2012 45th Hawaii International Conference on System Sciences

The Lively PartsBin—A Cloud-based Repository
for Collaborative Development of Active Web Content

Jens Lincke! Robert Krahn!

! Hasso-Plattner-Institut, Germany

{firstname.surname } @hpi.uni-potsdam.

Abstract

The Lively Kernel is a browser-based environment
for authoring active Web content. Being a self-
supporting system, it is sstmple and compact, yet it sup-
ports rapid authoring with little need for programming
expertise. Most importantly, the entire context of cre-
ation is now embedded in the cloud, a shared space in
which to find, alter, create and share new content. The
paper focuses specifically on a “PartsBin” metaphor for
organizing Web content and on an incremental script-
ing metaphor for making active connections between
components and for forging new functionality.

1 Introduction

The Lively Kernel [7] surprised and delighted many
people by showing that it is possible to build a com-
plete self-supporting computing kernel from nothing
more than the language and graphics available in every
browser. This held out a promise that “wherever there
is the Internet there can be authoring”. Experience
showed, however, that a substantial gap remains be-
tween the programming environment afforded by ker-
nels such as Lively, and what we usually mean by the
word authoring. By authoring, we mean the creation
of active web content in a manner that is similar to
mashups or that involves, at most, experimentation
with occasional snippets of JavaScript.

“Kits and Concrete Manipulation: A kit is
a set of primitive components, together with
a framework for connecting the components
to do new and interesting things. If objects
built with the kit can in turn be used to aug-
ment the original set of components, then the
range of application becomes very large, lim-
ited only by the capability of the primitive

978-0-7695-4525-7/12 $26.00 © 2012 IEEE
DOI 10.1109/HICSS.2012.42

Dan Ingalls®

de

693

Marko Roder! Robert Hirschfeld!

2 SAP Research, CA, USA

dan.ingalls@sap.com

components and the manner of their intercon-
nection.” [8]

The focus of this paper is a higher-level platform
built on top of the Lively Kernel, that provides exactly
those facilities needed to create a wide variety of active
web content:

A set of concrete components
Concrete here means visible and immediately ma-
nipulable and active.

A way to connect the components together
This too should be concrete — that is visible and
immediately effective.

A way to save results as new components
Identify the parts included and their interface,
serialize the whole, and store it back into the
repository.

The remainder of the paper is structured as follows.
Section 2 gives overview of the Lively Kernel. Sec-
tion 3 discusses the repository of parts and Section 4
gives some implementation details. Section 5 shows an
example of the PartsBin in use. Section 6 discusses
related work and Section 7 concludes.

2 Lively Kernel

In this section we introduce our prior work, the de-
velopment and runtime environment Lively Kernel.

2.1 Lively Kernel as a platform
The Lively Kernel begins with a Smalltalk-like

class system [4], from which it defines a Morphic-
style! |11, 12| graphics architecture, event handling,

LA Morphic architecture provides a family of primitive graph-
ical objects that can be composed to build essentially any scene.

IEEE
computer
pSOC|ety

Simple example

Ignition tirr

1
2
3
:
5
:
7
:
9

P °
e

e Market W

12,004.36 T [0

12,100

12,050

DOW JONES
NASDAQ
NYSE

S&P INX.

Top 10 Dow 30 (DJIA) Stocks of the Week: HD, MCD, MSFT, UTX, KFT,
US stocks mixed as Dow ends six-week slide

Top 10 Dow 30 (DJIA) Stocks with Highest Return an Assets: MSFT, INTC
Market Recap: DJIA Reclaims 12,000 on Hope for Greece: RIMM Keeps

UPI NewsTrack Business
Top 10 Dow 30 (DJIA) Stocks with Highest Short Interest: A, TRY, DIS,
Market Update: DJIA Bounces Back, Led by Home Depot; VIX Holds Ste:

Top 10 Rebounding Dow 30 (DJIA) Stocks: GAT, AA, GVX, DD, PFE, XON

NOK

SAP.

AAPL

Name: "AAPL"

026
Change:-4.90
Open: 329.07
High: 329.25

Low:319.36
Volume: 21981808

Figure 1. Screenshot of the Lively Kernel from 2008

and green thread scheduler. This in turn makes it
possible to build active widgets such as text display
and rich text editor, buttons and scroll bars, clipping
frames and menus; in fact everything needed to build
simple browsers, inspectors and debuggers.

The basic Lively Kernel platform proved to be suc-
cessful. In less than 10,000 lines of code, it was able to
perform all the functions of an IDE, in addition to pro-
viding interactive editing of its graphics components.
Using SVG as a basis, it included its own window sys-
tem for applications, and a linked-worlds model for
major context switches. Network access was extended
with WebDAV protocol, thus enabling direct access to
an SVN repository in which the code was saved.

Beyond the fact that the Lively Kernel created “life”
in any Internet browser, was the fact that it was only
a Web page itself. It required no download or installa-
tion, but simply came to life when loaded by a browser.
Able to edit its own code, it could save its applications,
or even modified versions of itself as Web pages. It held
out a promise that wherever there is the Internet there
can be authoring.

Figure 1 shows a screenshot of the Lively Kernel as
an application environment, here hosting four sample
applications in its own window system.

Each node provides bounds, transformation, and ownership in-
formation, as well as functions that govern the response to input
events, and redisplay of altered nodes in the scene.

694

Figure 2 shows a comprehensive source code browser
built in the Lively Kernel and used for serious pro-
gramming. It offers direct access to an SVN repository,
the ability to parse conventional JavaScript source code
files into classes and methods, and to present them with
syntax highlighting in the style of a Smalltalk System
Browser [3]. In Figure 3 the browser is shown together
with a model of a radial aircraft engine. When changes
are made in the browser, they take immediate effect in
the model, and are also updated in the repository.

An experienced programmer needs a kernel library,
a language and IDE with which to build new compo-
nents, and a facility for adding the results of his work
back into the kernel repository. The original Lively
Kernel served this purpose quite well.

2.2 Not the whole story

While appearing to be a breakthrough in openness,
the original Lively Kernel was actually closed to many
users. This is because unless one was a programmer,
one could do little more than play with the graphics
and applications supplied with the system. To build
new content and extend the system required mastery of
the relatively heavyweight, albeit lively, programming
environment (see Figure 3)

Even in its original form, the Lively Kernel showed
some real strengths as an authoring environment.

[m

= |

‘hnp Mively-kemnel

PartsBin.js lively.PartsBin.Partitem:upload and download:loadPart (proto)

‘ codebase local

Network.js (not parsed) lively.PartsBin.Partlitem --all - load (proto)
NewMorphicCompat.js (not parst |lively.PartsBin.PartsBinMetalnfo initializing
NoMoreModels.js (not parsed) lively.PartsBin.PartsSpace accessing loadPartVersions (proto)
OldBase.js (not parsed) lively.PartsBin (extension) naming loadPartMetalnfo (proto)
OldModel.js (not parsed) lively.PartsBin.PartTrait serialization loadRevision (proto)
Ometa.js (not parsed) upload and download copyToPartsSpace (proto)
PartsBin.js converting moveToPartsSpace (proto)
PartsBinMorphs.js (not parsed) debugging del (proto)
Persistence.js (not parsed) uploadPart (proto)
Presentation js (not parsed) copyFilesFrom (proto)
Rendering.js (not parsed) Only (proto)
rhino-compat.js (not parsed)

Add module Load all LineNo Dbg errors is off Eval on Sort View as...

loadPart: function(isAsync, optCached, rev)
if (optCached) {
this.setPartFromJSON(this.json);
return this;

var loadTrigger = {
item: this,

triggerSetPart: function() {

jsonLoaded: function(json) {
this.json = json;

this.triggerSetPart();

try {

{

// ensure that setPartFromJSON is only called when both
// json and metaInfo are there. Since this can be async this gets

a bit complicated

this.item.setPartFromJSON(this.json, this.metaInfo);

if (this.metaInfo === undefined) return;

Yo
metalnfoloaded: function(metaInfo) {

Figure 2. The System Code Browser parses JavaScript source code and allows editing class and

object definitions.

Worlds could be saved as projects with local code,
thus allowing at least one level of convenient authoring.
This capability was further amplified by a client-side
Wiki [10] that allowed worlds to be stored into an SVN
repository, thus making it easy to share projects, and
to retrieve or revert to old versions whenever desired.

But saving projects and worlds was not enough, be-
cause it did not really provide the third requirement
above, namely to store new creations back on an equal
footing with other components in the library. Some-
thing was badly missing when it was so easy to make
drag-and-drop creations in the Lively Kernel, yet it was
so difficult to publish those creations where they could
easily be accessed and built on by others.

3 Repository of Parts

As part of the drag-and-drop support for graphical
creations, we had built palettes that allowed simple
shapes to be easily located, grabbed and imported into
a scene. Expanding on the SVN and Wiki support,
we were also experimenting with server-side operations,
inspired by the Node.js work [17]. At about the same
time, we also succeeded in converting the entire system
from a base of XML serialization to a cleaner and more
general model built around JSON.

All of these factors converged to make it possible to
serialize Lively components, complete with their graph-
ics and code, store them on a server (as shown in Fig-
ure 6), and then retrieve them again in another Lively
environment. Based on its early use, we called this

component a “PartsBin”, and it can be seen in use in
Figure 4.

With a little bit of work, as shown in Figure 5, the
PartsBin became an easily searchable, visually faithful
collection of all sorts of lively components including

e simple shapes,

UI widgets,
windows, tabs, presentation structures,

“vocabularies” such as slide show styles, musical
components.

An interesting distinction between the PartsBin and
other facilities for sharing user created content derives
from the Lively Kernel’s meta-circular design. Be-
cause the Lively Kernel platform itself is composed of
malleable parts, new components in the PartsBin can
change the nature of the environment and the applica-
tions that it can build. For instance a new tool in the
parts bin might make it possible to design new gra-
dient border fills that were not possible before, or it
might provide new control over gridding not formerly
offered in Lively worlds. This is the added dimension
of extensibility provided by a system in which dynamic
behavior is embraced rather than feared.

It was in this same way that we lifted our Self-
sustaining System [7] development process up a level
from programmer concepts like modules and classes to
direct editing of end-user-accessible objects.

We began with two levels of editing content in lively:

695

BOOY .

)

€ 5 C i |© lively-kernel.org/repository/webwerkstatt/LivelyHPimgzn/draft.xhtml

count

order | add | astext|setfile.| save
. . . (%] Latest changes []")

Lively Wiki -- eine Web-bas e 1] characters:1956
.| draftxhtml (40348 -- jenslinck:

Nicht nur bei Studenten erfreuen sich Wiki ”:w;::a,(jhm (4523?_'_‘;:)3""&5) T

Beliebtheit. Wikis helfen Informationen zu ReclangleTesLxhimi (40287 — robertrahn) erin

Verbindung zu A Lively Engine hlige

Wikis, die unter rtkrahn) 2T

benutzen sie um rum

unsere Arbeit zL kis so zu

Spezialanwend

n.

Dabei kénnen d

Examples.js:EngineMorph:— all —-doStep (proto)

81
Ul oodab.assll

Pt
ChangeSetjs
Connector.js
Contributions.js
| Corejs

Data.js
defaultconfig.js

y-kernel.org

einfachen Art ur

ist ein Erfolgsre: El

bearbeiten. Wir demofx.js WeatherWidget setRunning (proto)

im Web-Browse EmuDom js StockWidget nexiStep (proto)

aus einem Livel [Examplesjs i EngineMorpn i Blccseooroo))
Add modulal Loadall | LineNo | Refresh | Evalon Sot | Viewas.

local
ErTEnl=| iniisiize (prow) G

default category initializeTransientState {pr
makeLayout (proto)
addRunMenu (proto)
makeCylinders (proto)
movePiston (proto)

TestWidget
ClockMorph
SymmetryMorph
PianoKeyboard
FeedWidget
SquiggleMarph

Neben Werkze
Context)S, eine
uns erlauben sa

dostep: function()
var crPt;
this.crankangle

die eigenen We

nohan

Figure 3. A Lively Wiki page with a simulation of ara
its underlying class.

e editing objects (properties, style, composi-

tion) [16]

e editing classes that indirectly changed the behav-
ior of the object

We then moved from editing JavaScript source files
in external editors to editing modules and classes from
within Lively [10] as seen in Figure 3.

Meta-circularity is a double-edged sword, for editing
each other’s worlds and parts can break the system for
all. What if someone breaks the ObjectEditor in the
PartsBin? This can happen easily and then nobody
can edit scripts of objects any more. Our approach
does not limit these changes and parts can break, but
working versions are still available in the repository.
We follow the wiki principle that everyone can change
anything but bad changes can be easily undone.

The stability of our environment is enhanced by
working with concrete (fully instantiated) components.
Since each part is copied when dragged out of the
PartsBin, changing one part will not affect other parts,
and breaking one object will not break other objects.
This is different from a purely class-based system build
by software engineers, who try to eliminate as much
redundancy as possible. There, the shared behavior is
defined in a class or superclass and modifying that be-
havior affects many objects at once. By fully copying
a part instead of just instantiating a class we increase

696

if (this.crankAngle > Math.PI*4) this.crankhngle -= Math.PI*4;
this.crank.setRotation(this.crankAngle);

{

+= this.angleStep;

aiwl

// Rotate the crankshaft
T

EN

dial engine and a System Code Browser viewing

the redundancy in our system but make it more stable
at the same time. Changing properties or behavior of
an object affects only a specific object and does not
have other unanticipated side effects.

Sometimes users want changes to take effect in many
places, for example a bug fix for one object should be
propagated to other copies of that object, even those
copies that exist in other worlds. Currently, this re-
quires applying changes manually, for example, when
extracting behaviors from a part into classes. The han-
dling of sharing and inheritance is a deep design issue
for a general authoring system such as ours. It is a goal
of our continuing research to develop understandable
controls over the apparent conflict between indepen-
dence and dependence among components in an exten-
sible authoring environment.

4 Implementation

Lively parts require the serialization of groups of
objects with persistent state, behavior and module de-
pendencies.

4.1 Persistent Object-specific Behavior
By allowing objects to have persistent behavior (as

supported by the “addScript” capability) we could com-
bine both material and procedural forms of authoring

M PartsBinBrowser = s
search
C+ - hide

“all* M i
latest | Star
search | PartsBin/Basic/

. \
ggzlecSnippets | Tjensiincke, 17:07:17 GMT+0200 (CEST), I
g:{]aubasli Ellipse Image Line LineWithArrow LineWithArrows - : :EI;ZI:-E::;_I] gfg[ﬂfgﬁ'ﬂjggé(igsgﬁ
Domging ; - || |robertkrahn, 01:19:37 GMT+0200 (CEST),
Documentation 2 | robertkrahn, 16:54:37 GMT+0200 (CEST),
DroppableBehaviors 3 | robertkrahn, 16:54:09 GMT+0200 (CEST),
Examples :
Forms) S |
Fun List Marker PrimitiveShapes Rectangle Star |
|I1pllt5 some text |
Issues :
Layout | A star formed polygon. Not just some
NewWorld | star, its the Lively Star!
Presenting |
Rct?e':t Text Triangle |
Scripting |
Server :
Testing W \
Text |
Text support E
Tools H
uncategorized - 3 Y load remove move
Vicualizatinn. A

I

Figure 4. A PartsBin with the “Basic” category open. The pane on the right allows to view the edit
history of the part, load old versions, move the part to a different category, or remove it.

content. Editing objects allows one to create content,
form, and behavior. Self [19] explored this unification
of state and behavior many years ago and our imple-
mentation language JavaScript builds on the same un-
derlying concepts.

One difference of the unification of behavior and
state in JavaScript and Self is that the behavior is tran-
sient in JavaScript since normal JavaScript closures
cannot be fully serialized. We solved this by using our
own form of closures when adding scripts to objects.
With them we can inspect and serialize the instance-
specific behavior of objects as well.

4.2 Modules and Parts

We have found it convenient to maintain a dual
strategy for managing content in the Lively author-
ing system. Typically the user-built components are
stored as fully-instantiated objects, whereas the sys-
tem and primitive library components are stored in a
module system that allows for dynamic loading of new
code into the system as needed. Each module can pull
in classes and modules that are needed to deserialize
it. This enables us to package foreign resources and ex-
ternal libraries. We put thin objects into the PartsBin
that require these libraries and make use of them. A
good example of this is our integration of Protovis [1].
We do not need to load Protovis or even know about
it before. The visualizations know which classes are

697

needed to deserialize them and the classes in turn re-
quire the Protovis libraries.

While this dual strategy seems to be inherent in the
different ecologies of kernel and user-built components,
we continue to seek a solution that would more ele-
gantly address the apparently different usage scenarios.

5 Creating applications with the Lively
Kernel

Creating applications with the Lively Kernel in-
volves combining and augmenting existing objects from
the PartsBin. The resulting object has the same prop-
erties as any other part of the system and it can be
published in the PartsBin as well. In this section we
give a detailed example of the creation process of such
a part.

5.1 CPU Visualization

In the following we show how to create a typical ap-
plication using the PartsBin and existing parts. The
logic of most applications can be broadly divided in
three parts: Gather data from a (external) source, pro-
cess and filter the data, output the result, for example
in the user interface.

The application that will be created is a CPU visu-
alization. It will access CPU workload data from the
lively-kernel.org server, process it, and display the data
using a Protovis [1] diagram.

PartsBinBrowser

Presenting
Robert
Sandbox
Scripting
Server
Testing

Text

Text support
Tools]
uncategorized \
Visualization |
Widgets :
Wiki
Worlds

FrameRateGraph

URLIndentedTree

Protovis Drawing

URLSunbursts

ProtovisStackDr..

TreeMap

URLCirclePacking

URLTree URALTreeMap

WorldMorphTreeMap

&
€E

Figure 5. A PartsBin with the “Visualization” category open.

dragged out to be used or adapted if necessary.

These parts use Protovis and can be

WordCounter

copy to PartsBin

open in window WordCounter =

addMorph to

ent

connect...

set title IS e 4500
tJun 18 2011 07:05:38 GMT+0000 (UTC): 4269 ALy
t.Jun 18 2011 07:05:22 GMT+0000 (UTC): 4269 3,500
tJun 18 2011 07:04:45 GMT+0000 (UTC): 4289 2,000
tJun 18 2011 06:51:01 GMT+0000 (UTC): 4178

t Jun 18 2011 D6:49:26 GMT40000 (UTC): 4180
tJun 18 2011 06:38:25 GMT+0000 (UTC): 4162
t Jun 18 2011 06:22:58 GMT+0000 (UTC): 4131
tJun 18 2011 05:41:16 GMT+0000 (UTC): 4111
tJun 18 2011 05:31:21 GMT+0000 (UTC): 4672
t Jun 18 2011 05:29:43 GMT40000 (UTC): 4671
tJun 18 2011 05:25:14 GMT+0000 (UTC): 4780
t Jun 18 2011 05:17:57 GMT+0000 (UTC): 4738
t Jun 18 2011 05:02:14 GMT+0000 (UTC): 4806

4 -

2,500
2,000
1,500
1,000

500

7800 7 ;
UQ%B '96’%? ”’%, 'UE%? ﬂe%a ﬂe%

Figure 6. A user-created WordCounter part to be uploaded to the server.

5.1.1 CPU Data Access

The first step when implementing the application is to
access the data to be visualized. Lively Kernel pro-
vides a network abstraction that can be used to access
any Web service via HTTP. However, for this specific
application we need to run code on the server itself
since there is no existing service that would deliver the
required data.

We use a server [17] to run JavaScript code sent
from a client in our environment. The interface to the
Node.js server is encapsulated in a part. This part
provides the general behavior that is required to send
code and receive its result. Part developers can use
this object by overwriting the onServerDo method to
execute code in the server context. Figure 7 shows this
part and how it was adapted to retrieve CPU workload
data. Node.js allows one to run applications in the

698

shell of the server operating system. Using the Linux’s
mpstat command line utility we access the CPU data.
In the lower part of Figure 7 the output of that tool
is shown. This output is also the result of the server
request that is delivered to the client.

5.1.2 Processing and Visualizing the Data

For the visualization we employ another PartsBin ob-
ject: A Protovis area chart. This object interfaces
the Protovis JavaScript library and embeds it into the
Lively environment. To feed the data from the server
part into the visualization we use visual connectors that
allow users to express a dataflow relationship between
objects?. Part objects can provide connection points,

2These visual connections are established by the following
simple gestures:
1. Choose “connect” from a menu of the source object, with

Scripts + - CPUDataAccess
- ALL - this.addScript{function onServerDa() {
createServerProxy return runOnCommandLine(
EXec 'mpstat -P ALL 1 1)
exec anServerDo 1
reset
setExtent
setupConnections

Linux 2.6.32=5-amd64 (lively) 06/19/11 _MEBE6_64 (2 CPU)

19:06:23 CFU 3USKE inice 3sys tiowait 3irg 3soft %steal 3%guest tidle
19:06:24 all 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.49
19:06:24 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.00
19:06:24 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
Ryerage: CFPU 3USE inice 3sys tlowait 3irg 3soft %steal %guest tidle
Average: all 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.49
Average: 1} 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.00
Average: 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Figure 7. A part running code on a Node.js server to gather CPU data.

data sources, that, when changed, will distribute the
data from their source to connected objects. The server
part provides the source connection point serverRe-
sult and the Protovis visualization object the connec-
tion point addDataAndRender. The result when both
points are connected is to add a data value to the vi-
sualization and re-render it whenever a server request
from the CPU data accessor returns.

However, we need to refine the connection in order
to adapt the server output to something the visualiza-
tion expects and to select the data we are interested
in (the CPU workload). In Figure 8 you can see the
connected application and a converter that customizes
the server-visualization connections. It gets a string
similar to that from Figure 7 as input, parses it into a
table, converts it into a number, and changes the idle
value to the actual workload value by subtraction from
100. The converter can be added or altered by simply
clicking on the visual server-visualization connector.

To enable the newly created application to run con-
tinuously we add a timer to it that then is visually con-
nected to the server part. Whenever the timer ticks,
its tick connection point is updated and it will trigger
the exec connection point of the server part that will
in turn issue a new server request.

For the final application, the parts needed only for

outgoing property name from a submenu

2. Extend a rubber-band line to the target object

3. When the target has been chosen, choose the ingoing property
name from the resulting connection menu

699

construction (timer, server access) can be hidden. The
remaining objects can be selected, named, and then
published to the PartsBin as a new application.

6 Related Work

Fabrik [8] is a visual programming environment that
allowed one to program by visually connecting compo-
nents dragged out of a PartsBin. The component com-
position could then be put back into the PartsBin for
use elsewhere.

The Digitalk Parts Workbench [2] offered a simi-
lar facility for component layout and connection for
the Digitalk Smalltalk environments. Its library was
also later extended to wrap components in COBOL
and Java.

Self [19] is an object-oriented programming environ-
ment that allows for programming objects directly. Ob-
jects in Self contain and access data and behavior in a
uniform way. Objects in Self can be transported from
one Self world to another [18], but Self does not come
with shared repositories of objects.

Second Life [15] is a virtual 3D world where most
content is generated by users. User can create and
modify graphical objects which are made of graphi-
cal primitives and scripts. These objects can then be
shared with other users by selling them or giving them
away for free. Granting editing rights allows users to
work together on the same objects. Since the creation

1000 'ms

'

exec

stop

>
function converter(string) {
var table = Strings.toTable(string),
cpulldle = Number(table(3][10]),
cpu2ldle = Number(table(4]([10));
return [(100 - cpulldle) / 2,

(100 - cpu2ldle) / 2)
}

20%

0%
1234567 8 91011121314151617 18192021 222324252627 282930 3132333435

Figure 8. The final CPU visualization and the parts for ticking and server access.

of active content is domain-specific the second life user
interface and tools can not be extended from within
the system as is possible with the Lively approach.

Squeak [6] is a Smalltalk-based programming envi-
ronment that can be used as a personal multimedia au-
thoring environment [5]. It has also a PartsBin, where
objects can be dragged out. Squeak is a class-based
system and programming objects directly is not the
intended way to extend the system, except in the case
of the EToys framework.

The SuperSwiki [14] allows users to share Squeak
Etoy [9] projects over the internet. Projects are con-
tainers, similar to Lively worlds, for user-created con-
tent built from objects and scripts. Projects can be
shared and modified, but can not be used as building
blocks themselves. Our serialization approach is sim-
ilar to the object streams used in Squeak. We made
our data format robust to code changes since we use
JSON as a format and not binary code that depends
on a specific class layout, as Squeak projects do.

Many End-user programming environments have
built-in repositories to allow their users to share con-
tent. A representative example is Scratch [13], a multi-
media tile scripting programming environment for chil-
dren that evolved from the Squeak Etoys work. In
Scratch, sharing and remixing of projects plays an im-
portant part for being a “more social”’ programming
environment. Children are encouraged to publish their
projects from Scratch directly to the Scratch com-
munity website? where children can directly play the
projects (via a Java plugin) and download them. As
in Etoys, the unit of sharing is the project. Individual
objects can only be shared indirectly through them,
searching a PartsBin for objects and directly dragging
them out as in our approach, seems to make the shar-

3 http://scratch.mit.edu/ (visited 2011-06-19)

700

ing and remixing a more integral part of the content
creation process.

Yahoo! Pipes* is a Web-based end-user program-
ming environment, that allows users to graphically wire
together components to mashup Web-resources and
produce RSS feeds. Those pipes can be shared and
copied, modified, and reused by other users. Before a
user can use or modify a pipe, the user has to copy the
pipe to its own set of pipes. Pipes is domain-specific
and therefore does not allow the creation of general
active Web content.

The main difference between these environments
and the Lively Kernel is that they do not allow one
to create objects and tools that evolve the system it-
self. All of these environments distinguish between a
tool and the material level: They put the editor as a
tool on a different level as the script that is edited. This
has the effect that there is no way to build a better ed-
itor out of the scripts in these worlds. It is clear that
not all users want to have such a level of freedom and
power, but building such freedom into a system allows
us to evolve it in unanticipated ways.

7 Conclusion

It is gratifying when a solution to one problem turns
out to nicely solve a number of other problems. We be-
gan with the simple need for a shape palette that was
backed up on a server. But immediately it added the
value of sharing. And when serialization was improved
it became possible to store any component there, in-
cluding complex tools and applications. Once those
components could be accessed in the cloud, less needed
to be included in the base system.

4 http://pipes.yahoo.com/ (visited 2011-06-19)

Beyond merely solving more problems, the PartsBin
repository has become a central element that simplifies
the structure of the system and even suggests a new
definition of the kernel. The Lively Kernel we once
knew is now deconstructed out in the cloud, and grow-
ing beyond its former bounds. It is a shift in paradigm
to where the “kernel” can now be reconstructed as sim-
ply that which is needed to support and work with a
vast ecology of parts in the cloud.

What’s next? We are at a similar place now with
the ability to spawn active worlds in cloud resources, to
visit headless worlds remotely, and to host live collab-
oration in our worlds. Hopefully we will soon be able
to report some similarly practical results in the areas
of collaboration and distribution.

References

[1] M. Bostock and J. Heer. Protovis: A Graphical
Toolkit for Visualization. IEEE Transactions on
Visualization and Computer Graphics, 15:1121—
1128, 2009.

Ander-
see

[2] G. Bosworth, M. Teng, and J.
son. The Digitalk Parts Workbench.
http://en.wikipedia.org/wiki/Visual Smalltalk_

Enterprise#PARTS_Workbench as of 2011-09-15.

[3] A. Goldberg. SMALLTALK-80: The Interac-
tive Programming Environment. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,

1984.

[4] A. Goldberg and D. Robson. Smalltalk-80: the
language and its implementation. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA,

1983.
[5]

M. Guzdial and K. Rose. Squeak, open personal
computing and multimedia. Prentice Hall, 2001.

[6] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the Future: The Story of Squeak,
a Practical Smalltalk Written in Itself. ACM SIG-

PLAN Notices, 32(10):318-326, 1997.

D. Ingalls, K. Palacz, S. Uhler, A. Taival-
saari, and T. Mikkonen. The Lively Kernel
A Self-Supporting System on a Web Page. In
R. Hirschfeld and K. Rose, editors, S8 2008, LNCS
5146. Springer-Verlag Berlin Heidelberg, 2008.

|7

[8] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph,
and K. Doyle. Fabrik: a visual programming en-

vironment. SIGPLAN Not., 23(11):176-190, 1988.

701

[9] A.Kay. Squeak Etoys Authoring and Media, 2005.
as of Aug 01, 2005, http://www.squeakland.org/pdf/
etoys_n_authoring.pdf.

[10] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and
K. Palacz. Lively Wiki A Development Environ-
ment for Creating and Sharing Active Web Con-

tent. In WikiSym ’09. ACM, 2009.

[11] J. Maloney. An introduction to morphic: The
squeak user interface framework. Squeak: Open-

Personal Computing and Multimedia, 2001.

[12] J. H. Maloney and R. B. Smith. Directness and
Liveness in the Morphic User Interface Construc-
tion Environment. In UIST ’95: Proceedings of
the 8th annual ACM symposium on User interface
and software technology, pages 21-28, New York,

NY, USA, 1995. ACM.

[13] M. Resnick, J. Maloney, A. Monroy-Hernandez,
N. Rusk, E. Eastmond, K. Brennan, A. Mill-
ner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai. Scratch: Programming for All. Com-

mun. ACM, 52:60-67, November 2009.

[14] M. Ruger. SuperSwiki-Bringing Collaboration to
the Class Room. In Creating, Connecting and Col-
laborating Through Computing, 2003. C5 2003.
Proceedings. First Conference on, pages 18-21.

IEEE, 2003.

[15] M. Rymaszewski, W. J. Au, M. Wallace, C. Win-
ters, C. Ondrejka, B. Batstone-Cunningham, and
P. Rosedale. Second Life: The Official Guide.

SYBEX Inc., Alameda, CA, USA, 2006.

[16] A. Taivalsaari, T. Mikkonen, D. Ingalls, and
K. Palacz. Web Browser as an Application Plat-
form: The Lively Kernel Experience. Techni-
cal Report SMLI TR-2008-175, Sun Microsystems,

January 2008.

[17] S. Tilkov and S. Vinoski. Node.js: Using
JavaScript to Build High-Performance Network
Programs. IEEE Internet Computing, 14:80-83,

November 2010.

[18] D. Ungar. Annotating Objects for Transport
to Other Worlds. SIGPLAN Not., 30(10):73-87,

1995.

[19] D. Ungar and R. B. Smith. Self: The Power
of Simplicity. Lisp and symbolic computation,

4(3):187-205, 1991.

