive ] fork.
music := [ self music ] fork.
main := [ self waitForEnd ] fork.

crashWatcher := [ self crashWatch ] fork.
[ running ] whileTrue: [ 500 milliSeconds wait ]

Listing 2: Spawning the Bumper processes and main
loop.
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drive
[ true ] whileTrue: [
self driveAhead.
radar waitUntilBelow: 20.
self
back0ff;
turnAway ]

back0ff
self driveBackwards.
(1000 + 500 atRandom) milliSeconds wait

turnAway
2 atRandom = 1
ifTrue: [ self left ]
ifFalse: [ self right J.

(500 + 500 atRandom) milliSeconds wait

Listing 3: Code for driving.

music
| spk tune |
spk := NXTSpeaker new.

[ true ] whileTrue: [
(5600 * 10 atRandom) milliSeconds wait.

tune := self tunes: 2 atRandom.
spk

speed: tune key;

play: tune value ]

Listing 4: Music playing process.

Lst. 3 contains the code relevant to the driving process.
The drive method essentially consists of an infinite loop in-
structing the motors to drive ahead (the method driveAhead
is inherited from NXTDriver) and then goes to sleep until the
ultrasonic sensor reports an obstacle at a distance of less
than 20 cm.

In case the sensor triggers, the process is woken up and in-
structs the motors to back off and turn away—both actions
are taken out with random values to avoid overly static be-
havior of the robot.

4.3 Playing Music

The code for the music player process is shown in Lst. 4.
The process has a local variable representing the NXT’s
piezo speaker. It also runs in an infinite loop, going to sleep
for a random interval and playing a random tune when wak-
ing up.

4.4 Shutdown Watchers

The two remaining processes are those waiting for either
the cancel button or the touch sensor triggering. Their code
is shown in Lst. 5. They exhibit a largely similar structure.
Both immediately go to sleep, waiting for their respective
events. When woken up, they disable scheduling, shut down
all other processes, and set the running control variable to
false to indicate that the application may now terminate.

4.5 Application Description

Finally, a class is needed that describes the application in
terms of classes to deploy, name to display in the NXTalk
application menu on the NXT, and entry point; i.e., which
message needs to be sent to an instance of the application
class to start it up. The NXTBumperApp class, inheriting from
NXTApplication, achieves this by providing the appropriate
message implementations as shown in Lst. 6.
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waitForEnd
NXTButton waitForButton: NXTButton exit.
Processor withoutScheduling: [
crashWatcher terminate.
driver terminate.

self stop.

music terminate.

running := false ]
crashWatch

touch waitUntilPressed.
Processor withoutScheduling: [
driver terminate.
self stop.
main terminate.
music terminate.
running := false ]

Listing 5: Shutdown watcher processes.

classes
7 #( NXTBumper NXTDriver )

name
T ’Bumper’

entrypoint
1T #NXTBumper -> #run

Listing 6: Deployment support methods.

The application can, for instance, be deployed on an NXT
brick connected via USB by evaluating the following state-
ment in a workspace.

NXTBumperApp deployOn: NXTUsbConnection connect

S. EVALUATION

Our general intention in developing NXTalk was to favor
size over speed to accomodate the NXT’s strict memory con-
straints. In this section, we will evaluate and discuss several
aspects of the implementation.

The memory footprint of NXTalk and applications run-
ning on top of it deserve special attention. We evaluate
the native and byte code sizes of NXTalk’s components and
compare their variation with different compiler settings.

Code Size.

Four components are relevant with regard to the code size
of the NXTalk system. NXOS as the underlying operating
system is the first; the NXTalk VM executable, the sec-
ond. Both of them are compiled to native ARM code. The
NXTalk system libraries and deployed applications, repre-
sented in bytecodes, are the two other components.

Fig. 8 shows the native code sizes of NXOS and the NXTalk
VM employing different compiler settings. NXOS compiles
down to 12kB because not every part of it is used—e.g.,
NXTalk implements its own scheduling and does not require
a Flash filesystem. Still, disabling Thumb mode does not
significantly increase NXOS’ code size, although the instruc-
tion size is doubled. Even perfomance optimization result
in code only 40 % larger than the smallest version.

This is different for the NXTalk VM. Especially the opti-
mized ARM mode version increases code size significantly.
We suppose this is due to the heavy use of inlineable func-
tions instead of macros in our C source code. While macros
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are always expanded even if the compiler is instructed to
optimize for size, inlineable functions are only inlined when
optimizing for speed.

The NXTalk system libraries consume 33 kB of Flash mem-
ory, leaving room for 192 kB of application code minus the
space needed for the persistent object table. For instance, a
simple, but typical standard application like driving around
and turning to other directions on encountering obstacles
consumes about 2kB of Flash memory and around 50 ob-
jects (method activations) in RAM.

RAM Usage.

All of the differently optimized versions presented above
consume some amount of RAM for native execution stacks
and VM data. Each of them consumes 7-9 kB, thus leaving
55-57kB for user applications.

As described in Sec.3.1.3, method and block activations
are objects. To use the frame pool more efficiently, they all
have the same size, even though a method frame has more
instance variables. The frame pool sets the correct class ref-
erences. A method frame holds eight instance variables. To-
gether with the class reference, a frame consumes 18 bytes.
Furthermore, every frame object needs four additional bytes
in the object table, resulting in a total of 22 bytes.

Each thread in NXTalk consumes five references, includ-
ing its class, resulting in 10 bytes, and four bytes in the
object table. Additionally, a stack array object is created,
which initially consists of 50 2-byte slots and can grow dy-
namically as needed. This adds 108 more bytes. Thus, a
newly created thread including its stack consumes 144 bytes.

Our experiments have shown that a typical application
uses 2,000-3,000 long-living objects in Flash and 200-500 in
RAM. This includes the base libraries.

Performance.
Fig.9 shows a performance comparison of the NXTalk
ARM and Thumb mode versions using size and performance
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optimizing compiler settings. We used two micro-benchmarks
from Squeak. The first is a bytecode-heavy benchmark and

thus tests raw interpretation performance; the second stresses
the interpreter by performing almost only message sends,

resulting in many method lookups. The values in the dia-

gram are normalized to the perfomance of the size-optimized

Thumb mode version.

As visualized, ARM mode drops below Thumb mode in
both cases. This was to our suprise as we expected ARM
mode to outperform Thumb mode, which needs more in-
structions for the same operations. Thus, we decided to
continue to use the Thumb mode for NXTalk as it saves
code size and provides better performance.

We also measured the time needed for a context switch
starting from the invocation of the Smalltalk scheduler thread
to the activation of the new thread. On average, this takes
3ms. By default, context switches appear every 1,000th
bytecode (around every 270 ms).

Another interesting measurement is the latency of event
handling (cf. Sec.3.1.4). To measure this, several randomly
activated button presses were simulated in the VM. The
average latency between the simulated press and the VM
noticing it through polling was below 1ms. As the NXT’s
system timer has a resolution of 1 ms, we could not measure
this latency more accurately. In summary, after the VM
notices an event, a waiting thread is awakened after a normal
thread scheduling, i.e., after about 3-4 ms.

GC Behavior.

Regarding garbage collection, duration and frequency of
full system pauses must be minimized. Although reference
counting distributes object deallocation over time, full GC
cycles are needed to compact RAM and collect cyclic struc-
tures. Their cost is relevant, so we measured it using an ap-
plication allocating many small objects in cyclic structures
and thus enforcing a compact phase. In this application,
memory exhaustion occurs about every 4 seconds, and a full
GC cycle takes around 60 ms.

Portability.

The implementation of the NXTalk VM targets the NXT
platform, but its design is not restricted to that. While
NXTalk contains several explicit references to NXT hard-
ware drivers, the latter are provided by NXOS, which could
be replaced by another hardware abstraction layer.

Memory management in NXTalk makes some assumptions
about memory layout on the NXT platform, i.e., it contains
some hardwired assumptions about the separation of the
available address space in RAM and Flash. Then again,
such a separated memory structure is common on embedded
platforms, so adapting the memory management logic to
support another layout is feasible.

The interpreter is portable. It makes no assumptions
about the hardware architecture.

In a nutshell, porting NXTalk to another embedded plat-
form should—as long as the target platform is an ARM
architecture—mnot be thwarted by the VM design as such.

6. RELATED WORK

We discuss related work in two strands: programming en-
vironments for the NXT, and other dynamic language im-
plementations for resource-constrained embedded systems.



6.1 NXT Programming Environments

NXT/G is the standard programming environment de-
livered with the NXT. Based on LabView, it provides a
beginner-friendly graphical programming language with out
offering low-level control and text-based programming.

LeJOS' is a Java environment providing a tiny JVM ac-
companied by a comprehensive class library as well as several
tools to load and run Java programs on the NXT. In order
to fit into the available space, it completely abandons reflec-
tive capabilities. In contrast, NXTalk provides Smalltalk’s
full reflection features allowing for more introspection and
intercession than possible in any Java.

pbLua'! makes the Lua scripting language'? available on
the NXT. A dedicated firmware starts a Lua shell on the
NXT, which receives commands from a terminal emulator
on the PC. It is also capable of compiling, storing and run-
ning full Lua scripts on the NXT. Lua is a dynamically typed
language combining multiple paradigms like imperative and
functional programming. It provides a small set of built-in
features allowing for easy implementation of, for instance,
object-orientation. While it is possible to use an IDE such
as Eclipse'? in order to edit Lua source code and integrate
a terminal connected to the NXT, a simulation or testing
environment on a PC is not available. Unlike NXTalk, code
addressing NXT functionality has to be executed on a con-
nected NXT or at least stored there for later execution.

RobotC'* and NXC'5 are C-like languages. Their IDEs
are powerful and provide tools like interactive and remote
debugging, but simulation without an NXT is not possible.

None of these environments bridge the gap between be-
ing beginner-friendly and allowing more professional users
to program in a high-level language matching the predom-
inant object-oriented paradigm. NXTalk achieves this by
making Smalltalk, an easy-to-learn and yet powerful and
expressive object-oriented language, available on the NXT.

6.2 Dynamic Languages

Regarding dynamic language VMs for resource-constrained
embedded systems, our focus is on Smalltalk. Moreover, we
also revisit further Java VMs targeting similar systems.

The Resilient Smalltalk'® platform [15, 2] bears many sim-
ilarities with NXTalk: a Smalltalk VM running on an em-
bedded device is fed with applications and data from an
IDE running on a PC. In the case of Resilient, Eclipse is
used as IDE. The Resilient VM consumes 128 kB of RAM.
The main differences between Resilient and NXTalk are as
follows. NXTalk’s memory consumption is much more con-
strained: it has only half as much RAM available, but can
rely on an additional 256 kB of Flash memory. While this
is comfortable, it requires a sophisticated memory manage-
ment scheme organizing objects according to their changing
over time. Also, the NXTalk programming environment is
written in a superset of the language that NXTalk is able to
execute. This allows for straightforwardly testing NXTalk
programs without starting a dedicated NXTalk instance.

10lej os.sourceforge.net
"hempeldesigngroup. com/lego/pbLua

124w, lua. org

13www.eclipse.org

Myww . robotc.net
15bricxcc.source:lforge.net

16Resilient Smalltalk is also known as OOVM.
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Pocket Smalltalk'” is an IDE and VM targeting PalmOS.
Its executable, containing the VM and standard class li-
braries, fits within 25 kB, while NXTalk needs 52 kB. These
small code sizes were possible, because PalmOS was a 16-bit
platform. Although NXTalk uses the ARM Thumb Mode
and its packed two-byte instruction format, it still needs
32-bit data pointers, which significantly increases code size.
However, Pocket Smalltalk did not support any kind of re-
mote debugging or simulation and was abandoned in 2002.

ENVY /Embedded is a commercial Smalltalk system cre-
ated by OTI [6] providing several features similar to NXTalk.
It included interactive remote-debugging, image packaging
and images running partly in ROM. ENVY/Embedded could
target various embedded systems down to 512 kB of memory.

SqueakNOS™ is a Smalltalk implementation running di-
rectly on hardware, without an operating system in between.
Few elements of the system are implemented in C and as-
sembler. SqueakNOS is not targeted at embedded systems,
but at general-purpose PCs. The principle of implement-
ing the entire system in (mostly) one language is intriguing,
but in the course of developing NXTalk, we have preferred
the chosen solution because it allowed us to address primi-
tives for, e. g., sensor and motor interfacing that are already
offered by NXOS, instead of implementing them ourselves.

Apart from LeJOS, several other Java VMs for embed-
ded systems exist. Sun’s CLDC HotSpot'® fits into 300 kB
of memory; its predecessor KVM?°, based on the Spotless
research JVM [19], only needed 128 kB. They achieve these
sizes by abandoning support for some reflective capabilities
and limiting class libraries. An underlying operating system
is required, though, consuming additional space. NXTalk,
conversely, needs 64 kB including NXOS. However, the CLDC
HotSpot features JIT compilation and exploits ARM hard-
ware Java optimizations.

The Squawk JVM targets devices similar to the NXT in
terms of memory constraints [18]. It is written in Java and
fits on SunSPOT devices?! equipped with an ARM9 proces-
sor, 512kB RAM and 4 MB Flash. As it is also available
for desktop PCs, it is possible to simulate programs before
deploying them to the embedded system.

In 2008, Google released its Android mobile phone plat-
form based on their Dalvik VM?2. They compile Java byte-
codes into a Dalvik-special, size-optimized bytecode format.
The VM saves memory by sharing code like the standard
class libraries between multiple running instances. Nev-
ertheless, Android targets embedded devices very different
from NXTalk’s constraints: 64 MB total system RAM and
Linux as underlying operating system allow for much larger
applications than possible with NXTalk.

URBI*® [4, 5] aims at providing a common abstraction
for robot programming, featuring a dedicated language and
run-time environment. The latter is comparatively heavy-
weight, encompassing a component model and client-server
infrastructure. URBI is available for many diverse robotics
platforms, including the NXT.

7
8

www.pocketsmalltalk.com
sourceforge.net/projects/squeaknos
java.sun.com/j2me/docs/pdf/CLDC-HI_
whitepaper-February_2005.pdf
%java.sun.com/products/cldc/wp/KVMup . pdf
1www.sunspotworld.com
Zsites.google.com/site/io/dalvik-vm-internals
www.gostai.com



7. SUMMARY AND FUTURE WORK

NXTalk is a Smalltalk programming environment for the
Lego Mindstorms NXT consisting of a very small VM and
an integrated development environment based on Squeak. It
provides the full range of Smalltalk programming abstrac-
tions, including reflective capabilities, while imposing only
few restrictions on programmers. In a larger context focus-
ing on providing end-user programming capabilities in the
embedded systems domain, NXTalk forms the technical ba-
sis and thus a first core contribution.

Future work will cover improvements of end-user expe-
rience and further VM research. To achieve the former,
high-level, beginner-friendly aspect, a full Etoys [1] imple-
mentation utilizing NXTalk is planned in order to provide
a graphical programming environment based upon Squeak.
This will allow programming beginners to implement robot
applications via Etoys and explore object-oriented program-
ming possibilities. Also, simulation support within Squeak
for NXTalk will be improved. In conjunction with an Etoys
front-end, a full two-dimensional graphical simulation will
be possible.

Another important enhancement is the availability of re-
mote debugging and profiling code running on the robot.
Implementing this is straightforward as it can take advan-
tage of Smalltalk’s meta-programming facilities. Program-
mers reduce turn-around times and thus raise their produc-
tivity by avoiding numerous deploy /trial/fix cycles.

A known problem of dynamic memory-managed languages
is their hardly predictable real-time behavior. Future work
will incorporate considerations of NXTalk’s real-time appli-
cability. This also includes different garbage collection algo-
rithms with better predictability.

A just-in-time compiler could definitely speed up NXTalk.
While typical JIT compilers require large amounts of addi-
tional memory to store the methods in native code, hybrid
JIT compilers like HotpathVM compile only frequently used
execution traces instead of methods and have a very small
memory footprint [9].

The NXTalk VM itself is also a target for optimizations.
We want to investigate possibilities to use the Flash memory
more efficiently. For instance, rarely modified objects could
migrate to Flash leaving more space in RAM for new objects.
Also, the object table is currently completely stored in RAM,
although its entries for Flash objects are updated only in
some rare cases. By separating the object table into a RAM
and a Flash part and storing the latter in the Flash memory,
further memory gains are possible.
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