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ABSTRACT 
Weaving is one of the fundamental mechanisms of aspect- 
oriented systems. A weaver composes different aspects with the 
base system by determining and adapting all parts where aspect 
specific elements are needed eventually. At rnntime, time- 
consuming join point checks are necessary to determine if at a 
certain join point aspect-specific code needs to be executed. 
Current technologies enforce such checks even in locations that 
only temporarily or under restrictive conditions (or even never) 
execute aspect-specific code. In more complex applications, a 
large number of these checks fail and just cause a substantial 
runtime overhead without contributing to the system's overall 
behavior. The main reason for this flaw is complete weaving, the 
way how aspects are woven to an application using current 
technologies. In this paper we discuss the problem of unnecessary 
join point checks caused by complete weaving. We introduce 
morphin 8 aspects - incompletely woven aspects in combination 
with continuous weaving - to overcome the problem of futile join 
point checks. 

1. INTRODUCTION 
Aspect-Oriented Programming [17, 20] deals with code fragments 
which logically belong to certain concerns but which cannot be 
modularized due to limited composition mechanisms of 
underlying programming languages and environments. The 
resulting code is tangled and scattered. Concerns that cause such 
tangling are called crosscutting concerns. Aspect-orientation is 
about modularizing crosscutting concerns into distinct modules, 
called aspects. 

The mechanism for integrating aspect modules with an 
application is called weaving. A weaver is responsible for adding 
all aspects to the application. In order to specify such integration, 
aspect-orientation makes use of a concept called join point. In 
[17], join points are introduced as principled points in the 
execution of a program. A typical example of a join point is a 
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method call. 

Conventionally, the weaving process is started by the developer at 
a certain point in time and for a number of aspects to be 
integrated. Thereto, the weaver determines and adapts all 
locations in the base system which represent join points at runtime 
where potentially or for sure aspect-specific code needs to be 
executed. In [22], locations that represent join points during 
runtime are called join point shadows. In the following we refer to 
shadows whose join points always lead to an execution of aspect- 
specific code as unconditional join point shadows, and those 
whose join points lead only under some circumstances to aspect- 
specific behavior as conditional join point shadows. For 
conditional shadows the weaver adds runtime checks determining 
whether or not aspect-specific code needs to be executed (we refer 
to these runtime checks as join point checks). If such a check 
succeeds, the aspect-specific code (the advice code according to 
AspectJ terminology [18]) is executed. 

One property of this conventional approach to weaving is that the 
set of join point shadows associated with a woven aspect remains 
the same for the aspect's lifetime. In the following we refer to this 
kind of weaving as complete weaving. Complete weaving is a 
process which determines and adapts all join point shadows 
including the creation of corresponding join point checks upfront 
and in advance. After weaving, all shadows in the application 
where aspect-specific code might be executed are adapted. 
Consequently, the set of join point shadows associated to an 
aspect is fixed and does not change at runtime. Aspect-oriented 
systems like AspectJ [18], Hyper/J [24] and Sally [12] that 
provide pure static weaving, i.e. weaving at compile time, 
necessarily need to perform a complete weaving since all join 
point shadows to be adapted have to be determined at a certain 
point in time (at compile time~). 

In more complex applications complete weaving can lead to a 
huge number of adapted join point shadows whose join point 
checks fail and just produce runtime overhead. Especially 
shadows with join points that rarely trigger the execution of 
aspect-specific code in the execution of the program are useless 

I It should already be emphasized here that the term complete weaving is 
not  equivalent to static weaving. A form of complete weaving also 
occurs in systems that provide dynamic weaving. This will be discussed 
in more detail in section 6. 
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time-consumers because most of the time the corresponding join 
point checks do not succeed and with that do not invoke an 
aspect's advice. In the worst case an aspect adapts a large number 
of join point shadows that never invoke an aspect's advice. In 
such cases the adapted shadows cause runtime overhead without 
ever accomplishing any benefit at all. 

A large number of conditional shadows that rarely or never lead 
to an advice's execution are often not tolerable, especially not in 
performance critical parts of the system. Thus, it is desirable to 
reduce the number of conditional join point shadows as much as 
possible to reduce the number of failing and with that unnecessary 
join point checks. 

In order to reduce the number of conditional join point shadows 
we introduce the concept of morphing aspects which are 
incompletely woven aspects in combination with continuous 
weaving, an extension of dynamic weaving [16, 26]. In the next 
section we provide two typical examples of aspects based on 
complete weaving that illustrate the necessity of handing the 
problem of conditional shadows whose join points rarely or never 
execute an aspect's advice. In section 3, we introduce the concept 
of morphing aspects. We discuss dependency relationships among 
join points and describe how they can be used to adapt join point 
shadows at a later point in time. In section 4, we discuss 
implementation issues of morphing aspects by proposing an 
implementation in AspectS [16]. We give an overview of some 
experiments with morphing aspects in section 5. After comparing 
morphing aspects to related work in section 6 we discuss and 
conclude our paper in section 7. 

2. E X A M P L E S  
According to for example [16, 20] and [11, 30, 32] tracing and 
subject-observer implementations are well-known and accepted 
candidates for discussions and illustrations of aspect-oriented 
programming. Because of its popularity we use AspectJ in those 
examples to better illustrate the problems associated with 
complete weaving 2. 

2.1 T r a c i n g  
A woven tracing aspect captures messages sent to or from 
particular objects, e.g. to a log f'de. Usually, developers want to 
trace the control flow starting at a certain point in the execution of 
a program. For example, a developer wants to capture the 
behavior of critical modules in order to analyze their behavior 
either later or right at runtime. 

~ o i d  start(l { 
step1 ( ) ; ~ pointcut pc ( ) : 

e flow(execution ( 
| if (aCondition) ~ void ComplexComp. start ()) ) 
b step2(); c ~ && execution(* *.*(..)); 

before() : pc() { 
~oid stepl () { ; } . . . 10g message . . . 
~Oid sUep2 () { s t e p 2 1  {)  ; } i 
[ v o i d  s t e p 2 1 ( )  { . . .  } i 

Figure 1. Tracing aspect in AspeeLl logging methods in the 
control flow starting at method s t a r t  in C o ~ l e x C o m n .  

2 Please note, that the intention here is neither to discuss AspectJ in detail 
nor to compare the here proposed approach with AspectJ. The intention 
here is to discuss the impact of complete weaving on the number of join 
point checks in the woven application. 

A typical approach to implementing tracing in AspectJ is to use 
the o f  low pointcut designator [18]. Figure 1 shows the 
corresponding code in AspectJ where a tracing aspect 
T r a c e C o m p u t a t i o n  logs all messages once the control flow 
passes method s t a r t  in class CoraplexComp which starts a 
complex computation 3. One advantage of this implementation is 
the declarative pointcut definition that describes all join points 
where the tracing aspect needs to execute some advice. Hence, 
developers do not need to examine the code on their own, i.e. they 
do not need to determine what methods are potentially called 
within the control flow starting from method start in class 
ComplexComp. 

step1 ( ) ; 
if (aCondition) bar2() ; 

} 
pl 

p}u~ia void steP2() 

) ~i~e~i b ~ ... . . . . . . . . . . . . .  

publ io  void seep211) { 

Figure 2. An illustration 

/ ~liaI.~c.,D-°~Jl' adv±ce ~ ' ; ' I 

.JdbXi¢ void aMeehodlnB () I 
g+ _. nCF owJ±) adv oe,,, I 

= shadow adaptation 

[ ' - - " ' - - 1  = shadow adaptation that 
never Invokes advice 

. . . .  = join point check 

of the woven tracing aspect 
induding additional classes A and B. 

However, this implementation has some drawbacks due to 
complete weaving. In general, the exact computation of methods 
that are executed within a certain control flow is impossible. For 
example, it is hard to compute upfront whether the condition in 
m e t h o d ~ t a r t  will ever be satisfied and methods s t e p 2 ,  and 
s t e p 2 1  (and methods invoked by s t e p 2 1 )  will ever be invoked 
from the control flow passing s t a r t .  To guarantee the correct 
behavior of the aspect the weaver must consider these methods in 
addition to methods s t a r t  and s t e p l ,  which will be 
definitively invoked in the control flow. For all these methods the 
weaver has to determine whether they can also be executed in 
control flows that do not pass method start. In such cases the 
weaver needs to decorate shadows with join point checks that 
check at runtime if the current method is part of the control flow 
to be traced or not. If a large number of different control flows in 
the application use methods of ComplexComp (other than 
s t a r t )  the join point checks fall most of the time and only cause 
runtime overhead. If the condition in method s t a r t  is never 
satisfied, the join point checks at method s t e p 2  and s t e p 2 1  
only cause runtime overhead when they are invoked from 
different methods without ever executing the advice in 
T r a c e C o m p u t a t i o n  at all. The problem becomes even bigger 
if b a r 2 1  executes a large number of other methods. The 
corresponding shadows would also never invoke the advice in 
TraceComputation. 

3 This use of the cflow construct for implementing tracing corresponds 
(with minor changes) to the implementation like for example proposed 
in [31]. A similar use for a different purpose can be found for example 
in [6]. 
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In AspectJ the situation is somewhat different. AspectJ hardly 
analyzes control flows. For the example from Figure 1 AspectJ 
determines all methods matching the last part of the pointcut, i.e. 
( e x e c u t i o n  ( * *. * ( . . )  ) ), and creates corresponding join 
point checks• Since this matches every existing method, AspectJ 
creates checks for every existing method in the entire system 
(except for those in system libraries). Figure 2 illustrates the code 
woven by AspectJ, not only for class ComplexComputation 
but also for two additional classes 3, and B also present at 
weaving-time. Before executing the original code of any method 
in the system, join point checks are performed. The benefit of this 
approach is that no cost-intensive computation is necessary which 
would slow down the compilation process. On the other hand the 
performance of the whole system decreases in the presence of the 
woven aspect. This implies that the performance decreases even 
in classes like k and B whose methods will never be executed in 
the control flow of interest• Performance measurements in [4] 
showed that a single woven c f l o w  substantially decreases the 
overall performance of the system. 

The overall problem in the tracing examples is that it is usually 
not fully computable at weave-time what methods are invoked 
within the control flow of interest• Consequently, a large number 
of conditional shadows exist in the system whose execution 
causes runtime overhead but rarely lead to an execution of the 
aspect specific code. 

2.2 Subject-Observer Protocol 
Perhaps the most frequently used example in the area of aspect- 
oriented programming is the implementation of the observer 
design pattern [9] as discussed for example in [11, 30, 32]. The 
pattern permits a set of objects (called observers) to be attached to 
other objects (called subjects) to become informed about their 
state changes. 

I + observers 
• . . J + attachObserver(Observer o) 
mir°~ce° l  + detachObserver(Obselver o 
comamer I + notifyObserversO {... 

I ~ : . ~  :> 'l~ +container [ 

I f °°Fleldl  I 11 

~ 7  ~: " i;' ii;i,7~iii',!iii ............. ii!!;i; ; )~7 

po ln tcu t  stateOhanges(Subiect s): 
,set(* Subject+.') && 
target(s) && 
l(set(* Subject+.observers)); 

after(Subject s): stateChanges(s) { 
} s.nottfyObserversO; 

define that an assignment to any field declared in Subject: (i.e. 
an assignment to a field declared in a class implementing 
S u b j e c t )  yield the notification of observers. The pointcut 
language of AspectJ does not permit to declare the state change of 
every referenced object for a given subject (cf. [14, 11] for further 
discussion). So, developers have to enumerate explicitly every 
class whose objects should inform observers about state changes 
(in Subj ectConnector). In order to permit the observation of 
Foo instances and its referenced objects of type 
G e n e r i c O b j e c t ,  the developer connects S u b j e c t  to both 
classes (Figure 3). 

Again, the implementation suffers from some drawbacks resulting 
from complete weaving. In general, it is not possible to fully 
determine what instances are ever referenced by subjects. For 
example, it is usually not computable if instances of class C1, C2,  
etc. are ever referenced by an instance of Foo at runtime. 
Consequently, join point checks need to be created that check at 
runtime at every field assignment, whether the current object is 
referenced by an instance of Foo. These checks become 
problematic if a class is frequently used in the application, whose 
instances are in fact never referenced by a Foo at runtime. 

v o i d  m e e h o d A ( )  { v o i d  m e l : h o d A ( )  { 
Foof = new FOO (); Foo f = new Foo (); 

f. fooFieldl = ... ; f.fooFieldl .... ; 

for ( - )  { . . .  

C1 c1 = new Cl(); k for (•.) { 

cl.clField .... ; ~ C1 cl = new C1(); 

• .. ; } cl.clField .... ; 

} . . . . . .  ;} 

v o i d  methodB() { 

C2 c2 = new C2(); 

c2.c2Field = .... ; 

C3 c3 = new C3() ; 

C3.c3Field = ...; 

C4 c4 = new C4(); 

c4.c4Field = ... ; 

= shadow adaptat ion 

} 
-)--.JJ.l ............ 

~. void methodB() { 

C2 c2 = new C211 ; 

c2.c2Field .... ; 

C3 c3 = new C3(); 

c3. c3Fi@id .... ; 

C4 c4 = new C4(); 

c4. c4Field .... ; 

}'•i•. 

declare parents: 
(Foo II GenericObject) 
Implements Subject; 

Figure 3. A subject-observer implementation in AspectJ 

Observers are interested in state changes, i.e. changes of fields 
associated with a subject. This includes fields that are directly part 
of the subject as well as fields of objects which are directly or 
indirectly referenced by the subject (see for example [14, 11]). 

Figure 3 illustrates a typical implementation of the subject- 
observer protocol in AspectJ based on the container introduction 
idiom [13]• SubjectLoader states that observers can be 
attached to and detached from instances of S u b j e c t  by 
introducing appropriate fields and methods to Sub jec t : .  The 
aspect's pointcut s t a t e C h a n g e s  and the corresponding advice 

Figure 4. Application using observed classes. 

In AspectJ the problem is slightly different. Since AspectJ's 
pointcut language does not permit to specify classes whose 
objects are referenced by Foo, developers need to add the subject 
functionality to each class manually (compare to Figure 3). As a 
result, advice activations are inserted for each state change of 
instances of GenericObject as well as for its subclasses 4. 
Figure 4 illustrates an application with a woven subject-observer 
aspect. Advice activations are created for each assignment of 
fields declared in G e n e r i c O b j  e c t  and its subclasses; even in 
those cases where the instances are not referenced by an instance 

4 Due to limitations of its pointcut language, AspectJ's shadows are 
unconditional. However, the shadows have to be conditional logically 
because it must be checked whether an object is referenced by a subject 
or not. 
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Figure 5. A morphing aspect that changes its set of associated join point shadows during runtime. 

of FO0. None of the objects one the fight hand side are referenced 
by a Foo instance since the objects are newly created. Hence, 
advice execution is futile. If subclasses of a e n e r i c O b j  e c t  are 
frequently used in an application the performance decreases 
perceivably as every single assignment leads to the execution of 
the corresponding advice. Typical examples of such often used 
classes are collection classes or classes that serve as root classes 
in large frameworks. 

The overall problem in the subject-observer examples is that the 
set of classes whose instances are referenced by subjects is 
usually not computable upfront. Hence, a complete weaver adapts 
shadows for field assignments of all classes whose instances are 
potentially referenced by a subject. If such classes are frequently 
used in the application while their instances are never referenced 
by a subject, the shadows just cause a runtime overhead. In the 
worst case, there is no observed object in the runtime system at 
all, yet still a large number of failing join point checks are 
executed. 

3. MORPHING ASPECTS AND 
CONTINOUS WEAVING 
Morphing aspects are a new approach to reduce the number of 
join point checks by reducing the number of adapted shadows. In 
contrast to the conventional way of complete weaving used by 
known AO systems, morphing aspects are incompletely woven 
aspects. Morphing aspects are not entirely woven to an 
application by a weaving process that begins and ends at a certain 
point in time computing and adapting shadows whose join points 
possibly execute aspect-specific code. Instead, the necessary 
shadows to be adapted are continuously computed and adapted (or 
released) by the aspects itself at well-defined points in the 
execution of the program, i.e. at certain join points. When a 
morphing aspect is woven it starts with a small set of initial join 
point shadows and dynamically adapts or releases shadows just 
when they are needed. Hence, the number of shadows associated 
with a morphing aspect changes during the aspect's lifetime. We 
call this process of computation, adaptation and release of an 
aspect's shadows morphing. We refer to the whole weaving 
process, i.e. initial weaving of morphing aspects, the morphing 
during their lifetime and unweaving as continuous weaving. 

Figure 5 illustrates a morphing aspect and its set of join point 
shadows at runtime. The ovals represent all join point shadows 
which are potentially associated with an aspect during its lifetime 
as they would have been computed during complete weaving. The 
ovals within the aspect's border represent shadows adapted for the 
aspect. As long as the aspect is not woven, there are no shadows 

adapted for the aspect (Figure 5a). Initially, when the developer 
weaves the morphing aspect, a relatively small number of join 
point shadows is adapted by the aspects (Figure 5b). The set of 
actually adapted shadows changes during the aspect's lifetime. At 
a later point in time (Figure 5c) the aspect has nine more shadows 
in addition to the original join points. Even later (Figure 5d) five 
more shadows were adapted and most of the previous ones were 
released. In contrast to this, a completely woven aspect adapts all 
shadows which are potentially associated with an aspect (and 
creates corresponding join point checks), i.e. all ovals in Figure 5 
fight from the beginning. Morphing aspects adapt fewer shadows 
in the system. Hence, morphing aspect cause less runtime 
overhead due to failing join point checks as there are fewer join 
point checks in the system. 

As a key eharactefistic of morphing aspects they themselves 
determine at runtime at what points in the execution of the 
program the adaptation or release of join point shadows is 
necessary. Hence, join points in morphing aspects serve two 
different purposes. On the one hand the aspect's functionality (like 
logging, or notification of observers) is invoked, on the other hand 
the morphing process is started whenever particular join points 
are reached. 

For the specification (and implementation) of morphing aspects 
and the corresponding morphing processes, developers are 
confronted with the following questions: What are the join points 
the aspect gets initially woven to, i.e. what shadows need to be 
adapted initially? When does the molrphing process needs to be 
carried out? How should the new set of join point shadows be 
determined? 

In the following section we discuss dependencies among join 
points and shadows. Those dependencies determine a minimal set 
of shadows that need to be initially adapted. Furthermore, these 
dependencies determine what join point shadows can be adapted 
at some later point in time. Afterwards, we describe how these 
properties can be utilized to specify the morphing process. 

3.1 Join Point Dependencies 
In order to determine when new shadows need to be adapted or 
can be released, developers of a morphing aspect have to analyze 
how those join points (and their shadows) which are relevant for 
the aspect to be specified depend on each other. Dependencies 
among join points describe that a certain join point associated to 
an aspect (the dependent join point) can only be reached if 
another join point associated with the same aspect has been 
reached before. We call the corresponding shadows dependent 
shadows. All join points that do not depend on any other join 
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point are independent (and are represented by independent 
shadows). On the technical level a dependency between join 
points expresses that join point checks of dependent shadows fail 
as long as the join points they depend on have not been reached 
before. Consequently, shadows for dependent join points do not 
need to be adapted as long as the join points they depend on are 
not yet reached. This allows the adaptation of dependent shadows 
to be shifted to a later point in time. This situation is different for 
independent shadows. Their join points potentially occur in the 
execution of a program independently of any other join point 
associated to the same aspect and the adaptation of their shadows 
cannot be shifted to a later point in time. Hence, when the 
morphing aspect is initially woven at least all independent join 
point shadows need to be adapted. 

In the following we illustrate dependencies among join point 
shadows for the examples presented in section 2.1 and 2.2. We 
represent a potential join point shadow by an oval whereby an 
oval's label describes the shadow. A directed edge from a shadow 
A to a shadow B represents a dependency relationship which 
expresses that the join point represented by shadow A depends on 
the join point represented by shadow B. This also implies that 
shadow A depends on shadow B. The edge's label describes the 
kind of dependency. A shadow without any outgoing edge is an 
independent shadow, while a shadow with at least one outgoing 
edge is a dependent shadow. 

ICC = class ComplexComp I 

Figure 6. Dependencies in the tracing example 

Figure 6 illustrates the dependencies among join points shadows 
for the tracing example introduced in section 2.]. The execution 
of method s tep1 or the execution of s tep2 only need to lead to 
an execution of aspect-specific code i f  method s t a r t  in class 
ComplexComp is executed and s t a r t  invokes either s t e p l  or 
s t e p 2 :  the join point checks for the shadows at s t e p l  and 
s t e p 2  fail as long as method s t a r t  is not executed and invokes 
s t e p l  or s t e p 2 .  Hence, both shadows directly depend on the 
shadow for method s t a r t .  For the same reasons the shadow at 
s t e p 2 1  depends directly on the shadow at s t e p 2  and the 
shadows for all methods that are eventually invoked by s t e p 2 1  
depend the shadow at s t e p 2 1 .  In the tracing example, all join 
point shadows either directly or indirectly depend on the shadow 
representing the join point for the execution of method s t a r t .  
The shadow at s t a r t  does not depend on any other shadow, i.e. 
this is an independent shadow. On a more abstract level, shadows 
of all methods that are either directly or indirectly invoked by 
s t a r t  depend on the shadow for s t a r t .  

The dependencies of join points in the subject-observer aspect are 
slightly more complex (Figure 7). The join points (and their 
shadows) to be handled by the aspect are the state changes of 
subjects (instances of Foo) and their referenced objects. So, all 
assignments to fields declared in Foo, G e n e r i c O b j e c t  and 
subclasses of G e n e r i c O b j  e c t  are join point shadows, which 
are potentially associated with the aspect. Those assignments 

execute aspect-specific code only if there is at least one object 
observing a Foo instance. This in turn depends on invocations of 
method a t t a c h  which registers observers. Hence, all shadows 
for f o o F i e l d  and g o R e f  assignments depend on the shadow at 
method a t t a c h  5. The same is true for assignments to fields 
declared in G e n e r i c O b j  e c t  and its subclasses. However, their 
dependency is more complex. First, when an observer is attached, 
those shadows need to be adapted only for classes whose 
instances are referenced by a Foo. For example as long as no 
G e n e r i c O b j e c t  instance is referenced by a Foo g o F i e l d  
assignments need to be adapted. Second, assignments to 
g o F i e l d  depend on the g o R e f  assignment since an instance of 
G e n e r i c O b j  e c t  becomes referenced by an instance of Foo by 
assigning it to g o g e f .  For the same reason all further 
assignments to fields declared in subclasses of G e n e r i c O b j  e c t  
depend on the g o R e f  assignment. 

I - - "  _ _  _ 1 
Figure 7. Dependencies in the subject-observer example 

As exemplified in Figure 7 the only independent join point is the 
one for the invocation of method a t t a c h .  In the subject- 
observer example the different natures of join points associated to 
the subject-observer aspect becomes manifest: the field 
assignments depend on a join point which does not lead to an 
execution of the aspect-specific code, because field assignments 
depend on the execution of method a t t a c h .  A field assignment 
join point informs the observers about a state change, while the 
join point at method a t t a c h  does not. In order to emphasize that 
fact, we rendered the a t t a c h  shadow using a different style 
(Figure 7). 

3.2 Specifying the Morphing Process 
Once the dependencies are determined developers have to decide 
how to utilize them for the specification of a morphing aspect's 
morphing process. First, developers have to specify what shadows 
including corresponding join point checks are to be initially 
handled. Next, developers have to specify what initial join points 
start the morphing process. Then, developers have to define the 
morphing process itself. 

At least all independent join point shadows have to be initially 
adapted, because they do not depend on any other shadows. 

5 For the same reason, field assignments depend on method detach, 
because if after invoking detach no object observes Foo no aspect- 
specific code need to be executed. For reasons of simplicity we omitted 
this dependency in Figure 7. 
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Hence, it is not possible to utilize their dependencies for a late 
shadow adaptation. Additionally, the developer can decide to 
adapt some additional dependent shadows at initial weave time: In 
case the dependent join points are reached very often, the 
developer may not want to adapt their shadows just during the 
weaving process but fight from the beginning. 

The morphing process consists of the following parts. First, the 
process has to determine a number of dependent shadows to be 
adapted (or to be released). For that purpose, the morphing 
process can make use of reflection [21]: the process reflects on 
the join point starting the morphing process and computes the 
dependent shadows. Second, the morphing process specifies the 
join point checks for all shadows to be created. Third, it has to be 
determined for each newly adapted shadow whether it 's join 
points invoke aspect specific code and/or the morphing process. 

In the following we illustrate two reasonable specifications of the 
morphing process for the tracing and subject-observer examples 
based on the discussion of join point dependencies from section 
3.1. The morphing processes proposed here are kept as simple as 
possible to illustrate how to utilize join point dependencies. 

<Z2ZT> 

Icc:  ComplexComp I [ cc:ComplexComp I 

Figure 8. Morphing tracing aspect after initial weaving, 
after execution of s t a r t ,  and after execution of s t e p l .  

For the tracing aspect (Figure g) at least one (independent and 
unconditional) shadow at method start in ComplexComp has 
to be initially adapted. For reasons of simplicity, we decided to 
adapt only this shadow to keep the number of join point checks 
low and to adapt all dependent shadows as late as possible. 
Hence, Figure 8 illustrates that only one shadow is initially 
adapted for the tracing aspect. 

Once a join point of this shadow is reached, the tracing code is 
executed and the morphing process starts. The morphing process 
determines all methods that potentially are invoked by the method 
enabling the process. The shadows for all these methods are 
adapted. The corresponding join point checks examine if the 
method is invoked within the control flow being traced 6. If the 
join point check succeeds, the tracing code is executed and the 
morphing process starts once again. Whenever a method within 
the control flow is left, all dependent shadows are released. So, if 
a ComplexComputation receives a message start (and the 
message is logged), the morphing process computes all methods 
that are potentially invoked by s t a r t  and adapts the 

6 There are different ways to implement such a condition. In AspectJ the 
current thread is stored when the control flow starts, and each join point 
check determines whether the current thread is stored. Languages like 
for example SmaUtalk permit to analyze the call stack to determine 
whether the current method occurs in the control flow of interest. 

corresponding shadows (stepl and step2) (in the middle of 
Figure 8). When s t e p l  is invoked by start the method is logged 
and the morphing process starts once again. Since no other 
methods are potentially invoked by method s t e p l  no further 
shadows are created. If s t e p 2  is not invoked and s t a r t  is left 
the shadows at s t e p l  and s t e p 2  are released (fight hand side 
of Figure 8). So, as long as the condition in method s t a r t  does 
not lead to an execution of s t e p 2 ,  no shadows for s t e p 2 1  (and 
methods invoked by s t e p 2 1 )  are created. 

aVeJue 

Figure 9. Subject-observer as a morphing aspect at initial 
weave time, after observer attachment, and after 
assigning an instance of Cl .  

For the subject-observer aspect at least one unconditional shadow 
for method a t t a c h  needs to be initially adapted 7 (see left hand 
side of Figure 9). Similar to the previous example we simply 
decided to adapt only this shadow to keep the number of adapted 
join point shadows low (and to simplify the morphing process). 
An invocation of the method attach in class goo starts the 
morphing process. 

A simple morphing process for this aspect works as follows. First, 
the process adapts shadows for all assignments to fields 
f o o F i e l d  and g o R e f  whose execution leads to notifications of 
observers. Second, the process reflects on the Foo instance 
whose join point started the morphing process. It determines the 
referenced object and adapts the field assignment shadows for 
notifying observers. And finally, the morphing aspect adapts the 
g o R e f  join point to start the morphing process. 

Figure 9 illustrates the above described morphing process. After 
an observer is attached the morphing process adapts shadows for 
all assignments to fields declared in Foo. Furthermore, the 

7 Like in the previous section we skip for reasons of simplicity the 
discussion about method d e t a c h  here which is also an independent 
shadow. 
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morphing process determines the object referenced by goField 
of object foo .  Since in Figure 9 f o o  does not refer to any 
G e n e r i c O b j e c t  no further shadows are adapted. When an 
instance of Cl  is assigned to f o o  the morphing process starts 
once more (because assignments of g o R e f  start the morphing 
process). The process determines the fields of the assigned object. 
Since c l  is an instance of C1, shadows are adapted for all 
assignments to g o F i e l d  (declared in G e n e r i c O b j e c t )  and 
c l F i e l d  (declared in Cl). 

4. IMPLEMENTATION EXAMPLE 
In this section we introduce an exemplary implementation of a 
morphing aspect in Aspects (see [16] for a detailed introduction 
in AspectS). Aspects is an aspect-oriented system providing 
dynamic weaving in the Smalltalk dialect Squeak. We concentrate 
here on the implementation of the tracing aspect. For the 
morphing implementation of the subject-observer implementation, 
please refer to [14] and [3]. 

InstallAdvlce: anAdv~ce polntcut: aPC I 
I "weaves advice anAdvice to pointcut aPC" [ 

iolnPolntDescrlptorsFrom: eMethod 
I jpds I 
jpds := Set new. 
cMethod messages do: [:sel I 

(self ImpiementorsOf: eel) do: [:class 
jpds add: (JoinPointDescdptor targstClass: class targetSeiector; ssl)], 

^ jpds. 
ImplementorsOf: aSymbol 

I impiernentors I 
impiementors := OrderedColiection new. 
Smalltalk allBehaviorsDo: [:class J 

(class IncludesSelector: aSymbol) ifTrue: [ 
Impiementors add: class]]. 

^ impiementors. 

I n i t l e l P o l n t c u t  
traclngAdvlce 
Install 

self InstallAdvlceAt: (self InitialPolntcut) 
morphlngAdvlce 
^ AsBeforeAfterAdvice new; 

qualifier: (...); pointcut: (...); 
beforeBIock: [:receiver :args :aspect :client I 

...'some caching code'... 
self startMorphlngFor: (self currenUoinPoint)]; 

afterBIock: [:receiver :args :aspect :client :retum [ 
self cleanupMorphs: (self currentJoinPoint)]. 

startMorphlngFor, jpd 
] jpds clientMethodl 
cllentMethod := (jpd targetClass) compiledMethodAt: (jpd targetSelector). 
jpds := self joinPointDescdptorsFrom: cllentMethod. 
self installAdviceAt: jpds. 
... "some caching code' . . .  

installAdviceAt: jpds 
jpds do: [:jpd I 

.., =some caching code'.,. 
self installAdvice: morphingAdvice pointcut { jpd }; 

installAdvlce: traclngAdvica pointcut: { jpd }]. 
. . .  

Figure 10. Tracing as a abstract morphing aspect in 
AspectS 

AspectS is based on method wrappers [5]. A shadow for a method 
execution join point or a method call join point is adapted by 

wrapping the receiving method. The method to be wrapped is 
specified by a join point descriptor (instance of J o i n P o i n t  
D e s c r i p t o r )  which refers to a class and to a method selector. 
Advice directives in AspectS are runtime objects that refer to a 
pointcut. Pointcuts are collections of join point descriptors. If 
advice dkectives are installed at runtime, all methods referenced 
by the join point descriptors are wrapped. The wrappers handle 
execution of qualifiers (which correspond to join point checks) 
and the execution of the advice. Advice is implemented by blocks 
(see [10] for an introduction to Smalltalk blocks, see [16] for a 
detailed description of how advice objects are created and 
executed using blocks). 

Tracing aspects based on morphing aspects are subclasses of the 
(abstract) class M o r p h i n g T r a c e A s p e c t  (Figure 10). 
M o r p h i n g T r a c e A s p e c t  contains the abstract method 
i n i t i a l P o i n t c u t  that returns the set of join point descriptors 
specifying the independent join points whose shadows need to be 
initially adapted. 

I J 

InltlalPointcut 
^ OrderedCollection 

with: (JotnPoJntDescdptor 
targetClass: CompiexComp targetSeiector. #start) 

traclngAdvlce 
^ AsBeforeAfterAdvica new 

qualifier: (...); polntcut: ...; 
beforeBIock: [:rec :args :aspect :client 

=Write message on screen" ]. 

Figure 11. Concrete tracing aspect as a morphing aspect. 

The aspect refers to two advice objects, both returned by 
corresponding methods tracingAdvice and 
morphingAdvice. The (abstract) method tracingAdvice 
returns the advice to be executed during tracing, 
r n o r p h i n g A d v i c e  provides the advice starting the morphing 
process. Our morphing advice contains two blocks which are 
invoked before and after the corresponding join point is reached. 
The before block starts the morphing process on the given join 
point by invoking method startMorphingFor. Method 
s t a r t M o r p h i n g F o r  determines the mntime-object for the 
invoked method and computes all join points descriptors that 
depend on that method (see methods 
joinPointDescriptorsFrom: and implementorsOf : 
in class MorphingAspect in Figure 10). A shadow is adapted 
for each of those join point descriptors that invokes the morphing 
advice as well as the tracing advice (method 
installAdviceAt :pointcut :). In order to use the 
morphing trace aspect developers have to extend 
MorphingTraceAspect and override initialPointcut 
and tracingAdvice. Figure II illustrates a sample class 
MorphingComplexComputationStartTracer. A tracing 
aspect is inifiaily woven by instantiafing the corresponding class 
and invoking method i n s t a l  1. 

Creating and integrating shadows (i.e. method wrappers) in 
Aspects is a time-consuming task, yet to be optimized. Hence, it 

s According to the Smalltalk meta-object protocol (cf. [10]) method 
implementations have runtime representations. 
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is typically not desirable to start the morphing process at every 
possible join point. For example, if the methods to be traced are 
executed quite often, the time consumed for the morphing process 
can be higher than the benefit of dismissed join point checks. 
Therefore, the implementation of the tracing aspect in Aspects 
uses lazy morphing by default. Dependent shadows are adapted 
whenever the join points they depend on are reached and the 
morphing process did not already start at these join points. Lazy 
morphing does not release shadows during morphing. Instead, 
shadow adaptations reside in the system until the developer 
uninstalls the whole aspect. So, every execution of the morphing 
process potentially increases the number of adapted shadows for 
the aspect, but does not delete any. 

The use of lazy morphing turned out to be practical in a number 
of experiments. Those experiments showed that the number of 
shadows adapted by lazy morphing is still significantly smaller 
than a complexly woven trace aspect. 

5. EXPERIMENTAL RESULTS 
Table 1 summarizes a number of performance measurements in 
Aspects on a Pentium 4.2 GHz with the Squeak Virtual Machine 
version 3.4.4. The Smalltalk image contained the Comanche Http 
Server [7] as well as the Squeak CommandShell [8]. Overall, the 
image contained more than 2200 classes with more than 35000 
compiled methods. We measured 100000 times the execution time 
for the adaptation and release of shadows, the execution time for 
(empty) methods and the execution time for methods with adapted 
shadows whose join point checks always pass as well as with 
shadows whose checks always fail. We implemented the adapted 
shadow with the successful join point check by an empty around 
advice whose join point condition immediately succeeds without 
any additional computation. We implemented the adapted shadow 
with the falling join point check by a join point condition that 

immediately fails without any additional computation. Our 
measurement showed that the execution of an unconditional 
shadow was approximately 90 times slower than the execution of 
an empty method. The execution of a dead shadow was about 9 
times slower than the execution of an unconditional shadow 9. 

Table 1. Experimental Results for shadow creation, 
deletion and method execution time (in ms) in AspectS 

[ A v e i ~ : I ' M ~ I M ~ ! ~ I  

o . m 3  o . x = s ,  o. ,s I 
I 

[ i~oa~  ~ 10.000~ 0.000~ o.ooosl 
!10.03~. 0 . 0 ~  o.03~x I 

IMe~i~,tthfSjffr~j~,jo~[i~l~i| 0 . 3 2 6 9  0 . 2 5 5 5  0 . 3 2 8 2  I 

Next, we created a single (lazy) morphing tracing aspect to trace 
the execution commands in the command shell. The 
corresponding advice simply wrote all messages to the screen. 
The initial weaving of the tracing aspect adapts just a single join 
point shadow and took 0.45 milliseconds. As soon as the method 
to be traced has been invoked for the first time, the morphing 
process started for 35 times creating 253 shadows. This process 

9 The reason for the slow execution of dead shadows lies in the way how 
wrappers and wrapped methods are implemented. Wrappers store the 
wrapped method in a field. When a join point check fails the original 
method is executed by calling the time-consuming value: method. 

took about 9.5 seconds. Starting the control flow afterwards did 
not lead to any additional execution of the morphing process. 
From then on the execution of the method to be traced took about 
2.5 seconds. 

We compared this result with a corresponding complete weaving 
(see Table 2). The computation of all potentially invoked methods 
was not practicable (the computation took more than 3900 
seconds). Hence, we did the same approach like AspectJ to weave 
the aspect to all existing methods in the image (except some 
system methods). To do so, we wove the aspect to more than 
35000 methods. This complete weaving took about 6.8 seconds. 
The control flow execution afterwards took the same time like the 
morphing tracing aspect. 

Table 2. Tracing in an experimental environment as 
morphing aspect and completely woven aspect 

l : . 3 0  3949,1 

Table 3. Consumed Time for tracing control flow in a 
completely, and an incompletely woven aspect. 

[ ~l 9.33 s I 

i~'!: I ,.s4(.9.s,. 0.,s =.) J 
As a result, this experiment showed that the initial weaving of the 
morphing aspect and the first tracing of the control flow took 
about 9.54 seconds while the completely woven aspect and a first 
execution of the control flow took about 9.33 seconds (Table 3). 
The difference of 0.19 seconds is the price for using a morphing 
aspect instead of a completely woven one. However, the number 
of adapted shadows by using a morphing aspect is ordy 1% of the 
number of adapted shadows of the completely woven aspect. 
These shadows decrease the performance of the whole system, 
because each shadow whose join point check fails cause the 
mntime overhead of more than 0.3 milliseconds (according to 
Table 1). Preliminary experiments showed for example that the 
response time of the http server contained in the image was a few 
hundred times slower than before weaving the tracing aspect, 
because weaving the tracing aspect according to the weaving 
strategy of AspectJ also adapted a large number of shadows even 
in those classes that will never be invoked in the control flow to 
be traced. 

6. RELATED WORK 
Dynamic weaving in combination with just-in-time aspects as 
proposed in [26, 27] is closely related to morphing aspects. Just- 
in-time aspects are dynamically woven to the system when they 
are really needed. Furthermore, just in time aspects are woven to 
the application in one atomic step (see [27], page 101). 
Consequently, just in time aspects do not perform any additional 
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join point checks as long as they are not woven. In that way just 
in time aspects overcome the problem of unnecessary shadows in 
comparison to static weaving. Nevertheless, just-in-time aspects 
are woven completely because of the atomicity property. Hence, 
after dynamically (and completely) weaving an aspects the 
problem of unnecessary shadows arises just like in static woven 
systems. 

Another approach that relates to our work on morphing aspects is 
the selective just-in-time weaver as proposed in [28], an extension 
to the work of just-in-time aspects. The (Java based) selective 
weaver permits developers to choose between two different kinds 
of join point shadows: either as breakpoints in the JVM or as 
statically embedded hooks. While breakpoints can be created 
much faster, their execution is time consuming (see [28] for a 
detailed discussion on the performance issues). Embedded hooks 
on the other hand execute faster while their creation is quite slow 
in comparison to that of breakpoints. Selective just-in-time 
weavers try to overcome the performance overhead caused by 
frequently executed shadows by embedding such shadows 
statically. From that point of view a selective weaver and 
morphing aspects are similar. The selective weaver causes a 
performance overhead for embedding hooks in order to achieve a 
performance advantage for the further execution of the program. 
Similarly, the morphing process executed by morphing aspects 
causes a performance overhead to achieve a performance 
advantage for the further execution of the program. However, the 
main difference between both approaches is that a selective 
weaver does not reduce the number of conditional shadows. 

The virtual machine Steamloom [4] belonging to the aspect- 
oriented language Caesar [23] also tackles the problem of time- 
consuming join point checks. Steamloom implements join point 
checks and advice invocations at the virtual machine level. In [4] 
the performance of advice making use of the join point checks on 
VM level and the statically woven aspects in AspectJ based on the 
cflow construct is measured. The result shows that the Steamloom 
VM has a significant performance advantage over the completely 
woven approach of AspectJ. The intention of Steamloom and 
morphing aspects is very similar, since both tackle the 
performance overhead caused by join point checks. The 
difference between Steamioom and the implementation of 
morphing aspects as proposed in this paper is that while weaving 
in Steamloom is performed by redirecting messages at the VM 
level our AspectS-based implementation carries out changes to 
the runtime representation of methods at the application level. 

Besides the approaches that provide pure dynamic weaving there 
are also approaches that remove unnecessary runtime checks 
based on a static analysis. For example [22] describes a partial 
evaluator based on the definitional interpreter specified in [33] to 
reduce the number of unnecessary join point checks. In [29] a 
reduction of join point checks is achieved by a static analysis of 
the call stack. Currently, we do not have any experimental results 
that compare the number of failing join point checks caused by 
these approaches with the number of failing join point checks 
caused by morphing aspects within an experimental environment. 

7. DISCUSSION AND CONCLUSION 
In this paper we addressed the problem of unnecessary join point 
shadows caused by complete weaving. We motivated the problem 
by illustrating two typical examples for aspect-oriented 

programming and their implementation in the aspect language 
AspectJ. 

We proposed morphing aspects to overcome the problem of 
unnecessary join point checks. Morphing aspects are incompletely 
woven aspects that change their set of join point shadows at 
runtime based on a continuous weaving process. With incomplete 
weaving, not every shadow within the base system whose join 
points potentially execute aspect-specific code is adapted. Instead, 
morphing aspects utilize dependencies among join points and 
their shadows that permit to delay the adaptation of shadows just 
to the point when join points they depend on are reached. As a 
result, the number of adapted shadows of a morphing aspect is 
much smaller in comparison to that of completely woven aspects. 
This is because dependent join point shadows are not adapted 
initially, but at a later point in time when they are actually 
needed. Experiments with morphing aspects in the aspect-oriented 
system Aspects showed that by using morphing aspect the 
number of join point shadows is significantly reduced. In that way 
the performance overhead caused by failing join point checks is 
reduced, too. However, it should be noted that the performance 
overhead of join point checks in Aspects is quite high as shown in 
section 5. Hence, the benefit of morphing aspects in such a system 
is much higher than in systems where join point checks are less 
expensive. 

The benefit of realizing an aspect as a morphing aspect depends 
on a number of influencing factors. In general, a prerequisite for 
the successful application of morphing aspects, is a large number 
of falling join point checks during the execution of a program. 
According to the example we gave in section 2, such prerequisite 
is fulfilled if, for example, a tracing aspect is to be implemented 
in an application with a large number of threads that never invoke 
the method where tracing should begin. Also, such prerequisite is 
fulfilled if instances of a class are only very rarely observed 
during the execution of a program. The prerequisite is usually not 
fulfilled, if the aspects in the system hardly rely on join point 
checks, i.e. if the woven application mainly consists of 
unconditional join point shadows. 

The morphing process needs additional time to determine and 
create dependent join point shadows. Developers must trade-off 
between the runtime overhead caused by unnecessarily introduced 
runtime checks caused by unnecessary adapted shadows and the 
overhead caused by the morphing process itself. 

Morphing aspects impose a number of requirements on the 
underlying aspect-oriented system. This restricts their application 
to a number of systems. As most fundamental requirement the 
underlying system must permit dynamic weaving, i.e. weaving of 
aspects during runtime. A number of systems such as PROSE [26, 
27], AspectS [16], JAC [25], Object Teams [32, 15], or Caesar 
[23] fulfill this requirement while systems like AspectJ [18] or 
Sally [12] do not. As another requirement morphing aspects 
typically require the computation of dependent shadows at 
runtime, i.e. the shadows to be associated with an aspect are 
statically not known. However, not every system providing 
dynamic weaving permits the computation of join points at 
runtime. For example, Object Teams assumes that the shadows 
are statically declared. 

As far as we know there is currently no approach like morphing 
aspects and continuous weaving that utilizes dependencies among 
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join points and join point shadows to determine join point 
shadows to be adapted (or released) during an aspect's lifetime. 

As future work morphing aspects and selective weavers [28] 
should be combined in order to gain the benefit of both reducing 
unnecessary shadows as well as reducing the execution time of 
join point shadows. Thereto, it needs to be analyzed how far the 
morphing idea can applied to more static and complex languages 
like Java which provide only limited reflective capabilities. 
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