
Layered design approach for context-aware systems

Brecht Desmet, Jorge Vallejos, and Pascal Costanza
Programming Technology Laboratory

Vrije Universiteit Brussel
B-1050 Brussels, Belgium

{bdesmet, jvallejo, pascal.costanza}@vub.ac.be

Robert Hirschfeld
Hasso-Plattner-Institut
Universität Potsdam

D-14482 Potsdam, Germany
hirschfeld@hpi.uni-potsdam.de

Abstract

The omnipresent integration of computer technology in
everyday applications introduces new opportunities to make
software systems aware of the context in which they are
used. Such context-aware systems can respond more ade-
quately to user expectations. However, modelling the con-
text influence inside of software systems burdens develop-
ers for several reasons. First, context-dependent behaviour
might crosscut the application logic of a software system.
Next, since software systems can simultaneously reside in
multiple contexts, context-dependent behaviour should be
composable. Furthermore, since context information is
volatile, these compositions are subject to change at run-
time. This paper explores how layered design approaches
can be used to deal with these specific characteristics.

1. Introduction

The Ambient Intelligence vision describes scenarios in
which people are pervasively surrounded by interconnected
embedded and mobile devices. A pertinent issue in such a
setting is the continuous changes of context in which such
devices have to operate. Context-aware computing is al-
ready established as a field in which the sensing of, and
reasoning about, context information is explored [9, 6, 2].
However, little attention has been paid to approaches for
structuring the actual behaviour variations in context-aware
systems. On the one hand, such behaviour variations are
cross-cutting because in the general case, they affect differ-
ent parts of the overall system. From this perspective, they
give rise to a layered architecture, as conceptualized for ex-
ample in feature-oriented programming, in which each be-
haviour variation is captured by a separate software layer.
On the other hand, such context-aware layers require sup-
port for dynamic activation and deactivation due to the
volatile nature of context.

The contribution of this paper is an analysis of the vari-

ous issues in employing a layered architecture for context-
aware systems. Specifically, we discuss:

• the emergent interactions between layers that need to
coexist because a system can reside in different con-
texts at the same time;

• a possible formalization of such interactions;

• how these interactions affect dynamic composability
of layers;

• and how the consistency of the system behaviour can
be ensured in the presence of sudden context changes.

We base our discussion on an extensive example and pro-
vide a proof-of-concept implementation by combining fea-
tures of ContextL, a programming language extension for
Context-oriented Programming based on the notion of lay-
ers, with a logic engine using production rules for reasoning
about layer interactions.

2. Example scenario

We present the software of a simplified cell phone as an
illustration of a context-aware system. The application core
logic of the cell phone is to ring whenever somebody calls
or sends a message, and to provide the means to answer
calls and read messages. Furthermore, the phone contains a
list of contacts, some of them marked as VIPs.

2.1. Context-dependent adaptations

The behaviour of the application core logic can be
adapted at runtime according to context changes. We
introduce three context-dependent adaptations, each of
which contains two parts: a context condition that explains
when the adaptation is applicable and the actual context-
dependent behaviour of the adaptation.



IgnoreAdaptation Battery = Low → I
If the battery level is low, ignore all phone calls except
for contacts classified as VIP.

AnswermachineAdaptation 11pm < time < 8am → A
If the time is between 11pm and 8am, activate the
answering machine for incoming phone calls and the
auto-reply service for messages.

RedirectAdaptation Location = Meetingroom → R
If the user is in a meeting, redirect all calls and mes-
sages to the secretary.

DiscreetAdaptation Noise = High → D
If the ambient noise is high, activate vibration and vi-
sual notifications.

CostAdaptation Switch = On → C
If the user requests so, a cost estimation for incoming
phone calls is maintained. This adaptation consists of
two alternatives.

• Location = Abroad → CI
If the user is abroad, InternationalTariffAdapta-
tion (CI) is applicable.

• Location = ¬Abroad → CN
Otherwise, NationalTariffAdaptation (CN ) is
applicable.

2.2. User policy

Although all context conditions (battery low, time be-
tween 11pm-8am, meeting room location, noise level, and
user request) can be true at the same time, the behaviour of
the adaptations cannot be freely combined. This is because
adaptations might interact with each other. A user policy
describes what the interactions are and how they can be re-
solved. For instance, the following informal rules constitute
a possible user policy for the cellular phone scenario.

PolicyRule I InternationalTariffAdaptation and National-
TariffAdaptation are mutually exclusive. Furthermore,
both adaptations depend on CostAdaptation since they
share some common behaviour.

PolicyRule II IgnoreAdaptation and RedirectAdaptation
cannot coexist. RedirectAdaptation has priority.

PolicyRule III AnswermachineAdaptation and Redirect-
Adaptation cannot coexist. IgnoreAdaptation is only
applied if RedirectAdaptation failed (e.g. the secretary
did not answer the incoming phone call).

PolicyRule IV DiscreetAdaptation can coexist with all
other adaptations without interference.

3. Problem statement

We focus on three fundamental characteristics of
context-aware systems: In the general case, context-
dependent behavior variations are cross-cutting, multiple
behavior variations need to coexist, and they have to react
to possibly unexpected context changes. Therefore, they re-
quire modularisation, dynamic composability, and means to
ensure consistency.

3.1. Modularisation

Context-dependent behaviour can cut across multi-
ple units of modularisation. For example, Answerma-
chineAdaptation refines the behaviour of both phone and
message traffic. Without a suitable modularisation mecha-
nism, the code of context-dependent behaviour can easily
get scattered and tangled with the code of the application
core logic. Such a lack in separation of concerns results in
software systems that are difficult to maintain and evolve.

3.2. Dynamic composability

Since a context-aware system can simultaneously re-
side in multiple contexts, one needs to compose context-
dependent behaviour dynamically. An important issue in
the composition is caused by interactions that can occur be-
tween context-dependent behaviour. In our example, we
identify the following relationship types between context-
dependent behaviour: inclusion, exclusion, conditional de-
pendency, ordering, and independence. These kind of re-
lationships were inspired by the work of Nagy et al. [8]
who used them to describe resolution strategies for aspects
at shared join points.
• Inclusion - If the user has activated the cost estima-

tion service and the user receives an incoming phone call
while residing abroad, InternationalTariffAdaptation is ap-
plicable. However, according to PolicyRule I of Section
2.2, this adaptation cannot exist individually since it de-
pends on CostAdaptation.

In this case, CostAdaptation is included in the composi-
tion whenever InternationalTariffAdaptation (or National-
TariffAdaptation) is applicable.

Ci,Cn
includes−→ C (1)

Furthermore, PolicyRule I describes a mutual exclusion
between Ci and Cn. This is ensured by the fact that the
context conditions of Ci and Cn are disjoint and comple-
mentary (the user is either abroad or not). However, it could
be interesting to make such relationships explicit in order to
increase program comprehension.
• Exclusion - If the battery level is low and the user is in

a meeting, both IgnoreAdaptation and RedirectAdaptation



are applicable. These adaptations cause a semantic inter-
action since they ignore and redirect incoming phone calls
respectively. PolicyRule II prescribes that phone call redi-
rection has a higher priority, and hence the IgnoreAdapta-
tion is omitted.

This means that RedirectAdaptation excludes Ignore-
Adaptation.

R
excludes−→ I (2)

• Conditional dependency - Another possible interac-
tion arises when the user is still in the meeting room at
midnight. In such a case, AnswermachineAdaptation and
RedirectAdaptation are applicable. PolicyRule III specifies
that first phone calls are redirected to the secretary (Redi-
rectAdaptation). If this fails (e.g. secretary absent), the an-
swering machine is activated (AnswermachineAdaptation).

In summary, the execution of AnswermachineAdapta-
tion depends on the outcome of RedirectAdaptation.

A
depends on−→ R (3)

• Ordering - The execution order of context-dependent
behaviours, that constitute a particular composition, might
influence the semantics of a context-aware system. The in-
clusion example (1) has an ordering constraint. Consider,
for instance, that context-dependent behaviour is composed
using inheritance1. In such a case, C should appear before
Ci (or Cn) in the inheritance tree.

C
before−→ Ci,Cn (4)

Furthermore, the conditional dependency example (3)
also implicitly indicates an ordering constraint: First the
RedirectAdaptation is tried, afterwards the Answerma-
chineAdaptation is activated.

R
before−→ A (5)

• Independence - In contrast, our cell phone example
also covers a case in which the order of execution does not
affect the system semantics. If the ambient noise is high,
the DiscreetAdaptation is included in the composition. This
adaptation does not interact with any other adaptation in the
system according to PolicyRule IV. Hence, there are no re-
lationship types involved.

3.3. Consistency

We call context information volatile since it is subject
to change at arbitrary moments in time. A context-aware
system should adapt its behaviour according to these con-
text changes. In this way, the possibility exists that some

1In Section 4.1 we actually compose context-dependent behaviour us-
ing inheritance.

context condition becomes invalid while the behaviour it
has triggered is still being executed. The injudicious abor-
tion or continuation of context-dependent behaviour could
lead the system into an anomalous program state. We dis-
tinguish different activation and deactivation strategies that
should be applied depending on the desired semantics of the
context-dependent behaviour.
• Loyality - Suppose there is an incoming phone call at

7:59am which means that the answering machine is acti-
vated according to AnswermachineAdaptation. The system
should be loyal to that decision, even if the time elapsed
beyond 8am. However, all subsequent incoming phone
calls are not submitted to AnswermachineAdaptation until
11pm.
• Promptness - Whenever the ambient noise level ex-

ceeds a certain threshold, the DiscreetAdaptation should be
applied immediately and vice versa. This action can be ap-
plied at arbitrary moments in time without any further con-
ditions.

4. Layered design approach

This section provides an answer to the problems of mod-
ularization, dynamic composability, and consistency that
hamper the development of context-aware systems. The so-
lution for all problems is illustrated by means of a proof-of-
concept implementation.

4.1. Modularisation

Layers in Context-oriented Programming are a good
match to modularize context-dependent behaviour. In the
following, we base our implementation of the cell phone
scenario on ContextL, one of the first programming lan-
guage extensions that explicitly support a context-oriented
programming style [4]. It is an extension to the Com-
mon Lisp Object System (CLOS, [1]), which in turn is
based on the notion of generic functions instead of the
more widespread class-based object model. However, the
context-oriented features of ContextL are conceptually in-
dependent of the CLOS object model, and a mapping of
ContextL features to a hypothetical Java-style language ex-
tension called ContextJ has been described in [5].

Layers are the essential extension provided by ContextL
on which all subsequent features of ContextL are based.
Layers can be defined with the deflayer construct, for ex-
ample like this.

(deflayer cellphone-layer)

Layers have a name, and partial class and method defini-
tions can be added to them. There exists a predefined root
or default layer that all definitions are automatically placed



in when they do not explicitly name a different layer. For
example, consider the following interface in ContextL for
making phone calls.

(define-layered-function accept-call (nr))
(define-layered-function receive-message (nr txt))

This defines two generic functions, one taking a phone
number as a parameter and the other taking an additional
text parameter. A default implementation to make phone
calls for these as yet abstract functions can be placed in the
root layer.

(define-layered-method accept-call (nr)
... phone calls inactive on this device ...)

(define-layered-method receive-message (nr txt)
... messages inactive on this device ...)

Only if the phonecall-layer is active, a user can actu-
ally answer phone calls and receive messages.

(define-layered-method accept-call
:in-layer cellphone-layer (number)
... actual implementation ...)

(define-layered-method receive-message
:in-layer cellphone-layer ()
... actual implementation ...)

Layers can be activated in the dynamic scope of a pro-
gram. This layer activation is illustrated in Figure 1. Rect-
angular boxes represent layered functions and oval boxes
represent layered methods. The latter oval boxes are con-
tained within a larger rectangular box which denotes a layer.

(with-active-layers (cellphone-layer)
... contained code ...)

accept-call receive-
message

accept-call receive-
message

cellphone-layer

Figure 1. Layer activation.

Dynamically scoped layer activation has the effect that
the layer is only active during execution of the contained
code, including all the code that the contained code calls di-
rectly or indirectly. Layer activation can be nested, which
means that a layer can be activated when it is already ac-
tive. However, this effectively means that a layer is always
active only once at a particular point in time, so nested layer
activations are just ignored. This also means that on return
from a dynamically scoped layer activation, a layers activity

state depends on whether it was already active before or not.
In other words, dynamically scoped layer activation obeys
a stack-like discipline.

Likewise, layers can be deactivated with a similar
with-inactive-layers construct that ensures that a layer
is not active during the execution of some contained code,
and that has no effect when that layer is already inactive.
Again, on return from a dynamically scoped layer deactiva-
tion, a layers activity state depends on whether it was active
before or not.

Furthermore in multithreaded Common Lisp implemen-
tations, dynamically scoped layer activation and deactiva-
tion only activates and deactivates layers for the currently
running thread. If a layer is active or inactive in some other
thread, it will remain so unless it is incidentally also acti-
vated or deactivated in that thread.

Multiple layers can contribute to the same layered func-
tions. For example, the context-dependent behaviour of the
IgnoreAdaptation (see Section 2.1) refines the behaviour of
accept-call.

(deflayer ignore-layer)

(define-layered-method accept-call
:in-layer ignore-layer (nr)
(if (vip-p nr) ; nr is VIP?

(call-next-method) ; super call
... ignore call ...)

This layered method checks whether nr is classified as
a VIP contact. If so, a super call is invoked. Other-
wise, the phone call is ignored. The activation of both
cellphone-layer and ignore-layer constitute the inher-
itance hierarchy displayed in Figure 2.

(with-active-layers (cellphone-layer ignore-layer)
... handle phone call in context

of low battery level ... )

In this particular layer composition, the super call in
accept-call of ignore-layer invokes the accept-call of
the cellphone-layer. In other words, if the caller is a
VIP contact, we delegate the incoming phone call to the
cellphone-layer. To the best of our knowledge, the idea
of expressing designs in terms of composable layers origi-
nates from Goldstein and Bobrow [7].

Throughout this paper, we consider the exis-
tence of answermachine-layer, redirect-layer,
discreet-layer, cost-layer, int-tariff-layer, and
nat-tariff-layer that respectively implement the context-
dependent behaviour of the AnswermachineAdaptation,
RedirectAdaptation, DiscreetAdaptation, CostAdaptation,
InternationalTariffAdaptation, and NationalTariffAdapta-
tion.



ignore-layer

accept-call receive-
message

accept-call receive-
message

cellphone-layer

accept-call

Figure 2. Composing layers in inheritance hi-
erarchy.

4.2. Dynamic composability

Dynamic composability addresses the problem of in-
teractions that arise in compositions of context-dependent
adaptations. Our solution consists of making all these inter-
actions explicit and available for automatic reasoning. To
this end, we employ a forward-reasoning engine. The pro-
duction rules of such an engine capture the context condi-
tions of adaptations and the relationships between context-
dependent adaptations.
• Context conditions are predicates that describe when

some context-dependent behaviour is applicable. For exam-
ple, Section 2.1 presents the context conditions of the cell
phone scenario in both logical and textual format. We now
implement these context conditions using production rules
of the LISA forward chainer [10]. These production rules
complement the ContextL layers which contain the context-
dependent behaviour of the cell phone scenario.

Since the implementation of all context conditions
is quite similar, we only show the implementation of
the IgnoreAdaptation (I) context condition as an il-
lustration. We assume the existence of a mechanism
that computes high-level context information (like e.g.
(battery (level low))) out of low-level sensor data. One
could use existing tools like ContextToolkit [9], WildCAT
[6], or Java Context Awareness Framework [2] to perform
this job.

(defrule ignore-adaptation
(battery (level low))
=>
(assert (layer (name ignore-layer))))

The body of a LISA production rule consists of a condi-
tion and an action part which are situated before and after
the => symbol respectively. Logic variables are symbols
with a leading question mark. For a more detailed explana-
tion of LISA production rules, we refer to the documenta-
tion [10].

•Composition rules describe valid compositions of lay-
ers based on user-defined policy rules. For example, the cell
phone scenario of Section 2.2 has five policy rules that in-
formally describe what should happen in case of interacting
behaviour. The formalization of these policy rules in Sec-
tion 3.2 extracts five relationship types that exist among the
context-dependent adaptations of the cell phone example.

As a proof of concept, we implement these relationship
types (Formulas 1-5) using production rules of the LISA
forward chainer.

The inclusion relationship is implemented as follows:
If either nat-tariff-layer or int-tariff-layer is ap-
plicable (and hence defined in the fact base of LISA),
cost-layer should be added to the fact base.

(defrule inclusion ()
(or (layer (name nat-tariff-layer))

(layer (name int-tariff-layer)))
(not (layer (name cost-layer)))
=>
(assert (layer (name cost-layer))))

The exclusion relationship checks whether both
answermachine-layer and ignore-layer are defined in
the fact base. If so, the latter is retracted from the fact base.

(defrule exclusion ()
(layer (name answermachine-layer))
(?x (layer (name ignore-layer)))
=>
(retract ?x))

The ordering relationship is realized by associating a
before slot with layer facts. An ordering can be estab-
lished by filling in this before slot. The following LISA
production rule implements Formula 4.

(defrule ordering ()
(layer (name cost-layer))
(?x (layer (name nat-tariff-layer)

(not (before cost-layer))))
=>
(modify ?x (before cost-layer)))

The conditional dependency relationship is a special case
of the ordering relationship. The redirect-layer is placed
after the answermachine-layer in the inheritance hierarchy
(see Figure 3).

(defrule conditional-dependency ()
(layer (name redirect-layer))
(?x (layer (name answermachine-layer)

(not (before redirect-layer))))
=>
(modify ?x (before redirect-layer)))

The inheritance path indicates the chain of dependency.
First, the layered method accept-call of redirect-layer
is executed. If the redirection fails, a super call to



answermachine-layer

accept-call receive-
message

accept-call

redirect-layer

accept-call

receive-
message

Figure 3. Conditional dependency.

answermachine-layer is invoked. Furthermore, the lay-
ered method receive-message of answermachine-layer is
always invoked since redirect-layer does not refine this
method.

The independence relationship does not interfere with
other layers, thus no production rules are required.

All production rules of this section allow the LISA for-
ward chainer to reason about the user policy and to com-
pute valid layer compositions according to context infor-
mation. Since this context information is volatile, the com-
putation of layer compositions must happen at runtime to
reflect the actual context situation. We therefore require
the ability to deploy layer compositions at runtime. The
with-active-layers and with-inactive-layers cannot
be employed for these purposes since these constructs re-
quire manual specification of layer compositions at design
time. Dynamic deployment of layer compositions can be
realized with the reflective infrastructure of ContextL [3]
which allows introspection and intercession of layer activa-
tions and deactivations at runtime.

The with-current-context construct is an extension
to ContextL which is built entirely on top of the reflec-
tive architecture. It automatically computes layer compo-
sitions based on a user policy (implemented by means of
LISA production rules) and actual context information. The
with-current-context construct has, apart from comput-
ing the layer composition automatically, the same function-
ality as the existing with-active-layers construct: Lay-
ers are activated in a stack-like way within the dynamic
scope of with-current-context, and confined to the run-
ning thread.

(with-current-context (... parameters ...)
... contained code ...)

The parameter list of with-current-context delimits
the set of LISA production rules that are evaluated for com-
puting the layer composition. We omit the details of this
interface to improve the clarity of the example.

4.3. Consistency

Section 3.3 identifies two different strategies that de-
scribe when context-dependent adaptations can be safely
activated and deactivated. We show how these strategies
can be realized in ContextL.
• Loyality is supported by the with-current-context

construct.2 The layer composition is determined before the
execution of the contained code and does not change within
the dynamic scope of with-current-context3, even if the
layer composition does not reflect the actual context situa-
tion anymore. Furthermore, the layer activations (and deac-
tivations) are confined to the running thread only.
• Promptness is currently not supported in ContextL.

Enforcing the deactivation of context-dependent behaviour
means that one jumps out of the dynamic scope of
with-current-context and interrupts the execution of the
contained code. This might possibly require the execution
of some compensating actions (e.g. proper disconnection
from a database) to avoid anomalous program behaviour.
To this end, we are looking in the direction of transaction
management to deal with the promptness strategy in Con-
textL.

The opposite situation, in which the immediate activa-
tion of context-dependent behaviour is enforced on a con-
text change, is also not straightforwardly available in Con-
textL. One possible way to deal with such a requirement is
to incorporate continuations. However, this idea is subject
to further investigation.

5. Position statement

We advocate to implement context-aware systems using
a layered design approach. The basic idea is to separate
context-dependent adaptations from the basic behaviour and
organize them in layers. Depending on the context in which
the system resides, these layers can refine the basic be-
haviour. This paper proposes to use the Context-oriented
Programming style of ContextL to implement the context-
dependent behaviour using layers.

Next, since software systems can simultanelously re-
side in multiple contexts, multiple layers can be applica-
ble which might cause interactions. We therefore explicitly
describe relationships between layers. Moreover, since con-
text information is volatile, we write these relationships in
a declarative style which allows a reasoning mechanism to
automatically compute valid layer compositions at runtime.

2This loyality strategy is inherited from the with-active-layers
construct.

3Unless the programmer explicitly makes use of the
with-inactive-layers construct to deactivate layers within a
particular dynamic subscope.



Finally, we identify two strategies that prescribe when
context-dependent behaviour can be safely activated or de-
activated. The loyality strategy aims at consistent program
behaviour by ignoring context changes within a particu-
lar scope of a software system. This strategy is explicitly
available in ContextL since layer deployment is delimited
to a particular dynamic scope and confined to the running
thread. However, the promptness strategy, which requires
immediate recomputation and deployment of layer compo-
sitions upon context changes, is not straightforwardly sup-
ported by ContextL.

6. Future work

The cell phone scenario focuses solely on five kinds of
relationships between context-dependent behaviour. How-
ever, a more exhaustive study of context-aware scenarios
could give rise to more interesting relationships. The same
remark holds for the activation and deactivation strategies
for context-dependent behaviour.

Currently, both the context conditions and relationships
between context-dependent behaviour are implemented
with production rules as a proof of concept. In practice,
a domain-specific declarative language (e.g. XML, Prolog,
or Descriptive Logics) for expressing these relationships to-
gether with a dedicated reasoning mechanism would proba-
bly be more appropriate.

The specification of relationships between context-
dependent behaviour is very hard to accomplish in practice.
The translation process of the user policy into declarative
rules suffers from accidental underspecification, ambigui-
ties, and contradictions. Furthermore, as the number of pos-
sible context parameters increases, one has to deal with a
combinatorial explosion of possible behavioural variations.
This scalability issue severely hinders the evolvability and
maintainability of a context-aware system. A real solution
to the problem does not exist since the combinatorial ex-
plosion is inherently present. However, we can alleviate
the scalability issue by incorporating tool support for spec-
ifying relationships. The functionality of this tool support
should consist of controlling the correctness of all specifi-
cations and validating the specifications against all possible
context situations.

References

[1] American National Standards Institute and Information
Technology Industry Council. ANSI Common Lisp Lan-
guage Specification: ANSI X3.226-1994 (R1999). 1999.

[2] J. E. Bardram. The Java Context Awareness Framework
(JCAF) - A Service Infrastructure and Programming Frame-
work for Context-Aware Applications. In Pervasive, pages
98–115, 2005.

[3] P. Costanza and R. Hirschfeld. Reflective Layer Activation
in ContextL. In Programming for Separation of Concerns
(PSC) of the ACM Symposium on Applied Computing (SAC)
2007, New York, NY, USA. ACM Press, To appear.

[4] P. Costanza and R. Hirschfeld. Language constructs for
context-oriented programming: an overview of ContextL. In
DLS ’05: Proceedings of the 2005 conference on Dynamic
languages symposium, pages 1–10, New York, NY, USA,
2005. ACM Press.

[5] P. Costanza, R. Hirschfeld, and W. D. Meuter. Efficient
layer activation for switching context-dependent behavior.
In JMLC ’06: Proceedings of the Joint Modular Languages
Conference, volume 4228 of Lecture Notes in Computer Sci-
ence, pages 84–103. Springer Berlin / Heidelberg, 2006.

[6] P.-C. David and T. Ledoux. Wildcat: a generic framework
for context-aware applications. In MPAC ’05: Proceedings
of the 3rd international workshop on Middleware for per-
vasive and ad-hoc computing, pages 1–7, New York, NY,
USA, 2005. ACM Press.

[7] I. Goldstein and D. Bobrow. A layered approach to software
design. Xerox PARC Technical Report CSL-80-5, December
1980.

[8] I. Nagy, L. Bergmans, and M. Aksit. Composing aspects
at shared join points. In NODe ’05: Proceedings of Inter-
national Conference NetObjectDays, volume P-69 of Lec-
ture Notes in Informatics, Erfurt, Germany, September 2005.
Gesellschaft für Informatik (GI).

[9] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit:
aiding the development of context-enabled applications. In
CHI ’99: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 434–441, New York,
NY, USA, 1999. ACM Press.

[10] D. E. Young. Lisp-based Intelligent Software Agents,
http://lisa.sourceforge.net. SourceForge,
2006.


