Service Lifecycle in a Distributed Computing Environment

J. Eastman, I. Fuller, R. Hirschfeld
Windward Solutions, Inc.
395 W. El Camino Real, 2™ floor
Sunnyvale, CA 94087

Abstract - This paper presents an environment for building,
deploying and managing distributed applications that is based
upon a subset of the Distributed Processing Environment speci-
fication of the Telecommunications Information Network Ar-
chitecture Consortium.

L. INTRODUCTION

Most of today’s CORBA-based distributed systems may be
characterized as multiple language implementations, running
as multiple interdependent processes on multiple hardware
platforms within multiple vendor environments [1]. This
complexity is one of the main reasons that organizations have
difficulties in organizing and deploying such systems.

This paper presents an environment that helps to deal with
these complexities. It will show how to organize, package,
map, deploy, monitor and evolve a CORBA-based system
using a subset of the Distributed Processing Environment
specification of the Telecommunications Information Net-
work Architecture Consortium (TINA-C) [2, 3, 4].

1L THE ENVIRONMENT

The environment that implements the concepts discussed in
‘this contribution is called Aero [6, 7, 8]. Aero includes two
main parts — the Distributed System Schema repository
(DSS), and a Distributed Processing runtime Environment
(DPE).

The DSS contains meta-information about several aspects
of a distributed application:

e its logical organization,

s its physical organization,

e its target hardware environment,

e its service deployment status. ‘

This meta-representation enables a system administrator to
deploy, monitor and control the application services and envi-
ronment at runtime. Input to the DSS may be specified in
OMG IDL, ODMG ODL, and TINA ODL definition lan-
guages, in addition to a number of supplied graphical user
interfaces. The DSS is used to manage the specifications and
to produce implementation skeletons in Java, Smalltalk, and
C++ according to standard language bindings [S]. One ad-
vantage of the DSS meta-model is that new languages may be
supported in future without disturbing the contents of the
repository.

The DPE consists of programming language specific
frameworks and operating system specific components that
allow deployment and management of applications repre-

0-7803-5785-X/$10.00 © 1998 IEEE

sented within the DSS. These include language-specific im-
plementations of interface, object, group, and capsule arti-
facts that are installed with each application component. The
DPE has a daemon process that runs on each system hard-
ware node. This process communicates with the DSS and acts
as its agent on the target platform.

The DSS and the DPE work together in a network to man-
age deployment, monitoring and migration of these applica-
tions. The Aero environment supports the following capabili-
ties:

e Representation of system/service organization,

¢ Generation of implementation skeletons and customized
frameworks,
Modeling of platform and network organization,

o Installation, activation, and shut down of service compo-
nents,

e Monitoring of operational status,
Capsule and service restart for failure recovery,

e Graceful system evolution.

A. Representing System and Service Organization

The Aero DSS contains meta-information that reflects both
the logical and the physical organization of distributed appli-
cations. Its Interface Repository is used to maintain informa-
tion about the interfaces, objects, and groups that have been
defined for applications. This information is available at run-
time to provide insight into the logical structure of the appli-
cation system.

Aero’s Service Repository contains additional meta-
information that represents the physical packaging decisions
that have been made for deploying applications. Services are
represented by a single root group construct (the service
group), and that group may contain sub-groups. Each group
may be packaged into a different deployment unit, and thus
execute in a separate process at run-time. Services are defined
in terms of sets of such deployment packages. Currently a
deployment package may be written in the Java, Smalltalk, or
C++ programming languages.

B. Generation of Implementation Code

Once packaging decisions have been made, the Interface
Repository is used to generate implementation code in the
desired programming language(s). Each supported language
includes runtime code frameworks that provide the basis of
application-specific group, object, and interface implementa-

183

tions. The skeletons that are generatéd customize these enti-
ties as defined by the logical structure of the application.

Completed deployment packages are prepared by integrat-
ing the generated code with implementations provided by
developers. These packages and any associated files are then
entered into the Service Repository so that they may be
automatically deployed. Service packages are characterized
by their host platform, operating system, networks and other
required properties of the déployment host. By compiling
equivalent packages for different host environments, the se-
lection of appropriate packages for different types of deploy-
" ment platforms may be automated.

C. Modeling the Deployment Environment

Aero’s Node Repository contains a set of references to
daemon processes that reside on each target node. Informa-
tion is maintained by each ‘such process to allow the correct
package to be selected for installation during deployment.
Each daemon is responsible for managing local packages for
its.installed components, for spawning capsule processes un-
der the direction of the DSS, and for subsequent monitoring
and restart of those capsule processes. .

D. Service Mappihgs argd Deployment

Inorder to deploy a service thus modeled, each of its com-
ponent packages must be mapped to an execution node. The
Aero Mapping Repository has a user interface that allows this
information to be specified separately for each instance of
each service to be deployed. Once all required packages have
been so mapped, the Mapping Repository can automate the
installation, startup, instantiation, and shutdown of services
with no further human intervention. '

Service instantiation involves messaging among the serv-
ice’s capsules to cause the creation and registration of groups,
objects and interfaces within the group trading hierarchy.
Aero’s generated groups utilize the-trading attributes of de-
fined interfaces to register them within their local group.
Contracts declared in the group definitions then determine
how far up the trading hierarchy each traded interface refer-
ence is propagated. Clients desiring an interface of a particu-
lar type submit requests to their local group (representing a
local trading access point) and these requests propagate up-
ward until they are satisfied at the appropnate level in the
group/trader hierarchy. -

E. Service Momtormg and Restart

Once the packages -that comprise a service have.been in-
stalled and activated by the Mapping Repository, each node
daemon can be configured to automatically poll the capsule
processes to detect failures at the network, process or appli-
cation levels. Detection of capsule failure can then result in
the automatic restart of the package.

“If the service has already been mstantlated, then groups,
‘objects and mterfaces of related components that are running

in other capsules may hold object references into the failed
capsule. These references are encapsulated by Aero Locators
that trap distribution-related errors and contain trading infor-
mation sufficient to re-acquire new references to traded inter-
faces. Similarly, Aero group implementations are designed to
purge references to interfaces that become unavailable due to
capsule failures.

Once a capsule has been restarted after a failure, new enti-
ties are instantiated within it and other capsules have an op-
portunity to take additional corrective actions. The result is a
service group structure that spans multiple process capsules
and heals itself after capsule failures.

F. Service Evolution

Aero s Mapping Rep051tory is fully dynamic, allowmg new
packages to be mapped and deployed without shutting down
the whole service. This capability can be used to add redun-
dant groups, to move capsules from host to host, and to oth-
erwise alter the deployment characteristics of the service.
Aero’s full reflective knowledge of the deployed service is
essential for tracking the interdependencies between deployed
components. '

Graceful evolution of a deployed service in the face of
change utilizes many of the same mechanisms. New versions
of packages need to be mapped and installed, new capsules
need to be activated and the trading structure needs to be ad-
justed to make the new object implementations available.
Once new groups have been instantiated and the group
structure has been adjusted to include them, the old capsules
can simply be terminated. The client’s error recovery mecha-
nisms will correctly reacquire new traded interfaces and

‘minimal interruption will be perceived.

REFERENCES

[1] OMG: “The Common Object Request Broker: Architecture and Speci-
fication. Revision 2.0,” OMG, July 1995, Updated July 1996.

[2] TINA-C:”TINA DPE Architecture,” TINA-C Document, Version 2.0b0,
November 1997.

[3] F. Leong, S.P. Mylavarabhata, T. Nguyen, F. Quemada, “Distributed
Processing Environment: A Platform for Distributed Telecommunica-
tions Applications,” Hewlett-Packard Journal, October 1996.

[4] L.A. de la Fuente, T. Walles, “Management Architecture,” TINA-C.
December 1994.

[5] J. Eastman, R. Hirschfeld, “Meta-Object based System Generation”
STJA’97 Proceedings. Erfurt 1997.

[6] J. Eastman, R. Hirschfeld, “A Trading-Based Component Environ-
ment” STJA'98 Proceedings. Erfurt 1998: ~ -

[7] J. Eastman, R. Hirschfeld, “Repository-Based Deployment of CORBA
Apphcatlons ” COMDEX Enierprise '98 Proceedings, TelecomIT Fo-
rum, Frankfurt, 1998.

[8] http://www. wmdwardsolutlons com/Aero

184

