Example Mining

Assisting Example Creation to Enhance Code Comprehension

Eva Krebs
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
eva.krebs@hpi.uni-potsdam.de

ABSTRACT

Programmers often use examples with concrete values to better
understand code. Code by itself is abstract, which empowers it
to be used for a variety of uses, but can be difficult to grasp by
developers. Babylonian Programming addresses this by allowing
programmers to concretize their code by defining and visualizing
examples directly in the code itself while editing.

Currently, Babylonian Programming implementations such as
Babylonian/S require programmers to define examples manually.
For examples containing small objects this is straightforward, how-
ever when creating large or complex objects it is not. Sometimes,
workarounds such as copying existing code pieces or trying to recre-
ate existing objects are used to reuse information already present
in the system, but these workarounds can be error-prone and also
time-consuming.

In this paper, we propose Example Mining to address this issue
by providing techniques and integrated tools to mine examples
from existing sources similar to concepts from run-time tracing and
test case extraction. Example mining introduces concepts to mine
examples from tests, debugging sessions, and traces of actual usage
of the system under development. All tools were implemented for
Babylonian/S in Squeak/Smalltalk.

We demonstrate the usefulness of the tools through walkthroughs.

Our tools provide examples for many methods immediately and au-
tomatically. As a consequence, programmers have more immediate
access to dynamic feedback on their abstract code, making code
comprehension and debugging more effective.

CCS CONCEPTS

« Software and its engineering — Development frameworks
and environments.

KEYWORDS

live programming, exploratory programming, example-based pro-
gramming, babylonian programming, examples, squeak, smalltalk

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

<Programming> °22 Companion, March 21-25, 2022, Porto, Portugal

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9656-1/22/03...$15.00
https://doi.org/10.1145/3532512.3535226

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
patrick rein@hpi.uni-potsdam.de

60

Robert Hirschfeld

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ACM Reference Format:

Eva Krebs, Patrick Rein, and Robert Hirschfeld. 2022. Example Mining:
Assisting Example Creation to Enhance Code Comprehension. In Com-
panion Proceedings of the 6th International Conference on the Art, Science,
and Engineering of Programming (<Programming> *22 Companion), March
21-25, 2022, Porto, Portugal. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3532512.3535226

1 INTRODUCTION

Code itself is abstract, allowing it to have a wide variety of uses, but
also making it potentially difficult to understand. To combat this,
programmers may run the code in their mind and assign concrete
values to the abstract rules. Having concrete values can enhance
program comprehension, especially if developers see a specific
piece of code for the first time [16, 34]. But there are several other
situations where a programmer might want to use examples with
concrete values. For instance, to document how code should be-
have, programmers might write tests or include small scripts in the
documentation.

However, creating new examples quickly on-demand can be
difficult. The user will have to create appropriate objects from
scratch and set all necessary attributes for both the receiver of the
method, as well as any parameters. This can be simple for methods
that do not require complex objects. However, the required objects
might consist of many attributes, have a deep object structure, or
be otherwise complex. Configuring such an object, even if it is clear
what is needed, can already take developers a long time and be
prone to small mistakes. But often it is not trivial which parts of
a complex object are necessary and what values these attributes
should have, making the process even more time-intensive and
error-prone.

Currently, the manual creation of examples results in program-
mers creating workarounds to reuse data from existing scripts or
traces of previous method invocations. Programmers may have to
search to find appropriate tests or documentation. Set-up code from
tests could be copied to configure suitable objects. References to
or copies of objects used in the system might be created. These
workarounds are usually time-intensive, error-prone, and might
lead to unnecessary code duplication.

Integrated tools could improve the creation of examples for pro-
grammers. Statically available sources, such as tests, could directly
be used as an example instead of duplicating code pieces or objects
of the tests. Dynamic information and existing objects could be
recorded and added as examples without the error-prone process
of trying to add them with workarounds. Often static analysis is
preferred to dynamic analysis, but creating reliable tools that sup-
port dynamic analysis and adding information from it as examples

https://orcid.org/0000-0002-9089-7784
https://orcid.org/0000-0001-9454-8381
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3532512.3535226
https://doi.org/10.1145/3532512.3535226
https://doi.org/10.1145/3532512.3535226

<Programming> ’22 Companion, March 21-25, 2022, Porto, Portugal

could increase its use by developers [35]. All in all, there are mul-
tiple sources that could potentially be useful as examples, but are
currently impractical to use.

We propose Example Mining to assist programmers with exam-
ple creation. Example Mining includes techniques to mine examples
from tests, debugging sessions, and traces of actual usage of the
system under development. We created dedicated tools to mine
examples and present potential workflows.

In this paper we will first introduce example-based programming
systems as well as the related field of live programming in section
2. The concept of Example Mining will be described in section 3
followed by potential use cases in section 4. The paper ends with a
discussion of related work in section 5 as well as a conclusion and
future work in section 6.

2 LIVE PROGRAMMING AND EXAMPLES

There are several programming concepts with a focus on using ex-
amples to enhance program comprehension. This section will intro-
duce the general concept of live programming and example-based
live programming. As our approach is based on the Babylonian
Programming environment, we will introduce it in detail including
three of its implementations.

2.1 Example-Based Live Programming

Live programming aims to provide immediate feedback to enhance
explorability and comprehensibility [9, 28]. To provide this feed-
back, editing and running code is combined to achieve faster feed-
back cycles. There are several ways in which an IDE can support
liveness, one being user-made edits triggering updates [31, 32].
The ways in which the feedback, program traces or results, can be
explored is also a significant part of live programming [21].

Example-based live programming adds concrete examples to
abstract code, for instance in the form of example invocations of
a method. For one, programmers can use these concrete invoca-
tions to get a better grasp of the role of parameters when reading a
method. Second, with the help of these examples, example-based en-
vironments can display live feedback on the behavior of the method.
For instance, the Example Centric Programming editor displays a
full run-time trace next to the code that is updated whenever code is
changed [4]. The various, existing example-base live programming
environments differ, among other aspects, in the degree to which
examples are made explicit, the kind of feedback that is provided,
and the support for feedback across modules [4, 11, 14, 26].

2.2 Babylonian Programming

Babylonian-style Programming, or Babylonian Programming, is
an approach that aims to display examples and run-time data di-
rectly within the source code. The example encompasses the data
needed to run code that invokes the method under development
and is defined by the programmers. Probes can then be placed on
arbitrary expressions to see what the expression evaluates to dur-
ing the execution of an example [21]. Multiple implementations of
Babylonian Programming exist that share certain concepts, such as
placing probes to visualize a code piece or defining examples.

Eva Krebs, Patrick Rein, and Robert Hirschfeld

The main concepts are defining examples, which provide some
sort of code execution from which concrete traces of data can be
gained, and adding widgets to code, allowing data to be visualized
and other interactions with the code. An example can be named, can
be set to whether it is inactive or active, and can contain information
for all objects that are needed to run the method. Programmers
can define the receiver object and the parameter objects by either
writing small scripts or referring to class methods. Whenever the
method source code is changed, all active examples are run.

If at least one example is defined and set to active, Babylonian
widgets in turn are activated and display according information.
The widgets are added by developers to parts of the code that they
are interested in. The most common widget is a probe, a widget
that visualizes the data of where it is placed, but there are other
widgets such as sliders or replacements that can be used to change
values of the code at run-time.

There are multiple kinds of examples in Babylonian/S. All exam-
ple types can have a set-up and a tear-down script that are executed
before and after the example is run respectively. Similar to tests,
this can be used to configure needed state. One type of examples
are script examples. These examples rely on a user-written script
that invokes the target method. The script itself can directly include
the method invocation, but it is also possible to invoke a different
method that indirectly uses the target method. If the target method
is not called, the probes and other widgets remain empty. As scripts
are versatile, this example type allows developers the most freedom
during example definition. A script example is especially useful if
developers know how to invoke the target method indirectly but
not how to invoke it directly.

Other Implementations. The first prototype of Babylonian-style
Programming was implemented in JavaScript in the live program-
ming environment Lively4 [17, 26]. Babylonian/JS introduced the
main concepts of Babylonian Programming. Babylonian Program-
ming is also a part of an example-based live programming plug-in
for Visual Studio [23]. The plug-in supports polyglot programming,
which means that using and combining multiple programming
languages is supported. To support more than one language, core
Babylonian features were implemented in a language-agnostic way.

3 EXAMPLE MINING

There are several potential sources to mine examples from. We
contribute concepts and workflows to mine examples from three se-
lected sources. This section will introduce the three tools. The tools
were originally designed for Babylonian/S2.2 based on concepts
applicable to several example-based environments.

In Babylonian/S, an example is defined for a method. A method
that a user wants to add an example to will be called target method. A
visualization of an example in Babylonian/S can be seen in Figure 1.

3.1 Overview

Sources for examples already exist in the system and can be ac-
cessed, but not easily integrated as Babylonian examples. Given a
target method, programmers could search for a fitting test in the

Babylonian/S. Babylonian/S is the main implementation of Babylonian- test packages. Or the programmers could write a small script that

style Programming [27], implemented in Squeak/Smalltalk [7, 12].

61

could be debugged or otherwise inspected. Adding, and in some

Example Mining: Assisting Example Creation to Enhance Code Comprehension

Babylonian Browser: WebClient

WebClient-Core httpGet:

WebAuthRequired | | - all -
WebClient-Tests » WebChunkedStrea ||accessing @ httpGet:do: [
WebClient-Help WebClient authentication httpHead:
MorphicExtras-WebCam 7= | cookies httpHead:do:
?linitialize I nttoootions:

browse senders] hierarchy | vars source

httpGet: urlString do: aBlock

WebClientServerTest>>#testCookieParsing ~ X (:)
“GET the response from the given url

“(WebClient httpGet: 'http://www.squeak.org') content”

0] »

l

request
self initializeFromUrl: urlString.

Qn http://localhost:15780/cookieA . http://localhost:15780/cookieA

req t 1= self requestWithUrl: urlString.

request method: 'GET'.

userAgent ifNotNil:[:ua | request headerAt: 'User-Agent' put: ua).

self contentDecoders ifNotNil: [:decoders | request headerAt: 'Accept-Encoding’ put: decoders].
aBlock value: request.

~self sendRequest: request

S
ek 2/14/2022 09:49 - unknown author - methods - 1 implementor - only in change set HomeProject -

Figure 1: A Babylonian/S code browser displaying a method
(1). At the top of the method examples can be defined and
turned on/off. In this case one example was created and is
active (2), more could be created using the button bar below
the existing example (3). The probe (4) is placed in the code
to visualize a property.

cases finding, these potential examples however would without
tools only be possible through workarounds.

This paper will introduce three tools to add, and if needed en-
hance the finding process of, examples:

o A test-based Example Mining tool, which enables program-
mers to find relevant tests and directly add a chosen test as
an example

o An addition to debugging, which can add an example based
on the current state in the debugger

e An example recording tool, that can record all traces of
method calls of a target method and then to add a selected
recording as an example

While tests are a static and explicitly documenting source of
examples, examples mined from debugging and recording arise
from dynamic processes triggered by user actions. This will effect
both how sources for examples can be found as well as their later
representation as examples.

3.2 From Tests to Examples

Tests are an integral part of software development that could po-
tentially be a vast source for examples. Testing not only checks for
correct behavior and results, it also documents purpose, usage, and
behavior of the code. Size and intent of tests varies. An integration
test might span multiple modules and execute many methods, but
a lot of them will not be invoked directly in the test method but be
called indirectly. A unit test meant to test a specific method by con-
trast will likely invoke said method directly. In both cases running
the tests could provide interesting data for method invocations and
thus the tests could make good examples, but the way to determine
whether the tests are of interest to a given method may vary.

To support the creation of test-based examples for a target
method, this paper proposes a tool that can be opened for the
target method and has both means to find relevant tests as well as

62

<Programming> *22 Companion, March 21-25, 2022, Porto, Portugal

to add a selected test as an example. The search for relevant tests
should be configurable, as which tests are the most relevant might
depend on the intent of the developer. For methods that are used
very often, especially indirectly, in the system programmers might
prefer to only see tests that directly invoke the target method or if
possible are from a dedicated test class for the class of the target
method. For other methods that are rarely used and do not have
dedicated tests, any invocation from a test might be interesting,
even if it is indirect and if all tests have to be searched to find it. If
many results are found, applying more criteria might not only yield
more relevant tests but also less yet more focused tests that are
easier for the programmer to look through and less overwhelming.
Once a developer has found a promising test, or multiple, that test
should be able to be added as an example.

To create a test-based example, it likely be best to introduce a new
kind of example whose purpose is to run a test. Existing example
types could used to run a test in an example, a script example for
instance. The script example could have a script containing either
code to run the test or a copy of the test code. Copying code or
objects from tests however might be problematic, for example if the
test is refactored a user might prefer the refactored version, but the
scripts will still contain the old code. Having a script that runs the
example would solve that, but might also not be optimal long-term.
If the way of running tests changes, all scripts would need to be
changed, while a test example could encapsulate that behavior so
it only has to be changed once. Also, the scripts would have no
connection to the test, the meta-information about the example
being based on a test would be lost. Knowing that an examples is
based on a test creates more possibilities, both in how the example
is presented as well as further features that only work with test
methods.

This paper proposes a test example, that can run a test method
and persists the needed information. In most systems, persisting
the name of the test class as well as the selector of the test method
make it possible to identify the test method. The test can then be
run with means provided by the test framework, which might for
example include automatic set-up and clean-up functionality.

3.3 From Debugging to Examples

A debugger allows further insights into method executions. In
Squeak/Smalltalk, the debugger allows access to the entire method
stack and to step through methods individually. All needed infor-
mation, such as receiver and arguments of the currently debugged
method, is accessible and can be explored by the programmer.

It is possible for users to debug a specific piece of code on pur-
pose, but debuggers are also automatically opened on errors and
breakpoints. This means the state visible in the debugger can be
interesting for several reasons. If the debugger was used to ex-
plore, maybe an interesting method execution was found by chance.
Maybe a piece of code was debugged with the intent of seeing
concrete values for a specific method. A debugger opened for an
error might contain an invocation that is interesting as an illustra-
tion long-term. Or instead of investigating the error further in the
debugger, the programmer wants to use other available tools for
exploration.

<Programming> ’22 Companion, March 21-25, 2022, Porto, Portugal

If a debugger is deemed to contain an interesting method invo-
cation by the developer, it should be possible to use that invocation
as an example. Whether the content of the debugger makes a good
example can be decided spontaneously as the only tool needed
should be the debugger itself. This makes it possible for developers
to explore the system and create examples easily at each point.

The information provided by the debugger contains the currently
explored method, the method’s receiver, and the method’s argu-
ments. Since receiver and arguments are directly available, they can
be used to create a method example, an example type that needs
receiver and arguments to be defined individually. This means we
can save examples from the debugger as method examples. The
example should not be created with the original objects from the
debugger but with copies, as the objects in the debugger might
still be in use. If the objects are still in use, the example working
with them could alter other behavior in the system. Similarly, if the
used objects are changed outside the example that would impact
future example runs. Also, the objects in the example should be
saved in a way that ensures that if the example is executed several
times the receiver and argument objects do not change. This means
side-effects from the method should not be persisted, since the
original receiver and arguments state from the debugger created
the interesting execution. If the objects are altered, the method
execution and values used in illustrations might change.

3.4 From Traces to Examples

The environment by itself and interactions with it already lead to
several method executions. The data in these could in some cases
also make useful examples. A way to access all traces of a target
method could be helpful if the developer knows when the method
is called and wants a specific trace. It could also help to see if a
method is triggered at all and with what data.

There are several ways in which useful traces could be created.
The system might do some actions in the background, like checking
for new emails. The programmer might interact with a tool or other
application that internally uses the method of interest. Sometimes it
might be interesting what traces are generated by a specific script.

To access these traces, this paper proposes a tool that can record
traces for a target method and add examples based on traces. The
developer can start and end recording to collect traces in a user-
defined period of time. While recording, all actions taken by the
developer or the system itself work as normal, but for all invoca-
tions of the target method receiver and arguments are recorded.
Recording only the target method means that this tool can be used
to reduce scripts that could also be used in script examples to only
the method invocation needed for the example. All other, potentially
time- or resource-intensive, parts of the scripts can be removed by
omission.

A recorded trace consist of receiver and arguments for a tar-
get method. Similarly to the handling of the data found during
debugging, these objects can be used to create method examples.

Recording Traces. To record traces relevant to the target method,
all invocations of that method should be able to be recorded on
demand. There are several ways to record method invocations,
from vm-level implementations to recording tools. For this paper, a
recorder that is already provided by Babylonian/S will be used. Like

63

Eva Krebs, Patrick Rein, and Robert Hirschfeld

Babylonian/s itself, the recorder is based on code instrumentation.
At the beginning of the method, the recorder adds a hook to itself
that saves a copy of the receiver and arguments of the method as
recording.

4 EXAMPLE MINING IN ACTION

In the following, three scenarios will be introduced in which exam-
ples can be mined with the created tools. All scenarios will center
on the WebClient, a class that supports sending web requests and re-
lated functionality. In some cases, tools using the WebClient might
be featured.

4.1 From Tests to Examples

A programmer might want to add an example to the #httpGet:do:
method of the WebClient. It might be unclear what parts of a
WebClient instance need to be configured for the method to run
without error, but as an integral method it is likely to be tested.

To add a test-based example, first the target method, #httpGet:do:,
needs to be opened with a code browser. Then, the tool for adding
test-based examples needs to be opened for the method. The tool can
be seen in Figure 2. Immediately, results based on the default search
configuration will be displayed. If the user wants specific criteria to
be fulfilled, for example that the target method is definitely invoked
by the test, the user can change which conditions are active and
trigger the search again. A fitting test, e.g. #testCookieParsing, can
then be added as an example to the method.

Babylonian Test Example Tool for: httpGet:do:
[W] TestCase class name should include WebClient

[] TestCase ciass package should include mathod class package: WebClient-Core
@ IETEE[literals include method selector

] Running the test yields a recording

DTenl\unner ‘coverage is triggered by running test
@-1—- search I

‘WebClientServerTest'-> # testCookieParsing
'WebClientServerTest'-> #testMultipleReques

@_

add example

testCookieParsing

“Test client and server
handling of cookies”
| resp client | @
"Sends the testcookie back if
it's set"
server addService: '[!

Figure 2: Example Mining tool to find relevant tests and add
them as an example. Includes a pane to change search pa-
rameters (1), a button to trigger the search (2), a pane that
displays found tests (3), a button to add the currently selected
test as an example (4), and a pane that displays the code of
the currently selected test (5).

4.2 From Debugging to Examples

If an error occurs in the WebClient, a debugger is triggered. The
debugger could then be used to add an example to the current
method, in order to further explore the error in the code browser
or to document the error. It would of course also be possible to
intentionally debug a piece of code to add as an example.

One possible scenario for this could occur while using Scamper,
a Squeak/Smalltalk web browser. The developer wants to open a
web page in Scamper, but an error occurs in the #defaultUserAgent

Example Mining: Assisting Example Creation to Enhance Code Comprehension

method of the debugger, causing a debugger to appear, which can
be seen in Figure 3. In this scenario, the error was intentionally
included by the programmer and is easy to fix, but it is still possible
to add the method invocation of the debugger as an example.

ZeroDivide:

WebClient>>defaultUserAgent]|

[Pm:eet:l Restart || Into l Over | Thmugl” Full 5ta l Where [Tally It Iﬁdd Exi

defaultUserAgent

“Answer the default User-Agent string to use for WebClient"

1/0.
~"WebClient/1.5 (',
WebUtils mcVersion, '; ',
SystemVersion current version,-',
SystemVersion current highestUpdate printString, ' ',
WebUtils platformName,")'.

self [N thisContext
all inst vars stack top
flags all temp wvar
LComrar

Figure 3: Example Mining debugger extension to add exam-
ples from the debugger. At the right side of the button pane
a button was added that adds the current receiver and argu-
ments as an example to the currently debugged method.

4.3 From Traces to Examples

If a programmer wants to add an example to the # authenticate :from:
method of the WebClient, creating an example from scratch can be
difficult. A correctly configured WebClient as well as WebRequest
and WebResponse would be needed. However, the method comment
tells us when the method is invoked: The method is called if an
HTTP 401 'Unauthorized’ error code is encountered. This means if
we try access a web page without proper authentication, the target
method will be called.

One easy way to access web pages is to open them in a browser.
Scamper, a web browser implemented in Squeak/Smalltalk, allows
us to do that. Instead of creating all objects needed for example from
scratch, we could record all invocations of the target method while
trying to access a web page without the needed authentication in
Scamper.

First, a code browser needs to be opened for # authenticate :from:,
our target method. Then an Example Mining recording tool for the
method needs to be opened. Toggling the recording will turn it on,
signaled by the circle element switching from grey to red. While
the tool is recording, we open Scamper and put in the URL of a web
page that we lack proper credentials for. Scamper will display the
according 401 page, which means we can stop the recording. All
recordings will now be displayed, which should be exactly one: the
invocation caused by Scamper, which can be seen in Figure 4. This
recording can be previewed and added as an example to the target
method.

5 RELATED WORK

We discuss relevant concepts from testing and debugging.

64

<Programming> *22 Companion, March 21-25, 2022, Porto, Portugal

Babylonian Recording Tool for: authenticate:from:

add example —}@

{WebClient(Conne(
WebClient{Connect]
{WebRequest(GET

1 WebRequest{GET /i

2 WebResponse(HTT

toggle recording

{WebClient(Connected: https:/fhpi.de = root

b1
- 2
[3
3

record this seript

Figure 4: Example Mining tool to record traces and add them
as examples. Includes a button toggle whether recording is
active (1), a color-changing indicator whether recording is
active (2), a pane that display all recordings (3), a button
to add the currently selected recording as an example (4),
and an explorer view of the objects of the selected recording
(5). At the bottom of the tool a button and code field can be
found that allow recording the script written in the code field
without recording system behavior (6).

As argued above, tests can be a mining source for examples [4, 6].
To mine examples from tests, programmers first have to identify
suitable tests. Some similar projects such as the Debugging into Ex-
amples tool record traces of all test executions to determine which
tests execute which methods [30]. Similar precision can be achieved
with our trace-based Example Mining tool. Our test-based mining
tool uses heuristics instead. Similarly, general techniques from test
selection and prioritization can help find tests that are relevant for
certain sections of code [18, 22]. Some test prioritization techniques
use the test coverage to prioritize tests and do so in a time-effective
manner [20]. Such techniques could improve the filtering of tests in
our test-base Example Mining tool. Another related, coverage-based
technique may be used to find test cases relevant for a method. The
technique can determine groups of tests cases relevant for a class,
method, or theoretically even statement [10, 33].

For some methods, there might not be unit tests suitable to
become examples but only integration tests that happen to execute
the method. Related techniques can generate unit tests from system
tests [5]. Our proposed tool might also benefit from this technique.
Currently, our proposed tool would add a test-based example for
the integration test. While this illustrates the method, it also might
take longer to run and be more difficult to comprehend than an
isolated unit test.

Debugging research is relevant for our tools, with regard to how
to make information on concrete executions easy to access as well
as with regard to techniques for handling traces. Visualization tech-
niques in debuggers might be integrated into our tool to make it
easier for programmers to select invocations to be converted to
examples [2, 15, 19]. Similar to our tools, a lot of debugging tools
either work on traces or generate them [8, 25]. As we use traces to
repeat the original execution, capture-and-replay mechanisms in
particular are relevant for our approach [1, 3, 5, 13, 24]. For instance,

<Programming> ’22 Companion, March 21-25, 2022, Porto, Portugal

our trace-based Example Mining tool currently only records the in-
vocation of methods. To make the resulting example self-contained,
any interactions with the environment should be mocked. That
might be accomplished using record-and-replay techniques that
record such interactions and create mock objects or methods to
make replays repeatable [13, 24, 29].

6 CONCLUSION AND FUTURE WORK

To enable developers to reuse existing information to create, this pa-
per introduced several ideas to mine examples from existing sources.
Three sources in particular were focused on. The first source for
examples described was tests, as tests both provide all information
to run the test code and usually also fulfill a documenting purpose.
The second source was debugging sessions that allow the developer
to spontaneously create examples based on the information of the
method invocation currently explored in a debugger. The third and
last source focused on in this paper was traces of the system itself,
allowing programmers to record all invocations of the method they
are working on and add those recordings as examples.

Future Work. There are several aspects of the concepts and tools
of this paper that can be expanded upon. Aside from evaluating
the tools with example use cases and metrics, a user study could
show if and how the tools are useful. The tools themselves could
be expanded in several ways, while the underlying concepts could
also be transferred to and implemented in other programming
environments.

A user study that investigates the usage of the tools to see in
which situations example mining is chosen over creating an ex-
ample from scratch could yield further insights. This might also
discover new aspects that the tools should support.

Several usability improvements could be made to the tools such
as allowing further exploration of the recordings before adding
them as an example. The heuristic search for relevant tests could
still be improved. For example, techniques used in test prioritiza-
tion could be applied to make it easier for programmer to select a
fitting test as an example. Further, there are still other sources for
examples that we have not yet covered. For instance, future tools
might use example code from sources such as documentation, code
annotations, or tutorials.

ACKNOWLEDGMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) — 449591262. We also gratefully acknowledge
the financial support of HPI’s Research School! and the Hasso
Plattner Design Thinking Research Program?.

REFERENCES

[1] Bowen Alpern, Ton Ngo, Jong-Deok Choi, and Manu Sridharan. 2000. DejaVu:
deterministic Java replay debugger for Jalapefio Java virtual machine. In Object
Oriented Programming Systems Languages and Applications Conference, OOPSLA
2000, Minneapolis, MN, USA, October 15-19, 2000, Addendum to the proceedings,
James Haungs (Ed.). ACM, 165-166. https://doi.org/10.1145/367845.368073

[2] Ronald Baecker, Chris DiGiano, and Aaron Marcus. 1997. Software Visualization
for Debugging. Commun. ACM 40, 4 (1997), 44-54. https://doi.org/10.1145/
248448.248458

https://hpi.de/en/research/research-school.html
Zhttps://hpi.de/en/dtrp/

65

Eva Krebs, Patrick Rein, and Robert Hirschfeld

[3] Jong-Deok Choi and Harini Srinivasan. 1998. Deterministic replay of Java multi-
threaded applications. In Proceedings of the SSGMETRICS symposium on Parallel
and distributed tools - SPDT '98. ACM Press. https://doi.org/10.1145/281035.281041
Jonathan Edwards. 2004. Example centric programming. In Companion to the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC,
Canada, John M. Vlissides and Douglas C. Schmidt (Eds.). ACM, 124. https:
//doi.org/10.1145/1028664.1028713
Sebastian G. Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil.
2006. Carving differential unit test cases from system test cases. In Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006, Michal Young
and Premkumar T. Devanbu (Eds.). ACM, 253-264. https://doi.org/10.1145/
1181775.1181806
[6] Markus Gaelli. 2006. Modeling Examples to Test and Understand Software. (2006).
https://doi.org/10.7892/BORIS.104524
[7] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley.
[8] Zhongxian Gu, Earl T. Barr, Drew Schleck, and Zhendong Su. 2012. Reusing
debugging knowledge via trace-based bug search. In Proceedings of the 27th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ,
USA, October 21-25, 2012, Gary T. Leavens and Matthew B. Dwyer (Eds.). ACM,
927-942. https://doi.org/10.1145/2384616.2384684
Christopher Michael Hancock. 2003. Real-time Programming and the Big Ideas of
Computational Literacy. Ph.D. Dissertation. Massachusetts Institute of Technol-
ogy.
Ferenc Horvath, Béla Vancsics, Laszl6 Vidacs, Arpéd Beszédes, David Tengeri,
Tamas Gergely, and Tibor Gyimoéthy. 2015. Test suite evaluation using code
coverage based metrics. In Proceedings of the 14th Symposium on Programming
Languages and Software Tools (SPLST’15), Tampere, Finland, October 9-10, 2015
(CEUR Workshop Proceedings, Vol. 1525), Jyrki Nummenmaa, Outi Sievi-Korte, and
Erkki Mékinen (Eds.). CEUR-WS.org, 46-60. http://ceur-ws.org/Vol-1525/paper-
04.pdf
Tomoki Imai, Hidehiko Masuhara, and Tomoyuki Aotani. 2015. Shiranui: a live
programming with support for unit testing. In Companion Proceedings of the 2015
ACM SIGPLAN International Conference on Systems, Programming, Languages and
Applications: Software for Humanity, SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 36-37. https:
//doi.org/10.1145/2814189.2817268
Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan C. Kay. 1997.
Back to the Future: The Story of Squeak - A Usable Smalltalk Written in Itself. In
Proceedings of the 1997 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications (OOPSLA °97), Atlanta, Georgia, October 5-
9, 1997, Mary E. S. Loomis, Toby Bloom, and A. Michael Berman (Eds.). ACM,
318-326. https://doi.org/10.1145/263698.263754
Shrinivas Joshi and Alessandro Orso. 2007. SCARPE: A Technique and Tool for
Selective Capture and Replay of Program Executions. In 23rd IEEE International
Conference on Software Maintenance (ICSM 2007), October 2-5, 2007, Paris, France.
IEEE Computer Society, 234-243. https://doi.org/10.1109/ICSM.2007.4362636
Jan-Peter Krdmer, Joachim Kurz, Thorsten Karrer, and Jan O. Borchers. 2014.
How live coding affects developers’ coding behavior. In IEEE Symposium on
Visual Languages and Human-Centric Computing, VL/HCC 2014, Melbourne, VIC,
Australia, July 28 - August 1, 2014, Scott D. Fleming, Andrew Fish, and Christopher
Scaffidi (Eds.). IEEE Computer Society, 5-8. https://doi.org/10.1109/VLHCC.2014.
6883013
Chris Laffra and Ashok Malhotra. 1994. HotWire - A Visual Debugger for C++.
In Proceedings of the C++ Conference. Cambridge, MA, USA, April 1994, Doug
Lea (Ed.). USENIX Association, 109-122. http://www.usenix.org/publications/
library/proceedings/c++94/laffra.html
Henry Lieberman and Christopher Fry. 1995. Bridging the Gulf Between Code and
Behavior in Programming. In Human Factors in Computing Systems, CHI *95 Con-
ference Proceedings, Denver, Colorado, USA, May 7-11, 1995, Irvin R. Katz, Robert L.
Mack, Linn Marks, Mary Beth Rosson, and Jakob Nielsen (Eds.). ACM/Addison-
Wesley, 480-486. https://doi.org/10.1145/223904.223969
Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel Taeumel,
and Tim Felgentreff. 2017. Designing a live development experience for web-
components. In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Programming Experience, PX/17.2, Vancouver, BC, Canada, October 23-27, 2017,
Luke Church, Richard P. Gabriel, Robert Hirschfeld, and Hidehiko Masuhara
(Eds.). ACM, 28-35. https://dl.acm.org/citation.cfm?id=3167109
Yiling Lou, Junjie Chen, Lingming Zhang, and Dan Hao. 2019. Chapter One - A
Survey on Regression Test-Case Prioritization. Adv. Comput. 113 (2019), 1-46.
https://doi.org/10.1016/bs.adcom.2018.10.001
Allen D. Malony, David H. Hammerslag, and David Jablonowski. 1991. Traceview:
A Trace Visualization Tool. IEEE Softw. 8, 5 (1991), 19-28. https://doi.org/10.
1109/52.84213

[4

)

—
)

[10

[11

[12

(13

(14

[15

[16

(17

[18

[19

https://doi.org/10.1145/367845.368073
https://doi.org/10.1145/248448.248458
https://doi.org/10.1145/248448.248458
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/
https://doi.org/10.1145/281035.281041
https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1145/1181775.1181806
https://doi.org/10.1145/1181775.1181806
https://doi.org/10.7892/BORIS.104524
https://doi.org/10.1145/2384616.2384684
http://ceur-ws.org/Vol-1525/paper-04.pdf
http://ceur-ws.org/Vol-1525/paper-04.pdf
https://doi.org/10.1145/2814189.2817268
https://doi.org/10.1145/2814189.2817268
https://doi.org/10.1145/263698.263754
https://doi.org/10.1109/ICSM.2007.4362636
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1109/VLHCC.2014.6883013
http://www.usenix.org/publications/library/proceedings/c++94/laffra.html
http://www.usenix.org/publications/library/proceedings/c++94/laffra.html
https://doi.org/10.1145/223904.223969
https://dl.acm.org/citation.cfm?id=3167109
https://doi.org/10.1016/bs.adcom.2018.10.001
https://doi.org/10.1109/52.84213
https://doi.org/10.1109/52.84213

Example Mining: Assisting Example Creation to Enhance Code Comprehension

[20] Wes Masri and Marwa El-Ghali. 2009. Test case filtering and prioritization
based on coverage of combinations of program elements. In Proceedings of the
International Workshop on Dynamic Analysis: held in conjunction with the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2009),
WODA 2009, Chicago, IL, USA, July, 2009, Ben Liblit and Andy Podgurski (Eds.).
29-34. https://doi.org/10.1145/2134243.2134250

[21] Sean McDirmid. 2013. Usable Live Programming. In ACM Symposium on New
Ideas in Programming and Reflections on Software, Onward! 2013, part of SPLASH
’13, Indianapolis, IN, USA, October 26-31, 2013, Antony L. Hosking, Patrick Th.
Eugster, and Robert Hirschfeld (Eds.). ACM, 53-62. https://doi.org/10.1145/
2509578.2509585

[22] Dominik Meier, Toni Mattis, and Robert Hirschfeld. 2021. Toward Exploratory

Understanding of Software using Test Suites. In 7th Programming Experience

Workshop (PX/21). ACM. https://doi.org/10.1145/3464432.3464438

Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian Konig, Kolya

Opahle, Nico Scordialo, and Robert Hirschfeld. 2020. Example-based live pro-

gramming for everyone: building language-agnostic tools for live program-

ming with LSP and GraalVM. In Proceedings of the 2020 ACM SIGPLAN In-
ternational Symposium on New Ideas, New Paradigms, and Reflections on Pro-

gramming and Software, Onward! 2020, Virtual, November, 2020. ACM, 1-17.

https://doi.org/10.1145/3426428.3426919

[24] Alessandro Orso and Bryan Kennedy. 2005. Selective capture and replay of

program executions. ACM SIGSOFT Softw. Eng. Notes 30, 4 (2005), 1-7. https:

//doi.org/10.1145/1082983.1083251

Peter Phillips. 2010. Enhanced debugging with traces. Commun. ACM 53, 5

(2010), 50-53. https://doi.org/10.1145/1735223.1735240

[26] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-style Programming - Design and Implementation of an Integra-
tion of Live Examples Into General-purpose Source Code. Art Sci. Eng. Program.
3,3(2019), 9. https://doi.org/10.22152/programming-journal.org/2019/3/9

[27] Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus, and Robert
Hirschfeld. 2019. Implementing Babylonian/S by Putting Examples Into Contexts.
In Proceedings of the Workshop on Context-oriented Programming - COP '19. ACM
Press. https://doi.org/10.1145/3340671.3343358

[28] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2019. Exploratory and Live, Programming and Coding - A Literature Study

[23

[25

66

[29

[30

[31

[32

[33

[34

[35

]

<Programming> *22 Companion, March 21-25, 2022, Porto, Portugal

Comparing Perspectives on Liveness. Programming Journal 3, 1 (2019), 1. https:
//doi.org/10.22152/programming-journal.org/2019/3/1

David Saff and Michael D. Ernst. 2004. Mock object creation for test factoring. In
Proceedings of the 2004 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
For Software Tools and Engineering, PASTE 04, Washington, DC, USA, June 7-8,
2004, Cormac Flanagan and Andreas Zeller (Eds.). ACM, 49-51. https://doi.org/
10.1145/996821.996838

Bastian Steinert, Michael Perscheid, Martin Beck, Jens Lincke, and Robert
Hirschfeld. 2009. Debugging into Examples. In Testing of Software and Com-
munication Systems, 21st IFIP WG 6.1 International Conference, TESTCOM 2009
and 9th International Workshop, FATES 2009, Eindhoven, The Netherlands, No-
vember 2-4, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5826),
Manuel Nufiez, Paul Baker, and Mercedes G. Merayo (Eds.). Springer, 235-240.
https://doi.org/10.1007/978-3-642-05031-2_18

Steven L. Tanimoto. 1990. VIVA: A visual language for image processing. J. Vis.
Lang. Comput. 1, 2 (1990), 127-139. https://doi.org/10.1016/S1045-926X(05)80012-
6

Steven L. Tanimoto. 2013. A perspective on the evolution of live programming.
In Proceedings of the 1st International Workshop on Live Programming, LIVE 2013,
San Francisco, California, USA, May 19, 2013, Brian Burg, Adrian Kuhn, and Chris
Parnin (Eds.). IEEE Computer Society, 31-34. https://doi.org/10.1109/LIVE.2013.
6617346

David Tengeri, Arpéd Beszédes, Tamas Gergely, Laszlo Vidacs, David Havas,
and Tibor Gyimoéthy. 2015. Beyond code coverage - An approach for test suite
assessment and improvement. In Eighth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17,
2015. IEEE Computer Society, 1-7. https://doi.org/10.1109/ICSTW.2015.7107476
David M. Ungar, Henry Lieberman, and Christopher Fry. 1997. Debugging
and the Experience of Immediacy. Commun. ACM 40, 4 (1997), 38-43. https:
//doi.org/10.1145/248448.248457

Radhika D. Venkatasubramanyam and Sowmya G. R. 2014. Why is dynamic
analysis not used as extensively as static analysis: an industrial study. In Ist
International Workshop on Software Engineering Research and Industrial Practices,
SER&IPs 2014, Hyderabad, India, June 1, 2014, Rakesh Shukla, Anjaneyulu Pasala,
and Srinivas Padmanabhuni (Eds.). ACM, 24-33. https://doi.org/10.1145/2593850.
2593855

https://doi.org/10.1145/2134243.2134250
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/3464432.3464438
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.1145/1082983.1083251
https://doi.org/10.1145/1082983.1083251
https://doi.org/10.1145/1735223.1735240
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/996821.996838
https://doi.org/10.1145/996821.996838
https://doi.org/10.1007/978-3-642-05031-2_18
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1016/S1045-926X(05)80012-6
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/ICSTW.2015.7107476
https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/2593850.2593855
https://doi.org/10.1145/2593850.2593855

	Abstract
	1 Introduction
	2 Live Programming and Examples
	2.1 Example-Based Live Programming
	2.2 Babylonian Programming

	3 Example Mining
	3.1 Overview
	3.2 From Tests to Examples
	3.3 From Debugging to Examples
	3.4 From Traces to Examples

	4 Example Mining in Action
	4.1 From Tests to Examples
	4.2 From Debugging to Examples
	4.3 From Traces to Examples

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

