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Abstract

Use-cases are considered an integral part of most contemporary
development processes since they describe a software system’s
expected behavior from the perspective of its prospective users.
However, the presence of and traceability to use-cases is increas-
ingly lost in later more code-centric development activities. Use-
cases, being well-encapsulated at the level of requirements descrip-
tions, eventually lead to crosscutting concerns in system design and
source code. Tracing which parts of the system contribute to which
use-cases is therefore hard and so limits understandability.

In this paper, we propose an approach to making use-cases first-
class entities in both the programming language and the runtime
environment. Having use-cases present in the code and the running
system will allow developers, maintainers, and operators to eas-
ily associate their units of work with what matters to the users.
We suggest the combination of use-cases, acceptance tests, and
dynamic analysis to automatically associate source code with use-
cases. We present UseCasePy, an implementation of our approach
to use-case-centered development in Python, and its application to
the Django Web framework.

Categories and Subject Descriptors D.1.5 [Software]: Program-
ming Techniques—Object-Oriented Programming; D.3.3 [Soft-
ware]: Programming Languages—Language Constructs and Fea-
tures

General Terms design, languages

Keywords use-cases, separation of concerns, traceability

1. Introduction

Users describe desired system behavior from a domain-centric
point of view, deliberately avoiding technical details that are not
part of their domain. Based on the recording of user-system-
interactions, use-cases [20] represent one of the more recent ap-
proaches to capturing such descriptions to cover all observable be-
havior at a system’s boundary from its users’ or clients’ points of
view. Each such description is comprised of simple steps written
down informally, covering technical details only if necessary. With
use-cases, customers can conveniently express what they expect
from a system, and developers can treat the system boundaries and
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all interactions across them as a foundation for modeling, imple-
mentation, testing, and even deployment. Therefore use-cases are
regarded as important linking elements between the different per-
spectives of developers and users.

Developers frequently have to associate requirements expressed
by a customer or user with the responsible locations in a system’s
implementation [32]. This, in turn, is often rather complex and only
partly understood. In many cases, there is no simple one-to-one
correspondence so that developers have to discover these mappings
between users’ descriptions and implementation details by them-
selves. Developers have to consider groups of instances, classes,
and modules since a system’s behavior emerges from the interac-
tion of its parts. Unfortunately they often have great difficulty in
recognizing what part of the system implements what use-case and
vice versa. Contemporary object-oriented programming languages
are very limited when it comes to reflecting the users’ perspectives
in the actual source code of the system [34].

In this paper, we propose the representation of use-cases as first-
class entities in object-oriented programming languages and run-
time environments. By making use-cases explicit in source code
and at run-time, they can benefit the entire software life-cycle. Use-
case-centered development extends the presence of use-cases from
requirements engineering to implementation, testing, and run-time.
By being able to easily identify use-cases always and everywhere,
change requests or failure reports can be mapped onto correspond-
ing user descriptions as well as source code entities.

The contributions of our paper are as follows:

e We introduce a new programming construct called usecase
supporting use-case layers orthogonal to a system’s class hier-
archy. With this construct, developers can annotate methods to
associate them and the classes in which they are implemented
with the use-cases they contribute to. Moreover, we preserve
this information until run-time so that both developers and tools
are able to inspect and debug use-cases and their participating
objects from within the system. We have implemented Use-
CasePy in the Python programming language to support our
notion of use-case-centered development.

We further present a use-case recovery technique that propa-
gates use-case-associations by using dynamic analysis in com-
bination with acceptance tests and use-case meta-objects. De-
velopers need only annotate acceptance tests with correspond-
ing use-cases and everything else, from test execution to source
code annotation, will be done automatically and can so be re-
peated as often as necessary without additional burden to devel-
opers.

e We apply our approach to the Django Web framework [11].
With the help of our use-case recovery technique, we are able
to identify more than 35 use-cases and automatically annotate
large parts of Django with less effort. Based on our added lan-



guage construct, we demonstrate how typical maintenance ac-
tivities such as program comprehension, debugging, and reengi-
neering can benefit from use-case-centered development.

The remainder of this paper is organized as follows: Section 2
discusses challenges related to the traceability of use-cases. Sec-
tion 3 presents our approach to use-case-centered development.
Section 4 explains our implementation in more detail. Section 5
describes the Django case study demonstrating the capabilities of
UseCasePy. Section 6 discusses related work. Section 7 concludes
our paper and presents ideas for future work.

2. Use-case Traceability

Although use-cases are the linking elements between the several
representations of software systems [9], the traceability to them is
increasingly lost in later more code-centric development activities.
Due to the crosscutting characteristics of use-cases in design and
implementation activities [21, 22], their realizing objects end up
being scattered over and tangled with the rest of the system. This
causes several difficulties that developers face when connecting
requirements from the users’ or customers’ domain with their own
implementation-centric perspectives.

2.1 Requirements, Analysis, and Design

The traceability of use-cases between requirements specifications,
domain models, and design artifacts is well-established and sup-
ported by many tools such as Objectory [29]. A process based on
use-cases typically looks as follows: First, requirements formulated
in natural language are analyzed and transformed into several use-
cases. During analysis, developers review and refine the require-
ments to acquire a more precise understanding of the application
domain and the needs of their customers. Developers specify all
the logical or domain objects relevant to the system and their rela-
tionships and interactions [20]. Use-cases can now be realized by
subsets of the analysis objects based on their contribution through
collaboration. This representation is often called view of partici-
pating objects. Figure 1 shows a group of objects involved in the
execution of the dotted use-case (using Jacobson’s notation [20]).
Triggered by a user-induced stimulus to an interface object, a use-
case’s behavior is provided by several collaborating objects. This
view of participating objects is the use-case description’s counter-
part inside a software system. Both analysis and design activities
focus on such object descriptions whereas the traceability relation-
ship is still preserved.

2.2 Use-cases Are Crosscutting Concerns

An object can be part of many use-case implementations, and a
use-case implementation can be (and usually is) realized by several
collaborating objects. Figure 1 illustrates these relationships. An
ellipse denotes a use-case implementation. All objects inside an
ellipse contribute to a use-case implementation.

If such a use-case implementation is distributed over several ob-
jects, this property is called scattering. Sometimes some of the ob-
jects and their communication paths are involved in more than one
use-case implementation and play different roles in their execution.
This property is called tangling and represented as the intersection
of the two use-cases in Figure 1.

While users typically do not perceive scattering and tangling
from their point of view, developers are constantly faced with them:
they need to know which relationships exist between particular ob-
jects and use-case implementations. Traceability between use-cases
and their realizations is needed especially in later development ac-
tivities to ensure that developers can determine how changes to one
use-case implementation affect others.

52

Scattering

@ Use-cases

O Entity Object
I-O Interface Object
O Control Object

—Call

Tangling

Figure 1. Scattering and Tangling of Use-cases

2.3 Implementation, Testing, and Deployment

One might argue that systems can be implemented straightfor-
wardly based on a proper design model and so guarantee trace-
ability as well. However, studies report that during implementa-
tion, design objects are split into approximately one to five classes
and there are exceptional cases with up to 17 classes [20]. With
that, a simple one-to-one correspondence between design objects
and implementation classes is rather an exception than the rule and
traceability between them is increasingly lost.

For these reasons, developers cannot determine from the source
code alone which parts of the system are part of which use-case
implementation and vice versa. We argue that this knowledge is
important for implementation and maintenance activities because
change requests are described by users and need to be mapped to
locations in the source code by developers. Since traceability to
use-cases is already lost in the source code, it is also not available
during deployment or at run-time. With such traceability, however,
we can imagine several scenarios supported by it: debugging of
use-cases, reengineering support with use-cases, or deployment on
a per use-case basis. While possible in principle, such scenarios
involve intensive manual work with a high potential for failure.

3. Use-case-centered Development

Use-case-centered development is based on explicit representation
of use-cases in object-oriented languages, addressing the problems
related to their absence in later development activities. We intro-
duce a new language construct and meta-objects to combine source
code entities and run-time artifacts with the use-cases they con-
tribute to. Based on these concepts and in combination with dy-
namic analysis, we introduce a process to semi-automatically re-
cover use-case-implementations in legacy systems. A brief discus-
sion of some aspects of the approach concludes this section.

3.1 @usecase Language Construct

To connect scattered parts of use-case implementations semanti-
cally belonging together, we introduce the usecase construct. It
is realized as a source code-level annotation parameterized with
unique semantic identifiers of all use-cases to whose implementa-
tions the annotated source code entity contributes. Using this con-
struct, developers can easily augment computational units, for ex-
ample methods, with use-case tracing information, resulting in im-
plementation artifacts carrying information on their associated use-
cases as described in requirements engineering. According to its
annotation, the function in the code below is involved in the im-
plementations of the two use-cases “draw a line” (DrawALine) and
“draw a rectangle” (DrawARectangle); changes in this function
will influence both use-case implementations.

Qusecase (DrawALine,
def drawLine(x1l, y1, x2,

DrawARectangle)
y2):



We propose to apply the usecase annotation at the granularity
level of single methods. We believe this to be suitable for devel-
opers that want to obtain (and maintain) a sufficient overview of
use-case implementations. In contrast, we argue that classes are too
coarse-grained targets for annotation since they would likely yield
to many use-case annotations per unit (class).

View of Involved Use-cases As mentioned in Section 2.2, one
method can be involved in several use-case implementations. The
usecase construct implicitly supports the expression of use-case
implementation relationships and dependencies: Methods without
an annotation are not covered by any use-case implementation.
Methods that are executed in one particular use-case are specific
to that use-case and annotated with exactly one unique use-case
identifier. Group annotations describe computational units that are
involved in more than one use-case implementation. The usecase
annotation is parameterized with a list of all involved use-cases.
Methods executed in a high number of or all use-case implemen-
tations are classified as being infrastructural. An empty parameter
list describes these relationships to prevent crowded lists in meth-
ods with a high number of use-cases. Listing 1 shows four methods
with all kinds of annotations and corresponding names.

Qusecase (usecasel)
def aSpecificFunction():

Qusecase (usecasel, usecase?2)
def aGroupFunction():

Qusecase ()
def anInfrastructuralFunction():

def aNotCoveredFunction():

Listing 1. Different Use-case Relationships Expressed by Method
Annotations.

The mapping of use-case relationships to the parameter list is
easy to understand and extensible. With it how many and which
use-case implementations an annotated method contributes to be-
comes evident. Thus, it can easily be inferred how changes to that
method can influence the behavior of other use-case implementa-
tions. The language construct is practical for new use-case annota-
tions as well as for changed use-case behavior since the parameter
list makes the method’s contribution explicit.

Mapping of Scattering and Tangling With our approach, de-
velopers can adopt two different perspectives on such annotated
source code (see Listing 1). In the tangling view, they first look
at a method, then its annotation, and finally the relationships link-
ing to several use-case implementations. For instance, the function
aGroupFunction is involved in the first and second use-case im-
plementation, which is made explicit by its annotation.
Conversely, developers focus first on use-cases when taking the
scattering view. It considers a given use-case and contains all in-
volved methods, allowing developers to follow a use-case imple-
mentation through the system. The scattering view may be prob-
lematic as the different methods contributing to one use-case may
indeed be defined in different source code units (such as files). De-
velopment tools can ease the task of maintaining top-sight by scan-
ning the entire source code of the system, extracting use-case anno-
tation information from it, and preparing a comprehensive view. We
have implemented a prototype in the PyDev Python IDE [27]. Fig-
ure 2 shows the UseCasePy Layer plug-in in the PyDev workbench.
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A tree view displays projects with their use-case implementations,
involved methods, and dependencies on other use-cases.

3.2 Use-cases as First-class Entities

Source code-level information can be retained as valuable meta-
data at run-time. Based on the usecase annotation, we introduce
use-cases as meta-objects, instances of “use-case template classes”
(UseCase) that represent desired information about use-cases. Typ-
ically, each instance attribute of a use-case template class describes
an interesting property of a use-case such as goal, actor, or pre-
conditions. Developers and tools can obtain use-case information
directly from the UseCase objects. Listing 2 illustrates a possi-
ble use-case class template and one instantiated meta-object de-
scribing the “draw a rectangle” use-case. The template consists of
typical use-case attributes and an external link to a third-party re-
quirements document for more information. The object is bound
to the variable name DrawARectangle, which corresponds to the
use-case identifier.

class UseCase(object):

def __init__(self, name, desc, actor, doc):
super (UseCase, self).__init__()
self .name = name
self.description = desc
self.actor = actor
self.externalDocument = doc

DrawARectangle = UseCase(
"Draw a rectangle",
"Add and draw a rectangle figure to the canvas.",
"A typical user",
File("/paint/usecases/drawRectangle.uc"))

Listing 2. Definition of Use-case Meta-objects.

All use-case objects must be unique within the system because
their corresponding use-cases from requirements engineering are
also unique. Therefore, we suggest a use-case meta-objects repos-
itory global to the system that can be accessed from modules with
an import statement, thus avoiding accidental multiple creation of
use-case meta-objects. The repository can be used to look up identi-
fiers and use-case attributes, and usecase method annotations can
refer to use-case objects in a consistent manner. Assigning mean-
ingful names to use-case meta-objects by assigning them to global
variables named after for example the goal of the use-cases ensures
readable unique identifiers.

Use-case meta-objects are connected to methods annotated with
the corresponding use-cases. This ensures that the mapping of
methods to use-cases is preserved at run-time. Tools can introspect
method objects during execution and observe which use-case im-
plementations a specific method contributes to. For instance, it is
conceivable to integrate use-case objects into symbolic debuggers
and to step from one specific use-case method to the next one, ig-
noring unimportant group and infrastructural methods at run-time.
Another example would be to link application objects to the use-
cases they participate in, improving developers’ understanding of
running code. Thereby, use-case roles of objects can be computed
as the set of all methods and corresponding meta-objects. However,
it can only be decided what roles an object can play, but not which
one it currently plays, as it is usually not known which use-case is
currently being executed. This information has to be provided by
other sources such as acceptance tests that check a particular use-
case.

3.3 Use-case Recovery

Adopting a new programming concept requires a certain shift in
how development is carried out, even if the concept, such as the
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Figure 2. UseCasePy Scattering View Plug-in

usecase annotation, has a comparatively small impact on the
shape of code produced. While new projects can adopt our ap-
proach without restriction, developers of legacy system have to
introduce all use-case information to source code manually. This
initial task consists of studying and analyzing an often only par-
tially understood system to store the mappings of system function-
alities to source code [25], which is likely to be nontrivial and time-
consuming. It is hardly possible to determine solely from source
code how objects contribute to the run-time behavior of the system,
which is to a large degree due to language features such as late bind-
ing or polymorphism [8]. Moreover, dependencies between use-
case implementations are not obvious, leading to missing or erro-
neous annotations [18]. Hence, concepts and tools are needed to
assist developers in program comprehension and mapping of use-
cases to source code.

We present a semi-automatic approach to identify use-case im-
plementations in legacy systems by executing their corresponding
acceptance tests. Figure 3 presents an overview of the entire pro-
cess. Developers create use-case objects based on requirements de-
scriptions and populate the use-case repository with them. They
then link use-case meta-objects to corresponding acceptance tests
by using the usecase annotation. Both steps are manual tasks but
they need only be done once. An extended test runner automat-
ically executes annotated tests observed by a tracer that collects
all method calls and creates execution traces related to use-cases
under test. It is determined at run-time with which use-case meta
objects a given test has been annotated. After test execution, the
collected traces are used to map source code entities to use-case
objects in a so-called use-case method-map (adapted from feature
analysis [17, 32])—use-case implementations are said to refer to
a method when that method has been executed at least once in a
specific use-case trace. In the last step, the mapping is used to in-
troduce use-case annotations to the entire source code. Except for
the first two steps, the entire process is done automatically and can
be repeated as often as necessary.

The purpose of the semi-automatic annotation process is to pro-
vide developers with nearly complete use-case data in source code.
Thus, developers can detect potential problems in the realization
of their systems. For instance, each method without an annotation
could be unused source code or an indication of missing tests. Also,
a use-case method marked as specific residing within a module of
many infrastructural methods could be considered a design dishar-
mony. This comprehension of the application offers new possibili-
ties in refactoring and structuring source code. In the remainder of
this section, we will describe the three dynamic analysis steps in
more detail.

Tracing of Use-cases Having annotated acceptance tests with
related use-cases, developers execute these tests under observation
of a dedicated tracing test runner. The tracer gathers all execution
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events of running tests and connects them to the related use-cases.
Our approach is independent from a particular tracing technique
since it only depends on execution data, regardless of how they are
obtained.

Typically, a use-case is accompanied by several acceptance
tests, each of which describes one possible path of execution, for
example the flow of events to open a file, and all alternative paths
such as those followed for error handling such as‘“‘access denied”.
Instead of considering one trace as representing the entire use-case,
we consider one trace as one particular scenario. Consequently, we
have a n-to-one mapping between traces and use-cases.

In Figure 4, the view of participating objects shows the use-
case denoted by the hatched ellipse. Executing the acceptance tests
associated with that use-case leads to two traces corresponding to
two scenarios being recorded, and the involved objects and method
calls being identified. The two objects in the bottom-right corner
are not found in one of the scenarios; hence, they and their methods
will not be part of further analysis steps. Such mistakes can only be
prevented by having exhaustive use-case specifications, as tracing
will only recover use-case functionality in executed parts of the
system. We would like to point out that a forgotten or omitted
scenario or use-case is not a severe problem because dynamic
analysis can be executed again later, with new tests with better
coverage involved.

O Entity Object
|-O Interface Object
O Control Object

— Call

=== Scenario 1

Figure 4. Use-cases, Scenarios, and Traces

Mapping Methods and Use-cases The next step is to connect
use-cases, their scenarios, and methods. To that end, a so-called
use-case method-map is created, consisting of columns denoting
use-cases, and rows denoting methods. A cell is marked if a method
was executed in at least one scenario or, more precisely, one trace.
As explained above, there is a one-to-one mapping from traces
to scenarios. Moreover, dependencies between use-cases and their
scenarios are easy to obtain, as each trace corresponds to one
scenario and use-case respectively.

Table 1 shows an example of a use-case method-map. The map
presents data about three use-cases and four methods. Cells are
marked with “X”. For instance, in the “draw a line” use-case,
two methods were executed, namely paintLine and paint, albeit
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possibly in different traces. Reading the table column-wise yields
the scattering view, and reading it row-wise yields the tangling
view with all use-case implementations the method in question
contributes to.

Drawa | Drawa | Draw an
line rectangle | ellipse
paintLine X X
paintRectangle X
paintEllipse X
paint X X X

Table 1. Use-case Method-map Example

Annotate Source Code With the knowledge obtained from the
mapping, the last step to annotate the source code is straightfor-
ward. The use-case method-map is visited row-by-row, and each
encountered method is annotated with the corresponding use-case
meta-objects as parameters. Optionally, developers can configure
the algorithm to create infrastructural annotations with no param-
eterization if specific methods contribute to a majority of (or all)
use-cases.

3.4 Discussion

The approach described above might face some problems in certain
circumstances. In the remainder of this section, we describe these
problems and how they can be addressed.

Lack of Tests and Use-case Descriptions Legacy software with-
out accompanying test suites and use-case descriptions is problem-
atic if the entities from which use-case annotations can be derived
are missing. In case of missing tests, the use-case centric devel-
opment approach can still be applied manually. If automatic link
recovery is desired, tests have to be provided. In fact, it might turn
out to be easier to write acceptance tests for an existing system,
than to provide all links manually. Should use-case descriptions be
missing, one can revert to using other requirements descriptions
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such as user stories. In this case, the approach can still be applied
as before, apart from a change in terminology—entities originally
representing use-cases would now represent user stories.

Conversion of Use-case Descriptions to Objects Frequently, use-
cases are documented in a textual form that is not represented in
source code. Minimally, a use-case object consists of a meaningful
name and a link to the external document describing the use-case.
Moreover, various properties can be attached to the use-case object,
providing additional information.

It is not possible to provide a generic transformation strategy
from textual use-case descriptions to use-case objects, as the di-
versity of possible input is too wide. However, manual creation of
minimal use-case objects is straightforward and can be achieved
quickly. Provided use-cases are described in a form governed by a
structured template, it is easy to implement an automatic transfor-
mation. This transformation, however, is valid only for the given
use-case template and document structure.

Manual vs. Automated Annotations Links can be defined either
manually or automatically. Developers do not necessarily keep
track of how particular annotations were created. It thus seems
problematic to update links that were created automatically, as the
automatic approach might override manually created annotations.
As we will describe in Section 4.2, the UseCasePy test runner
maintains a database that keeps track of annotations created auto-
matically. Annotations created manually are not stored but derived
by intersecting the sets of all and automatically created annotations.

4. UseCasePy

We have implemented a prototype supporting use-case-centered
development in Python. UseCasePy is a simple implementation
based on several existing language features such as decorators or
Python’s unit test framework.

4.1 The @usecase Annotation

The implementation of the usecase annotation makes use of the
concept of method decorators available in Python. A method deco-



rator is a function that is evaluated by the Python interpreter when-
ever it encounters a method definition augmented with the annota-
tion corresponding to the decorator. The usecase decorator links
use-case meta-objects to method meta-objects.

def usecase (*xusecases):

def decorator(method):
if (type(method) in (classmethod, )):
# Bound the method to a dummy class to retrieve
# the original function object

currentFunc = method.__get__(None, object).im_func
elif (type(method) in (staticmethod, )):

currentFunc = method.__get__(None, object)
else:

currentFunc = method
# Add use-case knowledge to function objects
currentFunc.__usecases__ = usecases

return method

return decorator

Listing 3. Implementation of the usecase Decorator

Listing 3 shows the implementation of the usecase func-
tion. The function accepts as parameter a list of use-case meta-
objects, and returns an internal decorator function that is exe-
cuted with the annotated method definition passed as parameter.
Inside decorator, the type of the decorated method is identified
and, if necessary, other decorators are unwrapped to get hold of
the original function object. This object is extended with a new at-
tribute called __usecases__ that holds all use-case meta-objects
with which the corresponding method is annotated. The method
behavior is not altered.

The run-time overhead of this approach is very small as deco-
rators are only executed when the interpreter encounters a method
definition for the first time. Memory consumption increases only
slightly because each use-case meta-object is unique within the
system. Last but not least, we have implemented a small meta-level
API for inspecting method annotations and objects to obtain related
use-cases and roles.

4.2 Use-case Recovery Test Runner

Existing software systems providing an acceptance test suite for
use-cases can be comfortably adapted to use-case-centered devel-
opment by analyzing their run-time behavior. Figure 5 illustrates an
overview of our use-case recovery system. At the bottom of the fig-
ure, the software system under consideration can be seen—besides
the original source code of the system, there are use-case-related
acceptance tests and the global use-case repository.

-
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UseCasePy Test Runner

UseCasePy
Database

Python VM

UseCasePy
Tool Suite

System under
y Observation
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/

Python
Application
(Source Code)

Figure 5. UseCasePy Test Runner Architecture

The upper left corner depicts the test runner and tracing mech-
anism. The UseCasePy test runner works like a normal test run-
ner, executing test cases and presenting results to the user. More-
over, each time a test case exhibits a use-case annotation, our tracer
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hook is started and all use-case information, related scenarios, and
run-time events are automatically queued, stored, and linked in
the database. In case of failed tests, the trace is discarded. Hav-
ing collected run-time data, the source code annotator creates the
use-case method-map and subsequently annotates the entire source
code with use-cases.

Tracing in Python The Python interpreter offers a hook function
with which a trace function can be registered. The trace function
is called each time a line of code is executed with arguments
such as the current execution frame. We have implemented an
own trace function that records executed methods per use-case.
It is registered in the interpreter for multi-threaded applications—
tracing over process boundaries is currently not supported.

Inside our trace function, we check whether the trace mecha-
nism was activated by the test runner and if the upcoming event is
a call. If so, the method currently being executed is extracted from
the frame object, and we make sure that the observed source code
file is included in the analyzed project. This is to include only appli-
cation code in the use-case analysis; code from third-party libraries
is not to be considered. After this check, the following four values
are written to the database: the execution event as forwarded from
the interpreter, the method name, file path, and line number of the
currently executed source code.

Database Model Each trace is stored in a dedicated table with
all collected events. Each use-case is represented by an entry in the
use-case table; the template attributes are stored as columns. Subse-
quently, both tables are linked together via a third table describing
scenarios with additional attributes such as their time stamps and
test results.

A relational database is capable of handling large amounts of
data very well, and of offering a query language for easy data
access. For instance, the SQL DISTINCT keyword can be used to
easily create a unique set of involved methods, and UNION can be
used to connect several traces to one entire use-case. Based on
these query results, creating the use-case method-map as well as
annotating the source code is straightforward.

5. Case Study

We apply our use-case-centered development to Django (Version
1.0.2), a Python Web framework [11], and demonstrate its benefits
in typical maintenance activities.With the help of our UseCasePy
implementation, we present how use-cases can be recovered with
less effort and how our programming constructs support developers
in program comprehension, debugging, and reengineering.

5.1 Experimental Setup

Django is a typical model-view-based Web framework and consists
of features such as an object-relational mapper, an administrative
interface, a template engine, and a cache system. This mid-sized
project has more than 75,000 lines of production and 35,000 lines
of test code. The framework without tests is organized in about
4,500 methods and 1,200 classes structured in 120 packages. 615
unit tests ensure the functionality of methods, modules, and use-
cases. Django offers an adequate number of test cases and is big
enough to be used to validate our approach in a satisfying manner.

The Django framework documentation does not contain any
use-case descriptions. Therefore, we first identified 37 use-cases
from typical usage scenarios, including login to a Web page, upload
a file, and reset a password. We found these scenarios in additional
documentation such as Web sites and tutorials.

5.2 Use-case Recovery in Django

Having identified the use-cases, we applied our use-case recovery
process. Since no internal knowledge about the system was avail-



able, about three hours were required to investigate use-cases and
create their descriptions in the use-case repository. Afterwards, we
located acceptance tests and annotated them with corresponding
use-cases.

We annotated 414 out of 615 tests with use-cases. Besides a
small number of group annotations, almost all acceptance tests
were assigned to one specific use-case meta-object. All in all, a
fully annotated test suite was obtained within five hours. We expect
that an experienced Django developer would have taken much less
time to complete this task.

The next process step is the automatic test execution with the
use-case recovery test runner. The ensuing automatic test execution
was performed on a MacBook with a 2.4 GHz Intel Core 2 Duo
and 4 GB RAM running Mac OS X 10.5.6. The used Python
version was 2.6; the test suite was launched from the PyDev Eclipse
IDE [27].

Python’s standard test runner executes the entire test suite in 220
seconds. In contrast our tracing test runner is about 6.5 times slower
and requires 1,446 seconds. For this reason, we suggest to use the
tracing test runner in scenarios where test performance is not of
importance, e. g., during nightly builds. We would also like to note
that running the use-case recovery process on an already annotated
system will further slightly decrease performance because former
automatic-created annotations need to be removed. Tracing tends
to generate a large amount of data. Restricting the traced events to
only method calls resulted in a relational database 139 MB in size
(without this restriction, about 1 GB was collected). On average,
our tracing test runner generates about 7 MB of data per minute.

Executing all use-case-annotated tests cover almost 33 % of the
system’s source code, resulting in the insight that 1,491 out of 4,573
methods (without tests) are part of one or more use-cases. This
value seems lower than expected, but it has to be noted that the
acceptance test suite is probably not complete.

5.3 Software Maintenance with Use-cases

In software maintenance, developers spend most of their time for
program comprehension [31] which is in part due to missing trace-
ability between requirements and source code. Use-case-centered
development recovers this traceability and introduces use-cases as
first class entities so that developers can benefit from this informa-
tion to support their system understanding. In this case study, we
first present the classification of the Django system from the user’s
point of view and then describe how our use-case entities support
maintenance activities such as debugging and reengineering.

Program Comprehension with Use-cases To assess the possi-
bilities of our use-case annotations for program comprehension in
general, we are first interested in understanding the distribution of
use-case implementations over the entire system. Figure 6 shows
the relationship between all annotated methods and their involved
use-case implementations. There are more than 500 methods that
contribute to exactly one use-case. In other words, a third of all an-
notated methods implement specific use-case behavior. It is very
likely for developers to concentrate on these particular methods to
understand the implementation of a specific use-case. Should they
not suffice, methods annotated with 2—5 use-cases can be examined.
Together, these and the specific methods represent two thirds of the
annotated code. This is very satisfying as it attributes large system
parts to specific use-cases. From the observation that two thirds of
methods in the Django source code are closely related to few use-
cases we conclude that a very large part of the system exhibits a
high cohesion. This in turn means that Django is well modularized
in terms of cohesion.

The last third of all methods is infrastructural meaning library
code that will be used by most of the use-cases. We argue that such
code should be used during program comprehension to get a better
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Figure 6. Distribution of Use-case Annotations within Django

understanding of the whole system behavior. We consider it is less
important for particular use-cases.

Use-case-driven Fault Localization Debugging activities, partic-
ularly searching for failure causes, requires deep knowledge of
the system and its behavior. Developers have to follow the infec-
tion chain backwards from the observable failure to the past de-
fect, which is largely a search problem in time and space of pro-
grams [35]. Usually, failure reports as described by users, which
are arguably closer to use-cases than to implementation artifacts,
must be laboriously mapped to system entities if proper traceabil-
ity is missing. With our recovered use-case implementations, we
support developers in narrowing down failure causes to use-case-
related locations that are likely to include defects.

Using data from use-case recovery, developers can reduce the
overhead for searching relevant methods to a minimum. As an ex-
ample, a user reports a problem while uploading image files. Hav-
ing this failure report, developers can easily map this description to
the “upload a file” use-case and reduce the search space to packages
that include use-case-related annotations. In doing so, developers
can narrow their further search to 21 out of 121 Django packages
and 241 out of 4,573 methods. In other words, roughly 17.4 % of
packages and 5.3 % of methods are interesting for detecting the
failure cause.

1 Use-case
45 Methods (19%)

2 Use-cases
9 Methods (4%)
3 Use-cases
1 Method (0%)
4 Use-cases
11 Methods (5%)
5 Use-cases
2 Methods (1%)
6-10 Use-cases
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49 Methods (20%)

——

11-20 Use-cases
121 Methods (50%)

Figure 7. “Upload a File”-related Annotations

Figure 7 illustrates all annotations “upload a file” is part of. In
contrast to Figure 6, it is apparent that only one third of methods



contributing to this use-case exhibit high cohesion'. Given the
expectation that the core implementation of a use-case should be
contained in just a few methods, it is satisfying to see that this
seems to be the case for the “upload a file” use-case. In fact, the
highly cohesive third in Figure 7 corresponds to about 1.75 % of
the entire system.

If the failure is restricted to this specific use-case, developers
can further reduce the search space to the most relevant packages
and methods. Figure 8 lists the importance of all relevant use-
case annotations within the 21 Django packages. A package with
only a few specific use-case method annotations indicates that its
importance will be higher as compared to a package with many
infrastructural methods. The ./core/file package seems to be
most relevant with a value of 30 %, followed by ./http with
17.5 %. Developers can focus on a few packages and the methods
within to understand the “upload a file” use-case. By starting with
the “file” package, developers limit the search to about 30 mostly
specific method annotations. Thus, only 30 out of 4,573 methods—
0.65 % of the entire system—are of high relevance to the “upload a
file” use-case and its including failure. Additionally, if the failure-
inducing method is also part of other use-cases, developers can
prioritize the necessary acceptance tests to ensure that the system
still works as expected.
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Figure 8. Importance of Packages for File Uploading

Use-cases for Reengineering For reengineering and refactoring
specific system parts, developers require not only an in-depth un-
derstanding of source code; the dependencies to affected require-
ments are also of great value. First, involved use-cases reveal what
functionality is primarily influenced by changes allowing develop-
ers to prioritize corresponding acceptance tests. Second, the trace-
ability of use-cases supports the analysis of interfaces and most
commonly used entry points. Third, requirements also allow de-
velopers to characterize a system part with respect to coupling and
cohesion. As an example for reengineering, we choose Django’s
“authentication” package because it is a very important part of the
Web framework and it will often be adapted if new authentication
techniques arise.

In summary, the package consists of more than 100 methods
where every second method is annotated and about 33 % of all

I'We apply the term “cohesion” to single methods instead of larger-scale
modules. A method exhibits high cohesion if its code contributes to few
use-cases.

2 We compute the importance of a package by first summing up weighted
methods, where specific methods (one use-case) are assigned a weight
of 8 and infrastructural methods (more than 21 use-cases) a weight of 1
with decreasing weights for other groups as shown in Figure 7 and then
normalizing this value with the number of all methods multiplied by 8.
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Figure 9. Importance of Use-cases within the Authentication
Package

methods are related to just a few use-cases. Thus, most of the traced
behavior in this package will only be used in a specific context.
There are five methods referring to a high number of use-cases.
These methods implement the entry points to this package; for
instance, in middleware.py, we found the infrastructural method
process_request. Developers are able to consider such methods
first and afterwards follow a certain use-case through the package.
We argue that this is a simple way to learn more about the internals
of such a package and the details of a specific use-case.

With the help of use-case recovery, we conclude that Django
exhibits, at least for this package and its clients, low coupling.
The five methods constituting entry points into the “authentication”
package are each responsible for a high number of use-cases. Had
there been more methods with less use-case contributions, the over-
all interface of the package to the rest of the system would have
been broader, suggesting higher coupling.

Although 21 out of 37 use-cases are involved in the behavior of
the authentication package, not every use-case is equally influenced
by this package. Figure 9 presents the importance of all observed
use-cases, which was computed similar to package importance ex-
cept that we sum up methods per use-case and normalize with all
package methods. Each value is below 15 %; thus, all use-cases
consume just a few methods of the entire functionality. The package
is used by many use-cases and can be identified as a helper package.
The ten least important use-cases do not use more than one or two
methods. Furthermore, it can also be seen that the five most impor-
tant use-cases require quite a few authentication mechanisms—for
instance, the “comment” use-case requires authenticated users for
adding new comments to a Web page.

6. Related Work

We divide related work into three categories: requirements trace-
ability, feature localization, and use-cases as aspects.

Requirements Traceability Requirements traceability refers to
the ability to follow the life of a requirement, both forwards and
backwards [15].

Based on the event-notifier pattern, event-based traceability [7]
establishes loosely coupled traceability links between requirements
and other artifacts. To support software evolution, an event server
notifies all subscribed entities if a requirement changes. This ap-
proach can also be used with use-cases and source code entities.
After creating manual links, the traceability information can be ob-
tained by the event server at development and run-time.



The TraceAnalyzer [12] is similar to our approach since it uses
run-time information of scenarios to recover traceability links. The
suggested process consists of hypothesizing (collecting scenarios),
atomizing (building the footprint graph), generalizing and refining
(propagating trace data within the graph). TraceAnalyzer considers
only classes and does not reflect the gathered information in source
code directly.

Based on a few links created manually, LeanArt [16] recovers
traceability links between use-case diagrams and types and vari-
ables. It uses run-time monitoring, program analysis, and machine
learning to propagate the small set of initial links within the source
code. LeanArt mimics the human-driven procedure of searching
for similarities between program entities and use-case elements.
The approach does not consider the behavior of scenarios and the
knowledge is also not used for explicitly representing use-cases in
source code.

There are also some approaches based on information re-
trieval [2, 26]. These techniques have the benefit to process fully
automatic but they have even the drawback to create many false-
positive mappings. We prefer a high precision because developers
can trust the traceability links even if we have not found each rela-
tionship.

Feature Localization Feature engineering [30] introduces fea-
tures as the natural organization of a system’s functionality from
the users’ point of view. It promotes features as first-class objects
throughout the software life cycle to reduce the gap between de-
veloper and user perspectives in development. However, the term
“feature” is not defined precisely enough and not as important as
use-cases to guide developers in system implementation and main-
tenance. Nevertheless, the similarity between both concepts might
suggest interesting ideas for future work.

Feature localization, also known as feature identification, is a
technique to single out subsets of a program when exercising a fea-
ture. The Software Reconnaissance technique [32, 33] was the first
to use dynamic analysis to locate features. This technique splits
test cases into two sets, one of which is part of the searched-for fea-
ture. The other contains the remaining test cases. From the gathered
traces, a mapping from system behavior to involved source code en-
tities is derived. In the last step, the gathered results are combined
with their relationships to the involved features: calls contained in
the first set belong to the corresponding feature; calls contained in
the first set only are unique to that feature; and calls only contained
in the second set are not covered by the feature in questions. Further
research has refined this concept by defining metrics [23, 34] and
heuristics [14] or interactively analyzing features at the sub-method
level [10] to quantify features and source code more precisely.

Another approach extends the idea with static analysis of de-
pendency graphs and formal concept analysis [13]. Several rela-
tionships between features and source code artifacts are computed
with the help of formal concept analysis guiding the static analy-
sis technique to identify feature-specific source code units. Similar
concepts [6] focus on test coverage [3] and recovering architectural
entities [5]. A further approach uses static and dynamic concepts
with several tools such as parser and processor emulation [1] solv-
ing difficulties of collecting dynamic data and combining features
and micro architecture together.

Besides dynamic analysis, there are alternative approaches
based on information retrieval techniques [24, 36]. For instance,
latent semantic indexing will be used to locate similar source code
identifiers in different documents [24]. We think that the combina-
tion with static analysis can prevent mistakes from the as-needed
strategy of dynamic analysis and should attract attention in future
work.

The usefulness of considering features as the missing link be-
tween the users’ point of view and the implementation level was
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evaluated in several publications explaining the correlation between
features and code, characterizing the functional role of classes and
methods, and revealing how developers develop features [17].

Summarizing, all approaches primarily differ in measurements
to quantify the relevance of code to a feature. However, feature
analysis often focus on one feature at a time ignoring relations to
other features or specified requirements.

Feature-oriented programming (FOP) [4] and context-oriented
programming (COP) [19] are paradigms that capture increments
in program functionality. FOP and COP lead to a layer-based soft-
ware design where a layer corresponds to a feature. Each layer adds
functionality to previously composed layers and different combina-
tions of layers produce different programs. The focus of FOP is on
compile-time selection and that of COP on dynamic composition.
Both do not support layer/use-case objects at run-time.

Aspects Use-case modularity [21] argues that aspect-oriented
programming can provide the missing link between use-cases and
implementation. It proposes a separate layer across existing com-
ponents supporting a decomposition based on use-cases. The ap-
proach comprises the separation and composition of use-case ex-
tensions which might be implemented with the help of aspect-
oriented programming (AOP) [22]. However, it does not solve the
problem of tangling use-cases and their separation in source code.

AspectU [28] introduces an aspect entity at the use-case require-
ment level similar to Aspect] at implementation level. A use-case
is described as a tree structure of steps and extensions (join points)
and the execution involves several nodes and paths in this tree. An
AspectU pointcut matches and identifies a set of certain join points
(subtrees) that are extended by additional behavior from advice
constructs. AspectSD is introduced as intermediate language at the
sequence diagram level transforming AspectU to Aspect] source
code entities. Developers have to define links between use-cases,
sequence diagrams, and source code. Their approach depends on
extended use-case specifications so that it is hardly applicable for
legacy systems.

7. Conclusion

With use-case-centered development we bridge the gap between
how users describe their domains of interest and how developers
approach the realization of software systems in their support. By
representing use-cases as first-class elements throughout all soft-
ware development activities, we are able to recover use-case trace-
ability lost in more code-centric development activities.

Use-case-centered development extends use-case traceability
from analysis and design all the way to implementation, debugging,
and testing. Making use-cases first-class elements in the entire
development tool-chain allows for direct and convenient access to
code or even live objects from requirements and vice versa. This
reuse of requirements documents can lead to a significant decrease
in time, effort, and costs of software development [15].

With the new usecase language construct, as demonstrated in
the application of our UseCasePy Python extension to the Django
Web framework, developers can mark objects and methods as con-
tributing to one or more use-cases. With that, dependencies be-
tween use-cases themselves and use-cases and their implementa-
tion are made explicit.

By representing use-cases as meta-objects at run-time, a number
of development activities can be enhanced and tools improved. For
example, debuggers can introspect objects and link them to the
use-cases they participate in or quality assurance can check code
coverage on a per-use-case basis.

Recovering use-cases from usage scenarios helps to restore the
original use-cases the system was built to support and with that
improve comprehension of an existing code base.
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