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ABSTRACT

Some language runtimes such as Java Hotspot or the virtual ma-
chine for Squeak/Smalltalk support edit-and-continue debugging,
which allows developers to make changes to a program while it
is running. This capability is especially useful for recovering from
errors in a program. However, it is not supported by CPython, the
reference interpreter for Python.

In this paper, we demonstrate how edit-and-continue debugging
can be integrated into CPython in just under 300 lines of code.
We evaluate performance implications, demonstrate how this style
of debugging improves the programming experience, and discuss
limitations of our approach.
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1 INTRODUCTION

Debugging, the process of finding and fixing faults in computer
programs, is an ever-present part of programming. There is a mul-
titude of different techniques and tools that aim to improve the
debugging workflow or to offer novel ways of reasoning about the
program code. Back-in-time debugging [7], for example, allows the
programmer to observe when and where a variable was modified
and to go back in time to the moment an erroneous modification
was made.

Many of the theoretically available debugging methods are un-
fortunately only available in a very select pool of programming
languages. The actual choice a programmer has in choosing novel
debugging techniques is thereby limited in practice. The rudimen-
tary debugging support implemented by most languages are step-
and-continue-debugging, printf-debugging, and post-mortem debug-
ging [5, 9].

Some interactive debuggers support a more powerful technique:
edit-and-continue (E’N’C) debugging (also known as edit-and-resume
debugging, online-debugging, or fix-and-continue debugging). E'N’C
debugging is, for example, available in Squeak/Smalltalk, Java Vir-
tual Machine (Jvm), and in JavaScript by browsers supporting the
Chrome debugging protocol. It refers to the ability to halt a pro-
gram, exchange parts of the program code (hot code patching), and
continue the execution without restarting the entire application.
Reducing the number of restarts necessary can save developers a
lot of time, particularly when debugging problems that require cum-
bersome setup or time extensive computations before they occur.
We refer to this scenario as recovering from an error. In addition,
E’N’C debugging can also be helpful in use cases like program-
ming against a novel API and where mistakes occur frequently. If
the regular workflow would be to restart repeatedly making small
modifications each time, E’N’C can be a faster option. We call this
scenario exploratory programming [12, 13].

Python is among the languages that do not support E'N’C debug-
ging. In previous work [8] we added support for E'N’C debugging to
PyPy, an alternative interpreter for Python. The modifications made
to PyPy in order to support E'N’C were minor, which raised the ques-
tion of how difficult it would be in other Python implementations. In
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this paper, we will answer this question for the reference implemen-
tation of Python, by presenting our light-weight implementation
of E’N’C debugging in CPython. Our implementation allows for
functions to be exchanged at run-time and for the execution to
restart at the start of the modified function. Our implementation
passes the CPython test suite and has performance penalty of at
most 23% in the Python Performance Benchmark Suite.

The remainder of the paper is structured as follows: We intro-
duce relevant technologies and concepts in Section 2, describe our
approach in Section 3 and our implementation of E’'N’C in CPython
in Section 4, evaluate our approach in Section 5, compare our work
to related work in Section 6, discuss future work in Section 7, and
close in Section 8.

2 BACKGROUND

CPython. CPython is the reference implementation of Python
and is the most widely used Python runtime. CPython is written in
C and shipped with many Linux distributions. If you do not know
which Python runtime you are using, you are most likely using
CPython.

As CPython is the reference implementation, most other imple-
mentations follow its evolution. IronPython written in C#, Jython
written in Java, or PyPy written in RPython are some of the other
important Python implementations that aim to achieve full compat-
ibility with CPython. Thus, features introduced to CPython have a
rippling effect on most Python runtime environments and if E'N’C
debugging was added to CPython it would likely be adopted by the

other implementations as well.

Debugging in Python. Python includes the pos package, which
implements a debugger with a command line interface (CLI). 0B
implements stepping, breaking, variable inspection as well as as-
signment, and can evaluate Python code just like the regular Python
read-eval-print loop (REPL). To use PDB, programmers import the
package and can, for example, set a breakpoint via the breakpoint()
builtin in the code and then start the program with the regular shell
command. The program then runs as it would regularly until it runs
into the breakpoint where it halts and presents a REPL. Users can
modify variable values at will and evaluate statements, but if they
want to change any of the code of the program they subsequently
need to restart this process from the beginning. This cumbersome
interaction, as well as the rudimentary tool support (no auto com-
pletion or graphical interface), is one of the reasons why printf
debugging is still one of the most common ways to debug Python
programs’.

Debugging with extended tool support. The runtimes of other
languages like Squeak/Smalltalk or Java Hotspot give program-
mers more options when debugging. In Java, the program is started
in a separate debugging mode (which is typically slower) during
which stepping, variable inspection, and variable modification can
be used just like in Python. Java is typically not developed via
command-line, but instead through sophisticated integrated devel-
opment environments (IDEs) such as Eclipse or Intelli] IDEA. When
function code is modified during debugging and saved, the IDEs

1"[O]ften the quickest way to debug a program is to add a few print statements to the
source: the fast edit-test-debug cycle makes this simple approach very effective"[15]
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automatically recompiles the modified code and patches it into the
currently executing program, restarting the modified function if it
was currently being executed. For most modifications, restarting
the entire application is not necessary.

Squeak/Smalltalk goes even further. Any uncaught run-time er-
ror opens its debugger, which is capable of changing class and
method definitions on the fly. A possible workflow in Squeak/
Smalltalk is debugger driven development in which parts of the
implementation are left unfinished and are then implemented dur-
ing program run-time as the debugger pops up because, for example,
a method is missing.

These more interactive development styles give the programmer
more flexibility during development and debugging.

Resumption model. E’N’C in Squeak/Smalltalk relies on the re-
sumption model of exception handling [8]. But Python uses a dif-
ferent approach:

“Python uses the "termination” model of error han-
dling: an exception handler can find out what hap-
pened and continue execution at an outer level, but
it cannot repair the cause of the error and retry the
failing operation (except by re-entering the offending
piece of code from the top). When an exception is
not handled at all, the interpreter terminates execu-
tion of the program, or returns to its interactive main
loop” [14].

In Squeak/Smalltalk, any uncaught run-time error opens the debug-
ger where the problem can be fixed and execution be resumed at
the start of the method. Whereas in Python, unless an exception
was previously anticipated, the state we are interested in is already
gone when the debugger is invoked and thus, we cannot recover
from the error.

The termination model of exception handling is one reason for
the limitations of our prototype, which we discuss further in Sec-
tion 5.5.

3 APPROACH

For supporting E’N’C debugging, the CPython interpreter needs to
be extended in the following ways:

First, a prerequisite for E’'N’C is the ability to reset an execution
context or frame in the interpreter and to patch in a new version
of the function provided by the user. This can be done by either
modifying existing frames or by creating new copies of them.

Second, a new control-flow exception is needed, which can be
used to signal that a specific frame should be restarted in the inter-
preter. It may hold further information such as source code in case
the frame should also be patched with the new code.

Third, the interpreter loop needs to know how to handle these
kinds of exceptions and needs to facilitate the actual frame restart-
ing and patching.

Lastly, new tooling is required to make E’N’C available to the
user. Since Python already comes with its own debugger, we suggest
adding commands to it through which the new E’N’C capabilities
can be accessed.
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PyObject =*
PyEval_EvalFrameEx (PyFrameObject xf, int throwflag)

PyThreadState *tstate = PyThreadState_GET();
return tstate->interp->eval_frame(f, throwflag);

}

PyObject =x
PyEval_EvalFrameRestartable (PyFrameObject =*f,
int throwflag)

{
PyThreadState *tstate = PyThreadState_GET();
PyFrameObject =*backup;
PyObject xretval;
PyCodeObject *new_code;
/7 ...
while (1) {
backup = make_frame_backup(f);
retval = tstate->interp->eval_frame(f, throwflag);
new_code = NULL;
/...
if (retval != NULL ||
I!PyErr_ExceptionMatches (PyExc_RestartFrame) ||
lis_matching_restart_frame(f, &new_code))
{
/7
return retval; // common case
}
if (new_code != NULL) {
/...
backup->f_code = new_code; // patch backup
}
f = backup; // try again with backup
}
3

Listing 1: CPython’s PyEval_EvalFrameEx and our replace-
ment function PyEval_EvalFrameRestartable. Code for ref-
erence counting omitted for brevity.

4 IMPLEMENTATION

We have implemented our approach in 293 lines of code (LoC)
(according to git diff) in a branch of CPython 3.7.0 (commit 1bf9cc5,
tag v3.7.0). All sources including our modifications are available on
GitHub?,

The main part of our modifications is the PyEval_EvalFrameRestartable
function (see Listing 1). We introduced this function as a replace-
ment for PyEval_EvalFrameEx, which is the key function responsible
for executing frames in CPython. The function only takes a pre-
constructed frame and a flag as arguments, has two lines of code,
and is therefore a good location for adding E’N’C capabilities at
minimal implementation cost.

Our replacement function, on the other hand, also manages a
backup, a return value, as well as a code object and executes the
frame in a while-true loop. Before evaluating the frame, a backup
copy of the frame is created. Although this backup is always allo-
cated and consequently negatively affects performance, working
with a copy of the frame was easier than resetting the existing
frame object, which proved difficult. This approach has the added
advantage of allowing us to recover the original arguments which
could have been modified during the execution of the frame. As a
consequence of these copies, however, our function also needs to
consider the reference counting GC.

Zhttps://github.com/hpi-swa-lab/cpython/tree/edit-and- continue- debugging
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In the common case, eval_frame returns a value which is the
returned by our function. If the return value is nuLL, we check for a
PyExc_RestartFrame and whether the current frame is the target of the
exception. Only then, a new code object is installed in the backup
frame if any and finally, the current frame is replaced by the copy
before the next iteration of the loop is executed.

With this infrastructure, it is possible to throw a new RestartFrame
exception in Python code. This exception requires a target frame
object as argument which will then be restarted. To also patch
this target frame, a code object or function can be provided as an
optional argument.

To enable user interaction, we extended ppB with a new restartf
command. This command restarts the current frame of the debug-
ging session by default. Instead of having to find the correct frame
object in the call stack, a parent frame can be restarted by providing
the number of frames in between that frame and the current frame
(e.g., “2” is the parent of the parent frame). restartf also supports a
second argument (a code object or function) for patching the tar-
get frame. Internally, the new poB command throws an appropriate
RestartFrame exception.

5 EVALUATION AND EXPERIENCE REPORT

Our prototype adds E’'N’C debugging capabilities to CPython. In
this section, we quantify the performance penalty imposed by our
implementation and show the experience of using E'N’C debugging
in its current form. Finally, we demonstrate how our modifications
can also be used for tail call optimization in Python.

5.1 Benchmarks

For assessing the performance impact of our modifications to CPython,
we use the Python Performance Benchmark Suite version 0.7.0° with
--rigorous and --track_memory for the memory consumption bench-
mark. We compare trunk CPython 3.7.0 (commit 1bf9cc5, tag v3.7.0)
with E’'N’CPython? (commit ff918a2, branch: edit-and-continue-
debugging) which contains the changes discussed in Section 4.
Both versions were compiled with the following flags:

--enable-optimizations
--with-1to

--with-computed-gotos

Benchmarks were run on Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-
47-generic x86_64) with an Intel(R) Core(TM) i5-4690 CPU with
microcode version 0x25 and 2x8GB of DDR3L-SDRAM running at
1333 MHz.

Run-time comparison. The performance overhead added by our
modifications has a significant® impact on 42 of the 60 benchmarks,
shown in Table 1. As we add overhead to each function call no-
ticeable differences in performance were to be expected. Depend-
ing on the number of function calls made in each benchmark, the
performance penalty varies between +23% and -3%. We should
point out that the 3% improvement in run-time performance in the
scimark_monte_carlo benchmark is within the margin of error. As our

Shttps://github.com/python/performance

*https://github.com/hpi-swa-lab/cpython

5The Python Performance Benchmark Suite classifies results as “significant” using a
Student’s two-sample, two-tailed t-test with & = 0.95 (see https://git.io/fjip1).
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modifications only add overhead, an increase in performance is
improbable.

While the impact on performance with up to 23% is significant,
it is lower than we expected. We believe that in the context of
debugging it is an acceptable trade-off for the functionality we are
adding. However, it is too large of an overhead to add to every
program running in CPython. Accordingly, we have further ideas
on how to optimize our approach, as well as feasible ways to confine
this performance impact to the context of debugging, which we
will discuss in Section 7.

Memory comparison. The memory consumption added by our
prototype is insignificant for 55 of the 60 benchmark algorithms.
The other five are presented in Table 2. The highest memory con-
sumption increase happens in benchmark xml_etree_process, with a
3% increase. The float benchmark has reportedly 24% less memory
consumption when executed in our prototype. This does not make
sense, as our modifications only add overhead when compared
to unmodified CPython. We believe this to be a measuring error,
as the standard deviation for this benchmark is particularly high
(7-12%). Furthermore, we ran the benchmark suite multiple times
and observed fluctuation in particular when tracking memory con-
sumption, which might suggest a systemic error in this part of the
benchmark design.

Overall the memory consumption of our prototype is very close
to that of CPython, imposing at most 3% increased memory con-
sumption during debugging which should be inconsequential in
practice.

5.2 Python integration

Our prototype passes the CPython test suite, with only small modifi-
cations. As discussed in Section 4, we add the RestartFrame exception
to CPython. The test suite contains two tests (test_baseexception.py
and test_pickle.py), that depend on the list of built-in exceptions
to which we added ours. Thus, we also had to add our new ex-
ception to the exception hierarchy in exception_hierarchy.txt for
test_baseexception.py and add it to the list of exceptions that have
no reverse mapping in test_pickle.py.
No further modifications were necessary.

5.3 Experience Report

Scenario: Recover. To illustrate how the programmer can recover
from an error without restarting potentially expensive computation,
consider the example in Listing 2. After spending the majority of
execution time inside the mandelbrot function, the program tries to
save the computed values within the save function. This will open
up PDB, because the image files are not opened in binary mode, see
Listing 3. Through interact, programmers can enter the interactive
mode in Listing 4, where they can define a new function save_fixed,
in which the file is opened in binary mode, see Listing 5. By using the
newly added restartf command, they can restart the current frame
with the newly defined function, after which the save operation
succeeds in Listing 6.

In this example, the programmer was able to recover from his
error and fix the save function from inside the debugger, with-
out having to recompute the mandelbrot data. While this usability
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Table 1: Mean run-time benchmark (abbreviated for
space) results with standard deviation, as produced by
pyperformance compare, sorted by most performance overhead

to least.

Benchmark CPython E’N’CPython +%
genshi_text  44.5 ms+0.6 ms 54.7 ms+09ms  +23%
genshi_xml 903 ms+0.8 ms  109.7 ms+1.5ms +21%
logging_silent 266 ns%8 ns 317 ns+10 ns +19%
xml...process 120 ms+2 ms 137 ms=2 ms +14%
hexiom  14.1 ms+0.1 ms 16.0 ms+0.1 ms  +13%
raytrace 767 ms+6 ms 865 ms+8 ms +13%
richards 111 ms+1 ms 126 ms+2 ms +13%
logging_simple  13.1 us+0.2 us 14.7 us+0.2 us +12%
Sympy_sum 135 ms+1 ms 151 ms+2 ms +12%
deltablue  10.9 ms+0.2 ms 122 ms+0.2ms  +11%
logging_format  14.5 us+0.2 us 16.1 us+0.2 us +11%
nqueens 136 ms+1 ms 151 ms+1 ms +11%
pick..python 702 us+10 us 775 us+9 us +11%
scimark_sor 270 ms+7 ms 300 ms+3 ms +11%
sympy_expand 562 ms+4 ms 622 ms+10 ms +11%
scimark_lu 249 ms+3 ms 275 ms+6 ms +10%
sympy_str 266 ms+2 ms 292 ms+3 ms +10%
2to3 432 ms+3 ms 473 ms+3 ms +9%

go 366 ms+3 ms 400 ms+3 ms +9%
sympy_int...  26.9 ms+0.2 ms 29.3 ms+0.2 ms +9%
tornado_http 245 ms+3 ms 267 ms+4 ms +9%
unpick...python 546 us*4 us 593 us+8 us +9%
xml...generate 146 ms+2 ms 160 ms+3 ms +9%
xml...iterparse 141 ms+4 ms 154 ms*2 ms +9%
django_t... 177 ms+2 ms 192 ms+2 ms +8%
regex_compile 255 ms+2 ms 275 ms*2 ms +8%
spectral_norm 185 ms+2 ms 199 ms+2 ms +8%
html5lib 126 ms+5 ms 134 ms+5 ms +7%
sql...declarative 204 ms+3 ms 218 ms+3 ms +7%
sql...imperative ~ 39.7 ms+0.9 ms 42.6 ms+0.8 ms +7%
dulwich_log 103 ms+1 ms 109 ms+1 ms +6%
pathlib  27.2 ms+0.5 ms 28.8 ms+0.7 ms +6%
chameleon  14.6 ms+0.2 ms 15.2 ms+0.3 ms +4%
chaos 169 ms+2 ms 175 ms+2 ms +4%

float 155 ms+2 ms 162 ms+2 ms +4%

mako 27.6ms+0.2ms  28.7 ms+0.5 ms +4%
json_dumps  16.7 ms+0.4 ms 17.2 ms+0.5 ms +3%
pickle  13.0 us+0.2 us 13.3 us+0.2 us +2%
python_startup 9.83 ms+0.18 ms  10.04 ms+0.20 ms  +2%
p..no_site  6.97 ms+0.22 ms  7.13 ms+0.22 ms +2%
unpickle_list  4.70 us+0.10 us 4.80 us+0.02 us +2%
scimark...carlo 162 ms+4 ms 157 ms+6 ms -3%

can be improved, see Section 7, we believe this to be a useful im-
provement upon the regular CPython debugging experience and a
successful demonstration of the capability of our prototype.

Scenario: Exploratory programming. Continuously modifying the
current function in order to explore the right way to, for example,
program against a novel API, could in theory be done in the same
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Table 2: Mean memory consumption with standard de-
viation in benchmarks (abbreviated for space) run with
--track-memory, as produced by pyperformance compare.

Benchmark CPython

xml...process  11.6 MB+260.2 kB 11.9 MB+438.7kB  +3%
genshi_text 9.9 MB+120.2kB 9.6 MB+147.2kB  -2%
xml...generate  12.2 MB+592.7kB  11.9 MB+2749kB  -2%
genshi_xml 10.1 MB+0.1 MB 9.8 MB+42.1kB -3%
float 19.9 MB+1.4 MB 16.0 MB+2.0 MB  -24%

E’N’CPython  +%

import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path

def mandelbrot(h, w, maxit=20, yield_each=5):
# omitted for brevity

def save(images, directory):
print('Saving_images..."')
try:
dir_path = Path(directory)
dir_path.mkdir(exist_ok=True)
for it, img in images:
img_path = dir_path / f'mandelbrot{it:03}.png'
with img_path.open('w') as f:
plt.imsave(f, img, format='png')
except Exception:
breakpoint ()
print('Finished!")

images = list(mandelbrot (5000, 5000,
maxit=100, yield_each=10))
save(images, 'mandelbrot')

Listing 2: Saving mandelbrot image® with wrong argument
in open().

> python mandelbrot.py

Generating mandebrot images...

Finished!

Saving images...

>~/mandelbrot.py(37)save() -> print('Finished!")
(Pdb)

Listing 3: Exception on saving

(Pdb) interact
*interactivex
>>>

Listing 4: Entering interactive mode

way as in our recover example above. However, the usability of the
REPL to implement functions and incrementally modify existing
source code is subpar, as explained in Section 2. We believe that a
workflow similar to Eclipse or Chrome could be achieved on top of
our prototype, which we discuss in Section 7.

%Source of mandelbrot function: https://docs.scipy.org/doc/numpy/user/quickstart.html
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>>> def save_fixed(images, directory):
print('Saving images (fixed)...')
try:
dir_path = Path(directory)
dir_path.mkdir(exist_ok=True)
for it, img in images:

img_path = dir_path / f'mandelbrot{it:03}.png'

with img_path.open('wb') as f:
plt.imsave(f, img, format='png')
except Exception:
breakpoint ()
print('Finished!")

Listing 5: Patching the save function

>>> restartf (0, save_fixed.__code__)
Saving images (fixed)...

Finished!

>

Listing 6: Restarting the fixed function, after which saving
succeeds

import inspect

class State:
def __init__(self, n):
self.n = n
self.result =1

def factorial(state):
if state.n == 1:
return state.result
state.result *= state.n
state.n -=1
raise RestartFrame(inspect.currentframe())

Listing 7: Factorial with tail recursion.

5.4 Tail Call Optimization

Another advantage of our approach is that it enables tail call opti-
mization [1]. Instead of allocating frames for a tail-recursive func-
tion call, we raise a RestartFrame exception introduced in Section 4
and save the function state in a separate variable, see Listing 7.

Our thus written factorial function does not produce StackOver-
flow exceptions as it would in CPython. Accordingly, we can com-
pute factorial(50000) in our prototype, but not in CPython. This
transformation of moving the state into a parameter and replacing
the tail call with raising an exception could be done automatically
by the interpreter.

5.5 Limitations
Our implementation has four noteworthy limitations:

(1) When a function is restarted in our prototype, side-effects
of the previous iteration are not reset. This means that any
modification to global variables, mutable parameters (only
references are reset), and IO will keep any modification the
first iteration of the function made, possibly leading to dif-
ferent behavior during the next function call. This limitation
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is shared by all other E’N’C implementations that we are
aware of.

(2) When we modify a function in our prototype, only the call
site in the current activation of the function is modified. This
means that other references to the function are not updated
and still reference the unmodified version. We discuss a
possible solution for this limitation in Section 7.

(3) As our prototype works by exchanging code objects, we do
not support restarting C-functions that are provided by C-
extensions or the interpreter. We are only able to modify and
restart the extension wrapper functions.

(4) Unlike in Squeak/Smalltalk, Python does not automatically
open a debugger when it encounters an uncaught excep-
tion, making our recover use case only possible with some
prior anticipation by the programmer, as demonstrated in
Section 5.3. This is a limitation imposed by the termination
model exception handling that Python uses, as explained in
Section 2.

6 RELATED WORK

In this section, we discuss work related to our approach and imple-
mentation.

Edit-and-continue debugging in other languages. Other runtime
environments implement E’N’C as well, namely Squeak/Smalltalk,
the yvM, and JavaScript in browsers supporting the Chrome debug-
ging protocol. We do not claim contributions to E'N’C itself, our
goal was to bring this feature to CPython.

Live Multi-language Development and Runtime Environments.
The multi-language runtime of Squimera [8] contains a modified
version of PyPy [2], an alternative interpreter for Python. This
modified interpreter supports E’'N’C debugging similarly to our
implementation with similar limitations. The purpose of this pa-
per was to show that E’N’C debugging can also be implemented
in CPython without requiring major changes to the underlying
architecture.

reloadr. Reloadr” is a Python project for hot code reloading. It
works via annotations on functions or classes prior to starting the
program. Once the program is running, reloadr can exchange the
function implementation at run-time, meaning that the next call to
the function will call the modified behavior.

While reloadr supports hot-code reloading implemented with-
out modification to the interpreter, it does not support modifying
the current execution of a function and thus cannot support E'N’C
debugging. Additionally, reloadr relies on RedBaron® for the source
code modification, which provides its functionality by generating
full syntax trees via its own parser. Because of this separate imple-
mentation, RedBaron and subsequently reloadr do not support the
full Python 3.7 syntax at the time of writing.

Our approach sidesteps such obstacles by being a small modifi-
cation to the interpreter, with no need for the considerably more
complex features of RedBaron.

"https://github.com/hoh/reloadr
8https://github.com/PyCQA/redbaron
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live-py-plugin. The live-py-plugin® works by continuously restart-
ing program execution, thus achieving a live experience for the
programmer. In contrast to our solution, the live-py-plugin offers a
trace of the program execution over time, while we offer the ability
to edit the state in a snapshot of the program during execution.
This discussion on different perspectives on live- and exploratory
programming is extensive [11] [10] and outside the scope of this
paper. However, by the nature of this solution, it does not work well
with large code bases, as the short feedback loop is impossible to
achieve with time-consuming setup of the relevant runtime state.

The approach of the live-py-plugin is also not suited for our
recover use case, as a potentially valuable state is discarded after
each modification of source code.

Similarly to the reloadr project, the solution here is also more
complex than our approach in both code complexity, setup and
resource consumption.

Interactive Python Development. There are other solutions that
allow for the interactive development of Python programs, which
is in a limited way also useful for interactive debugging. Jupyter
notebooks [6] on top of IPython achieves this more interactive
development of Python, by allowing the program to be split into
multiple blocks that can be edited and restarted on their own, per-
sisting the global state of all previous executions. Similarly to the
live-py-plugin, this approach is limited by the restarting approach
and thus is not suited for our recover use case.

Tail-call optimization. The tco project!® aims at optimizing tail-
calls in Python. While the approach is similar to ours at run-time,
their solution is implemented in pure Python and works via anno-
tations. There are no benchmarks available for the tco project, thus
we do not know how our approaches (raising exceptions versus
added dispatch for annotations) compare performance-wise. Our
prototype however aims to achieve E'N’C debugging and enables
tail-call optimization as a side benefit. Tail-call optimization is not
the core contribution, but a side-effect of this work.

7 FUTURE WORK

Engaging the debugger. In Section 5.1 we mentioned a perfor-
mance penalty of up to 23%. There are multiple possible ways to
confine this penalty to the context of debugging, where perfor-
mance is not as important as during run-time. The easiest way is
to have a separate binary for Python, that is used on development
systems for debugging while production systems run the regular
CPython without E’'N’C support. Another way is to activate the
E’N’C functionality via a -debug flag. In this case the performance
impact would be minimal when not debugging, as only the flag
would have to be checked.

Another possibility would be to only add E’N’C functionality
when a debugger gets imported via import pdb. With this variant,
we would only start copying frames at the point in the program
where PDB is imported, thereby only introducing the performance
penalty from that point forward.

We aim to test the usefulness and performance impact of these
ideas in future work.

“https://github.com/donkirkby/live-py-plugin
Ohttps://github.com/baruchel/tco
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Figure 1: E'N’C debugging tooling for restarting in Eclipse
and Chrome.

Tool support. While our prototype integrates in pps, modifying
existing functions via the CLI is cumbersome compared with the
existing solutions in Eclipse, Chrome, or Squeak/Smalltalk, see
Figure 1. Integration of our prototype with a graphical Python IDE
should be possible by exposing our additions to pos graphically.
This could improve the usability of E’N’C in our prototype and the
exploratory programming scenario immensely.

Persistent patching. With our current solution, the current call
site of the function is modified, i.e. the pointer is modified. Any
other references to the same function are not updated and still point
to the unmodified version. This is due to our implementation choice
of implementing the hot-code patching inside the Pyeval_EvalFrameEx
function as opposed to further down in the stack where we would
still have access to the function object, as explained in Section 4.

One way to extend this functionality would be to keep a record
of all code-objects we have patched (i.e. save the mapping of the
old pointer to the new pointer in a Python dict) and redirecting any
call to this code-object (old pointer) to our modified version (new
pointer). This would introduce additional overhead to any function
call, which should be minimal as long as no functions are modified
and the mapping-structure is empty. First tests of this idea look
promising and we hope to expand onto this idea in future work.

Modifying function arguments. In our current prototype, we al-
low the programmer to modify the argument-count and -name of
the function it is modifying. We are able to support this because
we have a copy of the entire frame. We chose to copy the frame
because it was the simplest way to reset a frame in order to restart
a function. With more time and better knowledge of the interpreter,
it would probably be possible to implement E’N’C without this
copy. This would remove the copy operations thereby reducing per-
formance as well as memory overhead. How big the performance
impact would be is another interesting question for future work.

8 CONCLUSION

In this paper, we have shown what it takes to support E'N’C debug-
ging in CPython. Our proposed solution can be implemented in just
under 300 lines of code and introduces a performance penalty of at
most 23%. We have demonstrated the added utility of E’N’C debug-
ging in Python and suggested ways to circumvent the performance
penalty in performance critical usage scenarios.

ICOOOLPS’19, July 19, 2019, London, United Kingdom

In conclusion, E’N’C debugging is easy to implement in CPython
and can offer significant usability benefits to programmers.
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