Object-Relational Mapping with SqueakSave

Thomas Kowark

Robert Hirschfeld

Michael Haupt
Hasso-Plattner-Institute
University of Potsdam, Germany
{firsthname.lasthame}@hpi.uni-potsdam.de

ABSTRACT

Object persistence is an important aspect of application
architectures and development processes. Different solu-
tions in this field evolved over the last decades and new ap-
proaches are still subject to research. While object-oriented
databases become increasingly popular, the usage of rela-
tional databases through an object-relational mapping layer
is still one of the most widely adopted techniques. How-
ever, most object-relational frameworks require a consider-
able amount of mapping descriptions between object models
and relational database schemas. This additional layer has
to be maintained by developers along with the object model
itself.

In this paper, we present an approach to object-relational
mapping that utilizes the introspection and intercession fea-
tures of Smalltalk to free developers from manually creating
those mapping descriptions. The presented framework ana-
lyzes the existing models and automatically deduces suitable
database schemas. Thus, it aids development processes by
neglecting the need for a separate mapping layer.

A detailed introduction of the programming interface is
followed by a description of the framework’s internal im-
plementation details. Additionally, the performance of the
framework is evaluated through a comparison against a com-
parable system for the same programming environment.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-

niques— Object-oriented design methods; H.3.4 [Information
Storage and Retrieval]: Systems and software—perfor-

mance evaluation

General Terms

Design, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IWST’09 August 31, 2009, Brest, France.

Copyright 2009 ACM 978-1-60558-899-5 ...$10.00.

87

Keywords

Object-relational mapping, Impedance mismatch, Object-
oriented design methods, Data design and management, Au-
tomatic schema creation

1. INTRODUCTION

Maintaining application data in persistent storage spaces
is an inherent requirement of most applications. Especially
the web applications that have evolved over the past few
years need to handle steadily growing and evolving data
schemes. While this requirement obviously has an impact
on the complexity and execution speed of applications, it
also influences their development processes.

One of the main criteria for the choice of a suitable persis-
tence strategy is project scope. Enterprise applications rely
on robustness, execution speed and scalability [3], whereas
smaller projects additionally focus on the flexibility to quick-
ly adapt to changes in the object model [2]. Thus, develop-
ment teams need a persistence solution that does not impede
their development process, but allows them to implement
new features in a simple and straightforward manner.

In addition to project scope, decisions regarding the devel-
opment environment and language also influence the choice
between available persistence strategies. Especially dyna-
mically-typed languages like Smalltalk vastly reduce turn-
around and implementation times by offering a program-
ming paradigm that embraces change of existing implemen-
tations [29] and strong meta-programming and reflective fea-
tures. The latter, however, impose non-trivial challenges for
the implementation of persistence management systems.

Today many persistence strategies are available [5, 11, 18,
24, 28]. Their underlying data storage technologies cover
a wide spectrum, ranging from purely relational databases
over relational databases enriched with object-oriented tech-
niques, to completely object-oriented implementations. The
ease-of-integration of those solutions into dynamic object-
oriented applications differs strongly [15] as the mismatch
between the paradigms founding the application develop-
ment and the persistence framework varies in its extent [2].

A widely adopted solution within this field is the usage of
relational databases along with an object-relational map-
ping (O/R mapping) layer that bridges the gap between
an application’s object model and the relational schema of
the underlying database [1]. Generic O/R mapping frame-
works cover a variety of aspects reaching from basic CRUD*
functionality to more elaborate features like transaction pro-

!Create, Read, Update, Delete

cessing. However, most available systems require extensive
meta-description of the object model in order to be able to
perform the aforementioned tasks.

Such descriptions impose a considerable burden on appli-
cation development. Each change of the object model im-
plies an alteration of the description layer [21, 22]. Seamless
integration of O/R mapping frameworks into applications is
moreover influenced by the degree of intrusiveness into the
existing object and programming model. A high degree of
transparency of the underlying database structures and sys-
tems is desirable [20]. Still, existing implementations vastly
differ in the extent of implementation detail exposure to the
user. This includes query APIs that are not integrated into
the chosen programming language as well as the need to al-
ter inheritance hierarchies or even object layouts in order to
store objects in relational databases.

Within this paper, we present a framework that uses the
strong introspection and intercession capabilities of Small-
talk in order to free developers from the creation of ex-
tensive object model meta-description. Based on the ob-
jects created during application runtime the framework au-
tomatically deduces suitable database schemas that are also
adopted whenever developers change their object models.
The entire framework thereby remains non-intrusive in a
sense that no changes to existing object models have to
be performed and queries on the data space can be car-
ried out by using the well know semantics of the Smalltalk
collection protocol. By that, the system combines the tech-
nique of object-relational mapping with Smalltalk develop-
ment paradigms and provides an object-oriented database
like behavior within a relational-database access layer.

Squeak?, an open-source Smalltalk dialect, has been cho-
sen as the development environment for the implementation
of the framework due to its focus on educational purposes
and the availability on a variety of platforms. The proposed
framework is named SqueakSave®.

The first part of the paper presents the workflow of the
integration of SqueakSave into an application. Following
those usage descriptions, the architecture of the framework
is discussed with a focus on implementation details of the
main workflows. After the performance of the system is
compared against a popular O/R mapping solution available
for Squeak, the paper concludes with remarks about related
work within the field of O/R mapping in dynamically-typed
object oriented environments and an outlook about future
extensions that could further improve the usability and per-
formance of the framework.

2. SQUEAKSAVE

In the following, an introduction to the basic usage pat-
terns of the SqueakSave O/R mapper is provided. A simple
weblog example application accompanies the description in
order to ease the understanding of basic features as well as
more elaborated techniques, such as transactions or custom
mapping descriptions.

The class structure of the sample application is depicted
in the UML class diagram [23] in Figure 1. It exhibits the
most common structural challenges that O/R mappers have
to handle within applications [13]: inheritance relationships

2http://www.squeak.org
3http://www.hpi-web.de/swa/squeaksource/
SqueakSave.html

88

User
-email : string
-username : string
-password : string

Blog
-title : string
-lastUpdate : dateTime

+blog 1

+administeredBlogs 0..%

A 1
0..* | +followers
0..* $+blogPosts
BlogPost
-title : string
Buaiive -text : string
1
0..* \/+comments
Comment
. -author : string
1. -title : string
;J -text : string

Figure 1: Class Structure of the Example Applica-
tion.

SgsConfig subclass: #BlogExampleSqsConfig
instanceVariableNames: '
classVariableNames: "
poolDictionaries: "
category: 'BlogExample’

BlogExampleSqsConfig class>>#connectionSpecification
T SqsMySQLConnectionSpecification
user: 'admin’
password: 'password’

L

database: 'blog_example_db’

Listing 1: Configuration Set-Up.

and to-one or to-many associations. While the current sec-
tion presents the integration of SqueakSave into the weblog
application, the mapping of those structural details is the
topic of Section 3.

2.1 Basic Persistence Mechanisms

A main requirement for SqueakSave is to provide straight-
forward persistence mechanisms in a very simple manner.
Below, we present the steps that are required in order to
set-up and use the framework for most basic purposes. This
includes means to store objects within the chosen RDBMS
and query for objects based on certain attribute values.

Initial Setup and Configuration.

For each class of objects that need to be persisted, de-
velopers have to set-up an instance of SgsConfiguration.
Configuration objects include numerous properties that de-
termine the behavior of the framework for the classes they
apply to.

In order to register a configuration for the application
classes, it is necessary to create a subclass of SgsConfig.
The name of this subclass has to follow specific conventions
to be recognized by the framework as being valid for a cer-
tain set of classes. To create a configuration for the entire
application, the first part of the class category, which is nor-
mally subdivided by ‘-’ characters [4], has to be the first part
of the class name followed by the suffix SqsConfig.

In the simple use case of the blog example, only the class-
side method connectionSpecification has to be imple-
mented to return valid server access credentials. It deter-
mines which RDBMS is used as target storage for the re-
spective objects. For each supported system, the framework

provides a specialized SqsConnectionSpecification sub-
class. It provides standard values for port and hostname of
common RDMBS server implementations such as MySQL or
PostgreSQL. The only mandatory data are username, pass-
word, and the name of the target database. It is important
that the user account provided for accessing the database has
the privileges to create, alter, and drop tables, since Squeak-
Save constantly reorganizes the table structure according to
changes within the application classes. The complete con-
figuration class for the example configuration is depicted in
Listing 1.

Following the aforementioned naming conventions, it is
also possible to create different configurations for sub-cate-
gories of the application by extending the category specific
part of the class name prefix.

If the configuration itself has to be altered, it is possible to
re-implement the configuration method on the class side
of the configuration class. Additionally, the configuration
method can be implemented on the class side of each appli-
cation class, thereby providing the most fine-grained way of
setting up configurations.

While it would be more compliant with object-oriented,
and especially Smalltalk, principles to directly connect the
class category with its configuration [17], this is not possi-
ble within Squeak, since the category is only identified as a
string and not accessible as a first class object.

Persisting Objects.

Convention-based setup of configuration classes is essen-
tial to enable simple storing of objects. By extending the
Object class, methods have been introduced that implement
the data-modifying CRUD operations: creating, updating,
and deleting objects. As a consequence of this ‘monkey-
patching’ any object, whose class is a subclass of Object,
within the application can be stored and updated by sending
it the save message. Since no database session or connection
specification is passed as a parameter, this method relies on
the previously set-up configuration objects and will trigger
an exception if no configuration is available for the corre-
sponding class.

Listing 2 presents the creation of an author object along
with the associated blog. The save method will store the
author object itself and the blog within the database and
also create the one-to-one relationship between them.

Removing objects from persistent storage is possible by
using the destroy method. It will remove the database rows
corresponding to an object, and all references from other
database tables to that object. Accordingly, destroying a
user object within the sample application will also lead to
a removal of the user from each followers collection it has
been part of. While the database entries will be removed by
the framework, the object itself remains unchanged.

Object Query Interface.

In addition to the modifying CRUD operations, a persis-
tence framework has to offer means to perform queries on
the persistent space. Since SqueakSave is built upon a rela-
tional database foundation, those queries have to be carried
out as SQL statements. Integrating queries in such a way

“http://en.wikipedia.org/wiki/Monkey_patch

89

author := Author new
password: 'password’;
username: 'testuser’;
email: 'user@example.org’.

author blog:
(Blog new title: 'My Blog') .

author save.

Listing 2: Basic Object Storage.

(SgsSearch for: User) detect: [:aUser |
aUser username = 'testuser']

(SgsSearch for: Author) select: [:anAuthor |
anAuthor blog blogPosts size > 10]

(SgsSearch for: Blog) anySatisfy: [:aBlog |
aBlog blogPosts noneSatisfy: [:aBlogPost |
aBlogPost comments isEmpty]]

Listing 3: Query Examples - Emulated Collection
Protocol.

that standard language constructs can be used is an impor-
tant feature with regards to the usability of an O/R mapper
[9]. SqueakSave provides a query interface that does not
rely on string-based query encoding, but instead emulates
the Smalltalk collection protocol [8].

Object queries are usually sent to instances of SgsSearch.
These objects must be initialized with a class; instances of
this class and its subclasses will be returned by the query.
Queries can be performed on each class residing within an
image; however, a valid configuration for this class must be
available.

Within the sample application, this behavior can be uti-
lized to distinguish between authors and administrators. If
searches are performed on the User class, they will return
instances of Admin as well as Author. Performing searches
on either of those classes individually, however, will only
return their particular instances.

Listing 3 presents example queries that could be used
within the blog example application. The first query per-
forms a search for the user with the username ‘testuser’.
According to the Smalltalk collection protocol, the detect
method will only return the first user that is found within
the database and trigger an exception if no such entry exists.

Query number two uses the aforementioned mechanism to
narrow the set of possible search results down to special sub-
classes. The presented select method will find all authors
that have a blog with more than ten blog posts.

The last query determines whether any object within a
collection fulfills a given constraint. In this particular case
the query will only return true if at least one blog exists
where all blog posts have been commented at least once.

The messages sent to the query objects, such as aBlog or
aUser are limited to accessor methods that are named ex-
actly like the corresponding instance variables. Subsequent
method invocations on the return values, such as collections,

Blog findByTitle: 'testblog’

Comment findByAuthor: 'author’ andTitle: 'comment’.

Listing 5: Query Examples - Convention-Based Dy-
namic Finders on Classes.

integers, or strings must be implemented within the respec-
tive classes of the SqueakSave framework (see Section 3.5).

In addition to the collection protocol emulation, Squeak-
Save offers convention-based dynamic query methods similar
to those in other dynamic-language object-relational map-
pers such as GORM [28] for Grails® or ActiveRecord for
Ruby on Rails [12].

(SgsSearch for: Blog) findByTitle: 'testblog’

(SgsSearch for: Comment)
findByAuthor: 'author’ andTitle: 'comment’.

Listing 4: Query Examples - Convention-Based Dy-
namic Finders.

The first query presented in Listing 4 depicts a simple use-
case where instances of the Blog class have to be found by
an exact match between the given argument and the current
value of the title instance variable. The second search is an
example for the concatenation of constraints. Concatenation
keywords (i.e. ‘and’) adhere to SQL terminology. Thus, ‘or’
can be used as well within dynamic finders.

The aforementioned object-relational mappers allow for
calling the dynamic finder methods directly on a class. In or-
der to achieve the same behavior in Squeak, it would be nec-
essary to either overwrite the doesNotUnderstand method
within Class, or provide a means for application develop-
ers to integrate this implementation only within their model
classes. This fine-grained integration could be achieved by
providing an abstract base class that application classes have
to inherit from. However, this kind of intrusion into the in-
heritance structure would not comply with the requirement
to provide persistence as an aspect added to the applica-
tion instead of being an integral part of it. A less intrusive
technique is the usage of traits. They have been introduced
in the Self programming language [30], and later been ap-
plied to Squeak [10] to provide a more fine-grained mecha-
nism for reusing existing implementation details. By adding
the TSgsSearch trait to any application object model class,
queries can be performed as depicted in Listing 5.

2.2 Customization

Utilization of the presented techniques to store and query
for objects is sufficient to perform basic CRUD operations
on application data. However, extensions are required for
customizing the O/R mapping framework behavior, and for
optimizing aspects of performance and robustness.

Custom Configuration.
The configuration object includes properties that define
standard values for certain fields of the resulting database

Shttp://www.grails.org

90

sessionManager := SgsConnectionManager getInstance.
session := sessionManager
sessionForClass: Blog.
session := sessionManager
sessionForCategory: 'BlogExample’.
session := sessionManager
sessionForConfiguration: aCustomConfiguration.

Listing 6: Possible Ways to Retrieve Session Ob-
jects.

schema as well as architecture patterns that are used for
the mapping of object-oriented structures to relational con-
structs.

Specialized configurations for subcategories and single clas-
ses are possible by implementing a configuration method
in the respective configuration classes. The configuration ob-
ject is available within those methods by calling super con-
figuration. Attributes of objects referring to field names
can be changed, e.g., to adhere to naming conventions of
other O/R mappers, or to solve naming conflicts.

Altering the configuration can also be used to fine-tune
framework behavior. It is possible to define whether instance
variable accessor methods or object introspection mecha-
nisms should be used to access instance variable values by
setting useInstVarAccessor to either true or false.

While the framework by default alters table structures
and association types only after developers confirmed those
changes, the warnOnAlteration attribute can be set-up to
disable the according warning dialogs.

When the object model is finalized and mapping update
functionality is no longer required, the introspection behav-
ior should be disabled in order to improve the overall per-
formance of basic persistence operations. The environment
attribute of the configuration can therefore be set to the
value ‘#production’ instead of its default value ‘#develop-
ment’.

Session Usage.

While the implementation of SqueakSave frees users from
the need to utilize an explicit session object to store, re-
trieve, and delete objects, some more advanced functional-
ity is available only by using instances of SgsSession. Ses-
sion objects can be retrieved from the singleton instance
of the SgsConnectionManager. It caches the sessions on a
per-thread basis. Thus, requesting a session for a certain
configuration, class, or category will always return the same
object within a single thread of control. The different possi-
bilities to get the current session for the sample application
are depicted in Listing 6.

With the session object, it is possible to perform trans-
actions and define the intended behavior upon transaction
failures. If the SqueakSave session is, for example, stored
within a Seaside® session object, and all data manipulation
operations are performed by passing the session as an ex-
plicit parameter, transactions can even span the entire life
cycle of web application usage by a single user. Transactions
do not have to be performed by defining a block-closure for
the transactional behavior and one for the rollback case, but

Shttp://www.seaside.st

transactionalBlock := [
testuser email: 'newmail@example.org’.
testuser save: session.
testuser password: 'newPassword’.
testuser save: session.

1.

session
inTransactionDo: transactionalBlock
ifError: [testuser rollback].

"alternatively"

session startTransaction.

transactionalBlock value.

session commitTransactionIfError: [
testuser rollback].

Listing 7: Transactions within Sessions.

newBlog := Blog new;
title: 'New Blog’.

newPost := BlogPost new;
title: 'New BlogPost’.

newComment := Comment new
title: 'New Comment’.

newPost comments add: newComment.
newBlog comments add: newPost.
testuser blog: newBlog.

flatSave.

save.
saveToLevel: 2.
deepSave.

testuser
testuser
testuser
testuser

Listing 8: Different Save Levels of SqueakSave.

it is possible to explicitly start and commit them via the re-
spective methods of the session protocol.

Listing 7 depicts the two possibilities by using an explicit
session object that has been retrieved like shown in Listing
6. The rollback method will set the instance variable of
the user object back to the pre-transaction state.

Performance Optimization.

The database schemas created by SqueakSave follow the
basic patterns described by Fowler et. al [13] - single, con-
crete, and class table inheritance. However, not all of those
patterns may be suitable for each object model. Especially
deep inheritance hierarchies can create performance prob-
lems, if they are mapped to a single table. Additionally, an
abstract base class for all application classes should be ig-
nored for persistence purposes, since each subclass instance
has to be saved within the base class table, as well (class ta-
ble inheritance), or all application objects will reside within
the same table (single table inheritance).

SqueakSave also offers means to control the object graph
traversal depth required to store or update objects. Within
the example that is presented in Listing 8, the consecutive
usage of the different methods that enable this behavior will
gradually store more associated objects of the user object.
While flatSave only stores direct attributes, save also in-

91

AccountData class>>#sqgsDescrUsername
T SqsColumn new
manuallyMaintained: true;
columnName: 'name’;
sqlType: #varchar:20;
linkedAttribute: #username.

Listing 9: Custom Mapping Description.

cludes the blog of the user into to storing process. With
saveToLevel:2 the blog post is considered, since two ref-
erences have to be followed from the user to those objects.
The final call of deepSave stores every object reachable from
the user object and only stops upon cyclic dependencies or
if no further references are detected.

Custom O/R Mapping Descriptions.

While SqueakSave mostly hides the creation and handling
of O/R mapping descriptions, they are not only kept in
memory during persistence operations but are also stored
within the image for later usage. The format of this per-
sistence is defined by the chosen description handler class.
This can be altered within the configuration object itself.
The standard description handlers utilize the internal for-
mat of the meta-descriptions and simply serialize the corre-
sponding objects. However, custom mapping descriptions,
such as pragmas or XML documents can be generated as
well, if the corresponding description handler classes have
been implemented. Due to this fact, the techniques to mark
descriptions, or parts of it, as being manually maintained,
differ between the description handler implementations.

Regarding the standard description handler, each descrip-
tion includes a manuallyMaintained flag that indicates whe-
ther it is maintained by users or not. If this flag is set,
automatic updates will not alter the particular description.
However, if the custom description requires changes to the
database schema, they will be carried out by the framework.

A variety of options can be altered within the mapping
description for particular instance variables. This includes
trivial values, such as the column name or the SQL type of
the column, but also more advanced features like foreign-key
constraints. Additionally, it is possible to alter the name of
the table, that is created for each class. Listing 9 depicts a
custom configuration for the username field of the account
data.

2.3 Summary

The preceding presentation of the usage workflow of Squeak-
Save has demonstrated, that the requirements regarding sim-
plicity of usage as well as customizability as a means to
increase interoperability, have been fulfilled. It becomes ap-
parent that only minimal configuration is necessary, in order
to add persistence in a very transparent manner to an ex-
isting application. While the API of SqueakSave may not
comply with every other available solution, and thus changes
to the source code might have to be carried out, this does
not necessarily decrease the ease-of-integration. It is gen-
erally advised to encapsulate database access functionality
in a separate layer between the application and the persis-
tence framework. Within this layer the presented CRUD-
functionality can be implemented in a very intuitive man-

Object] 0..* class Class currentClass
storedObject 1 S1
1 1

instVarValue

SqsBase 0" SqsConnection

SqsProx
!
L |
0. +classinfo 1 !
L] ‘
UBEE) - | <<use>>
+session [SasSession | 1 !

1

1N [sasDescriptionHandler | !

dbAdapter\y 1 g
SqsDatabaseAdapter
o

[SqsTableStr] 0..1 connection

SqgsDatabaseConnection
1

1

Figure 2: Overview of SqueakSave System Classes

ner.

3. FRAMEWORK ARCHITECTURE

The usage workflow described in the preceding chapter is
realized by the core classes of the SqueakSave framework.
They are depicted in a simplified manner in Figure 2, i.e.,
without the inclusion of concrete subclass implementations.

3.1 Storage Wrapper Class

Enriching objects with capabilities that have not been im-
plemented within their respective class definitions can be
realized by utilizing a number of standard patterns. As ex-
isting class definitions shall not be altered, the SqueakSave
framework relies on the SqsStorage class as a decorator [14]
that handles persistence-related operations such as storing,
updating, or deleting objects.

Accordingly, calls of save or destroy will be internally
delegated to an instance of SgsStorage instead of being han-
dled completely by the target objects themselves. For each
object that is present within the image, a unique SgqsStorage
instance is created on demand. Due to a caching mechanism
that is utilizing weak references [16], the respective instances
are only available as long as the base object is not subject
to garbage collection.

In addition to the decorator, the framework will also as-
sign a unique object id to each persisted object. Those
unique identifiers, that are usually generated by the respec-
tive RDBMS;, are required to couple an object to its database
representation and, accordingly, enable references between
objects on the database level [1]. The ids are stored as an
instance variable of the decorators within the image and in
a primary key column within the database.

The decorator is connected to the current database session
and by that has access to the corresponding configuration
for the decorated object. The configuration determines the
classes of the descriptionHandler and tableStructure-
Handler instance variable variables.

3.2 O/R Mappings: Creation and Update

The description handler is responsible for creating map-
pings between objects and their database representations. It
does not create the underlying database schema but analyzes
the given objects using introspection and creates detailed
descriptions for the current values of an object’s attributes.

For most basic data types, such as strings or integers, the
mapping to relational constructs is straightforward. The
suggested column names are simply deduced from the in-

92

stance variable name and the types are pre-defined within
sqsType methods on the class side of the respective classes.
This methods return a SqueakSave internal string represen-
tation of the according SQL type. For types with variable
length the mappings are additionally enriched with the in-
formation about the current length of the respective object.

Information about complex attributes—objects that can-
not be mapped to simple SQL types but require a separate
table structure—is additionally tagged with the class of the
respective object as well as a generic description of a foreign-
key relation to the database table for that particular class.
For attributes holding collections of objects, the type of the
collection, the class of the collection index, and the class of
the included elements have to be determined.

All this information is persisted in the format specified by
the corresponding description handler. Upon every save of
an object the description handler has to determine whether
changes to the relational structure would be necessary by
examining each instance variable for differences compared
to the previous version of the description.

Alterations can become unavoidable in a variety of sce-
narios. Most obviously that is the case if the class of an
assigned value has changed. However, not every object class
change requires a database structure change. Certain types
comply with each other with regards to their database rep-
resentation. Within the example application, this behavior
could be observed if an Admin object is the current value of
an attribute that was previously pointing to general User
objects. For collections, it is also necessary to determine
whether the type of the collection itself has changed since
indexable collections like an OrderedCollection or a Dic—
tionary would require the storage of the index, whereas a
Set, for example, would not require such a field.

Depending on the specified configuration, the framework
issues a warning dialog before changing the descriptions. If
developers decide to not allow the requested changes, the
storing procedure is aborted.

3.3 Table Structure Adaption

After the mapping descriptions have been updated, the
SgsStorage decorator passes control to the table structure
handler. It translates the general attribute descriptions to
representations of actual relational constructs (tables, co-
lumns, or constraints) and thus builds a generically travers-
able abstraction from the actual table structure. Each such
table object can have a number of columns, foreign key con-
straints, and child tables. In addition, each child table also
includes a reference to its parent table.

In a straightforward case, however, the structures created
from the descriptions are rather simple. Depending on the
inheritance mode specified within the configuration, all at-
tributes reside within the same table (single table inheri-
tance), or a separate child table is created for each subclass
(class table inheritance). Within those tables, a column with
the previously determined SQL type is created for each sim-
ple attribute. For complex attributes, the handler will also
create a foreign-key constraint that guarantees the referen-
tial integrity of the reference to the table of associated ob-
jects.

Collection Mapping.
Collections of objects are always created as join tables,
and not like in other O/R mappers in case of one-to-many

relations as foreign keys within the table of the referenced
objects. This is a direct consequence of two problems. The
first one is the distinction between one-to-many and many-
to-many relations through reflection. While it would be pos-
sible to detect those relations, implementing this feature has
proven itself to be too time consuming during program exe-
cution. Not only would the framework be supposed to follow
all references pointing to objects within a collection, until
one is found that has more than one reference to it. But,
additionally, database queries would be required to check
if references exist that are not currently present within the
application’s object memory.

The second problem is the inversion of the logical asso-
ciation direction from the object model to the relational
structure [21]. Instead of the collection owner pointing to
the values of the collection, elements within that collection
would reference their owner. This fact is also problematic
regarding object usage within many collections in different
classes or instance variables of the same class. It would be
required to add a new table column for every reference to
those objects.

The created join tables contain a field referencing the table
entry of the collection owner and another column pointing to
the respective object within the collection. Additionally, an
order field is introduced if the application uses ordered col-
lections. This field is created with the type of the index value
of the collection. To map an Array, for example, the index
field would be of type INTEGER, while a string-indexed dic-
tionary would require a VARCHAR type. If the collection
only includes simple values, the reference field to collection
elements will be replaced with a field of the respective type
that directly stores them within the join table.

Structure Updating.

If the table structure already has been created, the ta-
ble structure handler compares a cached version of the class
table with the one created from current descriptions. The
SqsTableChanges class is capable of comparing two tables
and extract all columns, whose names or types have been al-
tered. Additionally, it detects added and removed columns
and foreign key constraints. All required changes are subse-
quently carried out on the database.

Since this process is highly sensitive to interference with
similar operations carried out by other processes, a sema-
phore guards the entire structure update and creation work-
flow. While this might diminish the overall system perfor-
mance, it is necessary to keep the cached table structures
and, accordingly, the database schema in a consistent state.

Finally, after the table structure has been altered to the
required schema, the description handler inserts the values
into the corresponding tables.

3.4 Supporting Workflows

The previously described procedures are sufficient for the
basic implementation of O/R mapping and table structure
creation and updates as well as insertion of the actual values
into the database. However, more elaborated workflows are
required to improve the mapper’s performance or handle
special circumstances, such as cyclic dependencies.

By tightly coupling decorator instances to decorated ob-
jects, it is possible to cope with recursive calls of the save
method. Decorator instances will only try to store asso-
ciated objects if the current object has not already been

93

processed in the present operation. A flag is set upon first
traversal, and if cyclic references lead to an object again,
only changes to instance variables and owned collections will
be examined.

Decorators also create a simple representation of the state
of the decorated object upon each save call. This so-called
instance variable value map enables the framework to quickly
determine whether an object has changed at all and if so,
which variables have changed. Unchanged variables will be
ignored during mapping description updates and also not be
part of the ‘UPDATE’ statement issued on the database.

Database Connection Handling.

Database adapters encapsulate SQL query generation ac-
cording to the specifications of the respective RDBMS. To
execute those queries, adapters rely on SqsDatabaseCon-
nection instances. These conceal differences between the
connection objects supplied by the different database access
drivers.

The physical database connection is obtained by the da-
tabase adapters only when required, and dropped whenever
queries have been executed successfully. While connecting
and disconnecting to the server upon each request would
have simplified the implementation, it is not a viable ap-
proach with regards to performance. Login procedures on
database servers are rather costly in comparison to execu-
tion times of smaller queries. Therefore, SqueakSave imple-
ments a centralized connection pool. This pool is main-
tained by the singleton SgsConnectionManager, and due
to a SharedQueue implementation also thread safe. Each
adapter that requires a database connection has to utilize
the connection manager and either get it instantly, or when-
ever a connection is returned to the queue by another adap-
ter. The shared queue guards the insertion and retrieval pro-
cesses. Hence, it is guaranteed that each connection is only
assigned to one adapter at a time. All adapters that have
to wait for a connection are also waiting for the semaphore
to become available and, accordingly, race conditions are
prevented in this scenario, too.

While this standard behavior is suitable for most basic
operations, it obviously cannot be used during transactions.
Therefore, each database adapter is aware of its current
transaction state and does not return connections to the
queue while a transaction is in progress.

3.5 Query Generation

The following section provides a detailed explanation of
the SQL query generation from method invocations on the
language-native query API.

Collection Protocol Emulation.

The implementation of the collection protocol emulation
for object queries is based on the work of W. Harford and E.
Hochmeister, who have implemented a quite similar system
for the ReServe project”. While the basic implementation
allowed for simple queries on directly associated attributes
of objects, it has been enriched with the capabilities to de-
fine query conditions on associated collections and directly
associated objects to a much deeper level within the object
graph structure.

In order to analyze the block-closures that are passed

"http://www.squeaksource.com/REServe . html

SqsQuery
-queryClass : Class 7
-whereBuffer : String -field : string

valueTables

-orderBy : String S -queryClass : Class
-ignoreTypeField : Boolean 1 1.+ |[originalTable : SgsTable

-distinct : Boolean 1
1
tableLinks \LO..'

SgsTableLink
-joinDirection : string
-fromFields : Collection
-toFields : Collection

SqsQueryTable
fix : string

queryTables -
1. B

toTable

1 "
0. 1\L previousQueryValue 1

currentQueryValue \L 1 <<use>> i
ProtoObject

SgsQueryValue
-whereBuffer : String
-depictedClass : Class
-referer olumn : SqsPer.

i
| |

}quQueryCoHection\ [SqsQueryDate| [SqsQueryNumber | [SgsQueryObject | \quQueryString}

Ay

SqgsQueryDateTime

Figure 3: Collection Protocol Emulation Classes

as arguments to the respective collection methods, Squeak-
Save utilizes the SgsQueryValue classes depicted in Figure
3. Each of those classes imitates the protocol of basic system
classes such as Integer or String. But instead of deliver-
ing the result for each operation, the methods gradually fill
the whereBuffer attribute with the SQL equivalents of the
respective operations. Listing 11 presents the SQL WHERE
statement that is generated for a sample query (Listing 10).

(SgsQuery on: BlogPost) analyze: [:aBlogPost |
aBlogPost text size > 100].

Listing 10: Language-Native Query Before Transla-
tion

‘WHERE CHAR_LENGTH(blog_posts.text) > 100°¢

Listing 11: Generated SQL WHERE Statement

Complex objects, that cannot be directly mapped to an
SQL type are depicted by instances of SqsQueryObject.
Each method sent to those objects is analyzed with regards
to the database columns representing the corresponding at-
tribute. If such a column exists, the where buffer is enriched
with a unique identifier consisting of the according table
and column name. If columns refer to rows in different ta-
bles (i.e., foreign key relations), this scoping is performed by
SgsQueryObjects, too. Upon each scoping to another table,
the table names are being aliased with a unique suffix, that
allows for self-referencing foreign key handling.

In addition to the WHERE statement creation, the sys-
tem also conglomerates the tables that are important to the
query within SgsQueryTable objects. They include a unique
suffix and a reference to the SgsTable object, that serves as
a meta-description of the database table structure. Addi-
tionally, a number of links to other tables can be added
to a query table, in order to represent joins that have to
be performed for queries. During the final steps of query
generation, those query tables are connected to form the
FROM part of the SQL query. Tables, whose values have
to be returned from a query, are stored in the valueTables
collection of an SgsQueryObject.

This generic analysis of block-closures allows the frame-
work to handle table structures for class and single table in-
heritance and the nesting of constraints, e.g., for sub queries
on collections that are owned by query objects, without any

94

(aComment author = 'author’) &
'comment’)] .

[:aComment |
(aComment title =

Listing 12: Block-Closure Generated from Dynamic-
Finder Method.

explicit distinctions between the different table models.

Convention-Based Query Methods.

The implementation of the convention-based dynamic que-
ry methods is also based on the collection protocol emula-
tion. Therefore, the finder methods are analyzed for the oc-
currence of attribute names and the respective values. This
is performed within a re-implementation of the doesNotUn-
derstand method that handles calls of undefined methods
on objects. The method checks whether the first part of
the selector either matches find or findAll. If either of those
strings matches the beginning of the given method selec-
tor, the remaining parts are scrutinized for their compliance
with instance variable names of the respective search class.
Finally, the algorithm determines the logical operators that
are implied by the method name.

Afterwards the framework creates block-closures depict-
ing those constraints and concatenates them with the chosen
logical operators. The block-closures are generated by utiliz-
ing the previously extracted strings from the method selec-
tor name and the arguments passed to the dynamic finder
method. The values are especially important in this case,
since they have to be translated into a string. Complex ob-
jects, for example, require the inclusion of their object id into
the query string, while simple types such as dates or strings
need to be escaped to be properly parsed by the Squeak com-
piler. Therefore, the SgsSearch class maintains a dictionary
with the respective methods, it has to call for certain types
of objects. If the string representation has been success-
fully generated, it is passed to the Compiler that generates
executable bytecode for the required block-closure.

This block-closures will be then forwarded to an instance
of the SqsQ@uery class, that analyzes them as described pre-
viously. Listing 12 depicts the block-closure created from
the second dynamic finder method presented in Listing 5.

Object Proxies.

For performance and framework internal reasons, instan-
ces of SgsProxy are inserted into query results instead of
directly associated complex objects or collections. There are
dedicated proxies for directly associated objects and those
representing collections.

Proxies for directly associated objects like a user’s blog in
the sample application are necessary to avoid an eager load-
ing of the entire object graph upon the creation of query
results. The proxies are initialized with all information re-
quired to trigger loading of the depicted object if the appli-
cation accesses them. All calls to proxy objects, except for
those defined on ProtoObject, are delegated to the loaded
instances. Thereby, proxy insertion remains transparent to
framework users and the proxies could also be removed once
the depicted object is present within the image.

Collection handling requires a different approach to proxy
insertion. While the aforementioned objects only serve as

placeholders, collection proxies are essential to detect chan-
ges in collections. Therefore, before each save call and af-
ter loading an object as the result of the search query, an
instance of SqsCollectionProxy is inserted instead of the
original collection. In addition to loading all objects that
are part of the original collection, those proxies also cre-
ate and maintain an internal map of the collection objects.
This allows the framework to detect added, displaced, and
removed objects in a collection. Hence, after each success-
ful save call, the collection map will be updated, and if the
object referencing the collection is saved again, all changes
that happened up to this point will also be reflected within
the database.

Object Caches.

In addition to using caches for object id storage without
object model or inheritance structure alteration, query per-
formance optimization also requires this feature. To avoid
rebuilding objects that already are query results, or have
been instantiated just recently, it is necessary to maintain
an additional cache. It has to return pre-built instances
identified by their class name and object id.

While caching all available objects could improve the per-
formance of query result creation, a trade-off between the
memory footprint of the framework and the performance
gain induced by result caching has to be made. Therefore,
the cache size is limited on a per class basis to a configurable
number of entries and makes it possible to implement differ-
ent cache sizes for each application.

3.6 Framework Extension

A central requirement for the development has been the
extensibility of the framework with regards to the adoption
of newly available database management systems and the
implementation of custom O/R mapping flavors. Therefore,
the classes responsible for realizing the corresponding behav-
ior have been implemented in ways that ought to simplify
the development of custom framework extensions.

Custom Object-Relational Mapping Descriptions.

The SqsDescriptionHandler serves as an abstract base-
class, that defines the methods, which are crucial to the
implementation of custom description handlers.

Only two methods have to be implemented in order to
create new mapping description handlers. sqsDescription-
For: returns the meta-description of the O/R mapping for
an instance variable of the object that is subject of currently
performed persistence operations. While this description
can be stored in arbitrary formats, the method always has
to deliver instances of SqsPersistenceDescriptor. This
translation might be costly with regards to time consump-
tion, but developers could avoid performance problems by
caching the SqueakSave-internal format or persisting it by
utilizing the standard description handlers.

The second method that needs to be implemented is cre-
ateDescriptions. It is called during the storing process
and, since the description handlers have full access to the
decorator of the persisted object, requires no additional pa-
rameter. While it would compromise the self-configuring
nature of SqueakSave, to not create or update mapping
descriptions, custom description handlers that should only
supply reading abilities can waive this implementation.

95

Database Adapters.

An obvious extension point for an O/R mapper are adap-
ters for different RDBMS. They implement the generation
of the SQL queries depicting certain database operations. In
order to provide a custom adapter, two steps are mandatory
for alleged extension developers.

The first one is to create a subclass of SqsConnection that
implements some basic operations to control the state of the
actual database connection and execute queries on them.
The connection control methods are required in order to au-
tomatically create new connections within the connection-
pool. Therefore the init, close, and isAlive operations
have to be implemented. In addition to the query execution,
the framework also requires means to convert the query re-
sults from the client-internal format into a general one, that
can be handled by SqueakSave adapters.

Wihile it is necessary to re-implement those methods for
each adapter facilitating a native client implementation, it
would be possible to utilize an open standard interface that
provides the same access methods, regardless of the un-
derlying database. This includes connectors like ODBC®
or OpenDBX®. However, the setup of those two solutions
requires not only the installation of respective clients for
Squeak, but additionally the installation or even compilation
of platform-dependent libraries within the operating system.

The methods within the protocol of SqsDatabaseAdapter
that have to be overridden in order to provide a working
adapter implementation for a certain RDBMS are rather
difficult to be determined. This is mainly a consequence of
the custom extensions to the SQL-standard implemented by
different RDBMS vendors. The basic implementation within
SqueakSave, however, strives to implement almost all opera-
tions according to the SQL standard. This should minimize
the number of methods that have to be overwritten.

3.7 Summary

Main requirements for the implementation were the real-
ization of automatic updates, language-native queries, and
extensibility of the framework. Above, necessary design de-
cisions for the implementation of this behavior have been
presented. Automatic updates are implemented by a co-
pious algorithm that covers almost all possible changes to
object models and therefore dependably and only updates
existing mapping descriptions if necessary.

Language-native queries have been implemented by cre-
ating a block-closure analysis system that can handle deep
object graph structures and standard operations on simple
data types as well as accessor methods on complex objects.

Extension points are also available for all designated com-
ponents of the framework and provide meaningful presets for
the implementation of custom description and table struc-
ture handlers, as well as database adapters

4. EVALUATION

The main focus of the implementation of SqueakSave is
the support of fast-evolving object models and the develop-
ment of a generic architecture that allows for extension of
the available description systems, table structure handlers
and database adapters. However, performance is an impor-
tant aspect of each persistence management system [2]. Ac-

8http://support.microsoft.com/kb/110093
%http://www.linuxnetworks.de/opendbx

cordingly, the implemented framework has to be evaluated
with regards to both aspects. The following section provides
benchmark results for SqueakSave in comparison to another
O/R mapping framework for the same development environ-
ment. Additionally, the production and development modes
are compared and conclusions are drawn regarding perfor-
mance bottlenecks and possible optimizations.

4.1 Performance

Numerous benchmarks exist to measure the performance
of object persistence technologies. The BUCKY [7] or the
BORD benchmark [19], for example, are especially designed
to analyze the performance of object-relational systems. Dif-
ferent approaches, like the OO7 Benchmark [6], have been
developed to provide objective measurements for any kind
of object persistence, without any special focus.

One of the requirements for the implementation of Squeak-
Save is to provide persistence in a transparent manner. Thus,
the OO7 Benchmark is utilized for performance measure-
ments. The implementation used for this comparison is
based on the Java version'® of the original benchmark, which
was written in C. It was ported to Java to compare the per-
formance of object-relational mappers and object-oriented
databases [31].

Measurements have been carried out on a 2.4 GHz In-
tel Core 2 Duo Macbook with 4GB RAM and Mac OS X
10.5.6. PostgreSql version 8.3 has been used as the underly-
ing RDBMS. Each benchmark was run 100 times; measure-
ment results represent the median of all retrieved timings.

4.2 Comparison with other Object-Relational
Mappers

Since platform specific limitations and performance bot-
tlenecks, such as overall inferior execution speed or subpar
implementations of viable system classes, impede objective
measurements, a meaningful comparison can only be per-
formed against a comparable system implemented within
Squeak: The generic lightweight object-relational persistence
framework (GLORP) [18].

In addition to pure performance comparisons of aspects
like object creation after queries, it is also interesting to see
how the different implementation paradigms of GLORP and
SqueakSave compare to each other. SqueakSave requires
explicit save operations to store or update objects, while
GLORP is transaction based. Accordingly, the transaction
based frameworks are able to accumulate all operations on
the data and perform them, if possible, in bulk SQL state-
ments. The benchmarks will identify scenarios where this
behavior is beneficial with regards to performance.

The PostgreSql Client 1.0 was used in a Squeak 3.10 image
running on the Squeak VM version 3.8.18. SqueakSave was
used in revision 107, and GLORP in version 0.4.169. To fur-
ther avoid influences on the measured timings, both systems
were set-up to their respective production environment, i.e.,
SQL statement logging and other debugging features have
been disabled.

The benchmark consists of two parts. The first one per-
forms a number of plain search queries on the created object
space and measures the timings for each of them. The sec-
ond part traverses object hierarchies from distinctive start-
ing points and performs some alterations of the respective

Ohttp://sourceforge.net/projects/oo7

96

300s

2255

SqueakSave GLORP

Figure 4: Benchmark Database Creation Times

objects. In addition to those standard parts, database cre-
ation times have been examined, as well. While the insertion
of such an highly intertwined and large object graph might
not reflect everyday usage patterns of object-relational map-
pers within applications, it is an indicator for alleged per-
formance bottlenecks and optimization potentials.

The overall database size of the benchmark can be con-
figured in four orders of magnitude. Each of them increases
the amount of stored objects and connections between them.
The third-largest version of the benchmark was used, since
it reflects the intended application area for the SqueakSave
framework in terms of database usage. It includes approx-
imately 10.000 atomic parts with 30.000 connections and
thus reflects the database payload of small to mid-sized ap-
plications.

Figure 4 presents the overall creation time for the database
schema that is required to perform the OO7 Benchmark.
It is evident that GLORP outperforms SqueakSave by far.
This is mostly a consequence of the ability to delay the in-
sertion of objects into the database and perform them at a
later point in a bulk operation. Thereby, instead of numer-
ous single queries, only a few large ones are carried out and,
accordingly, the overall execution time decreases. While
this technique obviously could improve the performance of
SqueakSave within such insertions, the decision to only pro-
vide direct save methods has been made with regards to API
simplicity and not execution speed.

Query Performance.

The queries performed during the OO7 benchmark con-
tinuously increase in terms of complexity and result count.
A description of the query contents is available in the pa-
per that describes the original benchmark, as well as in the
comparison carried out by Zyl et. al.

Query times presented in Figure 5 show that, regarding
query performance, GLORP is generally faster than Squeak-
Save. The large difference in the first query, however, is not
a result of superior query performance, but a consequence
of optimistic caching. Instead of performing the query on
the database, results are delivered directly from the cache.
While this obviously increases query performance, it is also
error-prone. Had the respective object been removed from
the database in another session, the query would return an
object that no longer exists in persisted space.

In all queries, except for the aforementioned one, differ-
ences between SqueakSave and GLORP are in a range of
about 10-20%. The slight advantage in query four is a con-
sequence of more efficient join table handling, since the gen-
erated SQL statements are almost equal, except for some
minor differences in created table and column alias names.

Unfortunately, the benchmarks reveal the tendency of an
increasing distance between the two frameworks for expand-
ing result sets. In queries seven and eight, the previous gap
becomes vastly larger.

Query 1 Query 2
40ms 48ms
30ms 36ms
20ms 24ms
10ms 12ms
Oms om:
SqueakSave GLORP SqueakSave GLORP
Query 3 Query 4
360ms 700ms
270ms 525ms
180ms 350ms
90ms 175ms
Oms L —
SqueakSave GLORP SqueakSave GLORP
Query 5 Query 7

80ms 5,000ms

60ms 3,750ms

40ms 2,500ms

20ms 1,250ms

Oms Oms

SqueakSave GLORP SqueakSave GLORP

Query 8
5,000ms

3,750ms
2,500ms
1,250ms

Oms

SqueakSave GLORP

Figure 5: Benchmark Query Times

Concluding the query performance review, it can be stated
that SqueakSave still has potential for optimization. While
the difference for small result sets is minor and might be
improved by smarter caching mechanisms, handling large
result sets still remains an issue.

Traversal Performance.

The chosen traversal measurements of the OO7 bench-
mark all follow the same pattern. They start at the gen-
erated modules and navigate from the design root down to
the atomic parts. With each traversal the depth of naviga-
tion through the object graph increases and, additionally,
the last two also alter some data within the atomic parts.
Traversal 2c not only changes those values once, but three
times.

The other available traversals have been omitted, since
they iterate through all characters of document texts and
accordingly do not provide any insights into traversal speed,
but only string operation performance.

Traversal benchmarks have been run independently from
previous database creation and query tests. Those would
have lead to extensive caching of the object graph and,
therefore, could not reveal deficiencies within the loading
of associated objects. For subsequent traversals, however,
object caches have not been cleared in order to analyze the
overall traversal performance and the caching of previously
obtained results within one benchmark run.

The results depicted in Figure 6 unveil that only on first
time object graph traversal, SqueakSave suffers from the
currently missing support for eager loading of associations.
Hence, the associated objects for each of the sub parts have
to be obtained within multiple queries and can not be loaded

97

Traversal 1 Traversal 2a

‘SqueakSave GLORP ‘SqueakSave GLORP

Traversal 2b Traversal 2c

SqueakSave GLORP. SqueakSave GLORP

Figure 6: Benchmark Traversal Times

in advance by a single one. The subsequent traversals, on the
other hand, show that the huge disadvantage of SqueakSave
turns around completely. This is a consequence of Squeak-
Save’s caching mechanism, that gradually fills the central
object cache during the first traversal. Hence, the entire
object graph resides in memory for the second run. While
the performance obviously improves because of that mecha-
nism, the same coherence problem mentioned with regards
to GLORP’s first query result apply here.

The traversal times in the following tests obviously in-
crease since the sub elements of the model are not only be-
ing traversed, but also updated. Therefore, it was expected
that the advantage of SqueakSave slightly diminishes. How-
ever, the traversal times in those tests still show, that for
the traversal of previously loaded object graphs SqueakSave
seems to be a more efficient solution than GLORP.

The results have shown that SqueakSave, despite its au-
tomated mapping features can compete with existing O/R
mapping solutions in terms of query and traversal perfor-
mance. Especially, the caching mechanism makes Squeak-
Save a viable solution for sequential object graph traversals.
The slow insertion times within large data-sets could be di-
minished by implementing a technique similar to the one
introduced by GLORP. Special attention in future versions
of the implementation has to be paid to the handling of large
result sets, since they obviously impact the performance in
a more than linear manner.

4.3 Development vs. Production Environment

The automatic creation of object-relational mapping de-
scriptions is the main feature of SqueakSave. Due to the
reflection mechanisms used to create this behavior, perfor-
mance is obviously an issue that has to be examined closely.
Therefore, the OO7 benchmark suite has been performed in
development and production mode. The following results
will reveal fields of usage where the automatic mapping be-
havior has a negative impact on the overall system perfor-
mance, but also identify scenarios that are not affected by
it. Additionally, insights into potential optimization points
will be gained from those considerations.

Image 7 depicts the creation time for the small and tiny
database layout. It can be clearly apprehended that the in-
spection of every object that has to be stored within the
database slows down the overall performance. This is not
a very surprising fact, since not only does the framework
inspect each object, but also occasionally writes new de-
scriptors to the image. Additionally, it has to check for

Database Creation Time (ms) - Small Database Database Creation Time (ms) - Tiny Database
7008 178

production development production development

Figure 7: Benchmark Database Creation Times for
SqueakSave Modes

Traversal 1 Traversal 2a

s 2
1085 2
708 1s
355 1s

os oy 0 WINEEE @00 0s — M. 00 0 EESSSE 0

Development Production Development Production

Traversal 2b

285 205
21s 225

145 155

7s 7s

0y — il BEIEE g E—— -

Development Production Development Production

Traversal 2c

Figure 8: Benchmark Traversal Times for Squeak-
Save Modes

and, if necessary, execute changes to the database schema.
The performance degradation also seems to remain constant
between the different benchmark scales, which implies that
the table and description creation and updates have a much
smaller impact on the performance, than the constant in-
trospection measures. Obviously, after a very short period
of time, no more alterations of the two models are neces-
sary, and thus the difference between the two modes grows
linearly.

While this slow-down might seem too high to be toler-
ated, developers should have to take into consideration that
creating the scale 1 data model suffices to generate a valid
database schema, that can be consecutively used to create
the data-structures for the small or even bigger benchmarks.
This, and the fact that the object-model can be developed
incrementally without the necessity to alter database struc-
tures explicitly, relativizes the obvious performance impact.

Query performance does not differ between the two modes,
since the synchronization between object model and data-
base representation only takes place during object saving
and, accordingly, does not affect search queries.

During traversal measurements, however, the previously
observed differences still apply (see Figure 8). While the first
traversal is barely affected by the current execution mode,
changes to the object model (i.e., Traversals 2b+c) are per-
formed much faster in production mode. It is therefore nec-
essary for developers to thoughtfully utilize this feature if
performance is important. Especially the role-based choice
of the framework mode can provide a viable means for the
balance between execution time and object model flexibility.

4.4 Framework Profiling

The benchmark implementation and execution provided
a solid foundation for profiling the framework under a non-
trivial workload. A couple of conclusions could be drawn,

98

that can be incorporated into future framework upgrades.

e Much time of storing and query execution has been
spent on automatic retrieval of configuration objects
from the respective configuration classes. This is a
direct consequence of Squeak’s not incorporating cate-
gories as first class objects, and thus a time-consuming
lookup for the respective classes has to be performed.

e Storing object ids in distinctive caches does not vastly
affect execution speed. However, upon large scale op-
erations, such as the creation of the benchmark data-
base, the impact remains perceivable, since the accord-
ing caches also grow with the number of in-memory
objects.

e SqueakSave’s current handling of large result sets suf-
fers from the creation of ineffectively sized collections.
While they provide a simple approach to the genera-
tion of objects from query results, their traversals are
not optimized if the size exceeds certain values. There-
fore, smarter algorithms have to be developed that uti-
lize the Squeak-internal limits for efficient collection
handling by splitting large result sets into smaller por-
tions.

e Fine-grained save operations provide a viable means
for controlling database insertions and updates. How-
ever, to accommodate larger object models or collec-
tions of objects that have to be inserted, they perform
too many small queries to remain applicable. It is
therefore necessary to implement techniques allowing
for calling the save method on the root of an object
graph and combining insert and update operations in
few SQL queries.

e Regarding object graph traversal, eager object loading
is important. Future versions of the framework should
include this feature to minimize the number of SQL
statements required to obtain the entire object graph.

e During the execution of the benchmark in development
mode, it became apparent that preconditions for de-
scription and table update checks provide a vast per-
formance improvement. Therefore, after the comple-
tion of the benchmark suite means have been inte-
grated into the framework that not only prevent up-
dates of descriptions and table structures, but also the
examination of their predecessors if it is not utterly
necessary.

4.5 Summary

The presented benchmark results have shown that Squeak-
Save still has to be optimized for certain fields of application.
Especially the query performance for large result sets is an
issue that deserves closer attention in the future. However,
object graph traversals are implemented in a viable manner
and the results demonstrate that the minimalist intrusion
into object models has a positive impact on such operations.
Additionally, the declarative nature of the query interface,
as well as the simple set-up and integration of the framework
are advantages that make SqueakSave a suitable persistence
solution for application development in Squeak.

S. RELATED WORK

The special capabilities of dynamically-typed object-ori-
ented programming environments like Squeak or other Small-
talk dialects affect the design and implementation of O/R
mapping solutions. While the possibility to analyze the
source code before program execution to determine the re-
quired table structure is missing, the often much more elab-
orate introspection and intercession features allow for more
flexible implementations. Within the scope of this paper,
only mappers for dynamically-typed object-oriented envi-
ronments are considered. However, since the mapper is
to provide persistence in a manner reminiscent of object-
oriented databases, examples of this category have also been
investigated with regards to their support for a relational
database foundation.

Dynamic Object-Relational Mappers.

ActiveRecord for Ruby on Rails [12] is a database schema-
driven O/R mapping solution that adheres to the convention
over configuration (CoC) principle [28]. While it provides
almost effortless configuration, database schemas and object
models are not automatically kept synchronized. Especially
alterations of the application object structure have to be
manifested in the database schema before they are available
in the respective object model and subject to persistence
mechanisms. ActiveRecord also introduced dynamic finder
methods as a language-native query interface for relational
databases.

DataMapper'!, another Ruby O/R mapping framework,
relies on mappings defined by a very minimalist API, that
only requires the definition of an SQL type for a certain
attribute in order to create a valid database schema. Af-
ter each mapping change, a re-run of the database creation
method has to be performed, but will consecutively erase
the database completely and remove all data. However, the
framework also offers migrations, that can gradually add,
alter, or remove columns in existing database tables. The
query API is quite similar to the one present in ActiveRe-
cord.

GLORP [18] provides object-relational persistence by hea-
vy utilization of meta descriptions. These must follow cer-
tain naming conventions and have to be declared for the
model, the database tables, and the relation between model
attributes and database constructs. While GLORP allows
for comprehensive reverse mapping of legacy database struc-
tures, its addition to existing applications is impeded by the
mandatory introduction of an id instance variable to each
persisted model class, and the need to provide a complete
mapping description even for trivial cases.

IOSPersistent'? was following an approach similar to the
one taken by SqueakSave. It provided fully-automatic per-
sistence for all subclasses of an abstract base class of the
framework and automatically created the according table
models. Due to its monolithic architecture, it was not ex-
tensible by simple means and additionally did not allow for
custom object-relational mapping descriptions. It has been
superseded by the ReServe'® project, that removed the auto-
matic table creation, but in contrast simplified the creation
of custom mapping descriptions and introduced a query API,

"http://wuw.datamapper . org
2http://www.squeaksource.com/I0SPersistent . html
Bhttp://www.squeaksource.com/ReServe . html

99

that has been the foundation for SqueakSave’s language-
native queries.

Object Databases.

The Gemstone project [5] provides almost transparent
persistence. However, it requires an extensive environment
in order to be applied as a persistence solution. It gener-
ally relies on object-oriented database technology to persist
application data, but additionally provides the means to in-
tegrate relational database management systems into the
storage process.

Another object-oriented database that provides compati-
bility with relational systems is db4o [24]. The db4o Repli-
cation System (dRS) utilizes Hibernate to replicate appli-
cation data to specified RDBMS and is additionally able
to read data from relational databases. Thereby users are
able to perform ad-hoc SQL queries on the data without
having to utilize an environment capable of handling the
db4o-internal data structures. Additionally, this feature al-
lows the integration of legacy data from relational database
into object-oriented environments.

6. CONCLUSIONS

SqueakSave is a reflective object-relational mapper that
relieves developers of the task to manually maintain map-
pings between object models and relational database struc-
tures. Additionally, the framework is implemented in a way
that does not interfere with existing object models and thus
can be added almost transparently to existing solutions.
While those features provide an increased degree of flex-
ibility, query and storage performance are slightly dimin-
ished. However, since the main goal of the implementation
has been to aid the development process of applications, the
decreased performance is a trade-off that is worthwhile with
regards to the gain in developer productivity.

The depicted extension points of the framework ought to
support the development of new and innovative ways to cre-
ate specialized table structures and mapping description for-
mats that can be easily integrated into the existing solution.

While the current version is able to compete with long-
established solutions, future work will especially involve the
optimization of queries that deliver large data sets and the
simultaneous insertion of multiple application objects within
a decreased amount of SQL statements.

Another important aspect for improvement is the provi-
sion of custom mapping description handlers. Thereby, the
seamless integration of SqueakSave into existing applications
can be vastly simplified by enabling the framework to uti-
lize descriptions that have already been created for other
O/R mappers such as GLORP. Additionally, general pur-
pose meta description frameworks, such as Magritte [27]
could be integrated to not only map objects to relational
constructs, but also generate validation methods that are
performed before the storing of objects.

Despite the obvious optimization and extension points
identified within this paper, other research projects could be
adopted to further minimize the intrusiveness of the frame-
work into the application or further optimize the generation
of SQL queries. The former could be reached by utilizing
aspect-oriented constructs to provide the persistence func-
tionality as an easily attachable aspect to existing applica-
tions [26]. The latter is possible by an in-depth analysis
of inner-application workflows, that determine the queries

most suitable within certain execution states [25].
SqueakSave provides a solid foundation for further re-
search and shows that meta-programming and reflection are
viable to simplify the integration of object-relational persis-
tence mechanisms into applications developed in dynamical-
ly-typed object-oriented programming environments.

7. REFERENCES
[1] S.W. Ambler. Designing a Robust Persistence Layer.

Softw. Dev., 6(2):73-75, 1998.

[2] S.-W. Ambler. Agile Database Techniques. John Wiley
& Sons, 2003.

[3] R. Barcia, G. Hambrick, K.Brown, R.Peterson, and
K.S.Bhogal. Persistence in the Enterprise. IBM Press,
2008.

[4] A.P. Black, S. Ducasse, O. Nierstrasz, D. Pollet,

D. Cassou, and M. Denker. Squeak by Example.
Institute of Computer Science and Applied
Mathematics of the University of Bern, Switzerland,
2008.

[5] P. Butterworth, A. Otis, and J. Stein. The GemStone
object database management system. Commun. ACM,
34(10):64-77, 1991.

[6] M.J. Carey, D.J. DeWitt, and J.F. Naughton. The 007
Benchmark. In SIGMOD ’93: Proceedings of the 1993
ACM SIGMOD international conference on
Management of data, pages 12-21, New York, NY,
USA, 1993. ACM.

[7] M.J. Carey, D.J. DeWitt, J.F. Naughton,

M. Asgarian, P. Brown, J.E. Gehrke, and D.N. Shah.
The BUCKY object-relational benchmark. In
SIGMOD °97: Proceedings of the 1997 ACM SIGMOD
international conference on Management of data,
pages 135-146, New York, NY, USA, 1997. ACM.

[8] W.R. Cook. Interfaces and specifications for the
Smalltalk-80 collection classes. SIGPLAN Not.,
27(10):1-15, 1992.

[9] W.R. Cook and C. Rosenberger. Native Queries for
Persistent Objects. Computer Languages, Systems &
Structures, 31:127-141, 2005.

[10] S. Ducasse, O. Nierstrasz, N. Schirli, R. Wuyts, and
A.P. Black. Traits: A mechanism for fine-grained
reuse. ACM Trans. Program. Lang. Syst.,
28(2):331-388, 2006.

[11] J. Elliott. Hibernate: A Developer’s Notebook. O’Reilly
Media, Inc., 2004.

[12] O. Fernandez. The Rails Way. Addison-Wesley, 2007.

[13] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee,
and R. Stafford. Patterns of Enterprise Application
Architecture. Addison-Wesley, 2002.

[14] E. Gamma, R. Helm, and J.M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[15] T. Goldschmidt, R. Reussner, and J. Winzen. A case
study evaluation of maintainability and performance
of persistency techniques. In ICSE ’08: Proceedings of
the 30th international conference on Software
engineering, pages 401-410, New York, NY, USA,
2008. ACM.

[16] J. J. Hallett and A. J Kfoury. A formal semantics for
weak references. Technical report, Department of
Computer Science, Boston University, 2005.

100

(17]

(18]

(19]

20]

(21]

(22]

23]
(24]

[25]

[26]

27]

(28]

29]

(30]

(31]

E. Klimas, D. Thomas, and S. Skublics. Smalltalk with
style. Prentice Hall, Englewood Cliffs, NJ, 1996.

Alan Knight. GLORP: generic lightweight
object-relational persistence. In OOPSLA ’00:
Addendum to the 2000 proceedings of the conference
on Object-oriented programming, systems, languages,
and applications (Addendum), pages 173-174, New
York, NY, USA, 2000. ACM.

S.H. Lee, S.J. Kim, and W. Kim. The BORD
Benchmark for Object-Relational Databases. In DEXA
’00: Proceedings of the 11th International Conference
on Database and Expert Systems Applications, pages
6-20, London, UK, 2000. Springer-Verlag.

U. Leser and F. Naumann. Informationsintegration:
Architekturen und Methoden zur Integration verteilter
und heterogener Datenquellen. Dpunkt Verlag, 2007.
F. Lodhi and M.A. Ghazali. Design of a simple and
effective object-to-relational mapping technique. In
SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing, pages 1445-1449, New York, NY,
USA, 2007. ACM.

S. Melnik, A. Adya, and P.A. Bernstein. Compiling
mappings to bridge applications and databases. ACM
Trans. Database Syst., 33(4):1-50, 2008.

OMG. UML 2.0 Specification, 2005.

J. Paterson, S. Edlich, H. Hérning, and R. H6rning.
The Definitive Guide to dbjo. Apress, Berkely, CA,
USA, 2006.

P. Pohjalainen and J. Taina. Self-configuring
object-to-relational mapping queries. In PPPJ ’08:
Proceedings of the 6th international symposium on
Principles and practice of programming in Java, pages
53-59, New York, NY, USA, 2008. ACM.

A. Rashid and R. Chitchyan. Persistence as an aspect.
In AOSD °03: Proceedings of the 2nd international
conference on Aspect-oriented software development,
pages 120-129, New York, NY, USA, 2003. ACM.

L. Renggli. Magritte - Meta-Described Web
Application Development. Master’s thesis, Software
Composition Group, University of Berne, 2006.

C. Richardson. ORM in Dynamic Languages. Queue,
6(3):28-37, 2008.

D. Thomas. Ubiquitous applications: embedded
systems to mainframe. Commun. ACM,
38(10):112-114, 1995.

D. Ungar and R.B. Smith. Self: The power of
simplicity. SIGPLAN Not., 22(12):227-242, 1987.

P. Van Zyl, D.G. Kourie, and A. Boake. Comparing
the performance of object databases and ORM tools.
In SAICSIT ’06: Proceedings of the 2006 annual
research conference of the South African institute of
computer scientists and information technologists on
IT research in developing countries, pages 1-11,
Pretoria, Republic of South Africa, 2006.

