
Cross-cutting Commentary
Narratives for Multi-party Mechanisms and Concerns

Robert Hirschfeld
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
robert.hirschfeld@hpi.uni-potsdam.de

Tobias Dürschmid
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
tobias.duerschmid@student.hpi.uni-potsdam.de

Patrick Rein
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
patrick.rein@hpi.uni-potsdam.de

Marcel Taeumel
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
marcel.taeumel@hpi.uni-potsdam.de

ABSTRACT
Cross-cutting concerns are an inherent property of the implemen-
tation of non-trivial software systems. Their study led to the de-
velopment of advanced modularity constructs, usually supported
by meta-level frameworks and programming language constructs,
to improve comprehensibility. Because of their invasive nature,
systems need to be refactored or rewritten to take advantage of
these constructs. However, practical considerations such as orga-
nizational or economical constraints often do not allow for such
reengineering efforts, leaving those systems without explicit repre-
sentations of their cross-cutting concerns.

We propose a lightweight, non-invasive approach to explicate
and document cross-cutting, multi-party concerns called Cross-
cutting Commentary, or Commentary for short. Our proposal is
based on the observation that comments are co-located with the
individual semantic units they are about and with that scattered and
tangled in the absence of advanced modularity constructs for cross-
cutting concerns and the assumption that well-crafted, informal
explanations of system properties (their intents and themechanisms
they provide) improve comprehensibility. Commentaries are to
help communicate narratives about system properties that involve
multiple participants, both co-located in a single module or cross-
cutting several of them, and allow for navigating to, from, and
between them to explore the implementation artifacts involved.

Commentary was inspired by layers introduced with Context-
oriented Programming to associate and manage partial definitions
of system elements. While layers contribute to system comprehen-
sion during development and software composition at run-time,
Commentary focuses on narratives for system exploration.

We present our first attempt to provide Commentaries in
Squeak/Smalltalk. We explain implementation details and discuss
several application scenarios considering the documentation of
basic mechanisms of this programming and runtime environment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COP’18, July 16, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5722-7/18/07. . . $15.00
https://doi.org/10.1145/3242921.3242927

KEYWORDS
cross-cutting concerns, documentation, modularity, exploratory
programming, live programming, aspect-oriented programming,
context-oriented programming, feature-oriented programming,
Squeak/Smalltalk
ACM Reference Format:
Robert Hirschfeld, Tobias Dürschmid, Patrick Rein, and Marcel Taeumel.
2018. Cross-cutting Commentary: Narratives for Multi-party Mechanisms
and Concerns. In 10th International Workshop on Context-Oriented Program-
ming (COP’18), July 16, 2018, Amsterdam, Netherlands. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3242921.3242927

1 INTRODUCTION
Software design involves the discovery and communication of
domain-related entities, a formation of relationships among them,
and their participation in meaningful scenarios. In this process,
each such entity will be assigned a set of responsibilities to be ful-
filled and other entities (or collaborators) to interact with in order
to accomplish a larger goal.

There is usually an intent associated with a design decision
that involves several participants and their links to each other.
However, the intent is often lost because of its cross-cutting nature
and the lack of advanced modularity constructs to capture such
designs (and their intents) in the first place. Comments to remind the
reader (the original programmers and the subsequent maintainers)
of the purpose of implementation fragments are scattered (and
often duplicated) throughout the system and recognized (if at all)
as part of an overall system description only with great effort by
the reader.

In Smalltalk, for example, there is a dependency mechanism (also
known as changed/Update mechanism named after the two main
method groups involved in this mechanism) implemented in classes
Object and Model “to coordinate activities among different objects.
Specifically, its purpose is to be able to link one object, say A, to one
or more other objects, say B, so B can be informed if A changes in
any way. Upon being informed when A changes and the nature of
the change, B can decide to take some action such as updating its
own status. The concept of change and update, therefore, are integral
to the support of this [...] kind of object dependence relationship.
[...]” [4]. The explanation goes on like that and eventually explains
all methods that are part of this dependency mechanism and sample
application scenarios built using them.

39

https://doi.org/10.1145/3242921.3242927
https://doi.org/10.1145/3242921.3242927

COP’18, July 16, 2018, Amsterdam, Netherlands Robert Hirschfeld, Tobias Dürschmid, Patrick Rein, and Marcel Taeumel

In actual Smalltalk systems such as Squeak [7], this account (or
narrative) in its entirety is missing from the documentation. Instead,
only pieces concerning a particular aspect of its implementation are
placed as comments across several method implementations. For
example, in Object>>changed: one can read “Receiver changed. The
change is denoted by the argument aParameter. Usually the argument
is a Symbol that is part of the dependent’s change protocol. Inform
all of the dependents.” and in Object>>update: this is continued
by “Receive a change notice from an object of whom the receiver is
a dependent. The default behavior is to do nothing; a subclass might
want to change itself in some way.” [3]

While introductory courses recommend external documents
such as the Smalltalk-80 BlueBook [4] for in-depth explanations
like the one above, the system itself, which is known for explorative
and interactive development tools, does not provide much more
than individual and loosely coupled comments similar to the ones
just mentioned.

Approaches such as feature-oriented programming (FOP [16]),
context-oriented programming (COP [5]), or aspect-oriented pro-
gramming (AOP [9]) help capture such design elements by offering
dedicated language constructs or meta-level libraries. Features, lay-
ers, or aspects co-locate system parts (often partial class or method
definitions) that contribute to the implementation and documenta-
tion of a particular concern. Thereby, they help both human readers
and automated systems to better reason about that concern.

Development and runtime platforms that do not support such
techniques continue to suffer from the scattering and tangling of
both implementation and documentation artifacts. Holistic expla-
nations, if available at all, are (too) removed from the system and
require extra effort from readers to connect the description with
what is described. In addition to this, immediate lack of benefit,
a disconnect between artifacts such as an implementation and its
documentation, can and will yield divergence also known as (archi-
tectural) drift.

In this paper, we propose a lightweight, and non-invasive con-
cept called Commentary to make cross-cutting concerns and their
documentation explicit and traceable, support co-evolution of re-
lated artifacts, avoid scattering and tangling of documentation, and
improve system comprehension.

2 COMMENTARY
A Commentary connects several parts of a system by providing
narratives that explain their interconnection. It can range from
mainly technical interactions to a merely conceptual point of view,
extending from, for example, co-ordinated library and API calls to
framework-driven interactions to use cases and beyond.

When building or maintaining a software system, there are sev-
eral artifacts of interest that draw the attention of developers. In
object-oriented systems, these artifacts typically involve two kinds
of objects: (1) metaclasses, classes, instances, or (2) prototypes and
methods. While both kinds of entities can be commented, such
comments usually solely explain the individual artifact, but rarely
try to connect related entities. This is mainly due to the lack of
proper cross-referencing mechanisms and other overarching sys-
tem elements.

ArtifactOfInterest

kind-of

reference
consists-of
kind-of

Method

Class

Layer

Commentary

AnyOtherObject

artifacts [0..n]

Figure 1: Commentary conceptual model.

The introduction of Commentaries offers an additional, light-
weight, and non-invasive construct that allows to bridge this gap
(Figure 1). A Commentary holds on to a narrative that ties together
several artifacts and means to refer to these artifacts, from inside
the narrative or otherwise. In general, Commentaries can maintain
several relationships of different kinds to other artifacts, which
includes pointers to other Commentaries as well. In the following,
we employ references only from Commentaries to artifacts, but
containment (consists-of) and refinement (kind-of) relationships
are also worth exploring for Commentary composition.

In addition to regular methods, classes, and Commentaries, ar-
tifacts of interest include but are not limited to features, layers,
aspects, and any other meta- or domain object reachable and worth
mentioning.

Our model allows for a many-to-many relationship between
Commentaries and artifacts. Thereby, artifacts can be part of more
than one Commentary and, therefore, allow for overlaps between
them. For example, class Model and its methods >>changed: and
>>update: (inherited from class Object) can be (and in our system
are) part of the two Commentaries “Changed/Update” and “Model-
View-Controller.” In this particular case, “Model-View-Controller”
is based on “Changed/Update” (Figure 2).

Model-View-Controller or MVC is the user interface framework
and paradigm of Smalltalk-80 [10] and still maintained as a UI
alternative and fallback mechanism in the Squeak/Smalltalk envi-
ronment. MVCmakes heavy use of the Changed/Updatemechanism
to keep its components in sync. In the seminal MVC essay, one can
read “Model-View-Controller (MVC) programming is the application
of this three-way factoring, whereby objects of different classes take
over the operations related to the application domain (the model),
the display of the application’s state (the view), and the user inter-
action with the model and the view (the controller). [...] Models are
those components of the system application that actually do the work
(simulation of the application domain). They are kept quite distinct
from views, which display aspects of the models. Controllers are used
to send messages to the model, and provide the interface between
the model with its associated views and the interactive user interface
devices (e.g., keyboard, mouse). Each view may be thought of as being
closely associated with a controller, each having exactly one model,
but a model may have many view/controller pairs. [...]” The essay
goes on in explaining individual parts of this framework and their
interplay.

40

Cross-cutting Commentary COP’18, July 16, 2018, Amsterdam, Netherlands

Model

dependents

myDependents
…

Object

DependentsFields

changed:
update:
dependents
myDependents
…

Controller

model
view
sensor
…

update:
controlLoop
isControlActive
controlActivity
…

Counter

value

increment
decrement
…

CounterController

increment
decrement
isControlActive

View

model
controller
…

update:
display
displayView
defaultControllerClass
…

CounterView

update:
displayView
defaultControllerClass

[0..n]

[0..n]

Commentary:
Changed/Update

Commentary:
Model-View-Controller

Commentary:
Counter-View-Example

Commentary:
Commentary

Figure 2: Cross-cutting Commentaries.

As with the Changed/Update mechanism, this account (or
narrative) of MVC in its entirety is also missing from the doc-
umentation and, again, only parts of it are placed in com-
ments close to selected implementation artifacts such as meth-
ods. This includes Object>>addDependent: to subscribe observers,
View>>defaultControllerClass to configure a view’s standard
behavior, and Controller>>controlActivity to specify the first
actions in the control loop.

Note that, while the Commentary of Changed/Update mainly
focuses on a small subset of methods of Object (about 10 out of 450
methods implemented in Object [3]), the MVC Commentary not
only cross-cuts elements of a single class, but several classes (here
at least three of the base classes where most of the core architecture
of the framework is defined and many more of their subclasses for
ease of configuration and use).

The “Counter-View-Example” displayed in the Commentary-
Browser in Figure 3 is yet another kind of Commentary [10].
“Change/Update” describes a quite small and very local concern
involving at least three system classes. However, “Counter-View-
Example” exhibits application-level elements that are based on
“Model-View-Controller” as shown in Figure 2. More-loosely cou-
pled cross-cutting concerns or tutorials might also be good candi-
dates to be captured, explained, or even deployed as Commentaries.

3 CROSS-CUTTING
Commentaries can describe ideas and mechanisms ranging from
high-level to low-level, implementation-specific. They can incor-
porate and refer to modules and system units as supported by the
programming language and runtime environments. The more such
participants are involved the more likely it is that a Commentary
cross-cuts the program or system.

Since Commentaries (can but) do not have to follow the dominant
decomposition as dictated by the programming language, they help
address scattering and tangling.

By bringing and keeping together what belongs together in a
single and cohesive narrative, scattering can be avoided entirely.
This one-to-many relationship between a Commentary and its
participants is the most obvious of its benefits.

Also there is a one-to-many relationship between each individ-
ual participant and several Commentaries it is mentioned in or
contributes to. Since different aspects of a particular participant
can be emphasized by different narratives differently and, most im-
portantly, those different comments are not co-located within the
same unit of code but part of separate, yet cross-cutting narratives
of multiple Commentaries and so avoid tangling.

In Figure 3 the one-to-many relationship between participants
and Commentaries are expressed by the left list pane of the Com-
mentaryBrowser and the one-to-many relationship between a Com-
mentary and its participants by the browser’s list pane on the right.

4 QUANTIFICATION
Another important observation is that Commentaries offer several
means to describe or specify their participants. While we are plan-
ning to provide a more comprehensive report on such means in
future work, here is an explanation of Commentaries as homoge-
neous and heterogeneous cross-cutting concerns.

Homogeneous cross-cutting concerns are well-known from and
widely researched by the AOP community. Many AOP systems
provide so-called pointcut languages to declaratively express sets
of join points that exhibit specific and often repeating properties.
Dynamically typed aspect-oriented programming languages with
a rich reflection API often use metaprogramming to achieve the
same.

Heterogeneous cross-cutting concerns, which are at the core of
COP systems, often do not exhibit repeating properties and so
explicitly enumerate their behavioral variations and the join points
at which they are to occur.

While our examples emphasize documentation of heterogeneous
cross-cutting concerns, Commentaries allow the application of all
of the means of quantification (such as point-cut languages and
predicates, metaprograms, and explicit enumeration) mentioned
above to denote participants, including other Commentaries.

5 NAVIGATION
Many modern programming environments support simple, easy
navigation between system elements such as classes, methods, and
objects.

Commentary adds navigation support by providing convenient
access to participants and other Commentaries referenced. All sys-
tem elements can be used as starting points in tools like code
browsers, object inspectors, or run-time debuggers to access Com-
mentaries they already are or going to be involved in.

Figure 3 gives an impression of our integration of Commentary
into the Squeak/Smalltalk environment and the navigation paths
encouraged so far.

41

COP’18, July 16, 2018, Amsterdam, Netherlands Robert Hirschfeld, Tobias Dürschmid, Patrick Rein, and Marcel Taeumel

Figure 3: CommentaryBrowser showing the “Counter-View-Example”.

Code Tools Commentary

Figure 4: Navigation between programming tools like code browsers, object explorers, and debuggers and Commentaries.

6 IMPLEMENTATION
We have implemented a first prototype of Commentaries for the
Squeak/Smalltalk environment [3]. This simple extension to Squeak
consists of three light-weight classes, which use only a few hooks
into the meta system (Figure 5).

Commentary is at the core of our implementation. As its name
suggests, it represents a Commentary by storing its title as a brief
summary, a narrative with all details, and a list of participants
as fan-out. While the title helps locate and talk about a commen-
tary, most of what makes a commentary is captured in the other
fields.

A narrative is an instance of Text that stores both the story
(a String) the commentary is about and text attributes (each an
instance of TextURL) that allow to link text segments to a subset
of the participants (metaobjects or regular objects) they refer to.
If valid, a TextURL allow to directly navigate to the linked (meta-)
object.

The list of participants contain all of the participants men-
tioned in the narrative via TextURLs and all other entities directly
added to them. Allowing developers to add entities other than the
ones mentioned in the narrative can help in several ways. For ex-
ample, when creating a commentary, one could start with an empty
narrative, add all entities potentially covered by the narrative,

42

Cross-cutting Commentary COP’18, July 16, 2018, Amsterdam, Netherlands

Commentary

title
narrative
participants

addParticipant:
removeParticipant:
participantsFromNarrative
…

MethodReference

classSymbol
classIsMeta
methodSymbol
…

actualClass
compiledMethod
…

Metaclass

ClassDescription

Class

Behavior

CompiledMethod

CompiledCode

ClassReference

classSymbol
classIsMeta
…

actualClass
…

Commentaries

SoleInstance
entries
…

addEntry:
removeEntry:
…

Text

string
runs
…

…

TextAction

TextAttribute

TextURL

[0..n]

[0..n]

[0..n]

[0..n]

CommentaryBrowser

commentaries
selectedCommentary
selectedParticipant

“add/remove”
“edit/rename”
“load/save”
“browse/navigate”
…

commentaries [0..n]

commentaries [0..n]

Figure 5: A first implementation of Commentaries in Squeak/Smalltalk.

and then evolve the narrative to cover as many of the already iden-
tified entities as possible. Or one could treat the entities referred
to from the narrative as core participants and provide all other
participants as seeds for system exploration encouraged by the
commentary.

Squeak’s ClassReferences and MethodReferences are light-
weight proxies for Behaviors or CompiledMethods that help both
to decouple a reference to from the objects referenced and to estab-
lish a proper reference when needed and if possible. Their use makes
it possible to refer to participants mentioned in the commentary but
not (yet or anymore) present in the system so that commentaries and
the system can evolve decoupled and independently.

On the same account, these proxies help developers get a good
understanding of the completeness of the system with respect to
a commentary or, the other way around, the completeness of a
commentary with respect to the system it is to explain.

The CommentaryBrowser shown in Figure 3 and mentioned
in Figure 5 is based on Squeak’s ToolBuilder framework to fit
Squeak’s standard tool suite [2]. In its four panes it lists all com-
mentaries available and displays for a selected commentary its
title, narrative, and list of participants. One can add, remove,
load, and store individual commentaries and change their titles,
narratives, and list of participants. participants are both
collected from the narrative, added via drag and drop from the
Squeak environment, or maintained via a context menu.

7 DISCUSSION
Cross-cutting Commentary provides advantages across many di-
mensions of software development.

At first, the proposed concept supports developers in making
cross-cutting concerns explicit by providing a tool for documenting
them closely to the related source code.

Additionally, by systematically linking commentaries about
general system aspects with their related implementations, cross-
cutting Commentary provides bidirectional traceability, which in
general can increase the software quality as well as productivity and
accuracy of maintenance [15, 17]. Developers can directly find the
methods and classes that implement a requirements by navigating
to the participants of the corresponding Commentary. Additionally,
the requirements that influenced the design decisions of a develop-
ment artifact can be found by browsing the commentaries linked
to the artifact.

Often comments related to cross-cutting concerns are duplicated
across the involved methods or classes [11]. This might result in
inconsistencies or overhead when changing documentation. Such
duplicate documentation can be reduced by providing a many-to-
many mapping between commentaries and development artifacts.

However, the concept might result in some challenges. At first,
additional infrastructure is required for exchanging Commentary
information between development environments. Furthermore, the

43

COP’18, July 16, 2018, Amsterdam, Netherlands Robert Hirschfeld, Tobias Dürschmid, Patrick Rein, and Marcel Taeumel

system works only if all developers have a CommentaryBrowser
installed because our new artifacts cannot easily be viewed or
edited with existing tools. Similarly, additional tool support for code
reviews and other social coding web sites are needed to display
commentaries attached to the code. These issues can complicate
the technology stack of the developers.

Nonetheless, we argue that the advantages gained by having the
possibility to directly connect source code with documentation of
cross-cutting system aspects justify this additional effort.

8 RELATEDWORK
API Documentation Tools
There are many tools that assist developers in writing or generating
API documentation. This overview covers only a small selection.

Javadoc. Using the API documentation tool Javadoc, develop-
ers can refer to methods and classes in comments with the ref
tag1. Programming environments such as IntelliJ IDEA provide tool
support for the Javadoc syntax to facilitate the navigation along
linked metaobjects and to update these paths when a referenced
metaobject is changed. Furthermore, developers can easily generate
hyperlinked documentation from Javadoc-conform source files us-
ing Doxgen2. However, Javadoc comments are associated with only
a single metaobject. So to document concerns that are scattered
over multiple metaobjects, comments have to be split or replicated.
These comments would tangle the other comments that concern
the main (and other) responsibilities of a metaobjects. Therefore,
in practice, cross-cutting concerns are difficult to document using
Javadoc. In contrast, Cross-cutting Commentary provides support
to modularize scattered/tangled documentation and reference it
from all participants.

Jadeite. The problem of finding the right API and determining
how to use it is addressed by Jadeite [19]. Building on the Javadoc
syntax, Jadeite displays commonly used classes based on usage
statistics and automatically shows the most common ways to in-
stantiate them. While Jadeite significantly speeds up the usage of
unknown APIs, it does not handle cross-cutting concerns either.

SpyREST. Cisco’s SpyREST tool [18] automatically generates
web pages for REST API documentation from test code. Thereby,
it improves the usage of APIs by providing examples similar to
Jadeite, but lacks support for cross-cutting concerns.

Documentation Reuse Concepts
To the best of our knowledge, only few approaches aim to modu-
larize comments.

Literate Programming. Childs and Sametinger [1] described a
concept for documentation reuse utilizing literate programming.
They transferred object-oriented concepts such as inheritance, visi-
bility modifiers, abstraction, inclusion, and references to comments.
Thereby, reuse of entire or partial comments is supported by adding
specific language constructs for documentation. Hence, the defini-
tion of documentation differs from its compiled view. In contrast,

1{@ref<classpath>#<methodname>}
2www.doxygen.org

Commentaries provide a direct manipulation view of documen-
tation. Furthermore, referencing metaobjects in comments is not
targeted by their approach.

Documentation Refactoring Toolkit. Luciv et al. [12] presented a
method for finding fuzzy repetitions in documentations as well as
a toolkit (DRT) for refactoring the documentation using an XML
representation of comments defined by the DocBook and DocLine
technologies. The DRT modifies the internal XML representation
of comments while preserving its text representation such as PDF.
Direct manipulation of comments is not facilitated by DRT.

Cross-cutting Concerns
Context-oriented Programming. Context-oriented programming

(COP [5]) proposes dynamic layer composition for system adapta-
tion at run-time. Layers are a modularity construct to help represent
cross-cutting concerns at both the language level and in the runtime
system. Inspired by COP layers, Commentaries are to help improve
modularity of system documentation. So far, Commentaries do not
affect system behavior.

Mylar. Mylar [8] improves navigating source code by encod-
ing degrees-of-interest of program elements through monitoring
the programmer’s browsing activity. Views show such navigation
traces to help extend andmodify related code. Such tracing can com-
plement the specification of participants in Commentaries. While
Mylar relies on external natural-language documentation such as
bug reports, our linked Commentaries integrate more fine-grained
explanations into the software system.

Intentional Views. Many cross-cutting concerns follow explica-
ble rules that programmers have in mind when talking or thinking
about them. The Intentional Views [14] approach uses logic pred-
icates to capture such rules in the context of documentation and
verification, supplemented with short text comments [13]. Tools
can then visualize predicate matches to support code navigation or
guide through rule violations. We think that such predicates can
enhance the way Commentaries specify participants. Our linked,
formatted narratives provide more freedom for programmers to
explain their intent and decisions. Yet, both formal and informal
means of documentation serve different kinds of tasks and users.

UseCasePy. To reduce scattering and tangling of use cases and im-
prove their traceability from analysis to design to implementation,
UseCasePy [6] makes use cases first-class entities at development-,
deployment, and run-time. Compared to UseCasePy, Commentaries
are a more light-weight and less invasive approach to connecting
executable and non-executable artifacts.

9 SUMMARY AND FUTUREWORK
We proposed Commentary as an approach to address the cross-
cutting nature of documentation of implementation and runtime
artifacts. Based on the assumption that concerns cross-cut these
artifacts and the observation that their documentation follows
their structure, we introduced Commentary as a light-weight, non-
invasive system element to capture and narrate sets of related
artifacts to support and improve system comprehension.

44

www.doxygen.org

Cross-cutting Commentary COP’18, July 16, 2018, Amsterdam, Netherlands

So far artifacts of interest were classes and methods. We will
extend Commentary to involve other metaobjects like features, lay-
ers, and aspects or any object feasible. Furthermore we will explore
the interaction between Commentary and (unit) tests, refactoring,
topic and concept discovery and maintenance, and requirements
engineering.

We will also investigate how Commentary can be developed into
lightweight or even proper modules to better support modularity
in less open and flexible programming and runtime environments.

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of the HPI’s
Research School (https://hpi.de/forschung/research-school.html)
and the HPI-Stanford Design Thinking Research Program (https:
//hpi.de/en/dtrp/).

A APPLICATION SCENARIO
In this section, we show the interaction with the Commentary-
Browser to add the MVC-based “Counter-View-Example” [10] as a
Commentary to the system. We interleave screenshots and text to
explain most interactions step by step.

First, a new commentary is created via a context menu in the
left pane of the browser listing all Commentaries available at the
moment. We name our new Commentary “Counter-View-Example”:

Now we copy and insert the text explaining the “Counter-View-
Example” from the aforementioned paper [10] in the browser’s
middle pane, which looks and behaves like a regular text editor,
providing means to change and format the text at hand:

Then, we start adding participants to our Commentary. Here,
we use Squeak’s drag and drop mechanism by grabbing the two
classes Counter CounterView (we already implemented “Counter-
View-Example” in our Squeak image) from the system browser and
dropping them in the right pane of the CommentaryBrowser listing
all participants of the selected Commentary:

The gray color of participants in the right pane indicate that our
narration (middle pane) does not (yet) refer to those participant.
We now add such a reference from the text to participant Counter
by selecting "Counter" (any selection would be possible) and as-
sociating this selection with a hyperlink (a TextURL) referring to
Counter:

Now our narration refers to Counter at least once and so the
color of Counter in the list of participants has been set to blue (the

45

https://hpi.de/forschung/research-school.html
https://hpi.de/en/dtrp/
https://hpi.de/en/dtrp/

COP’18, July 16, 2018, Amsterdam, Netherlands Robert Hirschfeld, Tobias Dürschmid, Patrick Rein, and Marcel Taeumel

color of our hyperlinks in the narration pane). We do the same for
CounterView afterwards:

This time we add a new participant (CounterController) start-
ing from the narration pane by adding a hyperlink from the "Coun-
terController" text selection to CounterController:

Since CounterControllerwas not yet part of this Commentary,
inserting this new hyperlink will be reflected in an extension of the
list of participants on the right.

In the following, we select "increment" in our narration and link
this selection to the method Counter>>increment in our imple-
mentation:

Since Counter>>increment was not yet mentioned in our list
of participants, this list is updated as expected:

In a similar way, we now add Counter>>decrement by first
dropping this method from a system browser into our commentary
(Counter>>decrementwill first appear in gray) and then hyperlink
it from our narrative (Counter>>decrement now appears in blue
in our list of participants):

What follows are a few more interactions with the Commen-
taryBrowser until there is no more to add, change, or remove for
now:

Note that any part of a Commentary can be changed at any time
in the process, and that both Commentaries and the objects they
refer to can and will evolve over time.

46

Cross-cutting Commentary COP’18, July 16, 2018, Amsterdam, Netherlands

REFERENCES
[1] Bart Childs and Johannes Sametinger. 1996. Literate Programming and Documen-

tation Reuse. In IEEE International Conference on Software Reuse (ICSR). 205–214.
https://doi.org/10.1109/ICSR.1996.496128

[2] Squeak Community. 2018. Squeak ToolBuilder Framework. http://www.
squeaksource.com/ToolBuilder/. Accessed: 2018-03-11.

[3] Squeak Community. 2018. Squeak/Smalltalk v5.1. http://files.squeak.org/5.1/
Squeak5.1-16549-32bit/Squeak5.1-16549-32bit-All-in-One.zip. Accessed: 2018-
03-11.

[4] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley Longman, Boston, MA, USA.

[5] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-Oriented
Programming. Journal of Object Technology (JOT) 7, 3 (2008), 125–151.

[6] Robert Hirschfeld, Michael Perscheid, and Michael Haupt. 2011. Explicit Use-
case Representation in Object-oriented Programming Languages. In Dynamic
Languages Symposium (DLS). ACM, New York, NY, USA, 51–60. https://doi.org/
10.1145/2047849.2047856

[7] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. Back
to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself. In
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM, 318–326.

[8] Mik Kersten and Gail C. Murphy. 2005. Mylar: A Degree-of-interest Model
for IDEs. In Proceedings of the 4th International Conference on Aspect-oriented
Software Development (AOSD ’05). ACM, New York, NY, USA, 159–168. https:
//doi.org/10.1145/1052898.1052912

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-Oriented
Programming. In European Conference on Object-Oriented Programming (ECOOP),
Mehmet Akşit and Satoshi Matsuoka (Eds.). Springer Berlin Heidelberg, 220–242.

[10] Glenn E. Krasner and Stephen T. Pope. 1988. A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80. Journal on Object-
Oriented Programming(JOOP) 1, 3 (1988), 26–49.

[11] Dmitry Luciv, D.V. Koznov, George A. Chernishev, and Andrey N. Terekhov.
2017. Detecting Near Duplicates in Software Documentation. arXiv preprint
arXiv:1711.04705 (2017).

[12] D. V. Luciv, D. V. Koznov, H. A. Basit, and A. N. Terekhov. 2016. On Fuzzy
Repetitions Detection in Documentation Reuse. Programming and Computer
Software 42, 4 (01 Jul 2016), 216–224. https://doi.org/10.1134/S0361768816040046

[13] Kim Mens and Andy Kellens. 2005. Towards a framework for testing struc-
tural source-code regularities. In 21st IEEE International Conference on Software
Maintenance (ICSM’05). 679–682. https://doi.org/10.1109/ICSM.2005.93

[14] Kim Mens, Tom Mens, and Michel Wermelinger. 2002. Maintaining Software
Through Intentional Source-code Views. In Proceedings of the 14th International
Conference on Software Engineering and Knowledge Engineering (SEKE ’02). ACM,
New York, NY, USA, 289–296. https://doi.org/10.1145/568760.568812

[15] Patrick Mäder and Alexander Egyed. 2012. Assessing the Effect of Requirements
Traceability for Software Maintenance. In IEEE International Conference on Soft-
ware Maintenance (ICSM). 171–180. https://doi.org/10.1109/ICSM.2012.6405269

[16] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects.
In European Conference on Object-Oriented Programming (ECOOP), Mehmet Akşit
and Satoshi Matsuoka (Eds.). Springer Berlin Heidelberg, 419–443.

[17] Patrick Rempel and Patrick Mäder. 2017. Preventing Defects: The Impact of
Requirements Traceability Completeness on Software Quality. IEEE Transactions
on Software Engineering 43, 8 (Aug 2017), 777–797. https://doi.org/10.1109/TSE.
2016.2622264

[18] S M Sohan, Craig Anslow, and Frank Maurer. 2017. Automated Example Oriented
REST API Documentation at Cisco. In International Conference on Software Engi-
neering (ICSE): Software Engineering in Practice Track (SEIP) (ICSE-SEIP ’17). IEEE
Press, Piscataway, NJ, USA, 213–222. https://doi.org/10.1109/ICSE-SEIP.2017.11

[19] Jeffrey Stylos, Zizhuang Faulring, Jeffrey Yang, and Myers Brad A. 2009. Im-
proving API documentation using API usage information. In 2009 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). 119–126.
https://doi.org/10.1109/VLHCC.2009.5295283

47

https://doi.org/10.1109/ICSR.1996.496128
http://www.squeaksource.com/ToolBuilder/
http://www.squeaksource.com/ToolBuilder/
http://files.squeak.org/5.1/Squeak5.1-16549-32bit/Squeak5.1-16549-32bit-All-in-One.zip
http://files.squeak.org/5.1/Squeak5.1-16549-32bit/Squeak5.1-16549-32bit-All-in-One.zip
https://doi.org/10.1145/2047849.2047856
https://doi.org/10.1145/2047849.2047856
https://doi.org/10.1145/1052898.1052912
https://doi.org/10.1145/1052898.1052912
https://doi.org/10.1134/S0361768816040046
https://doi.org/10.1109/ICSM.2005.93
https://doi.org/10.1145/568760.568812
https://doi.org/10.1109/ICSM.2012.6405269
https://doi.org/10.1109/TSE.2016.2622264
https://doi.org/10.1109/TSE.2016.2622264
https://doi.org/10.1109/ICSE-SEIP.2017.11
https://doi.org/10.1109/VLHCC.2009.5295283

	Abstract
	1 Introduction
	2 Commentary
	3 Cross-cutting
	4 Quantification
	5 Navigation
	6 Implementation
	7 Discussion
	8 Related Work
	9 Summary and Future Work
	A Application Scenario
	References

