Partial Parsing for Structured Editors

Tom Beckmann
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
tom.beckmann@hpi.uni-potsdam.de

Toni Mattis
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
toni.mattis@hpi.uni-potsdam.de

Abstract

Creating structured editors, which maintain a valid syntax
tree at all times rather than allowing to edit program text,
is typically a time consuming task. Recent work has inves-
tigated the use of existing general-purpose language gram-
mars as a basis for automatically generating structured edi-
tors, thus considerably reducing the effort required. However,
in these generated editors, input occurs through menu and
mouse-based interaction, rather than via keyboard entry that
is familiar to most users.

In this paper we introduce modifications to a parser of
general-purpose programming language grammars to sup-
port keyboard-centric interactions with generated structured
editors. Specifically, we describe a system we call partial pars-
ing to autocomplete language structures, removing the need
for a menu of language constructs in favor of keyboard-based
disambiguation. We demonstrate our system’s applicability
and performance for use in interactive, generated structured
editors. Our system thus constitutes a step towards making
structured editors generated from language grammars usable
with more efficient and familiar keyboard-centric interac-
tions.

CCS Concepts: « Software and its engineering — Formal
language definitions.

Keywords: partial parsing, structured editing, tree-sitter

ACM Reference Format:

Tom Beckmann, Patrick Rein, Toni Mattis, and Robert Hirschfeld.
2022. Partial Parsing for Structured Editors. In Proceedings of the
15th ACM SIGPLAN International Conference on Software Language

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

SLE °22, December 06—07, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9919-7/22/12.
https://doi.org/10.1145/3567512.3567522

110

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
patrick.rein@hpi.uni-potsdam.de

Robert Hirschfeld

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
robert.hirschfeld@uni-potsdam.de

Engineering (SLE °22), December 06—07, 2022, Auckland, New Zealand.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3567512.
3567522

1 Introduction

Structured editors allow editing abstract syntax trees (ASTs)
of programs directly, rather than working on a textual repre-
sentation that requires parsing to be turned into an AST.
For novices, structured editors provide an interface that
does not cause syntax errors and may guide them more
clearly to formulate programs than a text-based editor other-
wise would [2] and are thus often used in education [14, 18].
More generally, structured editors simplify language com-
position [23]. Since boundaries of AST nodes are clearly
delineated in the model of the structured editor there is no
ambiguity when grammars of two languages are composed.
Further, the composed languages do not have to resemble
textual languages but can be visual and domain-specific, for
example allowing users to edit a state machine embedded in
their code [20].

Typical structured editors are either hand-crafted, mean-
ing their authors manually define appearance, rules for inter-
actions, and serialization. Hand-crafting may result in inter-
actions that are highly adapted to the specific constraints of
the underlying language but necessarily require considerable
engineering work. Otherwise, structured editors may also be
generated from a specification, for example as expressed in
a language workbench [9, 23]. Some generators also provide
support for taking in the grammar of an already existing
textual language and deriving a structured editor, such as
Rascal2MPS or Kogi [13, 21, 22]. Correspondingly, reuse of
existing grammars results in considerably less engineering
work for deriving a structured editor for an existing language
such as JavaScript or Python.

Concerning input, prior work in MPS has demonstrated
that following user’s expectations from textual editing, even
in a structured editor, benefits efficiency [4]. The required
interactions are added by the language’s authors to inform

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0015-1717
https://orcid.org/0000-0001-9454-8381
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3567512.3567522
https://doi.org/10.1145/3567512.3567522
https://doi.org/10.1145/3567512.3567522

SLE ’22, December 06-07, 2022, Auckland, New Zealand

234

binary expression

update expression block

23 ++

Figure 1. The user entered a plus token on an existing num-
ber node in a keyboard-driven structured editor. We derive
two partial parse trees by taking the number node and the
user input and present those for disambiguation through the
user. The editor and its interactions are generated from a
JavaScript grammar.

the editor how text-like editing should affect the tree struc-
tures [24]. The importance of following user expectations’
from textual editing in structured editors has been identified
in multiple places [11, 25]. Prior work [21, 22] demonstrated
the possibility of fully automatically generating projectional
editors in Blockly [8], a block-based framework for struc-
tured editors. Here, language constructs are created via drag-
and-drop from a palette without keyboard interaction.

In this paper, we describe a combination of these two
approaches: a structured editor that is generated from a lan-
guage grammar but supports entry of language constructs
through keyboard through use of a modified parser for that
grammar. For example, assume a syntax tree in JavaScript
for the number 23, and the plus sign as keyboard input by
the user, as shown in Figure 1. Since the JavaScript grammar
knows two constructs that start with a number followed by
a plus sign, our parser produces two parse trees from the
partial input. The user may resume typing, for example the
number 5, at which point the input would be unambiguous
and our parser would produce a single parse tree for the
expression 23+5. Thus, our modified parser allows the con-
struction of a binary addition via keyboard, as opposed to
drag-and-drop.

In the following, we will first discuss means of interactions
in structured editors in general. We will then present our
modified parser and an evaluation of its suitability for struc-
tured editing. Finally, we present related work and conclude
the paper.

2 Interactions in Grammar-derived
Structured Editors

In this section, we first describe the structure of Tree-sitter
grammars, which our approach uses to auto-generate map-
pings from general-purpose programming language gram-
mars to structured editors. We then present different means
to interact with structured editors to illustrate the design
space relevant to providing input via our partial parser.

111

Beckmann, Rein, Mattis, Hirschfeld

2.1 From Tree-sitter Grammars to Structured Editing

For our example implementation of the described approach,
we chose to use grammars as expressed in the Tree-sitter
parser generator’s grammar language [5]. Tree-sitter is an
suitable target for automatic generation of editors as gram-
mars for a large set of commonly used programming lan-
guages exist, including C, C++, Python, or JavaScript [5]. The
Tree-sitter parser generator encourages authors to formulate
grammars with a close correspondence to the language con-
structs users have in mind, supporting the resulting parse
tree’s use in other tools. For this, it offers, for example, con-
structs to model associativity and precedence, such that these
do not have to be encoded in the grammar’s structure.

Listing 1 shows an example of a grammar in Tree-sitter’s
DSL. Tree-sitter’s DSL is built on top of JavaScript. By spec-
ifying prec.left around a rule, we can mark this rule as
left-associative and optionally supply a numerical prece-
dence. The rule names that appear in the supertypes list will
not generate visible nodes in the resulting AST. For a full
description of Tree-sitter’s DSL refer to its documentation[5].
We will explain all elements relevant to our approach and
relate to other common specifications.

1 /* Tree-Sitter DSL (written in JavaScript): x/

2 module.exports = grammar ({

3 name: 'example',

4 supertypes: $ => [$.expr],

5 rules: {

[3 expr: $ =>

7 choice($.add,$.mul,$.id,$.closure,$.new),

8 id: $ => /\w+/,

9 new: $ => prec.left(seq("new",$.expr)),

10 add: $ => prec.left(1,seq($.expr,"+",$.expr)),
11 mul: $ => prec.left(2,seq($.expr,"*" ,$.expr)),
12 closure: $ => prec.left(seq($.id,"=>",$.expr)),
13 3

14 1,

15

16 /* Approximate pendant in more common syntax:

17 expr := add | mul | id | closure | new

18 id := \w+

19 new := "new" expr

20 add := expr "+" expr

21 mul := expr "x" expr

22 closure := id => expr

23 %/

Listing 1. An example grammar written in the Tree-sitter
DSL and the same grammar expressed in a more conventional
style. prec.1eft() marks a left-associative rule, optionally with
a numeric precedence.

To map from a grammar to a structured editor’s user in-
terface, a straightforward mapping may for example turn
non-terminals to block compounds and terminals to text
fields [22]. In our example implementation, we show tree
structures through nesting of blocks, similar to prior work
on a structured editor for Smalltalk [3]. Figure 2 shows an
example from a Tree-sitter parse tree and its derived user
interface. Every user interface element stores a reference to
the rule in the grammar that is was derived from. Thus, a

Partial Parsing for Structured Editors

add
id * mul 2+ é * X
) / \

id * id

a X

Figure 2. Mapping from a Tree-sitter parse tree to our struc-
tured editor’s user interface. Each node in the tree (marked
bold) is turned into a block. Terminals (non-bold text) are
turned into textfields that are also embedded in the corre-
sponding blocks. The user’s cursor is shown on the right in
the a block signified by a bold underline to show the selected
node and a caret to show the precise text cursor’s position.

void main() {
2;
} — . |

num

Figure 3. Overview of our structured editor system. In (1),
the Tree-sitter parser maps from a source file to a syntax
tree. In (2), the user adds a plus sign to the number node. In
(3), our partial parsing system reconciles this input with the
surrounding tree structure and produces a new subtree. In
(4), we replace the old subtree with the updated subtree.

text field can tell if new input provided by the user conforms
to its allowed characters.

As a result, the blocks form a bijective mapping from the
AST of a textual program to a user interface. By walking the
tree and collecting values from text fields, the blocks can
be serialized back into a textual form for storage purposes.
Some aspects, such as comments or deliberate formatting
decisions require additional considerations to “survive” the
mapping process but are not relevant for a discussion of the
input system.

2.2 Interactions in Structured Editors

Structured editors with an appearance close to text editors,
including Barista [12] or editors using GrammarCells [24],
as well as our own system, tend to ensure a close mapping
to the interactions that users are already familiar with from

112

SLE ’22, December 06-07, 2022, Auckland, New Zealand

Variables

Jend

Iteration

|
I Decisions
=

Functions

Calculation

I Output
I Input

Figure 4. Palette and number block in BlockPy [1], a struc-
tured editor built using Blockly for Python. Users drag-and-
drop blocks from the palette on the left onto the code canvas
on the right to construct programs.

textual editing. For example, typing an expression such as 2
+ 3 * numshould be possible with the same keystrokes as in
a text editor but automatically construct the corresponding
tree.

In contrast to this, block-based editors typically feature a
block palette that allows users to create language constructs
via drag-and-drop, see Figure 4. This forms a trade-off be-
tween intuitiveness and editing efficiency, when compared
to text-like editing.

A structured editor with a focus on text-like editing may
instead ask users to start typing out the textual equivalent
of the language construct they want to create, for example
the letters for for a loop. At this point, the input is still
ambiguous: users may want to continue typing to create an
identifier such foreign or type a space character, at which
point the system can conclude that the keyword for is meant.

Perhaps intuitively we enable these interactions through
analysis of the language’s grammar. We identify all language
constructs in the grammar that may start with the given
input and ask users to continue typing until only one con-
struct is left or they explicitly disambiguate between choices
through a user interface.

In a parser that acts on complete files, this type of lexical
conflict would typically be resolved by looking ahead in the
input stream. As our system acts on live user input, this is not
possible and thus our system presents all valid options up to
this point, until the user provides further input or explicitly
selects an option. This differs from autocompletion as seen
in IDEs, as no information on the semantics of the program
are involved. Instead, it more closely resembles snippets that
automatically complete the boilerplate required for, e.g., an if-
statement when the user invokes a shortcut, but generalized
across the entire grammar.

Figure 3 provides a view on the complete system from
source file, over a change by the user, to the updated tree. In
(1), the standard Tree-sitter parser takes the input file and
creates a corresponding syntax tree. This tree is bijectively
mapped to a user interface. In (2), we illustrate a change:
the user has the number 2 selected and presses the plus
button. In response, our partial parsing system is activated

SLE ’22, December 06-07, 2022, Auckland, New Zealand

in (3). In the example, our system finds that the add rule
incorporates both the existing number node and the new
plus input character and proposes this as the new subtree to
be used. Since no other subtrees matched, we can directly
update the trees, as shown in (4), resulting in the updated
program.

3 Partial Parsing

In the following, we will first describe our partial parser as
a set of modifications to a recursive descent parser. We will
then detail considerations and heuristics we added to the
parsing process and invocations of the parser to support a
familiar, keyboard-centric editing flow.

For ease of implementation of the modifications described
in the following, we designed the baseline parser using recur-
sive descent. The parser we are starting from before applying
our modifications accepts most context-free grammars as
described by Tree-sitter’s grammar notation. Note that our
contribution is a set of practical adaptations to a recursive de-
scent CFG parser to support interactive editing in structured
editors, rather than the demonstration of a formally equiva-
lent parser that accepts all inputs as the original Tree-sitter
parser.

We formulate our modifications in pseudo code. For ex-
ample, take the below definition of the implementation of
the choice operator:

1 def choice.apply(parser):

2 results := new List()

3 for alt in this.alternatives:

4 results.addAll (alt.apply(parser.copy()))

5 return results

We take the parser state as argument, apply each operator in
the choice’s alternatives to a copy of the state, and return the

new list of resulting parser states. The parser state consists
of

1. the input stream that can be accessed via its peek and
next methods,

2. the current subtree, to which we can add nodes via
the addParseNode or addPlaceholder (to construct
a hole with the given grammar rule) methods, and

3. fields required to manage recursion and memoization.

To support left-recursion as used in Tree-sitter grammars
in our recursive descent parser, we make use of seed grow-
ing [27]. Seed growing exploits the memoization table that
stores parse tree results per rule and per index of the input
stream. When a rule is first encountered, a memoization
entry is created as a marker. If the same rule is invoked,
the marker gets flagged as a left recursion and returns no
results and as a consequence skips to the next alternative
that includes no left recursion. Finally, when the recursive
descent returns to the first invocation of the rule and a left
recursion was flagged, we evaluate the same rule again. This
time, when the recursion would occur, there is already an
entry in the memo table, for the smallest possible parse of

113

Beckmann, Rein, Mattis, Hirschfeld

the recursive rule, the seed. By repeatedly evaluating the
recursive rule while the parser still advances, we thus iter-
atively grow the seed until the input that constitutes the
left-recursive rule is consumed.

3.1 Partial Input

Our first modification should enable our parser to receive a
partial input and return all parse trees that are valid consid-
ering just this input. For example, given the grammar shown
in Listing 1 and the input n, the following are valid results
in this first version of our recursive descent parser:
(id)
_ (add)
(mul)

> (closure)
_ (new)

[R N O
5 53 5 S

Listing 2. An exhaustive list of results for the input n.
The underscore symbolizes a hole that awaits further input
through the user.

Observe that the letter n takes on the role of an id node
in the first four parse trees, in the first three it is also an
expression, whereas in the last it is part of a larger token.

To illustrate our understanding of partial input and partial
results, consider the input stream 2+ for our example gram-
mar in Listing 1. Normally, a parser would attempt to form
an add subtree but reject the input as the right-hand side of
the binary operation is missing. However, at least for our
example grammar, this input already unambigiously signals
the user’s intent to construct an add node with an id of 2
in the left-hand side. To provide the benefits of structural
editing, we want to commit to this tree as early as possible
and not wait for a complete input.

The below code illustrates our recursive descent parser’s
current procedure for evaluating sequences. The algorithm
maintains a queue of parser states and the index of the se-
quence’s elements this state reached. In each iteration, we
advance a parser state from the queue and add all result-
ing, unfinished parser states to our queue, until the queue is
empty and we return all states that reached the end of the
sequence’s elements.

1 def sequence.apply(parser):

2 results := new List()

3 queue := new Queue()

4 # queue a tuple combining the parser state and
5 # the current index in our sequence

[3 queue.push ((parser, 0))

7 while queue.notEmpty():

8 (parser, i) := queue.pop()

9 # this.elements is the list of elements this
10 made up of; here we get all

11 for its i'th element

12 candidates := this.elements[i].apply(parser)
13 for parser in candidates:

14 if not parser.atEnd():
15 queue.push((parser,
16 else:

17 if
18

sequence is
parse trees

i+ 1))

i == this.elements.size:
results.add(parser)

Partial Parsing for Structured Editors

N
+
E
=

Figure 5. The result of entering 2+, completed id and add
nodes, and an incomplete placeholder waiting for an expr
node to be entered.

19 return results

Listing 3. Unmodified procedure for evaluating sequence
operators.

To allow our parser to accept incomplete input, we need to
adapt its handling of sequences. At the moment, we require
to have found results for each element of the sequence in
Line 14. Instead, we modify the if-conditional to keep track of
all parser states that exhausted their input stream as checked
in Line 13 but did not reach the end of the sequence in a
separate list (Line 16 below).

12
13
14
15
16
17
18

19
20

if not parser.atEnd():
queue.push ((parser,
else:
if i this.elements.size:
results.add(parser)
else:
incompleteResults.add((parser,

i+ 1))

i))

Finally, before returning the results, we complete the in-
complete results with placeholder blocks as shown in Fig-
ure 5, starting from the first index where our parser had
reached its end but there were still pending elements of the
sequence. Once completed, we add them to our results list.

19
20
21
22
23
24

for (parser, lastIndex) in incompleteResults:
for index in lastIndex+1..this.elements.size:
parser.addPlaceholder (this.elements[index])
results.add(parser)
return results

With these changes to our sequence code, we accept the
first four results shown in Listing 2. To accept the fifth, we
also need to adapt our implementation of the text operator
shown below. In the unmodified implementation, we match
the text operator’s regular expression against the remaining
stream in the parser state and construct a leaf parse node for
this match if it succeeded.

1 def text.apply(parser):

2 if match = regex.matches(parser.stream):

3 parser.addParseNode (new ParseNode(match))
4 return parser

5 return new List()

Instead of matching the text operator’s entire regular ex-
pression, we allow only matching a prefix if the match would
bring us to the end of the input stream:

1 def text.apply(parser):

2 if match = regex.matches(parser.stream) or

3 (match = regex.matchesPrefix(parser.stream)
4 and parser.atEnd()):

114

SLE ’22, December 06-07, 2022, Auckland, New Zealand

5 text = match + this.remainingText(match.size)
[3 parser.addParseNode (new ParseNode(text))
7

With this change, given a label such as new and the input ne,
we match the operator and autocomplete the text to new in
Line 5.

3.2 Minimizing the Results Set

Once our parser has produced the exhaustive list of (partial)
parse trees that are valid for a given input, we want to trim
that list to only those that we deem relevant to the user.
Considering the example in Listing 2, we argue that only
two results are of relevance:

(id)

(new)

1 n
2 new _

To the user, it is clear that all other parse trees can be obtained
by extending the n that gets parsed as an id by typing for
example a plus sign afterwards. Contrarily, the new is its own
language construct.

Note that it would be equally valid to also eliminate the
new and allow users to enter the new rule by fully typing out
the keyword. When testing, we found that it was less jarring
to now jump between an accepted identifier and a larger
construct started by a keyword. For example, consider the
case where the user wants to type the identifier newHouse.
When entering n, the parser would commit to the id type.
Once the user has typed new, however, it would then enter
an ambiguous state again, not knowing whether the user
wants to continue typing or designate the keyword, until they
complete the identifier and remove the remaining ambiguity.

As such, the heuristic we apply for this minization step
can be expressed as: Eliminate all parse trees that can be
obtained by extending the chosen parse tree when the user
adds more input. With this rule, all resulting parse trees
where the last input produced an id node are grouped.

To implement the grouping step, we first add a marker for
the last parse node that was constructed, i.e., the parse node
that consumed the last of the user’s input string. From the
marker, we obtain the list of its parent nodes in the parse
tree.

For the input n, the resulting set is as follows:

1 id (n)

2 id -> add (n + _)
3 id -> mul (n *x _)
4 id -> closure (n => _)
5 "new" -> new (new _)

Next, we discard all results that have another chain as prefix.
Thus, results 2, 3, and 4 are discarded since the chain of result
1 is their prefix.

Finally, consider the input string new. Both the id rule
and the new rule will match. However, since the latter would
be interpreted as a keyword in a textual language, we want
to discard the id option. As such, we check if our last con-
structed node is a keyword in the grammar. If that is the

SLE ’22, December 06-07, 2022, Auckland, New Zealand

case, we only permit results where the last constructed node
is also a keyword.

Keywords. Earlier, we established as a heuristic to only
merge if the same language construct was derived from the
input. For example, we do not want to merge new _andn
but we do want to merge n and n+_. During our own usage
with the system we noticed some exceptions to this rule. In
the Python grammar, for example, there are separate rules
for integers and floats. As such, when the user begins typing
a number, the editor will never be able to unambigiously
commiit to an integer, as integer literals always form a prefix
for the float rule. For lack of a generalizable pattern with
these exceptions, we are currently annotating pairs of rules
that should be merged even though they map to separate
language constructs manually.

3.3 Maintaining Existing Subtrees

For purposes of tool building it can be desirable to keep as
much of the existing subtrees as possible. For example, it
allows storing references to the nodes directly, rather than
working with identifiers. Further, by reusing entire subtrees,
we can improve performance while parsing, similar to the
method incremental parsers employ.

To maintain existing subtrees in our partial parser, we
extend the parser to accept an input stream that may contain
both characters as well as existing parse nodes. The extension
simply requires our non-terminal to not just apply its body
but to first peek the input stream to check whether the next
element is a parse node. If so, we compare the non-terminal’s
grammar rule with the parse node’s grammar rule and return
a parser state that incorporates the existing parse tree on a
match.

For example, consider an existing tree 2*3+4 and a change
by the editor’s user to replace the + to be a *. In this scenario,
we provide our parser with an input stream consisting of a
mul node (2*3), the character * that the user just typed, and
an id node for the 4. The resulting tree 2*3*4 will reuse the
two nodes that were passed to the parser in the entirety and
only replaces the root node, as it changed its semantics from
add to mul.

In other scenarios a reinterpretation on the character level
is inevitable: given the id node 321456, the user may want
to split the number into the expression 321+456. Here, the
query to the parser would be a plain character stream that
replaces the current root node with three entirely new nodes.

3.4 Querying the Parser from the Editor

As outlined in the previous subsection, the parser will receive
a mix of characters and existing subtrees as inputs. Given a
character typed by the user, we have to decide what parts
of the tree we want to keep and what parts may need to be
"stringified" before being passed to the parser. This concern
is not directly related to our partial parsing system but poses

115

Beckmann, Rein, Mattis, Hirschfeld

challenges related to the grammar concerning precedence
and subtree reuse. As such, we briefly outline how the parser
is triggered from a user’s point of view, referred to as query
to the parser, before discussing precedence and subtree reuse.

Queries to the Parser. Generally, when the user types
a character, a number of queries are placed to the parser
starting from the deepest node and traveling up the parent
hierarchy until a query returns at least one result. If it is
exactly one result, we apply the restructured parse tree. In
case of multiple results, the user may continue typing until
the input becomes unambiguous or interactively chooses
one of the presented options, as shown for example in Fig-
ure 1. The process of incorporating user input is as follows,
proceeding to the next step only if the previous step did not
already produce results:

1. When a new input character is received, the focused
node will try to take the input as part of its text field,
if it would then still conform to the grammar.

2. Next, if the input occurred at the very start or end of
the text field, we take the node and insert the input be-
fore or after the entire node in the stream. This enables
typing a + sign on an existing number, transforming
a 2 node into the node 2+_ that wraps the existing
number node.

3. Next, the focused node will stringify its contents,
insert the character in the stream at the cursor position
and reparse the node. For example, users can enter a
: after a Smalltalk unary message to change it to a
keyword: 3 raisedto 3 raised: _.

4. Finally, if none of the above steps produced a result, we
repeat all steps with the parent node of our selection.

Precedence and Left-recursion. A challenge with this
approach arises in the presence of precedence, especially in
left-recursive constructs. As an example, take a grammar that
contains both the C postfix increment operator and binary
addition.

1 expr := add | inc
2 add := expr "+" expr
3 inc := expr "++"

We define that the postfix increment binds more strongly to
its expression than the binary addition. Thus, when the user
types a plus sign on the 3 of an expression such as 1+2+3, the
system will immediately commit to 1+2+3++ since we find a
single valid parse tree that consumes the entire input. Instead,
we would have expected a conflict between the described
choice and 1+2+3+_, which did not occur because, to reach
this second parse tree, the system would have needed to
traverse to the parent twice. See Figure 6 for an illustration
of the issue.

To address this, we modify the third step in the previously
described process: if we find that we are on the right-hand
side of a left-recursive rule, we query results for both the

Partial Parsing for Structured Editors

1]+[2]73

1|+[2][F|[3]++

*+|expression]
1+2+3 M

Figure 6. Our initial expression on the first line. Given the
input +, we want to be able to obtain both of the below
parse trees. Note the visual appearance of the editor, which
may suggest editing interactions akin to block-based editors.
However, through use of the partial parser, editing interac-
tions are designed to mimic text editing, while the visual
appearance aims for clear boundaries between syntactic ele-
ments.

Table 1. Projects from which we sampled the 30 most recent
single line changes for our evaluation. We selected popular
repositories of medium size that were active at the time
of writing, for each language. The reported lines of code
and number of files include only files of the language we
evaluated.

Project Language Lines of Code Files
flask® Python 10372 75
express.js' JavaScript 16381 153
Overtone® Clojure 30986 282

active node and its parent. Thus, rather than stopping with
the results from just the active node, we ensure that we get
both options as displayed in Figure 6.

4 FEvaluation

Since our goal was to improve parsing in an interactive con-
text, we study the end-to-end performance of typing code
fragments that could have been written realistically by pro-
grammers. We created a dataset of such edits by extracting
small code changes from the public version history of the
software projects listed in Table 1. More precisely, we ex-
tracted the most recent 30 source file' changes that inserted
or edited one line of code. The changes are supposed to re-
semble those a user may have performed step-by-step in an
interactive programming session. After reverting the change,
we let our system automatically repeat the change and verify
that the resulting program source is equivalent. Both the un-
derlying editor, as well as the implementation of the partial
parser are available open-source on Github 2.

116

SLE ’22, December 06-07, 2022, Auckland, New Zealand

4.1 Re-performing Changes

As an example, consider the following single line change
from the express.js repo where the below statement was
inserted:

mock.uri.params = mock.uri.params || {3}

Figure 7 illustrates one such change as an example. To pre-
pare the edit, we first locate the corresponding subtree in the
final file’s source tree. We then replace this subtree with a
hole and place the cursor inside, as shown in (1) of Figure 7.
Now, we begin replaying the source line character by char-
acter as inputs to our system. In (2), we simulated typing
the first identifier, which replaces the hole initially. When
the dot is typed, in (3), we wrap the identifier in a member
access and the cursor awaits further input for the property.
We continue typing until in (4) we hit the first ambiguous
input: the equal sign could either be an assignment or a com-
parison. Once the user presses the next letter in (5), we know
that it has to be an assignment and automatically apply the
change. Finally, in (6), we are left with another ambiguity
that does not resolve as both options share the same prefix.
The input could either be a JavaScript object, or a JavaScript
object destructuring assignment. To resolve this case, we
automatically press return once if we reached the end of the
input and the parser still produces multiple valid options.

While going over the first 30 changes in each repository,
we skipped changes if they concerned only comments or
Python comment strings. Further, 11 subtrees in the first 30
of the Python/flask data set could not be automatically repro-
duced with our current system and were thus skipped. All
11 concerned import statements of the form import name
from module, where the from keyword was autocompleted
and thus re-typed by the automatic replay. Note that man-
ually reproducing all 11 statements using our system was
possible, by simply skipping over the autocompleted from
token.

4.2 Performance

We measured the end-to-end time each processing after a
keystroke took. Note that for a single response, there may
have been multiple queries to the partial parser, as described
in subsection 3.4. In total, during the experiment, we pro-
cessed 1233 keystrokes. We report the time from the first
query to the response of the last query in Figure 8.

The times were measured on a laptop with a 12th Gen
Intel i7-1255U on Ubuntu 22.04 LTS. The implementation
is written in Squeak/Smalltalk [10], and exploratory-style
live programming environment [16], and thus not heavily
optimized for performance.

!Identified by file extension, excluding configuration files.
Zhttps://github.com/hpi-swa-lab/sb-tree-sitter/
3https://github.com/pallets/flask/tree/36af821ed
4https://github.com/expressjs/express/tree/2c4782705
Shttps://github.com/overtone/overtone/tree/ddb4046c3

https://github.com/hpi-swa-lab/sb-tree-sitter/
https://github.com/pallets/flask/tree/36af821ed
https://github.com/expressjs/express/tree/2c4782705
https://github.com/overtone/overtone/tree/ddb4046c3

SLE ’22, December 06-07, 2022, Auckland, New Zealand

/2\ /3\
7 oo / 7
statement|| | mocH mock -Jprivate prop..
- params =
assignment expression
mock - uri - params | =(€XP1
5 binary expression
- ——
= . . - eX
mock - uri - params| =.m k- uri - params =
1
)
P mock - uri * Params]I{}

binary expression

mock - uri ‘| Params Iy

binary expression

mock - uri |* Params I {}=

Figure 7. Walkthrough of an example change as performed
for our evaluation. The user is typing the expression mock
.uri.params = mock.uri.params || {3}. The popup in
steps four and six occurs when the input is ambiguous.

—

S
[
1

Frequency
Pt
Ob—l
1

T T T I-_
0.04 0.06 0.08 0.10

Time in milliseconds

0.00 0.02

Figure 8. Histogram of end-to-end response times for all
1233 parser queries in response to keystrokes in our eval-
uation. The x-axis reports time in milliseconds, the y-axis
frequency per bin on a logarithmic scale. The highest dis-
played value is at around 0.105 milliseconds.

For an interactive use case, processing keystrokes should
ideally not take more time than the user leaves between two
physical keystrokes. Assuming a user typing at 120 words
per minute and an average word length of five, an upper

117

Beckmann, Rein, Mattis, Hirschfeld

2 1000 -
S 1000
]
=
o
S 500 -
&9

0_

0 50 100
Input stream length

150

Figure 9. Histogram of the lengths of input streams in our
evaluation. In total, this includes 4745 values, corresponding
to all parsing operations that were started.

bound may thus be 0.06 seconds or 60 milliseconds per char-
acter®. The highest measured duration in our sample set
0.105 milliseconds and thus far below this limit.

The fast response times are of course to a large part due
to committing to a subtree as early as possible and reusing
those subtrees in their entirety in subsequent queries. We
report the input stream lengths to our parser used in our
evaluation in Figure 9, the distribution’s median is 30 char-
acters or nodes in the input stream. As such, most inputs
are comparatively small compared to the lengths of typical
source code files.

4.3 Threats to Validity

By using historical code changes, we increase the ecological
validity of our study at the expense of a controlled setting,
i.e.,, not all language features might have been used and their
frequency reflects the particular coding style of the projects’
authors. Using single-line changes omits composite changes
and refactorings, but reconstructing a realistic sequence of
editing operations from a large diff is out of scope.

4.4 Generalizability

In subsection 3.2, we briefly mentioned that we manually
tweaked the Python grammar to resolve ambiguity between
the integer and float rule. It is to note that these changes
improve the user experience but are not required to produce
a usable editor.

Our approach is implemented on top of Tree-sitter gram-
mars. More generally, the described essential idea of modify-
ing parsers to allow partial input to support structured edit-
ing is compatible with arbitrary grammar formalisms that
describe textual programming languages. In Tree-sitter, only
the sequence and text operators may produce boundaries at
which partial input can terminate and require completion

6120 words/min * 5 characters/word = 1000 characters/minute, 60sec / 1000
characters/minute = 0.06sec

Partial Parsing for Structured Editors

with empty elements. A different grammar formalism may
introduce additional such boundaries.

Importantly, the quality of the generated editors will vary
with the closeness of mapping between the way users think
about a programming language and the way rules are ex-
pressed in the grammar. For example, if the grammar for-
malism does not support an explicit construct for prece-
dence, a preprocessing step such as the one described in
prior work [21] to collapse the grammar rules may improve
usability, as details of the language’s implementation in the
grammar are hidden.

As such, the quality of the resulting editor will depend
less on the type of formalism used but rather how well the
formalism can express the language it is describing.

5 Related Work

Several previous projects have been built around the idea
of using a custom parsing technique to improve how users
interact with a structured editor.

One approach called substring parsing [17] uses a similar
parsing technique based on exploring all possible parse trees
given a partial input. As with our approach, the approach
produces parse trees that contain non-terminals that have no
children and represent holes that users may fill. However, the
algorithm is only described in general terms, making it diffi-
cult to apply it directly or evaluate its properties. Also, while
the substring parsing approach was primarily motivated by
structured editors, the resulting challenges are not explored.
For instance, there is no discussion about whether the ap-
proach can exhaustively cover potential parse trees. Further,
the approach does not integrate the existing AST shown in
the editor but parses the input in isolation, "stringifying"
nodes eagerly.

The technique of substring parsing is also used in another
project, implementing partial parsing for LR parsers [19].
In contrast to our approach, this approach does also not
incorporate the existing AST shown in the editor. Further,
there is not characterization of the properties of the resulting
parsers, neither with regard to exhaustiveness of parse trees
nor with regard to performance characteristics.

Beyond these individual works, the three parsing tech-
niques error recovery, island parsing, and incremental pars-
ing are all similar to our approach with regard to their goals
or mechanisms.

Our approach is similar to error recovery techniques in
parsing, as both enable parsers to continue in the presence
of incomplete user input [6]. However, the resulting parse
trees differ. Error recovery techniques aim to produce parse
trees with placeholders for errors or repairs, while our ap-
proach produces parse trees with non-terminals in places
of incomplete input. Further, while error recovery typically
aims to contain the error and proceed parsing, we aim to

118

SLE ’22, December 06-07, 2022, Auckland, New Zealand

incorporate the incomplete input as good as possible into
potential parse trees.

Similarly, our approach is similar to island parsing in that
it produces incomplete parse trees [15]. The goal of island
parsing is to speed up parsing in scenarios in which users
do not need a parse tree that corresponds to the original
language, for example when only extracting variable writes
from a large corpus of source code. Thus, island parsing
ignores parse trees with nodes representing ignored sections
of the input, while our approach produces parse trees with
valid non-terminals representing potential future extensions
of the input.

Our approach and incremental parsing techniques share
the idea of re-using information from a previous parse. Typi-
cal incremental parsing techniques aim to speed up parsing
by re-using information, such as the memoization table [7] or
the parse tree [26]. For example, the Tree-sitter incremental
parsing algorithm takes the previous parse tree and the code
change. Based on the code change the algorithm determines
non-affected parse nodes in the tree and skips them, thus
only parsing sections relevant to affected nodes [26]. Similar
to incremental parsing, our approach re-uses information
from an existing parse tree. However, incremental parsing
aims to make parsers determine the correct parse tree faster,
while our approach aims to produce all possible parse trees
given incomplete user input.

In Rascal2MPS [13] a Rascal language grammar is used to
generate concepts for the projectional language workbench
MPS. Rather than employing the rules of the grammar for
interactions directly, Rascal2MPS generates definitions for
MPS once. The resulting interactions follow the standard for
MPS editors, with a mixture of autocompletion and menus,
which may not always conform to the expectations users
have from text-based editing.

Grammar Cells [24] present an approach to provide hints
to a language specification in MPS on how keyboard interac-
tions should restructure the program tree, to make interac-
tions resemble textual editing more closely. These hints have
to be manually provided by the language author. Similarly,
Barista [12] is an implementation framework for structured
editors, where interactions are derived from hand-written
classes for each language construct. Both Grammar Cells and
Barista employ a comparable strategy of linearizing tokens
in a subtree when textual input occurs in a node and per-
forming a re-parse but rely on hand-written specifications.

Our work can be seen as an extension of the work on
Kogi [21, 22], which generates structured editors from ex-
isting language grammars. In the context of Kogi, issues in
terms of usability were identified when generating editors
from general-purpose programming languages, as the num-
ber of language constructs posed challenges with the menu
and mouse-based interactions. Our approach thus makes
usage of generated structured editors for general-purpose
programming languages feasible, given that the user already

SLE ’22, December 06-07, 2022, Auckland, New Zealand

knows the language’s syntax and can thus create the ele-
ments via the keyboard.

6 Conclusion and Future Work

We demonstrated that through our modifications to a re-
cursive descent parser, our partial parser was able to type
all language constructs we have examined in our evalua-
tion. We further showed that a significant portion of nodes
can be reused during the parsing stage, allowing tools to
maintain references to the existing structures. Through a
performance evaluation we demonstrated that during typical
use our parser is more than fast enough to support interac-
tive use.

As such, we presented a parsing system that is capable
of taking in existing language grammars without requiring
manual annotations and producing an input system that
allows users to interactively formulate any language con-
struct in a manner familiar to users from textual editing.
This forms an important aspect for making structured edit-
ing compatible with existing language ecosystems, thanks to
large language grammar repositories such as those provided
by Tree-sitter.

In future work, we plan to evaluate the heuristics described
to reach a familiar editing experience in a user study. Impor-
tantly, to reach a fully functioning structured editor, further
work is required that is not integral to the partial parser
concept. For example, backspacing to delete structures step-
by-step is a commonly used means for deletion in textual
editing.

In its current form, our partial results are constrained to
the right edge of the input stream. In some circumstances
it may also be desirable to construct incomplete structures
in the middle or left edge of the input stream. For example,
given the JavaScript expression 42 and a prefix of const a,
the system may automatically derive the user’s intent to
formulate a declaration of the form const a=42, autocom-
pleting the equal sign in the middle of the input stream.

Acknowledgments

This work was supported by Deutsche Forschungsgemein-
schaft (DFG) grant #449591262. We also gratefully acknowl-
edge the financial support of HPI's Research School” and the
Hasso Plattner Design Thinking Research Program®.

References

[1] Austin Cory Bart, Javier Tibau, Eli Tilevich, Clifford A. Shaffer, and
Dennis Kafura. 2016. Implementing an Open-Access, Data Science
Programming Environment for Learners. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), Vol. 1.
728-737. https://doi.org/10.1109/COMPSAC.2016.132

"https://hpi.de/en/research/research-school.html

8https://hpi.de/en/dtrp/
[2] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn

Turbak. 2017. Learnable Programming: Blocks and Beyond. Commun.
ACM 60, 6 (May 2017), 72-80. https://doi.org/10.1145/3015455

119

Beckmann, Rein, Mattis, Hirschfeld

[3] Tom Beckmann, Stefan Ramson, Patrick Rein, and Robert Hirschfeld.
2020. Visual Design for a Tree-Oriented Projectional Editor. In Confer-
ence Companion of the 4th International Conference on Art, Science, and
Engineering of Programming (Porto, Portugal) (<Programming> °20).
Association for Computing Machinery, New York, NY, USA, 113-119.
https://doi.org/10.1145/3397537.3397560

Thorsten Berger, Markus Vélter, Hans Jensen, Taweesap Dangprasert,
and Janet Siegmund. 2016. Efficiency of projectional editing: a con-
trolled experiment. In FSE 2016. 763-774. https://doi.org/10.1145/
2950290.2950315

Max Brunsfeld. 2020. Tree-sitter. https://tree-sitter.github.io/tree-
sitter/. https://tree-sitter.github.io/tree-sitter/ [Online, accessed 10
August 2022].

Lukas Diekmann and Laurence Tratt. 2020. Don’t Panic! Better, Fewer,
Syntax Errors for LR Parsers. In 34th European Conference on Object-
Oriented Programming, ECOOP 2020, November 15-17, 2020, Berlin,
Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and
Tobias Pape (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
6:1-6:32. https://doi.org/10.4230/LIPlcs.ECOOP.2020.6

Patrick Dubroy and Alessandro Warth. 2017. Incremental packrat pars-
ing. In Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2017, Vancouver, BC, Canada,
October 23-24, 2017, Benoit Combemale, Marjan Mernik, and Bernhard
Rumpe (Eds.). ACM, 14-25. https://doi.org/10.1145/3136014.3136022
Google. 2020. Blockly. https://developers.google.com/blockly. https:
//developers.google.com/blockly [Online, accessed 10 August 2022].
Pedro Rangel Henriques, Maria Jodo Varanda Pereira, Marjan Mernik,
Mitja Lenic, Jeff Gray, and Hui Wu. 2005. Automatic generation of
language-based tools using the LISA system. IEE Proc. Softw. 152, 2
(2005), 54-69. https://doi.org/10.1049/ip-sen:20041317

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
1997. Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. In Proceedings of the 12th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(Atlanta, Georgia, USA) (OOPSLA ’97). Association for Computing
Machinery, New York, NY, USA, 318-326. https://doi.org/10.1145/
263698.263754

Amy Ko, Htet Aung, and Brad Myers. 2005. Design requirements for
more flexible structured editors from a study of programmers’ text
editing. 1557-1560. https://doi.org/10.1145/1056808.1056965

Amy J. Ko and Brad A. Myers. 2006. Barista: An implementation
framework for enabling new tools, interaction techniques and views
in code editors. In Proceedings of the 2006 Conference on Human Factors
in Computing Systems, CHI 2006, Montréal, Québec, Canada, April 22-27,
2006, Rebecca E. Grinter, Tom Rodden, Paul M. Aoki, Edward Cutrell,
Robin Jeffries, and Gary M. Olson (Eds.). ACM, 387-396. https://doi.
org/10.1145/1124772.1124831

Mauricio Verano Merino, Jur Bartels, Mark van den Brand, Tijs
van der Storm, and Eugen Schindler. 2021. Projecting Textual Lan-
guages. Springer International Publishing, Cham, 197-225. https:
//doi.org/10.1007/978-3-030-73758-0_7

Mauricio Verano Merino, Jurgen Vinju, and Mark van den Brand.
2021. DRAFT-What you always wanted to know but could not find
about block-based environments. (2021). arXiv:2110.03073 [cs.SE]
https://arxiv.org/abs/2110.03073 [Under review at ACM Computing
Surveys].

Leon Moonen. 2001. Generating Robust Parsers Using Island Gram-
mars. In Proceedings of the Eighth Working Conference on Reverse En-
gineering, WCRE 01, Stuttgart, Germany, October 2-5, 2001, Elizabeth
Burd, Peter Aiken, and Rainer Koschke (Eds.). IEEE Computer Society,
13. https://doi.org/10.1109/WCRE.2001.957806

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias
Pape. 2019. Exploratory and Live, Programming and Coding - A
Literature Study Comparing Perspectives on Liveness. The Art, Science,

[4

=

(5

—

(6

—

7

—

8

[t

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

https://doi.org/10.1109/COMPSAC.2016.132
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/
https://doi.org/10.1145/3015455
https://doi.org/10.1145/3397537.3397560
https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1145/2950290.2950315
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://doi.org/10.4230/LIPIcs.ECOOP.2020.6
https://doi.org/10.1145/3136014.3136022
https://developers.google.com/blockly
https://developers.google.com/blockly
https://developers.google.com/blockly
https://doi.org/10.1049/ip-sen:20041317
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/1056808.1056965
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1007/978-3-030-73758-0_7
https://doi.org/10.1007/978-3-030-73758-0_7
https://arxiv.org/abs/2110.03073
https://arxiv.org/abs/2110.03073
https://doi.org/10.1109/WCRE.2001.957806

Partial Parsing for Structured Editors

(17]

(18]

(19]

[20]

[21]

[22]

and Engineering of Programming 3, 1 (2019), 1.
22152/programming-journal.org/2019/3/1

Jan Rekers and Wilco Koorn. 1991. Substring parsing for arbitrary
context-free grammars. ACM SIGPLAN Notices 26, 5 (may 1991), 59-66.
https://doi.org/10.1145/122501.122505

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and et al. 2009. Scratch: Pro-
gramming for All. Commun. ACM 52, 11 (Nov. 2009), 60-67. https:
//doi.org/10.1145/1592761.1592779

Gregor Snelting. 1990. How to build LR parsers which accept in-
complete input. ACM SIGPLAN Notices 25, 4 (apr 1990), 51-58.
https://doi.org/10.1145/987481.987485

Tamas Szabo, Markus Voelter, Bernd Kolb, Daniel Ratiu, and Bernhard
Schaetz. 2014. Mbeddr: Extensible Languages for Embedded Software
Development. Ada Lett. 34, 3 (Oct. 2014), 13-16. https://doi.org/10.
1145/2692956.2663186

Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert
Hirschfeld, and Jurgen J. Vinju. 2021. Getting Grammars into Shape
for Block-Based Editors. In Proceedings of the 14th ACM SIGPLAN
International Conference on Software Language Engineering (Chicago,
IL, USA) (SLE 2021). Association for Computing Machinery, New York,
NY, USA, 83-98. https://doi.org/10.1145/3486608.3486908

Mauricio Verano Merino and Tijs van der Storm. 2020. Block-Based
Syntax from Context-Free Grammars. In Proceedings of the 13th ACM

https://doi.org/10.

120

[23]

[24]

[25]

[26]

[27]

SLE ’22, December 06-07, 2022, Auckland, New Zealand

SIGPLAN International Conference on Software Language Engineering
(Virtual, USA) (SLE 2020). Association for Computing Machinery, New
York, NY, USA, 283-295. https://doi.org/10.1145/3426425.3426948
Markus Voelter. 2011. Language and IDE Modularization, Extension
and Composition with MPS. GTTSE 2011 7680 (07 2011). https://doi.
org/10.1007/978-3-642-35992-7_11

Markus Voelter, Taméas Szab6, Sascha Lisson, Bernd Kolb, Sebastian
Erdweg, and Thorsten Berger. 2016. Efficient Development of Con-
sistent Projectional Editors Using Grammar Cells. In Proc. SLE (Am-
sterdam, Netherlands) (SLE 2016). ACM, New York, NY, USA, 28-40.
https://doi.org/10.1145/2997364.2997365

Markus Vélter, Janet Siegmund, Thorsten Berger, and Bernd Kolb.
2014. Towards User-Friendly Projectional Editors. In SLE 2014. 41-61.
https://doi.org/10.1007/978-3-319-11245-9_3

Tim A. Wagner and Susan L. Graham. 1998. Efficient and Flexible
Incremental Parsing. ACM Trans. Program. Lang. Syst. 20, 5 (1998),
980-1013. https://doi.org/10.1145/293677.293678

Alessandro Warth, James Douglass, and Todd Millstein. 2008. Packrat
Parsers Can Support Left Recursion. Proceedings of the ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation. https://doi.org/10.1145/1328408.1328424

Received 2022-08-08; accepted 2022-09-30

https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/122501.122505
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/987481.987485
https://doi.org/10.1145/2692956.2663186
https://doi.org/10.1145/2692956.2663186
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1145/293677.293678
https://doi.org/10.1145/1328408.1328424

	Abstract
	1 Introduction
	2 Interactions in Grammar-derived Structured Editors
	2.1 From Tree-sitter Grammars to Structured Editing
	2.2 Interactions in Structured Editors

	3 Partial Parsing
	3.1 Partial Input
	3.2 Minimizing the Results Set
	3.3 Maintaining Existing Subtrees
	3.4 Querying the Parser from the Editor

	4 Evaluation
	4.1 Re-performing Changes
	4.2 Performance
	4.3 Threats to Validity
	4.4 Generalizability

	5 Related Work
	6 Conclusion and Future Work
	References

