
1

日本ソフトウェア科学会第 35 回大会 (2018 年度) 講演論文集

Narratives for Multi-party Mechanisms and

Concerns

Robert Hirschfeld Tobias Dürschmid Patrick Rein

Marcel Taeumel Hidehiko Masuhara

Cross-cutting concerns are an inherent property of the implementation of non-trivial software systems.

Their study led to the development of advanced modularity constructs, usually supported by meta-level

frameworks and programming language constructs, to improve comprehensibility. Because of their invasive

nature, systems need to be refactored or rewritten to take advantage of these constructs. However, practical

considerations such as organizational or economical constraints often do not allow for such reengineering

efforts, leaving those systems without explicit representations of their cross-cutting concerns.

We propose a lightweight, non-invasive approach to explicate and document cross-cutting, multi-party

concerns called Cross-cutting Commentary, or Commentary for short. Our proposal is based on the ob-

servation that comments are co-located with the individual semantic units they are about and with that

scattered and tangled in the absence of advanced modularity constructs for cross-cutting concerns and the

assumption that well-crafted, informal explanations of system properties (their intents and the mechanisms

they provide) improve comprehensibility. Commentaries are to help communicate narratives about system

properties that involve multiple participants, both co-located in a single module or cross-cutting several of

them, and allow for navigating to, from, and between them to explore the implementation artifacts involved.

Commentary was inspired by layers introduced with Context-oriented Programming to associate and

manage partial definitions of system elements. While layers contribute to system comprehension during de-

velopment and software composition at run-time, Commentary focuses on narratives for system exploration.

We present our first attempt to provide Commentaries in Squeak/Smalltalk. We explain implementation

details and discuss several application scenarios considering the documentation of basic mechanisms of this

programming and runtime environment.

1 Introduction

Software design involves the discovery and com-

munication of domain-related entities, a formation

of relationships among them, and their participa-

tion in meaningful scenarios. In this process, each

Excerpt from our COP-18 paper, available from the

ACMDigital Library at https://doi.org/10.1145/

3242921.3242927.

プログラム中で複数主体からなる仕組み・関心事ののため
の解説文形式コメント

Robert Hirschfeld, Tobias Dürschmid, Patrick Rein,

Marcel Taeumel, Hasso Plattner Institute, Univer-

sity of Potsdam, Germany.

増原英彦, 東京工業大学情報理工学院, School of Com-

puting, Tokyo Institute of Technology.

such entity will be assigned a set of responsibilities

to be fulfilled and other entities (or collaborators)

to interact with in order to accomplish a larger goal.

There is usually an intent associated with a de-

sign decision that involves several participants and

their links to each other. However, the intent is of-

ten lost because of its cross-cutting nature and the

lack of advanced modularity constructs to capture

such designs (and their intents) in the first place.

Comments to remind the reader (the original pro-

grammers and the subsequent maintainers) of the

purpose of implementation fragments are scattered

(and often duplicated) throughout the system and

recognized (if at all) as part of an overall system

description only with great effort by the reader.

In Smalltalk, for example, there is a dependency

mechanism (also known as changed/Update mech-

anism named after the two main method groups in-

volved in this mechanism) implemented in classes

Object and Model to coordinate activities among

different objects. Specifically, its purpose is to be

able to link one object, say A, to one or more other

objects, say B, so B can be informed if A changes in

any way. Upon being informed when A changes and

the nature of the change, B can decide to take some

action such as updating its own status. The concept

of change and update, therefore, are integral to the

support of this [...] kind of object dependence re-

lationship. [...] [2]. The explanation goes on like

that and eventually explains all methods that are

part of this dependency mechanism and sample ap-

plication scenarios built using them.

In actual Smalltalk systems such as Squeak [5],

this account (or narrative) in its entirety is missing

from the documentation. Instead, only pieces con-

cerning a particular aspect of its implementation

are placed as comments across several method im-

plementations. For example, in Object>>changed:

one can read Receiver changed. The change is de-

noted by the argument aParameter. Usually the ar-

gument is a Symbol that is part of the dependent’s

change protocol. Inform all of the dependents. and

in Object>>update: this is continued by Receive a

change notice from an object of whom the receiver

is a dependent. The default behavior is to do noth-

ing; a subclass might want to change itself in some

way. [18]

While introductory courses recommend external

documents such as the Smalltalk-80 BlueBook [2]

for in-depth explanations like the one above, the

system itself, which is known for explorative and in-

teractive development tools, does not provide much

more than individual and loosely coupled com-

ments similar to the ones just mentioned.

Approaches such as feature-oriented program-

ming (FOP [14]), context-oriented program-

ming (COP [3]), or aspect-oriented programming

(AOP [7]) help capture such design elements by of-

fering dedicated language constructs or meta-level

libraries. Features, layers, or aspects co-locate sys-

tem parts (often partial class or method definitions)

that contribute to the implementation and docu-

mentation of a particular concern. Thereby, they

help both human readers and automated systems

to better reason about that concern.

Development and runtime platforms that do not

support such techniques continue to suffer from the

scattering and tangling of both implementation and

documentation artifacts. Holistic explanations, if

available at all, are (too) removed from the system

and require extra effort from readers to connect the

description with what is described. In addition to

this, immediate lack of benefit, a disconnect be-

tween artifacts such as an implementation and its

documentation, can and will yield divergence also

known as (architectural) drift.

In this paper, we propose a lightweight, and non-

invasive concept called Commentary to make cross-

cutting concerns and their documentation explicit

and traceable, support co-evolution of related arti-

facts, avoid scattering and tangling of documenta-

tion, and improve system comprehension.

2 Commentary

A Commentary connects several parts of a sys-

tem by providing narratives that explain their in-

terconnection. It can range from mainly technical

interactions to a merely conceptual point of view,

extending from, for example, co-ordinated library

and API calls to framework-driven interactions to

use cases and beyond.

When building or maintaining a software sys-

tem, there are several artifacts of interest that draw

the attention of developers. In object-oriented sys-

tems, these artifacts typically involve two kinds of

objects: (1) metaclasses, classes, instances, or (2)

prototypes and methods. While both kinds of en-

tities can be commented, such comments usually

solely explain the individual artifact, but rarely

try to connect related entities. This is mainly due

to the lack of proper cross-referencing mechanisms

and other overarching system elements.

The introduction of Commentaries offers an addi-

tional, lightweight, and non-invasive construct that

allows to bridge this gap (Fig. 1). A Commentary

holds on to a narrative that ties together several

artifacts and means to refer to these artifacts, from

inside the narrative or otherwise. In general, Com-

mentaries can maintain several relationships of dif-

ferent kinds to other artifacts, which includes point-

ers to other Commentaries as well. In the follow-

ing, we employ references only from Commentaries

to artifacts, but containment (consists-of) and re-

finement (kind-of) relationships are also worth ex-

ploring for Commentary composition.

In addition to regular methods, classes, and

Commentaries, artifacts of interest include but are

not limited to features, layers, aspects, and any

other meta- or domain object reachable and worth

mentioning.

Our model allows for a many-to-many re-

lationship between Commentaries and artifacts.

Thereby, artifacts can be part of more than

one Commentary and, therefore, allow for over-

laps between them. For example, class Model

and its methods >>changed: and >>update:

(inherited from class Object) can be (and in

our system are) part of the two Commentaries

Changed/Update and Model-View-Controller. In

this particular case, Model-View-Controller is

based on Changed/Update (Fig. 2).

Model-View-Controller or MVC is the user inter-

face framework and paradigm of Smalltalk-80 [8]

and still maintained as a UI alternative and fallback

ArtifactOfInterest

kind-of

reference
consists-of
kind-of

Method

Class

Layer

Commentary

AnyOtherObject

artifacts [0..n]

Figure 1 Commentary conceptual model.

mechanism in the Squeak/Smalltalk environment.

MVC makes heavy use of the Changed/Update

mechanism to keep its components in sync. In

the seminal MVC essay, one can read Model-View-

Controller (MVC) programming is the application

of this three-way factoring, whereby objects of dif-

ferent classes take over the operations related to the

application domain (the model), the display of the

application’s state (the view), and the user interac-

tion with the model and the view (the controller).

[...] Models are those components of the system ap-

plication that actually do the work (simulation of

the application domain). They are kept quite dis-

tinct from views, which display aspects of the mod-

els. Controllers are used to send messages to the

model, and provide the interface between the model

with its associated views and the interactive user in-

terface devices (e.g., keyboard, mouse). Each view

may be thought of as being closely associated with

a controller, each having exactly one model, but a

model may have many view/controller pairs. [...]

The essay goes on in explaining individual parts of

this framework and their interplay.

As with the Changed/Update mechanism, this

account (or narrative) of MVC in its entirety is

also missing from the documentation and, again,

only parts of it are placed in comments close to se-

lected implementation artifacts such as methods.

This includes Object>>addDependent: to sub-

scribe observers, View>>defaultControllerClass

Model

dependents

myDependents
…

Object

DependentsFields

changed:
update:
dependents
myDependents
…

Controller

model
view
sensor
…

update:
controlLoop
isControlActive
controlActivity
…

Counter

value

increment
decrement
…

CounterController

increment
decrement
isControlActive

View

model
controller
…

update:
display
displayView
defaultControllerClass
…

CounterView

update:
displayView
defaultControllerClass

[0..n]

[0..n]

Commentary:
Changed/Update

Commentary:
Model-View-Controller

Commentary:
Counter-View-Example

Commentary:
Commentary

Figure 2 Cross-cutting Commentaries.

to configure a view’s standard behavior, and

Controller>>controlActivity to specify the first

actions in the control loop.

Note that, while the Commentary of Changed/

Update mainly focuses on a small subset of meth-

ods of Object (about 10 out of 450 methods imple-

mented in Object [18]), the MVC Commentary not

only cross-cuts elements of a single class, but sev-

eral classes (here at least three of the base classes

where most of the core architecture of the frame-

work is defined and many more of their subclasses

for ease of configuration and use).

The Counter-View-Example displayed in the

CommentaryBrowser in Fig. 3 is yet another kind

of Commentary [8]. Change/Update describes a

quite small and very local concern involving at

least three system classes. However, Counter-View-

Example exhibits application-level elements that

are based on Model-View-Controller as shown in

Fig. 2. More-loosely coupled cross-cutting concerns

or tutorials might also be good candidates to be

captured, explained, or even deployed as Commen-

taries.

3 Implementation

We have implemented a first prototype of

Commentaries for the Squeak/Smalltalk environ-

ment [18]. This simple extension to Squeak consists

of three light-weight classes, which use only a few

hooks into the meta system (Fig. 4).

Commentary is at the core of our implementa-

tion. As its name suggests, it represents a Com-

mentary by storing its title as a brief sum-

mary, a narrative with all details, and a list of

participants as fan-out. While the title helps

locate and talk about a commentary, most of what

makes a commentary is captured in the other fields.

A narrative is an instance of Text that stores

both the story (a String) the commentary is about

and text attributes (each an instance of TextURL)

that allow to link text segments to a subset of the

participants (metaobjects or regular objects) they

refer to. If valid, a TextURL allow to directly navi-

gate to the linked (meta-) object.

The list of participants contain all of the par-

ticipants mentioned in the narrative via TextURLs

and all other entities directly added to them. Al-

lowing developers to add entities other than the

ones mentioned in the narrative can help in sev-

eral ways. For example, when creating a commen-

tary, one could start with an empty narrative, add

all entities potentially covered by the narrative,

and then evolve the narrative to cover as many

of the already identified entities as possible. Or

one could treat the entities referred to from the

narrative as core participants and provide all

other participants as seeds for system exploration

encouraged by the commentary.

Squeak’s ClassReferences and MethodReferences

are lightweight proxies for Behaviors or CompiledMethods

that help both to decouple a reference to from the

objects referenced and to establish a proper refer-

ence when needed and if possible. Their use makes

Figure 3 CommentaryBrowser showing the Counter-View-Example.

Commentary

title
narrative
participants

addParticipant:
removeParticipant:
participantsFromNarrative
…

MethodReference

classSymbol
classIsMeta
methodSymbol
…

actualClass
compiledMethod
…

Metaclass

ClassDescription

Class

Behavior

CompiledMethod

CompiledCode

ClassReference

classSymbol
classIsMeta
…

actualClass
…

Commentaries

SoleInstance
entries
…

addEntry:
removeEntry:
…

Text

string
runs
…

…

TextAction

TextAttribute

TextURL

[0..n]

[0..n]

[0..n]

[0..n]

CommentaryBrowser

commentaries
selectedCommentary
selectedParticipant

“add/remove”
“edit/rename”
“load/save”
“browse/navigate”
…

commentaries [0..n]

commentaries [0..n]

Figure 4 A first implementation of Commentaries in Squeak/Smalltalk.

it possible to refer to participants mentioned in the

commentary but not (yet or anymore) present in

the system so that commentaries and the system

can evolve decoupled and independently.

On the same account, these proxies help develop-

ers get a good understanding of the completeness

of the system with respect to a commentary or, the

other way around, the completeness of a commen-

tary with respect to the system it is to explain.

The CommentaryBrowser shown in Fig. 3 and

mentioned in Fig. 4 is based on Squeak’s

ToolBuilder framework to fit Squeak’s standard

tool suite [17]. In its four panes it lists all

commentaries available and displays for a se-

lected commentary its title, narrative, and

list of participants. One can add, remove,

load, and store individual commentaries and

change their titles, narratives, and list of

participants. participants are both collected

from the narrative, added via drag and drop from

the Squeak environment, or maintained via a con-

text menu.

4 Discussion

Cross-cutting Commentary provides advantages

across many dimensions of software development.

At first, the proposed concept supports devel-

opers in making cross-cutting concerns explicit by

providing a tool for documenting them closely to

the related source code.

Additionally, by systematically linking commen-

taries about general system aspects with their re-

lated implementations, cross-cutting Commentary

provides bidirectional traceability, which in general

can increase the software quality as well as produc-

tivity and accuracy of maintenance [15] [11]. De-

velopers can directly find the methods and classes

that implement a requirements by navigating to

the participants of the corresponding Commentary.

Additionally, the requirements that influenced the

design decisions of a development artifact can be

found by browsing the commentaries linked to the

artifact.

Often comments related to cross-cutting con-

cerns are duplicated across the involved methods or

classes [10]. This might result in inconsistencies or

overhead when changing documentation. Such du-

plicate documentation can be reduced by providing

a many-to-many mapping between commentaries

and development artifacts.

However, the concept might result in some chal-

lenges. At first, additional infrastructure is re-

quired for exchanging Commentary information be-

tween development environments. Furthermore,

the system works only if all developers have a Com-

mentaryBrowser installed because our new arti-

facts cannot easily be viewed or edited with ex-

isting tools. Similarly, additional tool support for

code reviews and other social coding web sites are

needed to display commentaries attached to the

code. These issues can complicate the technology

stack of the developers.

Nonetheless, we argue that the advantages gained

by having the possibility to directly connect source

code with documentation of cross-cutting system

aspects justify this additional effort.

5 Related Work

API Documentation Tools

There are many tools that assist developers in

writing or generating API documentation. This

overview covers only a small selection.

5. 1 Javadoc

Using the API documentation tool Javadoc, de-

velopers can refer to methods and classes in com-

ments with the ref tag†1. Programming environ-

ments such as IntelliJ IDEA provide tool support

for the Javadoc syntax to facilitate the navigation

along linked metaobjects and to update these paths

when a referenced metaobject is changed. Further-

more, developers can easily generate hyperlinked

documentation from Javadoc-conform source files

using Doxgen†2. However, Javadoc comments are

associated with only a single metaobject. So to

document concerns that are scattered over multiple

metaobjects, comments have to be split or repli-

cated. These comments would tangle the other

comments that concern the main (and other) re-

†1 {@ref<classpath>#<methodname>}
†2 www.doxygen.org

sponsibilities of a metaobjects. Therefore, in prac-

tice, cross-cutting concerns are difficult to docu-

ment using Javadoc. In contrast, Cross-cutting

Commentary provides support to modularize scat-

tered/tangled documentation and reference it from

all participants.

5. 2 Jadeite

The problem of finding the right API and deter-

mining how to use it is addressed by Jadeite [19].

Building on the Javadoc syntax, Jadeite displays

commonly used classes based on usage statistics

and automatically shows the most common ways

to instantiate them. While Jadeite significantly

speeds up the usage of unknown APIs, it does not

handle cross-cutting concerns either.

5. 3 SpyREST

Cisco’s SpyREST tool [16] automatically gener-

ates web pages for REST API documentation from

test code. Thereby, it improves the usage of APIs

by providing examples similar to Jadeite, but lacks

support for cross-cutting concerns.

Documentation Reuse Concepts

To the best of our knowledge, only few ap-

proaches aim to modularize comments.

5. 4 Literate Programming

Childs and Sametinger [1] described a con-

cept for documentation reuse utilizing literate pro-

gramming. They transferred object-oriented con-

cepts such as inheritance, visibility modifiers, ab-

straction, inclusion, and references to comments.

Thereby, reuse of entire or partial comments is

supported by adding specific language constructs

for documentation. Hence, the definition of docu-

mentation differs from its compiled view. In con-

trast, Commentaries provide a direct manipulation

view of documentation. Furthermore, referencing

metaobjects in comments is not targeted by their

approach.

5. 5 Documentation Refactoring Toolkit

Luciv et al. [9] presented a method for finding

fuzzy repetitions in documentations as well as a

toolkit (DRT) for refactoring the documentation

using an XML representation of comments defined

by the DocBook and DocLine technologies. The

DRT modifies the internal XML representation of

comments while preserving its text representation

such as PDF. Direct manipulation of comments is

not facilitated by DRT.

Cross-cutting Concerns

5. 6 Context-oriented Programming

Context-oriented programming (COP [3]) pro-

poses dynamic layer composition for system adap-

tation at run-time. Layers are a modularity con-

struct to help represent cross-cutting concerns at

both the language level and in the runtime system.

Inspired by COP layers, Commentaries are to help

improve modularity of system documentation. So

far, Commentaries do not affect system behavior.

5. 7 Mylar

Mylar [6] improves navigating source code by

encoding degrees-of-interest of program elements

through monitoring the programmer’s browsing ac-

tivity. Views show such navigation traces to help

extend and modify related code. Such tracing

can complement the specification of participants

in Commentaries. While Mylar relies on exter-

nal natural-language documentation such as bug

reports, our linked Commentaries integrate more

fine-grained explanations into the software system.

5. 8 Intentional Views

Many cross-cutting concerns follow explicable

rules that programmers have in mind when talking

or thinking about them. The Intentional Views [13]

approach uses logic predicates to capture such rules

in the context of documentation and verification,

supplemented with short text comments [12]. Tools

can then visualize predicate matches to support

code navigation or guide through rule violations.

We think that such predicates can enhance the way

Commentaries specify participants. Our linked,

formatted narratives provide more freedom for pro-

grammers to explain their intent and decisions.

Yet, both formal and informal means of documen-

tation serve different kinds of tasks and users.

5. 9 UseCasePy

To reduce scattering and tangling of use cases

and improve their traceability from analysis to de-

sign to implementation, UseCasePy [4] makes use

cases first-class entities at development-, deploy-

ment, and run-time. Compared to UseCasePy,

Commentaries are a more light-weight and less in-

vasive approach to connecting executable and non-

executable artifacts.

6 Summary and Future Work

We proposed Commentary as an approach to ad-

dress the cross-cutting nature of documentation of

implementation and runtime artifacts. Based on

the assumption that concerns cross-cut these arti-

facts and the observation that their documentation

follows their structure, we introduced Commentary

as a light-weight, non-invasive system element to

capture and narrate sets of related artifacts to sup-

port and improve system comprehension.

So far artifacts of interest were classes and meth-

ods. We will extend Commentary to involve other

metaobjects like features, layers, and aspects or any

object feasible. Furthermore we will explore the

interaction between Commentary and (unit) tests,

refactoring, topic and concept discovery and main-

tenance, and requirements engineering.

We will also investigate how Commentary can be

developed into lightweight or even proper modules

to better support modularity in less open and flex-

ible programming and runtime environments.

Acknowledgments

We gratefully acknowledge the financial support

of the HPI’s Research School (https://hpi.de/

forschung/research-school.html) and the HPI-

Stanford Design Thinking Research Program

(https://hpi.de/en/dtrp/).

References

[1] Childs, B. and Sametinger, J.: Literate Pro-

gramming and Documentation Reuse, IEEE Inter-

national Conference on Software Reuse (ICSR),

April 1996, pp. 205–214.

[2] Goldberg, A. and Robson, D.: Smalltalk-80:

The Language and Its Implementation, Addison-

Wesley Longman, Boston, MA, USA, 1983.

[3] Hirschfeld, R., Costanza, P., and Nierstrasz, O.:

Context-Oriented Programming, Journal of Object

Technology (JOT), Vol. 7, No. 3(2008), pp. 125–151.

[4] Hirschfeld, R., Perscheid, M., and Haupt,

M.: Explicit Use-case Representation in Object-

oriented Programming Languages, Dynamic Lan-

guages Symposium (DLS), New York, NY, USA,

ACM, 2011, pp. 51–60.

[5] Ingalls, D., Kaehler, T., Maloney, J., Wallace,

S., and Kay, A.: Back to the Future: The Story

of Squeak, a Practical Smalltalk Written in It-

self, SIGPLAN Conference on Object-oriented Pro-

gramming, Systems, Languages, and Applications

(OOPSLA), ACM, 1997, pp. 318–326.

[6] Kersten, M. and Murphy, G. C.: Mylar: A

Degree-of-interest Model for IDEs, Proceedings

of the 4th International Conference on Aspect-

oriented Software Development, AOSD ’05, New

York, NY, USA, ACM, 2005, pp. 159–168.

[7] Kiczales, G., Lamping, J., Mendhekar, A.,

Maeda, C., Videira Lopes, C., Loingtier, J.-M.,

and Irwin, J.: Aspect-Oriented Programming, Eu-

ropean Conference on Object-Oriented Program-

ming (ECOOP), Akşit, M. and Matsuoka, S.(eds.),

Springer Berlin Heidelberg, 1997, pp. 220–242.

[8] Krasner, G. and Pope, S.: A Cookbook for Using

the Model-View-Controller User Interface Paradigm

in Smalltalk-80, Journal on Object-Oriented Pro-

gramming(JOOP), Vol. 1, No. 3(1988), pp. 26–49.

[9] Luciv, D. V., Koznov, D. V., Basit, H. A., and

Terekhov, A. N.: On Fuzzy Repetitions Detection

in Documentation Reuse, Programming and Com-

puter Software, Vol. 42, No. 4(2016), pp. 216–224.

[10] Luciv, D., Koznov, D., Chernishev, G. A.,

and Terekhov, A. N.: Detecting Near Dupli-

cates in Software Documentation, arXiv preprint

arXiv:1711.04705, (2017).

[11] Mäder, P. and Egyed, A.: Assessing the Effect

of Requirements Traceability for Software Mainte-

nance, IEEE International Conference on Software

Maintenance (ICSM), Sept 2012, pp. 171–180.

[12] Mens, K. and Kellens, A.: Towards a framework

for testing structural source-code regularities, 21st

IEEE International Conference on Software Main-

tenance (ICSM’05), Sept 2005, pp. 679–682.

[13] Mens, K., Mens, T., and Wermelinger, M.:

Maintaining Software Through Intentional Source-

code Views, Proceedings of the 14th International

Conference on Software Engineering and Knowl-

edge Engineering, SEKE ’02, New York, NY, USA,

ACM, 2002, pp. 289–296.

[14] Prehofer, C.: Feature-Oriented Programming:

A Fresh Look at Objects, European Conference on

Object-Oriented Programming (ECOOP), Akşit, M.

and Matsuoka, S.(eds.), Springer Berlin Heidelberg,

1997, pp. 419–443.

[15] Rempel, P. and Mäder, P.: Preventing De-

fects: The Impact of Requirements Traceability

Completeness on Software Quality, IEEE Transac-

tions on Software Engineering, Vol. 43, No. 8(2017),

pp. 777–797.

[16] Sohan, S. M., Anslow, C., and Maurer, F.: Au-

tomated Example Oriented REST API Documenta-

tion at Cisco, International Conference on Software

Engineering (ICSE): Software Engineering in Prac-

tice Track (SEIP), ICSE-SEIP ’17, Piscataway, NJ,

USA, IEEE Press, 2017, pp. 213–222.

[17] Squeak Community: Squeak ToolBuilder Frame-

work, http://www.squeaksource.com/ToolBuilder/,

2018. Accessed: 2018-03-11.

[18] Squeak Community: Squeak/Smalltalk v5.1,

http://files.squeak.org/5.1/Squeak5.1-16549-

32bit/Squeak5.1-16549-32bit-All-in-One.zip, 2018.

Accessed: 2018-03-11.

[19] Stylos, J., Faulring, Jeffrey Yang, Z., and A.,

M. B.: Improving API documentation using API

usage information, 2009 IEEE Symposium on Vi-

sual Languages and Human-Centric Computing

(VL/HCC), Sept 2009, pp. 119–126.

