
Towards Type-Safe JCop

A type system for layer inheritance and first-class layers

Hiroaki Inoue
Grad. School of Informatics

Kyoto University, Japan
hinoue@kuis.kyoto-

u.ac.jp

Atsushi Igarashi
Grad. School of Informatics

Kyoto University, Japan
igarashi@kuis.kyoto-

u.ac.jp

Malte Appeltauer
SAP Innovation Center,

Potsdam, Germany
malte.appeltauer@sap.com

Robert Hirschfeld
Hasso-Plattner-Institut

Univ. of Potsdam, Germany
hirschfeld@hpi.uni-

potsdam.de

ABSTRACT
This paper describes a type system for JCop, which is an
extension of Java with language mechanisms for context-
oriented programming. A simple type system as in Java,
however, is not sufficient to prevent errors due to the ab-
sence of invoked methods because interfaces of objects can
change at run time by dynamic layer composition, a charac-
teristic feature of context-oriented programming. Igarashi,
Hirschfeld, and Masuhara have studied a type system for
dynamic layer composition, but their type system is not di-
rectly applicable to JCop due to JCop-specific features such
as layer inheritance, first-class layers, and declarative layer
composition. We discuss how their type system can be ex-
tended to these language features.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Languages

Keywords
Context-oriented programming, first-class layers, layer in-
heritance, type systems

1. INTRODUCTION
Context-Oriented Programming (COP) [5] is an approach

to describing context-dependent behavioral variations in a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
COP ’14 July 28 - August 01 2014, Uppsala, Sweden
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2861-6/14/07/ ...$15.00.
http://dx.doi.org/10.1145/2637066.2637073.

program modularly. The main language constructs for COP
are layers and dynamic layer activation. A layer is a collec-
tion of partial methods, which modify the behavior of objects
by running before, after, or around the objects’ methods.
Dynamic layer activation refers to an ability to make partial
methods in a layer effective (or ineffective) during program
execution. Since one layer can contain partial methods for
different objects (or classes), dynamic layer activation can
change the behavior of multiple objects at once. So, a layer
can modularize behavioral changes that cross-cuts over sev-
eral object or class definitions. Different COP languages pro-
vide different constructs for activation (and deactivation).

JCop [1] is an extension of Java with language constructs
for COP. It introduces not only basic COP mechanisms de-
scribed above but also advanced ones, such as inheritance of
layer implementations, first-class layers, subtyping between
layer types, and declarative layer composition to enhance
flexibility. Typechecking in the current JCop compiler, how-
ever, is not sufficient to prevent errors due to the absence
of invoked methods at run time; it is because the compiler
performs typechecking only after translating a given JCop
program to plain Java classes.

Typechecking JCop programs is more difficult than Java
programs because layer (de)activation can dynamically change
the interfaces of objects (if a layer adds new method to
base classes). Igarashi, Hirschfeld and Masuhara [7] have
studied this problem and developed a formal calculus Con-
textFJ, which models a core of COP, with a provably sound
type system. ContextFJ, however, supports only the basic
COP mechanisms, namely, global and second-class layers
and block-style layer activation and it is not obvious how
their type system can extend to other features such as first-
class layers, layer inheritance, and declarative layer compo-
sition of JCop.

In this paper, we extend the type system of ContextFJ
to main additional features of JCop. In particular, we fo-
cus on first-class layers, inheritance of layers, and subtyping
between layer types and how they affect typing. We also
discuss typing for layer deactivation, which has been known
to be difficult to deal with.

The rest of the paper is organized as follows. We review
main features of JCop and state the problem in Section 2.

Section 3 is the main part of this paper and informally de-
scribes our type system for JCop. We discuss other JCop
features, limitations, and possible improvements with re-
lated and future work in Section 4 and conclude in Section 5.

2. JCOP
In this section, we review the main features of the JCop

language [1] along with the introduction of terminology and
then describe the problem we will address. As a running
example, we consider programming a graphical computer
game called RetroAdventure, inspired by [2]. In this game,
the user-controlled hero character wanders around the world.
Here are (skeletons of) the class definitions of the hero, which
has the method to move to a given direction by a certain
distance, and the world in which the hero lives.

public class Hero {
Position pos;
public void move(Direction dir){

pos = ...;
/* changes pos according to dir */

}
}
public class World {

...
}

2.1 Layers and Partial Methods
Now, let’s introduce the notion of weather, which affects

how the hero can move, into the game. For example, in a
rainy weather the hero gets slow and, in a stormy weather,
the hero cannot move to the direction to which he would like
to move. We will define layers to represent these weather
conditions to affect the behavior of the method move given
above. Here are the definitions of these layers:

public layer Rainy {
/* partial method */
public void Hero.move(Direction dir){

pos = ...;
/* the distance of move is smaller */

}
}
public layer Stormy {

/* partial method */
public Hero.move(Direction dir){

proceed(randomDirection(dir));
}
/* layer -local method */
Direction randomDirection(Direction dir){

return ...;
/* add randomness to dir */

}
}
public layer Sunny { ... }

In JCop, a layer is defined just like a Java class. A layer
includes partial method declarations, which resemble ordi-
nary methods except that the name is in a qualified form
such as Hero.move, which designates which method to mod-
ify. We often call original method definitions base meth-
ods and the class that includes the base method base class.
In layer Rainy, the partial method calculates the hero’s
new position differently from the original, while, in layer
Stormy, the partial method uses proceed, which is used to
invoke the original behavior (with a different argument). A
partial method can be given without a corresponding base
method, in which case a layer introduces new behavior to

the base class and proceed should not be used. The method
named randomDirection (without qualification) is a layer-
local method, which is considered a member of a layer and
hence cannot use proceed, either.

2.2 Layer Activation
JCop provides a few different mechanisms to activate a

layer to make partial methods effective. In this subsection,
we describe only the so-called block-style activation, which
activates a layer for a certain duration of execution. The
code below shows how a rainy weather is realized:

// in main method
Rainy rainy = new Rainy();
with(rainy){

/* method dispatch will be influenced by
Rainy */

}

In JCop, a layer has to be instantiated by the keyword
new before it is activated, just as an object in Java is instan-
tiated by using a class definition. The with statement above
activates a layer instance rainy and executes the following
block. Inside the block, every invocation of move on the hero
will execute the partial method in Rainy. When the partial
method body has proceed calls (in this case it does not),
the base implementation is called.1 Layer activation has dy-
namic extent in the sense that, when a method is invoked
inside a with block, the execution of the method body is also
affected by the layer instance activated by the callee. JCop
also provides the without statement, which deactivates the
given layer instance, and the withoutall statement, which
deactivates all the instances of the given layer.

Note that layer instances are first-class citizens in JCop
and the name of a layer works as a type for its instances. It
is possible to store a layer instance in a variable or a field of
an object, pass as a method argument, and even define its
own state by declaring layer-local fields.

2.3 Layer Inheritance
In JCop, a layer can inherit definitions from another layer

by using the keyword extends, just as Java classes. If the
weather layers have many definitions in common, it is a good
idea to define a superlayer Weather and concrete weather
layers as its sublayers. In the example below, the layers
add two methods to World: getWorldText to generate some
formatted message to tell the current status of the world and
getWeatherInfo to return the current weather. The former
is common among all the weathers but the latter depends
on the concrete weather.

public layer Weather{
public String World.getWorldText (){

..... + this.getWeatherInfo () +;
}
public String World.getWeatherInfo (){

return "not implemented";
}

}
public layer Rainy extends Weather{

public String World.getWeatherInfo (){
return "rain";

1To be more precise, proceed calls the next partial method,
when more than one layer instance that has a partial method
for the same base method is activated. In such a case, the
definition in a more recently activated layer instance is called
first.

}
}
public layer Stormy extends Weather{

public String World.getWeatherInfo (){
return "storm";

}
}

(For simplicity, getWeatherInfo in Weather returns a bogus
string. In JCop, one may define Weather as an abstract layer
and leave the implementation of getWeatherInfo abstract.)
Just as in Java, the extends clauses define the subtyping

relation between (layer) types. For example, a variable of
type Weather can store instances of Rainy or Stormy, and
be used for activation:

Weather weather;
weather = someCondition () ? new Rainy ()

: new Stormy ();
with(weather){...}

Note that method dispatch is based on the dynamic type of
activated layer instances and the static type Weather is not
relevant. If first-class layer instances were not supported, we
would have to use conditional branches to choose what layer
to activate. Such programming is possible but more cum-
bersome. In JCop, layer Layer is declared implicitly as the
superlayer of all layers just as Object in Java. This layer im-
plements some layer-specific functionality, and is often used
as the type of a variable to store layers.

2.4 Declarative Layer Composition
In addition to the block-style (de)activation mechanisms,

JCop provides declarative layer composition [2]—a mecha-
nism to (de)activate layer instances by using AspectJ-like
pointcuts [12] and context classes. An example of a context
class is given below.

public layer DebugLayer{
public void Hero.move(Direction dir){

print(dir);
proceed(dir);

}
}
contextclass DebugMode{

DebugLayer debug = new DebugLayer ();
boolean isDebug = false;
public void setDebug(boolean b){isDebug = b;}

when(isDebug) &&
on(public String Hero.move(Direction))

: with(debug);
}

The context class DebugMode has two fields and one method,
followed by a pointcut with advice. The pointcut (the part
before the colon) matches a join point representing the exe-
cution of move in Hero under the condition that isDebug is
true; the advice (the part after the colon) specifies that the
layer instance debug should be activated. As a result, while
an instance of DebugMode is activated and isDebug is true,2

every invocation of move in Hero first prints out the given
direction.

2.5 Problem
2We omit how an instance of a context class can be acti-
vated, as it is not very important for the present paper; see
Appeltauer and Hirschfeld [2] for details.

As mentioned in Secion 1, typechecking JCop programs
is more difficult than Java programs due to the fact that a
layer can add new methods to base classes and availability
of a method depends on layer activation at run time. For
example, the following layer Logging is supposed to record
the weather information when getWeatherInfo is invoked on
the world, but, since getWeatherInfo does not exist in the
original implementation of World, the success of proceed (or,
in general, the invocation of a partial method that does not
have a corresponding base definition) depends on whether a
weather layer has been activated or not.

public layer Logging{
public String World.getWeatherInfo (){

return logging(proceed ());
}

}
...
with(new Logging ()){

new World().getWeatherInfo ();
// proceed () may cause an error.

}

In fact, the current JCop compiler accepts the with state-
ment above and a run-time exception may be thrown during
the execution.

Igarashi, Hirschfeld, and Masuhara [7] have studied this
problem and developed a type system for a formal calculus
ContextFJ, a COP extension of Featherweight Java [8]. Al-
though the type system is proven sound in the sense that a
well typed program does not cause errors due to the invoca-
tion of non-existent (partial) methods or dangling proceed,
the target language, which only supports second-class layers
and with, is too simple to be applied to JCop.

In this paper, we extend the type system of ContextFJ to
deal with the JCop features described above.

3. TYPE SYSTEM FOR JCOP
In this section, we describe our type system for JCop; we

start with reviewing the main ideas behind the type system
for ContextFJ, as it is the basis of our work, and then dis-
cuss how we deal with subtyping between layer types, layer
deactivation by without, and declarative layer composition.

3.1 Type System for ContextFJ
The main ideas behind the type system for ContextFJ is

(1) the introduction of the requires relation between layers
and (2) the approximation of activated layer instances at
each program point.

The requires relation states that, if layer L1 requires L2,
then L2 has to be activated before L1 is activated. For
example, Logging requires Weather because proceed inside
Logging succeeds only when the method of the same name
(namely getWeatherInfo) is made available in World by ac-
tivating an instance from one of the weather layers. Fol-
lowing ContextFJ, a programmer is supposed to declare the
requires relation by using a requires clause as follows:

public layer Logging requires Weather {...}

In general, one layer can require more than one layer by
listing layer names.

The type system also estimates an (under-)approximation
of the set of layers activated at each program point and
uses it to check whether a certain method exists or not at a
given program point. For example, the type checker allows

getWeatherInfo of World to be invoked only when one of the
weather layers is in the estimated active layer set. Thanks
to declared requires, it is easy to compute such under-
approximation: at the beginning of a partial method in layer
L, which requires {L1, . . . , Ln}, the approximated layers
are {L1, . . . , Ln}; inside a with statement that activates an
instance of L′, L′ is added to the approximation. In case
L′ requires other layers, it is checked that the layers that
L′ requires are included by the approximated layers outside
the with statement. For example, to activate an instance
of Logging, the with statement has to be surrounded by
another with to activate a weather layer instance or appear
in a partial method of the layer that requires Weather.

Remark. Igarashi, Hirschfeld, and Masuhara considered a
layer activation mechanism called ensure, which is slightly
different from with, but, as was shown by Inoue [9], it turns
out that the difference does not really matter and the same
idea works also for with.

3.2 Making Layer Subtyping Safe
As we already discussed, the extends relation between

layers defines the subtyping between layer types and an in-
stance of a sublayer can be substituted for that of a su-
perlayer. The substitutivity applies to the requires rela-
tion, too: when a layer requires another layer, any instance
of a sublayer of the required layer can be substituted for
the superlayer. For example, although Logging requires

Weather, it will not cause any problem to activate an in-
stance of Rainy before the activation of a Logging instance.

with(new Rainy()){
with(new Logging ()){

...
}

}

In fact, there is subtle interaction among requires clauses,
inheritance of partial methods, and subtyping. Consider
layer MoreLogging, which is defined to be a sublayer of Log-
ging and requires another layer OtherInfo.

public layer OtherInfo {...}
public layer MoreLogging extends Logging

requires OtherInfo {...}
...
Logging log =

someCondition () ? new MoreLogging ()
: new Logging ();

with(new Rainy()){
with(log){/*???*/}

}

At first, the activation of log seems fine according to the
typing rule for activation described in the last subsection
because its static type Logging requires only Weather and
an instance of Rainy has been activated already. However,
the activated instance may be that of MoreLogging, which
also requires OtherInfo, which is not activated! So, if the
block body invokes a partial method in MoreLogging, which
may call partial methods that exist only in OtherInfo, the
execution results in an error. So, a sublayer cannot require
more layers than its parent, or a layer has to require at least
all the layers that its sublayers require. This restriction is
natural since a layer is kind of a function that takes a set
of classes as input and a function type is not covariant in
argument types.

One may expect it is fine to allow a sublayer to require
fewer layers than its parent so that an instance of the sub-
layer can be activated in more occasions. Obviously, it is
not safe, either (even without first-class layers). For exam-
ple, consider the layer definition below

public layer AnotherLogging extends Logging
requires none {}

(Here, none is used to denote explicitly that this layer re-
quires no other layers; it can be omitted.) Accepting this
definition amounts to creating a copy of Logging, which had
to require Weather. In general, a sublayer may inherit par-
tial methods from its parent and they may require layers
specified in the requires from the parent. One way to deal
with a sublayer requiring fewer layers is to recheck inherited
partial method definitions under the new requires clause,
which we would like to avoid.

So, our current design is that a sublayer automatically
inherits the requires clause as it is. One exception is that,
if a sublayer overrides all partial methods in the parent,
the sublayer can specify fewer layers in the requires clause
(because there is no need to recheck).3

Layer type hierarchy. The discussion above seems to im-
ply that Layer, which resides at the top of the layer hi-
erarchy, has to require all layers in a program. However,
with(l){...} where l’s static type is Layer is then virtu-
ally impossible because we cannot activate all the layers in
advance (especially in an open-world setting). This situation
can be problematic because Layer is often used in practice
as a type to denote any layer instance, just as Object in
Java is used to denote any object. For example, one may
want to store different layer instances in an array of type
Layer[] and activate (some of the) stored layer instances.
To address this problem, we introduce a special layer Base-
Layer, which requires no layers, to the layer hierarchy. Our
observation here is that such use of Layer is valid if layers do
not require any other layers. We explain the role of Layer
and BaseLayer below:

• Layer is put at the top of the layer hierarchy and works
as a supertype of all layer types. It is prohibited to ac-
tivate a layer instance whose static type is Layer, but
it is allowed to store a layer instance to a variable of
type Layer or perform a downcast to a specific layer
type. If a layer definition does not specify its super-
layer and the requires clause is not empty, then the
layer is implicitly assumed to extend Layer.

• BaseLayer is a direct sublayer of Layer. Its requires
clause is considered empty, so an instance of any layer
that extends BaseLayer can be safely activated any-
where. If a layer definition does not specify its super-
layer and the requires clause is empty, then the layer
is implicitly assumed to extend BaseLayer.

BaseLayer works as a top type for layers that can be ac-
tivated anytime, so the code like below is possible:

BaseLayer [] layers = new BaseLayer [10];
layers [0] = new Rain();
layers [1] = new OtherInfo ();
with(layers[i]){ ... }

3More precisely, the overriding method should not call
superproceed, which calls a partial method of the same
name defined in a superlayer.

Layer

BaseLayer Logging

Weather
More

Logging

req 0 req Weather,
OtherInfo

req Weather,
OtherInfo

req 0

req all

Other
Info

req 0

Rain

req 0

Storm

req 0

Figure 1: Layer type hierarchy.

Figure 1 illustrates how the layers we have seen so far are
put in the layer hierarchy. (Here, req stands for requires

and ∅ the empty set.)

3.3 Safe Layer Swapping
It is not easy to guarantee that layer deactivation does

not lead to an error due to the absence of partial methods.
In fact, layer deactivation is almost neglected in previous
work. In the first type system for ContextFJ [6], a layer
cannot introduce a new method and so the interface of an
object does not change for its lifetime, making deactivation
trivially safe. In the second type system for ContextFJ by
Igarashi, Hirschfeld, and Masuhara [7], a layer can intro-
duce a new method but deactivation is dropped for the sake
of simplicity. In the study of a variant of the second type
system [9], the first author of the present paper considered
deactivation and set the rule as follows: “without is allowed
only if the target layer is not required by any other layers”.
This condition certainly makes deactivation safe but it is
also prohibitively restrictive.
In this paper, instead of dealing with deactivation directly,

we try to support one important idiom that uses deactiva-
tion, that is, layer swapping. Suppose we want to switch
the weather of the world to stormy, then we would write
something like

withoutall(Weather){
with(new Stormy ()){...}

}

but this code does not satisfy the condition mentioned above
because Weather is required by another layer.
To treat such layer swapping, we introduce new mecha-

nisms: swappable layer declaration and swap statements.
The swappable layer declaration means that its sublayers
can be swapped by a swap statement explained below but
no layers can require its sublayers (the swappable layer it-
self can be required by another layer). A swap statement is
written as follows.

swap(activation layer, deactivation type) { ...}

The activation layer is an expression whose static type must
be a subtype of deactivation type, which in turn has to be
swappable. It deactivates all instances of deactivation type
(and its sublayers), and activates the activation layer.
For example, the weather changing code can be written

as follows:

DeclLayer

DebugLayer

req 0

Layer

.

.

.

req 0

BaseLayer

.

.

.

Figure 2: Refined layer type hierarchy with De-

clLayer.

public swappable layer Weather {...}
...
Weather w = new Stormy ();
with(w){

swap(new Rainy (),Weather){
// deactivate Stormy and activate Rainy

}
}

Typechecking a swap statement is easy: the deactivation
type and all its subtypes are removed from the estimated
active layer set and the static type of the activation layer
is added. The reason we still require that no sublayer of a
swappable layer be required by other layers is that, for ex-
ample, if there is a layer directly requiring Stormy, replacing
it with an instance of Rainy may not be safe.

3.4 Safe Declarative Layer Composition
It is even more difficult to make declarative layer compo-

sition safe. This is because layer (de)activation by pointcut
in a context class happens independently of the control flow
that the type system can see.

So, we have decided to have a separate layer family for
layers used in context classes. More specifically, we intro-
duce declarative layers, which can be specified by putting
declarative before layer in a layer definition. For exam-
ple, the example code of Sec 2.4 becomes

public declarative layer DebugLayer {...}

Declarative layers obey the following rules:

• Only declarative layers can appear in advice in con-
text classes and they cannot be used in a block-style
layer activation.

• A new layer DeclLayer is introduced as a sublayer of
Layer and the superlayer of all declarative layers. (See
Figure 2.)

• A declarative layer can neither require any other layers
nor be required by any other layers so that it can be
activated or deactivated at any moment.

3.5 Implementation
We have implemented a part of the type system described

so far, more concretely, most of what is described in Sec-
tion 3.2, in JCop. The JCop compiler translates JCop code
into Java code and, before the translation, it performs sim-
ple name checks. We added typechecking after this phase.

4. DISCUSSION
In this section, we will discuss about other JCop-specific

features, related work, and future work.

Other JCop Features. JCop supports before and after

modifiers for partial method declarations to execute par-
tial methods before and after the base method, respectively.
Fortunately, they will not cause additional problems. One
can specify certain layers and context classes to be stati-

cactive, that is, always active during the execution. So, the
type system can take advantage of its presence, for example,
by adding staticactive layers to the estimated layer set. The
reflection mechanism of JCop offers operations to change
currently activated layers at run time. Therefore, static type
checking becomes invalid. JCop offers some layer local meth-
ods that link (de)activation of a layer: an onWith method
is called when the enclosing layer is activated. This feature
is motivated by layer composition from layer dependencies,
and similar to problems treated in [11] and [4]. However,
this functionality is not safe because it uses reflection exten-
sively. Dealing with event-based layer composition is left for
future work.

Related Work. We refer readers to Igarashi, Hirschfeld, and
Masuhara [7] for basic comparisons with other composition
mechanisms and type systems for COP. We focus on dy-
namic deactivation, which is one of the new problems, here.
Swappable layers in Section 3.3 resemble atomic layers in

ContextL [4], in which mutual exclusion between layers can
be specified and activation of an atomic layer may automat-
ically deactivates another layer in conflict. Actually it seems
a little verbose to specify the swappable layer name such as
Weather in our swap statement.
Recent work by Kamina, Aotani, and Igarashi [10] pro-

poses another way to deal with type-safe deactivation. In
their proposal, a layer can specify other layers that must
have been activated before the present layer is activated just
as requires in our setting. A significant difference is that,
at every method invocation, those required layers will be
automatically activated by the run-time system. This auto-
matic activation seems to be convenient in many cases but
we do not think it is always possible to specify such layers,
especially in the presence of subtyping. For example, Log-
ging requires one of the weather layers but it may not be
easy to choose one layer.
Context Petri Nets [3], a context-oriented extension of

Petri Nets, support various kinds of declarations of depen-
dency between layers, such as implication, requirement, and
exclusion. Exclusion can express, for example, that at most
one weather layer can be activated. It is interesting fu-
ture work to support such declarations to help typechecking
(rather than introducing swap).

Future Work. The description of the type system is only
informal. One important piece of future work would be to
formalize the type system and prove its soundness.
Specifying a concrete layer implementation by requires

is not always convenient. We expect it increases flexibility
of the type system by introducing interfaces of layers in the
same spirit as Java interfaces.
We have not fully investigated the interaction between our

type system with other features in Java, such as concurrency,

generics, and lambda, although we expect most of them are
orthogonal.

Last not but least, we should examine how good our type
system is in practice through writing applications. For ex-
ample, it is interesting to see whether the invariant rule for
requires (see Section 3.2) is not too restrictive. To do so,
we should implement our type system first.

5. SUMMARY
In this paper, we have introduced a type system for JCop.

For this purpose, we have extended the type system for Con-
textFJ by layer subtyping and first-class layer objects. We
also have discussed about layer deactivation mechanism and
other JCop-specific features. We are going to finish imple-
menting the ideas described here, and make it publicly avail-
able.

Acknowledgments. We appreciate valuable comments and
suggestions form the anonymous reviewers.

6. REFERENCES
[1] M. Appeltauer and R. Hirschfeld. The JCop language

specification. Technical report, HPI, University of
Potsdam, 2012.

[2] M. Appeltauer, R. Hirschfeld, and J. Lincke.
Declarative layer composition with the JCop
programming language. Journal of Object Technology,
12, 2013.

[3] N. Cardozo, S. González, K. Mens, R. Van
Der Straeten, and T. D’Hondt. Modeling and
analyzing self-adaptive systems with context petri
nets. In Proc. of TASE, pages 191–198. IEEE, 2013.

[4] P. Costanza and T. D’Hondt. Feature descriptions for
context-oriented programming. In SPLC (2), pages
9–14, 2008.

[5] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 2008.

[6] R. Hirschfeld, A. Igarashi, and H. Masuhara.
ContextFJ: A minimal core calculus for
context-oriented programming. In Proc. of the
FOAL2011, pages 19–23, Mar. 2011.

[7] A. Igarashi, R. Hirschfeld, and H. Masuhara. A type
system for dynamic layer composition. In Proc. of
FOOL, Oct. 2012.

[8] A. Igarashi, B. C. Pierce, and P. Wadler.
Featherweight Java: A minimal core calculus for Java
and GJ. ACM TOPLAS, 2001.

[9] H. Inoue. A proof of soundness of type system for
dynamic layer composition. Undergraduate honors
thesis, Kyoto University, 2013. In Japanese.

[10] T. Kamina, T. Aotani, and A. Igarashi. On-demand
layer activation for type-safe deactivation. In Proc. of
COP’14, Uppsala, Sweden, July 2014.

[11] T. Kamina, T. Aotani, and H. Masuhara. EventCJ: a
context-oriented programming language with
declarative event-based context transition. In Proc. of
ACM AOSD, pages 253–264. ACM, 2011.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In Proc. of ECOOP’01, volume 2072 of
Springer LNCS, pages 327–353, 2001.

