Locators — Dynamic Service Composition
and System Evolution

Robert Hirschfeld*, Jeff Eastman™, Matthias Wagner*, Hendrik Berndt*

*DoCoMo Communications Laboratories GmbH
Landsberger Strasse 308-312, 80687 Munich, Germany

TWindward Solutions, Inc.
1081 Valley View Ct., Los Altos, CA 94024, USA

hirschfeld@docomolab-euro.com

Abstract

We present the concept of locators in distributed computing environ-
ments. Locators are designed to make service composition transparent
to component developers. They have first been implemented in the Aero
distributed processing environment to enable seamless dynamic service
composition and system evolution. Aero manages complex CORBA-based
distributed systems based on the distributed processing environment spec-
ification of TINA-C. With Aero’s locators, the development and deploy-
ment of distributed systems is significantly simplified: Developers only
need to specify structural relationships between computational objects to
cause the automatic generation of all necessary code to interface with
the run-time environment for system composition and re-composition via
locators. Locators facilitate post-deployment run-time service evolution.

1 Introduction

In distributed computing environments software services are implemented by
service components and made accessible to potential clients via service inter-
faces. When systems get more complex, services are typically composed recur-
sively out of other services with the one service component acting as the client
of the other service components. In these environments, clients and services as
well as the domain to be implemented by a service-based application are often
physically distributed. Improving system scalability and performance by means
of load balancing and replication adds to inherently distributed nature of these
service-based systems.

Fundamental challenges arise in building distributed systems [12]. This in-
cludes handling of partial failure modes due to failed processes and network
partitioning, ensuring stability of relationships between loosely-coupled service
components, or mechanisms for introduction and reintroduction of service com-
ponents. We have designed the Aero [9] distributed processing environment
(DPE) to also address these challenges for the development, deployment, and
run-time evolution of CORBA-based distributed services [8, 7]. In this paper

we describe Aero’s locators as an essential and effective means to support dy-
namic service composition during initial system deployment, system recovery
from partial failures, and system evolution after deployment at run-time.

The rest of the paper is organized as follows: Section 2 we give a brief
overview of Aero. In section 3 we introduce locators and discuss their usage for
system composition and re-composition throughout failure recovery and graceful
system evolution. Finally, in section 4 we will summarize and conclude.

2 Aero Overview

The Aero DPE manages complex CORBA-based distributed systems based on
TINA-C specifications [2, 3, 4, 5]. TINA-C stands for Telecommunications Infor-
mation Networking Architecture Consortium, an international research effort to
converge telecommunications and distributed object-oriented computing. Dur-
ing system design, software developers employ TINA’s object definition language
(ODL), an extension to OMG’s interface definition language (IDL). In addition
to basic IDL properties, ODL allows the specification of trading attributes asso-
ciated with interface descriptions as well as organizational run-time structures
like computational objects and groups [10]. Furthermore, ODL allows compu-
tational objects to support multiple interfaces.

module Example {
group GroupA {
components ObjectA, GroupB;
contracts I nterfaceB, I nterfaceD;

b
object ObjectA {
behavior behaviorText "This object does something
useful";
requires | nterfaceD;
supports InterfaceA, I nterfaceB, I nterfaceC;

interface I nterfaceA {};
interface InterfaceB {};
interface InterfaceC{};
group GroupB {
components ObjectB;
contracts I nterfaceD;

b
object ObjectB {
behavior behaviorText "This object does something
useful, too";
supports | nterfaceD, | nterfaceE;

interface I nterfaceD {};
interface I nterfaceE{};

Figure 1: Simple ODL module [4]

Figure 1 depicts an ODL example that will be used throughout the paper
to illustrate how locators are derived and used. With ODL, both static and
dynamic relationships to be present at run-time are described simultaneously:
The static part states that there are interfaces A to E, object A supporting
interfaces A to C, object B supporting interfaces D and E, group A managing

object A and its subgroup B, and subgroup B managing object B. The more
dynamic part covers that group B exports interface D which is supported by
object A (interface visibility control along the group hierarchy), and that object
A requires another object that supports interface D (in Figure 1, this part
describing dynamic relationships is rendered in italics).

Aero’s run-time environment which implements TINA DPE concepts [11],
uses trading to dynamically compose services at run-time [1]. Trading is based
on matching interfaces required by computational objects with interfaces sup-
ported by other computational objects. Trading is built around interface types
and hierarchical introduction spaces denoted by computational groups. If nec-
essary, additional trading attributes can be utilized to find the most suitable
interface-object combination as a match.

<<group>>
theGlobalGroup

<<group>>
aGroupA

A

<<object>>
anObjectA

o

<<interface>> <<interface>>
aninterfaceA aninterfaceB

<<group>>
aGroupB

<<interface>> <<object>>
aninterfaceC anObjectB

<<interface>>
aninterfaceE

<<interface>>
aninterfaceD

Figure 2: Static and dynamic relationships based on ODL [4]

Figure 2 shows an instantiation of the system described in Figure 1. Solid
black arrows represent relationships resulting from the instantiation of the group
hierarchy, aggregating groups and subgroups, objects, and interfaces. Solid gray
arrows symbolize references to exported interfaces of objects up the group hi-
erarchy. The dotted arrow indicates a traded reference which is completely
dynamic and solely depends on the availability of matching interfaces exported
and required by active computational objects. All code necessary to instanti-
ate a group hierarchy (our hierarchical introduction space), its computational
objects and their interfaces, as well as its incorporation into the trading run-
time framework are generated by Aero utilizing Aero’s metaobject repository.
This repository is a run-time database containing information about deployable
and deployed services, which is in part derived from ODL service specifications.
Per default, only one computational object specified in a group is instantiated.

However, developers may decided to create multiple instances of the same object
in the context of a particular group to allow for redundancy. Redundancy can
be achieved furthermore by trading matches out of different branches along the
trading hierarchy. Part of the code generated are locators that, in combination
with Aero’s trading facilities and introduction spaces, free developers from writ-
ing code related to initial system composition, as well as system re-composition
in response to partial failures and system evolution. In the next section, we
describe locators in more detail.

3 Locators

Locators are proxy objects that support transient access to traded interfaces.
They are placed in-between client code, written by developers, and CORBA
client stubs, generated by Aero (Figure 3). Locators maintain the search criteria
used to locate an interface and a reference to the interface matched by the
trader. For a client, there is a one-to-one relationship between the locator used
and the interface referenced. Methods invoked on the locator are transparently
forwarded to the referenced interface (Proxy [6]).

<<group>>
aCommonGroup
P
Trader

<<object>> <<locator>> <<interface>> <<object>>
anObjectA aLocatorD [""""*" P> aninterfaceD anObjectB

Figure 3: Locators, traders, interfaces

Network partitioning, component failure or system evolution can result in
communication errors. Figure 4 illustrates such situation: Object A tries to
communicate with object B via interface D. Since object B or interface D are
not available anymore, or because both objects were separated as a result of
a network partitioning, this attempt to communicate fails and results in an
error. Locators can trap such error conditions and take corrective action. Since
locators contain all trading information sufficient to obtain references to traded
interfaces, they can transparently re-acquire references to new interfaces (via
Aero’s hierarchy of traders and introduction spaces) that are similar to the ones
malfunctioning but operational. State transfer has to be addressed separately,
if necessary.

Our example considers several changes at run-time that can be described as
unanticipated, amongst them component and communication failures, as well as
system migration and evolution. Note that in Figure 4 and Figure 5 there are
two instances of object B supporting interface D and E. Multiple instances can
exists as replicas to allow for redundancy where partial failures would cause a
fail-over to a functioning component supporting the required service interface(s).

While partial failures are usually caused by broken system parts, they can
be triggered on purpose. This method is utilized for system migration as fol-
lows: New component implementations supporting the expected interfaces are

<<group>>
theGlobalGroup

<<group>>
aGroupA

A

<<object>>
anObjectA

o

<<interface>> <<interface>>
aninterfaceA aninterfaceB

<<group>>
aGroupB

<<interface>>
aninterfaceC

object>>
anObjectB

‘ aninterfaceD

<<interface>>
aninterfaceE

Figure 4: Invalid reference to interface D due to partial failures

instantiated in parallel to the ones to be replaced. All processes hosting old
components are terminated and with that cause the signaling of partial-failure
mode in their respective clients. Such signaling is trapped by our locators that
in response try to re-acquire new references to new interfaces of operational
components and will find our newly instantiated components based on our new
implementation (Figure 5).

Locators are designed to make service composition transparent to component
developers. Developers are provided with information about what a service com-
ponent has to offer (via its provided service interfaces), and what other services
this component can depend on (via its required service interfaces). Developers
need to implement the former part. But they do not have to be concerned about
neither the implementation nor the access to the latter part which is taken care
of by locators. However, if necessary, developers are allowed to customize lo-
cator behavior to meet special conditions, for example by providing additional
values for trading attributes.

The use of locators can minimize or even avoid code dedicated to system
composition via trading, error detection and resulting corrective actions includ-
ing system re-composition.

4 Summary
In this paper we have illustrated the concept of locators in distributed comput-

ing environments. Locators have first been implemented in the Aero DPE to
facilitate seamless dynamic service composition and system evolution. Aero has

<<group>>
theGlobalGroup

<<group>>
aGroupA

SRR |

<<object>>
anObjectA

.

<<interface>> <<interface>>
aninterfaceA aninterfaceB

<<gf0Up>>
aGroupB

<<interface>> <<object>>
aninterfaceC anObjectB

/

<<interface>>

‘ aninterfaceD

<<interface>>
aninterfaceE

Figure 5: acquired reference of object A to another interface D

been used to deploy large-scale telecommunications applications based on the
TINA service architecture. There, Aero’s locators proved to be essential and
effective during system activation, recovery, and post-deployment evolution at
run-time.

During development, programmers only need to specify structural relation-
ships between computational objects using ODL. Aero then generates all code
necessary to interface these objects with the run-time environment. Locators
are part or the code generated. Locators support transparent service composi-
tion. They are placed between client code and client stubs to remote objects,
containing all information required to locate and connect to remote objects that
provide interfaces required by the computational object locators are associated
with. As the main benefit for developers, there is no need to explicitly imple-
ment connectivity- and composition-related system parts, but to take advan-
tage of partial system specification and code generation. For a computational
object requiring other services to fulfill its responsibilities, locators assure oper-
ational connections to other computational objects which provide the required
interfaces. Locators assist in the initial composition of the system as well as re-
composition addressing communication errors due to partial failures and system
migration and evolution.

In Aero, locators are used for system evolution via the provisioning of adapted
services, the instigation of partial failure modes, and as a consequence of that,
the automatic failover to the evolved parts of the system.

References

[1] D. Bdumer and D. Riehle. Product Trader. In In Pattern Languages of
Program Design 111. Addison-Wesley, 1998.

[2] H. Berndst, editor. The TINA Book: Cooperative Solution for a Competitive
World. Prentice Hall, 1999.

[3] J. Eastman and R. Hirschfeld. Meta-Object based System Generation. In
Proceedings of STJA’97, Erfurt, Germany, 1997.

[4] J. Eastman and R. Hirschfeld. A Trading-Based Component Environment.
In Proceedings of STJA 98, Erfurt, Germany, 1998.

[5] J. Eastman and R. Hirschfeld. Repository-Based Deployment of CORBA
Applications. In Proceedings of COMDEX Enterprise’98, TelecomIT Fo-
rum, 1998.

[6] E. Gamma, R. Helm, R. Johnson, , and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[7] Object Management Group. The Common Object Request Broker: Archi-
tecture and Specification, Revision 2.0, July 1996.

[8] F. Leong, S. P. Mylavarabhata, T. Nguyen, and F. Quemada. Distributed
Processing Environment: A Platform for Distributed Telecommunications
Applications. Hewlett-Packard Journal, October 1996.

[9] Windward Solutions. Aero website. http://www.windwardsolutions.com/Aero.

[10] TINA-C. TINA Object Definition Language. TINA-C Document, Version
2.3, July 1996.

[11] TINA-C. TINA DPE Architecture. TINA-C Document, Version 2.0b,
November 1997.

[12] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note on Distributed
Computing. Technical Report SMLI TR-~94-29, Sun Microsystems Labora-
tories, November 1994.

