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ABSTRACT
Presizing and pretransitioning are run-time optimizations that re-
duce reallocations of lists. These two optimizations have previously
been implemented (together with pretenuring) using Mementos in
the V8 Javascript engine. The design of Mementos, however, relies
on the support of the garbage collector (GC) of the V8 runtime
system.

In contrast to V8, dynamic language runtimes written for the
GraalVM do not have access to the GC. Thus, the prior work cannot
be applied directly. Instead, an alternative implementation approach
without reliance on the GC is needed and poses different challenges.

In this paper we explore and analyze an approach for implement-
ing these two optimizations in the context of GraalVM, using the
Python implementation for GraalVM as an example. We substanti-
ate these thoughts with rough performance numbers taken from
our prototype on which we tested different presizing strategies.
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1 INTRODUCTION
From the programmer’s perspective, one of the biggest differences
between managed and unmanaged languages is the level of con-
trol over when and how memory for an object is allocated and
structured. In contrast to unmanaged languages, many dynamic
programming languages offer only high-level, resizable, and un-
typed list-like data structures.

The optimization of such data structures can make up a signifi-
cant portion of the work of a just-in-time (JIT) compiler and the
performance benefits provided by it [5]. One well-known optimiza-
tion applied to lists in multiple virtual machines (VMs) for dynamic
languages are storage strategies [2, 6, 9], which “dynamically opti-
mise collections whose elements are instances of the same primitive
type”[2] by avoiding boxing these elements.

In this paper we focus on two additional optimizations that aim
to improve the efficiency of these data structures further: presizing
and pretransitioning. As our current GraalPython prototype only
works for lists, we mainly discuss lists and not arrays, vectors, or
other similar structures. But we believe our findings to be applicable
for other collection types also.

Presizing. As the size of lists that the VM manages for the pro-
grammer changes over time, part of the execution time is spent
growing or shrinking these structures according to their usage.

To avoid some of this overhead, some list implementations allow
programmers to control their initial size. Appropriate size values,
however, are often unknown at development time and are usually
only used when resizing is a significant performance overhead.
Therefore, automatic resizing is a trade-off between ease of pro-
gramming and run-time performance.

Presizing aims to lessen this negative impact on the performance
by propagating the observed list-sizes back to their original posi-
tions in the program (allocation sites), which we will expand on in
section 3.

Pretransitioning. The size of a list is not the only property that
can change over time, the types of objects stored inside it can also
vary. Similarly to automatic memory management, the incurred
lookup overhead is a performance disadvantage which, in turn,
improves the programming experience by allowing collections to

41

https://doi.org/10.1145/3397537.3397564
https://doi.org/10.1145/3397537.3397564


<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Henning, Felgentreff, Niephaus, and Hirschfeld

contain dynamically typed objects. To reduce the footprint and
improve operations on lists of primitive values, many dynamic,
object-oriented runtimes use the aforementioned storage strategies
that store values without boxing, thereby increasing run-time per-
formance by reducing the number of indirections incurred when
performing computations on them.

The downside of storage strategies is, that they only work as
long as all objects in a list are supported by the active strategy. If
a floating-point number is added to a list of integers, the storage
strategy has to be changed and the entire list has to be converted
to a different format. Such a conversion is called transition and can
be a costly operation on large lists. Pretransitioning aims to avoid
these transitions, as laid out in section 4.

2 ALLOCATION-SITE-BASED
OPTIMIZATIONS

The closest related work we are aware of was done by Clifford et
al. [3] on the V8 VM. They extended memory management with
Mementos, short-lived objects used to associate lists with their
allocation sites, i.e. the original position in the program where they
were declared. The information gathered this way would then be
used to optimize future allocations of lists from the same allocation
site. Their main focus was on another optimization: pretenuring.
This optimization reduces garbage collector (GC) times by using the
Memento information to speculate on objects that were likely to
survive the next GC cycles. Such objects are then directly allocated
in the older generation.

Pretenuring is a GC-specific optimization and GraalVM lan-
guages [10] do not have this level of access to the GC. Therefore,
we do not consider pretenuring in this work.

The other two optimizations discussed by Clifford et al. are the
ones we target in this paper. While pretransitioning was discussed
and evaluated thoroughly, presizing was only discussed briefly and
the evaluation is only anecdotal. The paper mentions that their
prototype “was able to learn the optimum allocation size for the
important sites in the very sensitive DeltaBlue benchmark without
prior knowledge, and preliminary measurements indicated a slight
decrease in the maximum overall heap size in Octane, with no
other performance loss”[3]. We also found no further indication
that presizing was used in V8.

3 PRESIZING
Presizing relies on the assumption that lists from the same allocation
site will have similar resource consumption over time. Hence, when
a new list is created, the runtime environment does not allocate
a predetermined static number, but instead uses the previously
observed sizes of the list to compute the optimal size to allocate.

While this optimization should have little to no effect on lists
that are used infrequently and stay small, it can save a significant
number of resizing operations for lists that grow multiple times and
are used in a hot portion of the code. For example, a list allocated
with size 4 that grows by a factor of 2 whenever it hits its limit will
grow 12 times if 10.000 elements are added to it. With presizing,
the number of operations needed to reach the optimal size can be
reduced significantly or even eliminated entirely.

To achieve this we need to answer how, given the history of all
sizes a specific list had during the execution of a program, do we
determine the optimal presize? There is no straightforward answer
that works in every scenario.

Presizing works well for lists at allocation sites that have sta-
ble list-sizes over time because the presize can approximate the
maximum size and eventually eliminate all resizing operations.

The challenge in determining a reasonable presize value comes
with lists that do not reach a stable size. Consider Listing 1 as an
example. Whether the appropriate presize is closer to 1 or 10000
depends on the likelihood of flag being true. If we choose to not
modify the presize, for each time flag is true a could grow over 10
times using the example from above. Whereas if we increase the
presize, for each time flag is false we would unnecessarily allocate
(presize − 1) ∗ size(1) bytes. While finding an optimal solution
remains an open question, we discuss what we have found so far
in section 6.

But, even if a theoretically optimal solution could be found, the
applicability also depend on the profiling information available. We
believe that the variables relevant for profiling are:

• The number of times the list grows
• The number of elements the list contains at most, at least,
and on average

• The size of the list when it is garbage collected, including
how much of it was empty

Whereas the most important ways the performance could be
influenced to approach an optimal solution are:

• Presize, i.e. initially allocated size
• Growth factor, i.e. by how much does the list grow when its
allocated size is exhausted

var a = []
if flag:

for i in range(0, 10000):
a.append (1)

else:
a.append (1)

Listing 1: Simple example of branches impacting list-size for
the same allocation site depending on external factors

4 PRETRANSITIONING
Pretransitioning relies on the same speculation as presizing: lists
from the same allocation site will likely contain the same types of
objects over time. For example, Listing 2 shows the unoptimized
storage strategy transitions an list might go through in GraalPython.
In this example, as the list will always end up in the generic object
strategy, pretransitioning, i.e. initializing it with the object strategy
instead of empty, would avoid 3 transitions, with the last 2 in partic-
ular being expensive, as large lists need to be copied in both cases.
While this example is straightforward, the question remains of how
to handle cases where a list only transitions sometimes, but stays
homogeneous in other cases. Which variables should be weighted
to make this decision?

While pretransitioning is straightforward when no branches
are involved, a solution that does not consider them will have an
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var a = [] # Initialized with Empty strategy
for i in range(0, 10000):

a.append (1) # Transition to 32-bit Integer strategy
# on first execution.

a.append (1.0) # Transition to Double&Integer strategy
a.append('1') # Transition to Object/Generic strategy

Listing 2: Storage strategy transitions in GraalPython

var a = []
if flag: # While flag is true

a.append (1) # a will use an Integer strategy
else: # If flag is false once a will use

# the Object strategy from then on
a.append(Object ())

if flag:
sum(a) # Will run fine on the Integer strategy

# but will be slow on the Object strategy

Listing 3: Example of pretransitioning adversely affecting
performance due to branching

adverse effect on performance, as illustrated in Listing 3. One way
to avoid this scenario could be to consider branching information
collected during interpretation and pretransitioning to the more
likely branch. This is speculative however, as this has so far proved
to be too complex to implement in our prototype.

Another answer to this problem might be to consider this exam-
ple as unlikely and thus accept the decrease in performance.

5 PROTOTYPE FOR GRAALPYTHON
Building on the idea of Mementos, we implemented allocation-site
tracking in GraalPython1 allowing us to link the information of
a list resizing operation back to its allocation site. Based on this
information, we conducted preliminary experiments with different
strategies for determining the presize. Our code and benchmarks
are available on Github2.

In this section, we will discuss the difference in implementation
strategy between our approach and the one of Clifford et al. as well
as the limitations of our proposal.

5.1 Tracking Allocation-sites
In contrast to the V8 VM, we are working within the GraalVM
ecosystem, which relies on a Java VM for many of its features, in
particular for memory management and garbage collection. Sub-
sequently, where Clifford et al. implemented their allocation-site
tracking by storing information in Mementos that were managed
in part by the GC, we do not have this level of access to the GC and
cannot easily implement this strategy.

Instead, we decided to instrument the list creation and append
operations of Python instead. We can thereby observe the size of a
list on every append that is called on it and use this information to
compute the presize for all other instances sharing its allocation
site.

While Clifford et al. paid particular attention to the performance
implications of the book-keeping added by Mementos through
their allocation strategy and GC cycles, our approach eliminates
its book-keeping cost by only doing it during interpretation. We
1https://github.com/graalvm/graalpython
2https://github.com/hpi-swa-lab/graalpython/tree/morevms/2020-presizing

Figure 1: Observed list sizes at DeltaBlue allocation sites, ex-
cluding list with fewer than 5 elements. Median in red and
mean as black dots.

do no book-keeping in compiled code and assume that list-sizes
are stable by the time the program is compiled, which generally
happens after a code segment has be executed 1000 times.

5.2 Limitations of this Approach
As we only track the allocation site and not the allocation call
chain, our approach does not work for abstractions built on top
of resizable lists that provide a different interface. For example,
Smalltalk’s OrderedCollection type is written in Smalltalk itself and
holds primitive arrays in a field, so the same allocation site would be
seen for all arrays used in OrderedCollections, regardless of where
the OrderedCollection was instantiated. This means that high-level
collection libraries cannot benefit from our approach. This limits
the applicability of our solution to other languages, as we realized
when we tried to implement presizing for GraalSqueak [8].

Secondly, our current approach cannot observe branches in the
control flow of the program and therefore cannot avoid performance
degradation like the one exemplified in Listing 1. This, however, is
also a limitation of the prior work that we also have yet to solve.

6 PERFORMANCE ANALYSIS
The first indications on the performance impact of presizing and
pretransitioning look promising. In order to not rely on micro-
benchmarks, we chose the DeltaBlue benchmark, which tests the
performance impact for small and large lists simultaneously.

6.1 DeltaBlue
DeltaBlue is an incremental constraint hierarchy solver [4] orig-
inally developed for Smalltalk, which has been implemented in
several languages and thus can be useful for cross-languages bench-
marking, as suggested by Marr et al. [7].

6.2 Allocation Sites in DeltaBlue
As the solver relies on lists for storing and evaluating its con-
straints, there are several performance relevant allocation sites
in the source code. Allocation sites are identified by their line num-
ber in the benchmark source code3. Figure 1 illustrates the list

3Available here: https://git.io/Jve2G
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sizes observed through the instrumentation of our prototype when
running DeltaBlue 30 times with an input size of 5000.

Figure 1 provides several insights and illustrates, why there isn’t
an obvious answer to what the optimal size for presizing might be.
There are several observations we would like to make:

• Presizing works fine for lists that have stable sizes, like lines
32 and 360.

• All other allocations sites have a bottom-heavy distribution,
meaning that there are many small lists and some very large
ones.

• In particular lines 445 and 558 have local maxima, where
there are many large lists that are still smaller than the max-
imum size.

• All lists other than lines 32 and 360 approximately reach the
maximum size given as the benchmark input (5000).

As expected, the optimization is straightforward and useful for
lists that reach a stable size. But lists that vary widely present an
interesting trade-off: choosing a small presize limits the usefulness
of the optimizations, but choosing too large a presize can explode
the memory usage of the program. In fact, at the time of writing,
our version aborts with an out-of-memory error, when we run the
benchmark with input sizes larger than 8000. We will explain which
strategies we tested so far for weighing this trade-off below.

6.3 Optimization Potential
It is important to point out that transitions as well as resizing
involve copying the list, which entails performance overhead pro-
portional to the list size. Hence, the performance gains of presizing
and pretransitioning are proportional to the size of the list and the
number of times it would have been resized or transitioned.

In addition, avoiding resizing and transitioning can help other op-
timizations to be more effective. For example, allocation removal [1]
aims to avoid allocations of objects that are only short-lived and
do not escape outside the scope of the compilation unit. The Graal
compiler is able to perform allocation removal on small lists, but
this is limited by the kind and number of operations performed
on them. Any list larger than the default initial size will require
resizing and potentially transition operations. These operations
make it less likely that the list will be allocation-removed, because
they will create branches in the resulting compiler graph. With
presizing and pretransitioning, however, we are able to avoid these
operations, which removes these branches, which in turn increases
the probability that some lists can be allocation-removed.

6.4 Tested Presizing Strategies
Naive strategy. The easiest solution for testing the achievable

performance without regard for the increase in memory consump-
tion is to take each newly observed maximum size as the new
presize. Our naive strategy works similarly, except that we inhibit
the growth of presize: we only increase the presize if the current
size has been exceeded on 8 occasions. The resulting presizes per
allocation site are equivalent to the maximum values in Figure 1.

Promisingly, we observed a significant impact on performance in
the DeltaBlue benchmark with the size configuration at 5000. The
average run-time speed-up was by a factor for 1.37, the maximum
speedup observed (shortest run-time with optimizations versus

shortest run-time without) was a factor of 3.7. This was at the cost
of memory consumption (increased by a factor of 2.5) and slower
warm-up by a factor of 0.8.

Naive strategy with shrinking. Without shrinking, our naive strat-
egy approximated the maximum list-size over time and never went
back. Our next step was to shrink the estimate when the list was
observed to be smaller, again inhibited by a factor of 8. This did not
produce satisfying results, most likely because we have no way of
observing the final size of the list, but as discussed are notified of
every append operation performed on it. Smaller list-sizes are thus
over-represented in the history of all sizes.

We experimented with different growth and shrinking factors,
but did not find any way to balance the presize with this approach.

Average size strategy. When only saving the presize for each al-
location site and reducing or increasing it did not produce balanced
results, we decided to record all sizes encountered at each allocation
site to determine the mean size. While Figure 1 was created from
this data, we have yet to measure the performance characteristics of
this strategy. To our best knowledge though, it seems like that the
mean would still be too large, but the median size looks promising
and will be the subject of our next experiments.

Summary of our current insights. As observed with the naive
strategy, presizing can have a positive effect on performance, but
needs to be considered carefully to find the sweet-spot, where we
maximize the performance benefits while minimizing the impact
on memory consumption.

Further research is needed for any definite answer in this regard.

7 CONCLUSION & FUTUREWORK
We presented preliminary evidence that pretransitioning and presiz-
ing can be implemented in GraalVM languages using our approach
and provide performance benefits for certain applications. Our
naive solution shows a speedup of 37% in the DeltaBlue bench-
mark, at the cost of a 150% increase in memory consumption and
20% longer warm-up times. Micro benchmarks for the presented
code snippets also showed smaller compiler graphs with fewer
allocations.

While these initial findings are promising, more work is needed
in order to find an optimal strategy for increasing performance
while decreasing the additional memory consumption. In particular,
wewant to leveragemore of the variables discussed in subsection 5.1
and different heuristics for determining the presize. Increasing the
mentioned growth factor could be a good way to avoid exploding
memory consumption while still reducing the number of resizing
operations needed for lists that infrequently get very large.

Finally, the impact of our optimizations needs to be evaluated
with additional benchmarks.
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