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ABSTRACT

Dynamically typed programming languages are powerful tools
for rapid software development. However, there are scenar-
ios that would benefit from actual type information being
available—e. g., code generation and optimisation as well as
program comprehension. Since code written in such lan-
guages usually makes little or no explicit assumptions about
types, type inference is not particularly well suited to obtain
the desired information. This paper introduces type harvest-
ing, a practical approach to obtaining type information. It
is based on stepwise code execution of the code in question,
closely observing the types of entities in question. Type
harvesting allows for exploiting unit tests to automatically
obtain type information for a code base. The approach has
been implemented in Squeak/Smalltalk. Its evaluation, us-
ing several complex applications, shows that type harvesting
yields excellent results with high precision.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features—Data types and structures; K.6.3 [Manage-
ment of Computing and Information Systems]|: Soft-
ware Management—=Software development and maintenance;
D.3.4 [Programming Languages|: Processors—Code gen-
eration

General Terms

Languages

Keywords

Dynamically typed programming languages, type inference,
dynamic analysis, unit tests, type harvesting

1. INTRODUCTION
Dynamically typed programming languages are popular
and widely used. In many application areas, they exhibit
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their benefits, allowing for quick turnarounds in develop-
ment and high developer productivity. Still, it needs to be
noted that dynamic languages have some shortcomings, es-
pecially when it comes to systems programming. In the
respective areas, the development cycles in which dynamic
languages are used impose a requirement that the languages
cannot easily meet: static type information is required. For
instance, the PyPy [17] virtual machine code generation tool
chain requires complete static type information to be able
to generate C code from the original Python code.

Intuitively, it is clear that complete and correct type in-
ference is not easily achievable in dynamic languages: parts
of language semantics must be provided as part of the infer-
ence engine, which leads to duplicated effort. Thus, when
static type information is required, one needs to find other
solutions. There exist inference engines [4, 2, 1, 20, 16, 6]
that are however necessarily incomplete. There also exist
lightweight approaches like pluggable types [3, 8], where de-
velopers can annotate methods with type information. Such
annotations, however, are somewhat alien to dynamically
typed languages and therefore do not invite acceptance.

We propose to instead extract type information from ex-
isting code by harvesting it during execution, when types
naturally occur. Observing an application while running
and introspecting its execution is typically not a large prob-
lem in dynamic languages, as they usually come with rich
meta-programming facilities. These could be used to observe
actual application code—but since the meta-programming
efforts connected with harvesting are likely to impose a cer-
tain execution overhead, this may be unacceptable. Perhaps
more appropriately, existing tests—in the form of unit or
larger-scale integration tests—can be executed, and type in-
formation could be extracted from such runs. For this to
work, though, good test coverage is a requirement.

This paper makes the following contributions. First, we
propose the technique we call type harvesting as a pragmatic
approach to obtaining type information without the burden
of full-fledged and necessarily incomplete inference engines.
A type harvester is an entity that gathers type information
by observing application code while it is running. Rather
than protocols or object structures, the harvested types are
objects’ classes, as these are of most interest in the applica-
tion domains that we address (cf. Sec. 2).

Second, we present an implementation of type harvesting
in Squeak' [12], an implementation of Smalltalk [7]. The
harvester collects type information for method parameters,
instance members, and all steps of the Squeak interpreter’s
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greet: aString
| s |
s := WriteStream on: ’°.
s nextPutAll: ’hello, ’; nextPutAll: aString.
~ s contents

Listing 1: Running example code.

bytecode execution. Users can control harvesting scope and
granularity, collecting type information for any subset of the
above points, and restricting harvesting to specific classes or
packages. For each of these points of interest, the harvester
can provide least specific types—with which we denote the
least upper bound of all types occurring at a given point—as
well as the entire bandwidth of types that occur there.

Third, the evaluation of type harvesting and the Squeak
implementation discusses the concept in the context of sev-
eral third-party applications. Type harvesting delivers ex-
cellent results in the evaluation. The discussion furthermore
contributes implementation guidelines for porting type har-
vesting to other languages than Smalltalk.

In the remainder of this paper, we give a more detailed
overview of uses of type information in dynamic program-
ming languages in Sec. 2. Subsequently, in Secs. 3 and 4, we
describe, evaluate and discuss type harvesting and its imple-
mentation in Squeak. In Sec.5, we discuss related work on
typing support in dynamic programming languages. Finally,
Sec. 6 summarises the paper.

2. USES OF TYPE INFORMATION IN DY-
NAMIC PROGRAMMING LANGUAGES

Although dynamically typed programming languages offer
many benefits, lacking type information can be disadvanta-
geous. On the one hand, translators from dynamically typed
high-level code to code in a statically typed but better opti-
misable language require type information to generate cor-
rect code. On the other hand, program comprehension is
impeded and IDE tools are hindered in analysing the static
properties of source code. Especially, programming language
concepts that imply late binding are more difficult to under-
stand and to follow when type information is missing.

2.1 Running Example

Throughout this paper, we will use a running example
implemented in Squeak. Lst.1 shows the source code of a
method named greet:; Lst. 2 shows its bytecode instructions.
The method is defined in the class Greeter. In Squeak,
classes are organised in so-called categories, which group
classes but do not provide namespaces. The category con-
taining the Greeter class is named Greetings.

The method accepts one argument named aString. Since
Smalltalk is dynamically typed, it is a common idiom to give
method arguments names that hint at the expected types.
In this case, the name denotes that the method expects an
instance of the String class (or any of its subclasses).

The method has a temporary (local) variable named s. A
WriteStream object is created and assigned to s. Next, the
text “hello, ” and the string passed to the method in aString
are written to the stream. Finally, the method returns the
stream’s contents.

Further explanations on the method, its bytecode instruc-

37 <41> pushLit: WriteStream
38 <22> pushConstant: 7’

39 <E0> send: on:

40 <69> popIntoTemp: 1

41 <11> pushTemp: 1

42 <88> dup

43 <24> pushConstant: ’hello, ~’
44 <E3> send: nextPutAll:

45 <87> pop

46 <10> pushTemp: O

47 <E3> send: nextPutAll:

48 <87> pop

49 <11> pushTemp: 1

50 <D5> send: contents

51 <7C> returnTop

Listing 2: Running example bytecode instructions.

tions and the problems that arise due to the lack of avail-
ability of type information will be given below.

2.2 Code Generation

Several projects have chosen dynamically typed high-level
programming languages to implement applications, which
are then translated to lower-level languages before eventu-
ally being compiled to machine code. The rationale is that
stand-alone static compilers, e. g., for C++, apply sophisti-
cated optimisation mechanisms that yield excellent perfor-
mance without imposing the overhead of a run-time envi-
ronment.

The PyPy [17] project, for instance, provides an imple-
mentation of the Python virtual machine in Python. It em-
ploys a tool chain that generates C code from the high-level
Python code. To facilitate this, full type information is re-
quired, which the PyPy tool chain obtains by applying type
inference. Developers have to pay a price, though: instead of
full Python, a dialect called RPython is used that somewhat
limits the dynamic capabilities of Python.

Other projects have pursued similar goals without neces-
sarily aiming for systems software [13, 15, 2], mostly apply-
ing source-to-source translation and type inference. Source-
to-source translation requires building a compiler or at least
exploiting existing parsing infrastructure for the dynami-
cally typed source language.

We argue that using the result of the source language’s
compiler—e. g., bytecode instructions—eases target code gen-
eration as it avoids parsing. Also, it is not necessary to
identify sub-expressions, as all bytecode instructions stand
on their own. However, type information is still required.

For instance, consider the bytecode instruction at index
51 in Lst. 2; it returns the current top-of-stack value, which
was returned from sending the contents message to the
WriteStream created earlier. The type of this value is the
return type of the method, but which one is it? Likewise, it
is not necessarily obvious what type can be expected as the
result of sending on: to the WriteStream class: will it return
an instance of a specialised subclass, or a WriteStream?

While the developer can answer such questions by explor-
ing the environment, a code generator needs to have access
to reliable information to generate correct code. Typical id-
ioms used in dynamically typed languages, such as naming
arguments after their expected types (see above), do not
help here as they cannot be enforced. Also, instance mem-
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bers’ names typically do not adhere to such idioms. Thus,
type information is required for all entities including the
top-of-stack information at each bytecode instruction.

2.3 Program Comprehension

Program comprehension in dynamically typed languages
can be improved with type information as it helps in navigat-
ing source code and using APIs correctly. Developers main-
tain a mental model of program behaviour [14] by navigating
the static call graph for a specific method of interest and fol-
lowing several paths comprised of sender and implementor
relationships. Such call graphs have various branches lead-
ing to many developers’ decisions about the proper applica-
tion of specific methods. Unfortunately, the set of possible
paths is much larger in dynamically than in statically typed
languages. For instance, identical method signatures in dif-
ferent classes yield ambiguous results—late binding hinders
determination of actual methods since receiver object types
are unknown until run-time. Additional type information
reduces the set of call graph branches to the possibilities
actually assigned in a specific context [10]. Thus, the de-
veloper’s static source code navigation can be improved by
selecting only those sender and implementor methods that
relate to a specific type.

If type information is made available, it supports API
usage as it makes interface descriptions more meaningful.
Consequently, clients know what parameters to provide and
what results to expect. Without type information, develop-
ers have to comply with conventions such as the one de-
scribed above for the aString parameter, which is more

error-prone as types cannot be checked before run-time. Avail-

able type information, as part of an interface contract, im-
proves API robustness and correctness.

Based on additional type information, IDE tools can be
improved by reducing result sets, checking for API confor-
mance, and deducing concrete run-time behavior more pre-
cisely. This can help limiting the scopes of search, navigation
and auto-completion tools to actually used types instead of
all possible matching message signatures. Static analysis
tools can check API usage to indicate related problems to
give developers instant feedback about accidental mistakes
while writing code. Finally, dynamic analysis tools can ver-
ify deduced type information to identify failure causes [24].

3. TYPE HARVESTING

In this section, we first give a high-level overview of the
concepts of type harvesting, and of the building blocks re-
quired to put the approach to work. After that, we describe
the implementation of type harvesting in Squeak.

3.1 Core Ideas

Type harvesting for dynamic programming languages gath-
ers detailed type information from live systems, i.e., from
running code. As pointed out in Sec. 2, the level of detail re-
quired from type information may be very high. Thus, type
harvesting must be able to obtain type information prac-
tically at all points during execution—before or after the
execution of each particular statement or even bytecode in-
struction. Likewise, it must be possible to confine harvesting
activities to actually interesting parts of a software system.

We propose to fulfil these requirements by adopting an
approach that applies stepwise execution and harvests type
information at each step for the relevant system components.
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(THHarvester forCategories: ))
eagerLeastSpecific;
harvest: [ Greeter new greet:

bucket

#( #’Greetings’

’world’

1;

Listing 3: Sample type harvester invocation.

We call the set of all such components an acre. In Fig. 1,
the principles of type harvesting are illustrated.

Given an acre, the harvester can be instructed to gather
all type information found thereon. It initiates stepwise exe-
cution of the code under observation (index 1 in the figure).
The stepwise execution logic is instructed to branch to the
harvesting logic whenever it is about to execute a single in-
struction found on the acre. That way, the harvester is able
to collect all relevant type information at each particular
point in execution and store it in a data container called
bucket. The bucket holds mappings from bytecode instruc-
tions, method arguments, local variables, return values, and
instance members to their concrete types.

Once the harvesting logic has stored type information at
a particular step, the current instruction is executed (index
2 in Fig. 1). In case this leads to the next instruction being
found outside the acre—e. g., if the current instruction sends
a message to an instance of a class outside the acre—, the
next instruction is simply executed (index 3). As soon as
the next on-acre instruction is found, harvesting continues.

The illustration in Fig.1 shows a solution where partic-
ular instructions are executed after harvesting. This does
not have to be the case; it is equally possible to harvest af-
ter execution. It is however important to take into account
whether type crop represents results of the preceding or cur-
rent instruction when harvesting results are used further.

3.2 Type Harvesting in Squeak

We have implemented type harvesting in Squeak. In the
following, we will first describe the type harvesting API be-
fore presenting the implementation.

3.2.1 Type Harvesting Interface

Our type harvesting implementation provides an easy-to-
use API that allows for fine-grained crop selection. The
THHarvester class provides the entry point to harvesting
functionality in the form of an embedded DSL. A typical
invocation is shown in Lst. 3; it harvests type information
from the example used in Sec.2.1.

In the first line of the listing, a harvester is created; it
is configured for harvesting only methods contained in the
Greetings category. Effectively, this means that only the
information for the greet method will be harvested. The
next line instructs the harvester to be eager, i.e., to col-
lect all available type information. The various options for
this—and the messages that can be sent to THHarvester
instances to control this—are listed in Tab. 1.

The harvest: message starts harvesting. The block that
is passed with this message contains the code serving as the
entry point to harvesting. All crop is gathered in a bucket,
which is obtained in the last line of Lst. 3.

Depending on whether the harvester collects all or just
least specific types, the bucket message will answer a TH-
PolyBucket or THMonoBucket instance. The different buck-
ets can be queried for all the crop they contain. The TH-
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Figure 1: Illustration of the type harvesting approach.

| option message | harvest ... |

arguments method arguments types

topOfStack top-of-stack types

members instance member types

returns method return types

stackp stack depths

temps temporary (“local”) variable
types

allTypes collect all types occurring at the
above points, instead of just the
least specific type

eager all of the above

eagerLeastSpecific | all of the above, least specific
type only

Table 1: Options for THHarvester instances.

PolyBucket will always answer sets of classes occurring at
the respective points; the THMonoBucket, single classes.
Sending the query typeAt: 51 in: Greeter >> #greet:
to the bucket resulting from the example in Lst. 3 will yield
the least specific type (class) ever encountered prior to the
execution of the return bytecode instruction in the greet
method (ByteString). The same result can be obtained by
sending the query returnTypeFor: Greeter >> #greet:.

3.2.2 Implementation Details

The Squeak standard image comes with a bytecode simula-
tor that can be used to execute code in simulated execution;
i.e., there is an entire Smalltalk bytecode interpreter at im-
age level. The simulator also allows to intercept execution
at each step and apply some additional functionality.

For instance, the code shown in Lst. 4 interprets the code
already used in the example in Sec. 2.1 step by step. Prior
to the execution of each single bytecode instruction, it will
print the current method and program counter. Note that
this holds for all methods called during the execution of
the sample code: the complete dynamic extent of the first
argument block is traced.

The ctx argument passed to the second block (the “con-
text block”) in the example is an instance of MethodContext
representing the current execution context at the time the
block is invoked. This object provides access to all details
of the running code, including the call stack, method being
executed, program counter, local variables, etc.

thisContext
runSimulated: [ Greeter new greet:
contextAtEachStep: [ :ctx |
Transcript
show: ctx method printString;
show: ctx pc printString;
cr ]

‘world’ 1]

Listing 4: Simulated bytecode execution in Squeak.

In our implementation, the context block first checks if the
currently executed method is on the acre; i.e., whether it is
contained in one of the categories the harvester was created
for. If so, the harvester executes the actual harvesting logic,
filling the bucket with the desired crop.

The on-acre check needs to be performed at all bytecode
instructions, which obviously imposes a performance impact
on execution. To reduce the overhead, the harvester applies
a caching scheme that avoids expensive on-acre checks as
long as the method being executed stays the same. We dis-
cuss the performance impact of type harvesting in Sec. 4.

4. EVALUATION

Type harvesting allows for an extensive and fine-grained
collection of type information. We evaluate our approach
by comparing harvested with used types and by measuring
the required execution time for collecting dynamic type in-
formation. Detailed results are available online.?

4.1 Experimental Setup

We selected four different Squeak projects to analyse type
harvesting with respect to effectiveness and efficiency; i. e.,
how good the quality of harvested types is, and how long
harvesting takes. One of the four projects, AweSOM [9], is
a research project, namely a virtual machine for a Smalltalk
dialect (SOM Smalltalk) written in Squeak. There exist
implementations for SOM Smalltalk in Java, C, and C++.
The SOM Smalltalk standard library and an acceptance test
suite are shared between all four SOM implementations.

The remaining three projects are daily used software de-
velopment tools and parts of the Squeak standard distribu-
tion, namely the Smalltalk system browser, an XML parser,
and the SUnit unit testing framework.

The project properties are summarised in Tab.2. The

2To reviewers: the results are available via the PC chairs.
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AweSOM System | XML | SUnit
acceptance tests | unit tests | Browser | Parser
Classes 68 51 25 16
Methods 742 1,298 367 312
Tests 14 124 62 8 41
Method coverage 77.9% 77.6 % 33.0% | 32.0% | 64.0%

Table 2: Summary of project properties.
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Figure 2: Type sets for effectiveness evaluation.

complexity of all projects is typical of small- and mid-sized
Smalltalk systems and they include a total of 249 tests in-
cluding system, acceptance, and unit tests.

We measured harvesting effectiveness (see Sec.4.2) with
the help of AweSOM and its two independent test suites and
the efficiency (see Sec. 4.3) by profiling all five test suites in
normal, simulated and type harvesting mode. All experi-
ments were run on a MacBook with a 2.4 GHz Intel Core 2
Duo and 4 GB RAM running Mac OS X 10.6.4, using Squeak
version 4.1 on a 4.2.1b1 virtual machine.

4.2 Effectiveness

We evaluate the quality of harvested information by com-
paring the type sets of two independent test suites. Awe-
SOM possesses both unit tests, which verify the virtual ma-
chine functionality from the implementation perspective, and
acceptance tests, which reflect typical uses of the system.
The acceptance suite is written in SOM Smalltalk.

During the execution of both test suites, we harvest unit
test types (Tunit) as the measured set and acceptance test
types (Taccept) as the reference set. Since the acceptance
tests imply actual runs of the complete VM, they represent
“real-world” scenarios from the perspective of code coverage.
Comparing both types at each code element (i.e., member
variable, local variable, method return, top-of-stack at in-
struction) allows for a qualitative assessment of harvesting
results. After type harvesting, each code element has up to
two possible types leading to seven disjoint type relationship
sets as shown in Fig 2:

1. The code element was not covered by any test. No
type information is available.

2. Only the unit test type (Tunst) is available. No accep-
tance test has covered this element.

3. Only the acceptance test type (Taccept) is available. No

unit test has covered this element.
4. Both types are available and identical (perfect match).

5. Both types are available but Tuns: inherits from 7Taccept
(imperfect match).

6. Both types are available but Tgccept inherits from Tunit
(imperfect match).

7. Both types are not compatible to each other.

For good harvesting effectiveness, as much type informa-
tion as possible must be collected (coverage) including most
of the reference set (recall), and harvested types should be
identical or at least, via inheritance, related to each other
(precision). We define the three metrics (coverage, recall
and precision referring to information retrieval [23]) based
on the type relationships of code elements as follows (num-
bers denote the sets from above and illustrated in Fig. 2):

coverage = |Tunic available| ‘Uk:2,4,5,6,7k’
B - 7
|code elements| ’Uk:1 k!
recall — |Tunst and Taccept available| _ ‘UZ:4 k|
‘Taccept available| ‘UZ:?) k}|
precision = |Tunit = Taccept| — |4
|Tunit and Taccept available] |UZ . k:|

Coverage is the extent to which the system includes har-
vested type information. To maximise coverage, the first
and third set must be minimised as they do not include
type information from unit tests. Recall is the proportion
of harvested (measured set) and used-in-reality type infor-
mation (reference set). To ensure a high value the third set
should be as small as possible. Last but not least, precision
is the proportion of retrieved types that are actually identi-
cal®. This metric evaluates the quality of type matches. For
that reason, the sets 57 should be small in comparison to
set 4. Especially, the seventh set should be nearly empty as
types contained therein are incompatible to each other.

The results of our experiments are summarised in Tab. 3.
It presents the absolute sizes of all subsets and the computed
values for coverage, recall and precision.

Type Sets.

The sets (1)—(3) show that some portions of the system
are only partially covered. This was to be expected given a
method coverage of about 78 % (cf. Tab. 2). Moreover, it can

3At this point only perfect matches influence precision; a
discussion about imperfect ones can be found in Sec. 4.4
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| O T @B ] @ J6G)]®)]@ ] Coverage | Recall | Precision |
Member variables 22 0 0 62 0 2 0 74.42% | 100.00% | 96.88 %
Local variables | 97 38 1 29| 378 [ 10] 26 | 0 78.20% | 93.45% | 91.30%
Method return | 124 19 | 29 288 4 10 0 67.72% 91.24% 95.36 %
Top-of-stack at instruction | 1,320 | 400 | 340 | 3,950 | 57 | 104 | 1 73.10% 92.36 % 96.06 %
| All type information | 1,563 [ 457 [ 398 [ 4,678 [ 71 [ 142 [ 1 [ 7317% [ 92.48% | 95.63% |

Table 3: Type harvesting effectiveness. Numbers (1)—(7) represent type subsets (see Fig. 2).

be seen that the parts covered by unit or acceptance tests
only (sets (2) and (3)) have about the same sizes, which are
small compared to the total. Set (4), representing perfect
matches, is the most important one, and also the largest.
Sets (5) and (6) represent imperfect matches. Even though
their overall number is low, a size comparison shows that
unit tests (set (6)) deliver less specific classes twice as often
as acceptance tests. This indicates that unit tests tend to be
more fine-grained in that they test more alternatives than
might be needed in “real-world” acceptance test scenarios.
Looking at the detailed results, it can be noted that the same
combinations of classes repeatedly occur: e.g., OrderedCol-
lection and SequencableCollection (a test checks more
than just the actually used collection), or False and Boolean
(a test does not cover one conditional branch). These cases
are good suggestions for providing more and better tests.
The seventh set is ideally empty. In our case, one con-
flict was found, where the unit test harvested a ByteSymbol,
and the acceptance test, a SOMClass. The two are unrelated
save their inheritance relationship to Object. Closer inves-
tigation of the code revealed that the unit test used a mock
object, yielding a type that would never be used in practice.

Coverage Evaluation.

The coverage results in Tab.3 are close to the overall
method coverage of roughly 78 % obtained during normal
test execution (cf. Tab.2). This is acceptable, as type infor-
mation could be harvested for large portions of the system.

The observed difference of up to 10 % in the results are due
to differences in computing coverage. In particular, cover-
age of member variables is obtained differently than that of
methods. Method return values may be uncovered because
non-local returns occur. Finally, so-called quick methods
(usually, simple getters) are used to optimise performance:
such methods are flattened into simple bytecode instructions
and thus do not appear to the harvester. AweSOM has over
100 of such quick methods. Their return types can easily be
derived by observing the types of the members they return.

Evaluation of Recall and Precision.

Recall and precision are crucial for evaluating harvesting
quality, as they represent types used in reality, and the ac-
curacy of identified matches. The results obtained for these
metrics are very good, at over 90 %. For recall, this means
that most of the types used in reality are actually found
by unit tests. For precision, we can conclude that when a
type is harvested in a unit test, it will very likely occur in
real code. Especially this metric should be close to 100 %,
as such a high value indicates to developers that harvested
type information is in accordance with reality. Although
both metrics do not completely reach 100 %, they are very
satisfactory. They can be improved by providing more tests.

Summary.

All three metrics—coverage, recall, and precision—should
yield high values to ensure good quality of results. In par-
ticular, recall and precision should be close to 100 % as they
best reflect in how far harvested type information is in ac-
cordance with reality. On average, for all harvested types,
we obtain a coverage of 73.17% (i.e., all possible types), a
recall of 92.48 % (i.e., overlapping of harvested types), and a
precision of 95.63 % (i.e., identically harvested types), which
underlines applicability and feasibility of our approach.

4.3 Efficiency

We evaluated the efficiency of our implementation by run-
ning four Squeak projects and measuring their performance.
Tab. 4 summarises the required absolute run-times and re-
lated execution overheads. Normal execution by the VM is
in the range of some seconds for all four projects. Running
the code in simulation mode slows it down by 140-270 times,
arriving at several minutes’ execution time. The additional
overhead induced by harvesting is comparatively low, with
some 40 % on average (the XML parser project exhibits, due
to its very small execution time, a larger impact of harvest-
ing “noise” than the other projects).

As type harvesting requires fine-grained stepwise execu-
tion, the resulting overall execution time in harvesting mode
is on the scale of minutes. One typical application scenario of
type harvesting is code generation, where performance is not
crucial. Another scenario, however, is program comprehen-
sion, where quick feedback might be important. Therefore,
we consider the investigation of quicker implementations—
e. g., selectively simulating bytecode execution for points of
interest only—an important area of future work.

4.4 Discussion

In this section, we comment on various aspects of the ob-
servations made above, and also discuss the approach.

Threats to Validity.

Good test coverage is a core requirement for our approach.
We argue that the observed 78 % are sufficient, as the ac-
ceptance test suite used in the evaluation has been used
with several SOM implementations so far and challenges the
VM implementation in several regards. The very high recall
value also shows that the unit tests largely cover the accep-
tance tests; their quality is thus rather high. The remaining
uncovered 22 % of AweSOM largely consist of code not used
in reality; e,g., legacy implementation artifacts or helper
methods for debugging purposes.

We have evaluated effectiveness in the context of only one
project. However, this particular project is very well suited
for such a task for three reasons. First, there are two inde-
pendent test suites provided by different authors. The ac-
ceptance test suite consists of a collection of SOM Smalltalk
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AweSOM System XML SUnit
acceptance tests | unit tests | Browser | Parser

normal execution 3.5s 2.5s 0.8s 0.005s 3.3s
simulated execution 500.3s 438.3s 114.0s 1.6s 657.8s

times slower than normal 143x 175x 143x 272x 199x
type harvesting 704.0s 603.0s 128.0s 5.4s 727.8s

times slower than normal 201x 241x 160x 899x 220x
times slower than simulated 1.41x 1.38x 1.12x 3.29x 1.10x

Table 4: Summary of run-time measurements and overhead.

applications that are executed by the VM: they are real-
world code whose execution involves the entire VM. Next,
the domain of a VM implementation brings about several
different types. Finally, there exist other implementations
of the SOM VM, even in statically typed languages (Java
and C++4). Still, regarding other application domains for
further studies is an important aspect of future work.

Efficiency was assessed using four different projects; the
weak performance results are mostly due to simulated step-
wise execution. We do not expect the observed performance
characteristics to differ when other projects are used.

The recall and precision metrics could easily be manip-
ulated to reach 100%. For recall, all code elements could
be assigned the type Object; for precision, similar “hacks”
are conceivable. However, such “optimisations” would make
the respective other metric drop to almost zero. We thus
regarded only perfect matches as relevant for precision and
dealt with imperfect matches differently. For the sake of
completeness, we would like to point out that Object was
harvested as least specific type in only 2.3% of all cases.
Upon closer observation, these cases are unproblematic, e. g.,
when elements in collections may have arbitrary type.

Improving Precision.

Although precision is rather high already, we have only
regarded perfect matches (set (4)) so far to obtain this value.
However, imperfect matches with inheritance relationships
(sets (5) and (6)) might be considered worthwhile as well
depending on application scenarios.

First, if a less specific type is harvested from a unit test
(set (6) is relevant), the result can still be used for pro-
gram comprehension. It indicates that all subclasses used
in reality could occur at the observed code entities; e. g., if
SequencableCollection is harvested, and OrderedCollec—
tion or SortedCollection are used in reality.

Second, if acceptance tests deliver less specific types than
unit tests (set (5) is relevant), it can be guaranteed that the
protocol harvested from acceptance tests is always valid for
subclasses. This is important for code generation, since the
least specific type can safely be used for interfaces.

Taking these usage scenarios into account, we can obtain
higher precisions of 98.5% (with set (6), for program com-
prehension), or 97.0 % (with set (5), for code generation).

Increasing Performance.

Simulated bytecode execution allows for collecting fine-
grained type information, but it induces a significant slow-
down. The bottleneck is however simulation itself, not har-
vesting. The latter has a modest overhead. Future work will
investigate alternative approaches, e. g., inserting hooks into
the VM'’s bytecode interpreter itself. Also, the observed per-

formance issues will likely be mitigated as overall run-time
environment performance increases. For Squeak, a just-in-
time compiler named Cog* is currently being developed that
promises significant overhead reductions. We are collabo-
rating with the author to improve its robustness, which is
currently not sufficient to serve as the basis for our work.

It needs to be noted that it is not necessary to always
run a full test suite to obtain type information. In fact,
there exist approaches that adopt incremental execution of
relevant tests as those parts of an application covered by
them are changed [19, 21]. Integrating type harvesting with
such approaches is another subject of future work.

Scalability to Other Languages.

A type harvesting implementation requires a fine-grained
stepwise execution mechanism such as Squeak’s simulation
engine. Some languages provide support for similar tech-
niques; e. g., Python’s interpreter hook, or Java’s debugging
interface (which, given that Java is statically typed, could
be used for Groovy). In other languages that do not sup-
port such an approach, extensions of the virtual machine or
meta-programming might be applied.

5. RELATED WORK

We restrict the discussion of related work to approaches
that allow for obtaining type information in dynamically
typed languages. Consequently, there are two main cate-
gories to consider: type inference and run-time type col-
lection. Apart from these two, pluggable types [3, 8] are
worth mentioning, but since they require developers to pro-
vide type information, we do not discuss them here.

Type inference for dynamically typed programming lan-
guages has been researched early on [22]. More recent ap-
proaches [4, 2, 1, 20, 16, 6] mostly focus on obtaining type
information for interfaces (i.e., method arguments and re-
turn types) and member as well as local variables. They do
not deliver the fine-grained results type harvesting offers.
Moreover, their precision is sometimes lower [20, 16].

Run-time type collection is scarcely used in a way that al-
lows programmers to exploit its results. Type feedback [11]
is a VM technique that drives just-in-time compiler optimi-
sation decisions based on dynamically collected type infor-
mation. This information is confined to the VM. Type infer-
ence for the Ruby programming language [6] has been aug-
mented by profile-guided typing [5]. This approach requires
the code under observation to be instrumented—unlike type
harvesting, which leaves code on the acre untouched. As
pointed out for type inference approaches above, type infor-
mation is also not as fine-grained as with harvesting.

4yww.mirandabanda. org/cogblog
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The Hermion [18] IDE extension for Squeak is designed for
providing developers with additional run-time information
during static source code navigation. Hermion, among other
things, improves IDE usability by exploiting dynamic type
information, effectively resolving navigation issues related
to late-binding. For instance, Hermion restricts senders and
implementors lists in Smalltalk to relevant run-time types
only. To that end, it permanently collects method signatures
and receiver types during normal program use. Conversely,
type harvesting can be executed on demand, and harvested
information is more extensive.

6. SUMMARY

We have introduced type harvesting, a practical approach
to obtaining type information in dynamically typed pro-
gramming languages from stepwise execution of code. Type
harvesting yields excellent results with high precision, which
can be exploited in various tasks, such as code generation
and program comprehension.

Ongoing and future work are concerned with performance
improvements as well as putting type harvesting to use in
the aforementioned domains. Moreover, we are investigating
how harvesting results can be used for other purposes, such
as detection of type violations and potentially dead code or
automated suggestion of test cases.
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