
Designing a Live Development Experience for
Web-Components

Jens Lincke
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

jens.lincke@hpi.uni-potsdam.de

Patrick Rein
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

patrick.rein@hpi.uni-potsdam.de

Stefan Ramson
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

stefan.ramson@hpi.uni-potsdam.de

Robert Hirschfeld
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

Marcel Taeumel
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

marcel.taeumel@hpi.uni-potsdam.
de

Tim Felgentreff
Oracle Labs

Potsdam, Germany &
Software Architecture Group

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

tim.felgentreff@oracle.com

Abstract
Explorative and live development environments flourish
when they can impose restrictions. Forcing a specific pro-
gramming language or framework, the environment can
better enhance the experience of editing code with imme-
diate feedback or direct manipulation. Lively Kernel’s user
interface (UI) framework Morphic provides such a develop-
ment experience when working with graphical objects in
direct way giving immediate feedback during development.
Our new development environment Lively4 achieves a sim-
ilar development experience, but targeting general HTML
elements. Web Components as a newWeb standard provide a
very powerful abstraction mechanism. Plain HTML elements
provide direct building blocks for tools and applications. Un-
fortunately, Web Components miss proper capabilities to
support run-time development. To address this issue, we use
object migration to provide immediate feedback when edit-
ing UI code. The approach is evaluated by discussing known
problems, resulting best practices and future work.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PX/17.2, October 22, 2017, Vancouver, BC, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5522-3/17/10. . . $15.00
https://doi.org/10.1145/3167109

CCS Concepts • Human-centered computing → User
interface programming; • Software and its engineer-
ing → Development frameworks and environments;
Software creation and management;

Keywords Web Components, JavaScript, Live Program-
ming, Web-based Programming Environment
ACM Reference Format:
Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel
Taeumel, and Tim Felgentreff. 2017. Designing a Live Development
Experience for Web-Components. In Proceedings of 3rd ACM SIG-
PLAN International Workshop on Programming Experience (PX/17.2).
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3167109

1 Introduction
Lively Kernel [5] was one of the first Web-based develop-
ment environments that explored new ways of interactively
develop Web applications and active content directly in the
browser [8]. In this Smalltalk-like tooling environment, con-
tent and applications developed are written in a special way
so that they can be modified and evolved while being used.
Components not developed in Lively Kernel, such as the vi-
sualization library D31, could be used, but had to be specially
wrapped to be integrated. This wrapping also resulted in a
hard border that could not be crossed by the tools and the
user interface of Lively Kernel, e.g. a user could not select or
directly manipulate an element in a D3 visualization, because
it is not part of the Morphic framework.

1https://d3js.org/

28

https://doi.org/10.1145/3167109
https://doi.org/10.1145/3167109

PX/17.2, October 22, 2017, Vancouver, BC, Canada Lincke, Rein, Ramson, Hirschfeld, Taeumel, Felgentreff

Figure 1. Bouncing ball: when the domain lends itself to it, a programmer can develop some parts of an application with
continuous feedback, just by editing code that will patched into the system.

In the new Web-based development environment Lively4,
we want to transfer Lively Kernel’s explorative and live pro-
gramming experience to a wider and more used model: plain
HTML elements. By building tools that work directly on
HTML elements, we are not limited to work on applications
and content created in our environment, but can explore
and work with all kinds of external resources such as visu-
alization libraries and text editors. Lively4, being a purely
client-side development environment, needs just some server
or service that serves files2.
Compared with a clean object composition hierarchy in

the Morphic framework, however, a tree of HTML elements
can be cluttered with content and presentation elements.
To be able to use some kind of abstraction mechanism in
the development of our own tools, we decided to use Web
Components. Web Components is a new Web standard3 that
enables developers to create custom HTML elements and
better separate content from presentation could help express
needed abstractions, that previously the Morphs provided.
This abstraction mechanism makes Web Components an
ideal building material for the new environment, but Web
Components have a downside: They are not designed to
be updated after they are used, rendering the basic imple-
mentation strategy of Smalltalk-like programming, which is
modifying meta-objects at run-time, useless in this case.
In this paper, we describe how we applied Web Compo-

nents in Lively4 and enable modifying them at run-time,
preserving the context [16] and giving immediate feedback
by migrating all instances of the component under develop-
ment.
The remainder of the paper is structured as follows: in

next section we present a Lively Kernel like development
experience, which lacks the capability of directly on HTML
2Lively4 uses a custom server for authentication and GitHub access, but it
can also be run in principle from any HTML server or service
3https://www.w3.org/standards/techs/components
elements. We present Web Components as a powerful ab-
straction mechanism, but which not suited to be worked on

at run-time. In section 3, we present our approach of migrat-
ing instances of HTML elements instead of updating just
single meta-objects. In section 4, based on our experience
of developing all tools in Lively4 with Web Components,
we discuss open problems, best practices and future work.
Section 5 discusses related work and section 6 concludes our
thoughts on this topic.

2 Development at Run-Time with Web
Components

The Lively Kernel development environment provides an ex-
plorative Smalltalk-like development experience, but excels
only when working on content created with the Morphic
framework. Web Components can provide similar (or bet-
ter) abstractions as Morphic, but does not lend itself to be
developed at run-time.

2.1 Lively Kernel Development Experience
Lively Kernel is best described as a Smalltalk-like develop-
ment experience in the browser. It provides its own Morphic
UI framework [13, Maloney2001IMS] with a rendering ab-
straction over HTML, SVG, and CSS. Every graphical object
(morph) can be directly modified through drag and drop,
copied, resized, customized with a style editor and scripted
with an object editor. The morph and its connected objects
can then be stored in a shared repository, where they can be
reused and modified by others [11].

The development experience of graphical tools and appli-
cations feels direct and immediate. It allows both, to evolve
tools and applications while using them and share adapta-
tions in a direct and informal way [9].
Since in Lively Kernel morphs are JavaScript objects and

only rendered as HTML, they maintain their own data struc-
tures. Therefore, the underlying HTML can always be dis-
carded and rendered again. That means a world of morphs
can be serialized as an object graph. This is a very powerful

29

Designing a Live Development Experience for Web-Components PX/17.2, October 22, 2017, Vancouver, BC, Canada

Figure 2.Web Components: the new elements in (B) are defined in (A), but at run-time the template is copied and the structure
is redundant (C).

and general mechanism, but it does not play nicely with the
way Web browser treat content. The browser usually does
not wait for the full content to be delivered, but starts ren-
dering as soon as the first HTML elements arrive. In contrast,
in Lively Kernel, the browser has to wait until all serialized
content is transmitted and all referenced JavaScript files are
loaded. Then the objects are first deserialized and then ren-
dered to HTML, after which the browser can start displaying
them.
Because Lively Kernel’s Morphic is implemented on the

JavaScript object level, it maintains its own graphical compo-
sition hierarchy and therefore provides an abstraction over
HTML. Through an indirection, each morph is rendered to
several HTML or SVG elements, making the Morphic tree
structure leaner than the structure of HTML elements in the
browser, hiding unnecessary implementation details form
the Morphic user.

Since Lively Kernel provides a Smalltalk-like development
experience, the degree of liveliness a developer experiences
can provide, depends on the program domain. The example
in figure 1 show the simulation of ball (A). While working
on the simulation source code (B) to modify or add new be-
havior, such as letting the ball bounce (C), the developer gets
continuous feedback, because the new behavior is patched
into the Meta-objects (D).
Such a feedback loop is present in most scenarios of live

programming. As this example shows, it is not always neces-
sary to have framework or language support that will provide
or enforce such a loop. Often times such feedback can be
achieved through developers best practices, especially when
the domain inherently contains a feedback loop.

Even though Smalltalk-like approaches support the editing
objects (E), they only updates the object state (F), but do not
propagate the changes back the source code of classes (G).
Lively Kernel deals with this problem by adding the be-

havior to objects and persist those changes by storing and
loading objects with depended objects. However, Lively Ker-
nel limits this programming experience to their own specific
objects in their own world (Morphic framework). Because
of this, there is a gap between the development experience
of Morphic code and objects and code underneath that ab-
straction. By building tools that work on the level of HTML
elements, but allow for the same explorative direct manip-
ulation and live feedback during development, we hope to
close that gap.

2.2 Web Components in Modern Browsers
Even though HTML elements can provide a similar substrate
for live development, they lack the abstraction mechanism
whenworkingwith JavaScript objects provided. Even though
CSS (cascading style sheets) allows for separating the style
from content to some degree, it is not possible separate a
bunch of elements and their code into a new widget.
Such an abstraction mechanism in plain HTML is miss-

ing: with ongoing development of new Web standards, Web
Components bring the ability to compact several HTML ele-
ments into one. Web Components are a symbiosis of several
new browser technologies, that are still in the process of
standardization:4

• HTML Imports (Draft 2016-02-25)
• HTML Templates (Standard 2014-03-18)

4https://www.w3.org/standards/techs/components, as of 2017-08-09.

30

PX/17.2, October 22, 2017, Vancouver, BC, Canada Lincke, Rein, Ramson, Hirschfeld, Taeumel, Felgentreff

• Custom Elements (Draft 2016-10-13)
• Shadow DOM (Draft 2017-02-13)

Together, they allow users to define custom HTML tags.
The definition uses an HTML template that has to be im-
ported before being used in an HTML file. The new element
can further use other HTML elements that will be hidden in
its shadow DOM for the user of the new tag. Web Compo-
nents are supported in most modern Web browsers and can
be emulated using polyfills5.
Different from the workflow of Lively Kernel, develop-

ing with Web Components is by default a typical edit and
reload cycle. Web Components force this style of develop-
ment further, since registering elements can not be undone
or overridden.
The abstraction mechanism provided by Web Compo-

nents is only present on a source code level. As the name
HTML Templates already suggests, the HTML elements in
the template are copied on each usage of that new element.
Even though the shadow DOM with its shadow root marks
the separation between the custom HTML element and
its implementation, its implementation is just a copy of
the templates elements in the shadow root. Making the
elements in the shadow root forming normal child nodes in
the bigger tree allows the browser’s event processing and
rendering to work as usual.

This is different to the property lookup in JavaScript ob-
jects, where the abstraction of having some properties or
methods defined in a prototype is still kept at run-time.
Changing those properties or methods at run-time will
change the behavior of all objects inheriting from that object,
without having to modify each object again.

3 Live Web Component Migration
In our Web-based development environment Lively4, we aim
to bring the development experience of Lively Kernel to plain
development with HTML elements. Developing tools and
applications with Web Components introduces abstractions
on the HTML level but imposes challenges to make the expe-
rience of developing Web Component live and explorative.

3.1 Object Mutation and HTML Element Migration
To achieve short feedback loops and preserve the context
during development, we need to avoid full page reloads.
We therefore have to update the system behavior and state
depending on the code changes at run-time.

The mutation of shared Meta-structures (as shown in fig-
ure 1) is not suitable for developing Web Components, be-
cause the state and behavior ofWeb Components depends on
the HTML element structure in the shadow DOM. Different
to editing a method’s source code in a class, the editing of the
element structure of a template affects not only one object
5https://www.webcomponents.org/

that can be mutated, but it affects several object structures
as shown in figure 2.

Editing a template itself represents changing many HTML
elements at once. Even further, as shown in figure 2, this
template might have been used in multiple places (all us-
ages of the new custom HTML element) and every element
has copies of that template’s element structure in its own
shadow root. This means even if we could mutate the tem-
plate’s HTML elements in a perfect way, we would have
only affected the appearance of new instances, which is not
satisfying in live programming.
Our solution is to migrate all existing instances. It is not

enough to mutate the linked template element (A), but we
have to deal with each instance individually (B). To achieve
this, we replace each element with a new instance and mi-
grate all persisted state from the previous instance to it. By
default we keep the custom style, properties and child nodes,
but elements can specify additional migration behavior by
implementing a livelyMigrate method.
The approach has the downside of breaking existing ref-

erences, which will be a problem when we replace internal
components that are used and referenced by other compo-
nents. We plan to address this issue in future work, by either
automatically forcing a migration of components that use
the component under development, or combining mutation
and migration in away that we keep the old instance, but
replace the private properties and element in the shadow
DOM of the component.

3.2 Different Kinds of Feedback in the System
Even though a Lively Kernel-like development experience
can give feedback of the behavior in a running system, not
all behavior has immediate feedback. Figure 3 exemplifies
such kinds of feedback in a simulation of a soap bubble. The
bubble extends the balls behavior in several ways. It will
burst after a time has passed (A), the user touched it (B), or it
collides with the ground (D). When it collides with another
bubble, the bubbles will be combined into a new and bigger
one (C). All this behavior is explorable at run-time, but may
need some interaction, waiting or manual setup. The envi-
ronment can only support the developer in not having to
perform those interaction-, waiting- and setup-tasks over
and over again. Record and replay techniques [15] can auto-
mate those repetitive task and make the feedback immediate,
but it is the developer’s task to invoke the desired behavior.
In Lively4, we strive to support programming at run-time
as much as possible, not to immediately give feedback to
every line a programmer typed, but to provide programmer
with the freedom to explore and adapt the running tools and
applications as needed.

4 Discussion
Lively4 uses Web Components for all its UI. All tools such
as the file editor and internal content browser are custom

31

Designing a Live Development Experience for Web-Components PX/17.2, October 22, 2017, Vancouver, BC, Canada

Figure 3. The static description of a soap bubble and its resulting behavior at run-time.

HTML elements. During this development we enjoyed the
experience of being able to work with HTML elements and
have a Lively Kernel like feedback at run-time. But we also
encountered problems and developed best practices and in-
sights for future work.

4.1 Lively4 Development Experience
The Lively4 development environment6 is build using Web
Component at its core. The figure 4 shows three windows: a
browser/editor, an inspector, and the GitHub sync tool. The
browser shows the source code of the sync tool’s module.
Editing and accepting code there will automatically update
the open instance of the sync tool. Editing this initialize
method to change to window title will also update the win-
dow title of the sync tool. This is possible because our migra-
tion approach takes care of also executing the initialization
code, so that shared state that is not persisted will also up-
date.

This inclusion of initialization code into the feedback loop
is a major contribution compared with Smalltalk-like devel-
opment approaches.

4.2 Stale Code and Dangling Event Listeners
Changing code in a live system will often produce new be-
havior and new objects, but it also results in some objects,
6The current Lively4 system is hosted under https://lively-
kernel.org/lively4/lively4-core/start.html and used from there to directly
work on its own GitHub project https://github.com/LivelyKernel/lively4-
core/ in a self-supporting way.
methods or reference to become obsolete. A good example

for such stale code [2] are dangling event listeners. A frame-
work has to take care of not letting the old code and behavior
get in the way of the new one. A developer team that used
Lively4 to build an Exposé window management feature7
run into such a problem. Their component registered itself
for global key or mouse events, which resulted in problems
when its new version registered handlers again. Their ap-
proach to deal with the issue was to fall back into a full page
reload development workflow, taking no advantage of the
faster feedback loop of run-time development. After this,
we established a best practice to use an event registering
mechanism that allows us to clean up and unregister old
listeners automatically.

4.3 JavaScript Objects and HTML Elements
The new abstractionmechanisms ofWeb Components allows
us to maintain a cleaner, more domain-specific data struc-
ture, allowing us to push such structures and not JavaScript
objects in the center of the programming of applications and
tools in Lively4. We still use JavaScript objects, classes and
modules to describe the behavior of tools and applications in
Lively4, but, when developing the UI, they are second class
citizens and they will not be persisted. We decided to use just
HTML as the format to preserve the state of our tools and
applications. Compared with Lively Kernel, we switched the
double-sided coin of JavaScript objects and HTML Elements
in favor of the HTML Elements. In Lively4, the JavaScript
objects are second class citizens and we throw them away
7Exposé shows an overview of all windows side by side

32

PX/17.2, October 22, 2017, Vancouver, BC, Canada Lincke, Rein, Ramson, Hirschfeld, Taeumel, Felgentreff

when we need to, relying on the fact that the HTML Element
will persist the application state and preserve the context for
development.

4.4 Losing Object Identity
In our current approach, we replace HTML elements with
new versions of themselves, creating a new JavaScript refer-
ence in the process. We take care of updating some known
JavaScript references, but we do not have full control over
all aliases that could for example be bound in closures. As a
best practice, we do not rely on object identity in our own
programs and use names or IDs to look up elements at run-
time. In future work, we plan to combine object mutation
and migration, so that the JavaScript references stay intact.

4.5 Dynamic Elements in Static Templates
A Web Component is not only defined through pure HTML
template, but can contain arbitrary script tags or use an
external JavaScript module (as shown in figure 2). This allows
the developers to use the very static element structure in
the template to describe the static UI, and use JavaScript
to generate more dynamic UI elements as needed. This is
clearly not a unified way to describe UIs, but it seems to
be a preferred way of many Web developers. This is not an
issue of Lively4 since it does not set out to invent a new
programming- or UI description language. Further, we do
not often run into this issue since the major parts of the UI,
that we developed for our tools and applications, were static.

4.6 Level of Preserving Context
Our approach of using our custom HTML persistence for
migrating Web Component instances to preserve the context
while developing has a catch: the Web Component might not
persist all its relevant state that the developers expects, yet.
This is especially apparent because Lively4’s white listing
object persistence approach highly differs from the serialize
everything and black list later approach in Lively Kernel and
Smalltalk images. Our approach to deal with this issue is
to develop the persistence (loading and saving behavior) of
Web Components in parallel with other features.

4.7 Changing of a JavaScript Module
Web Components may depend on JavaScript modules. Since
those modules can affect custom HTML elements, it is not
clear what happens when those modules change. We decided
to treat such changes similar to changing the source of Web
Components directly. In particular, tools check for depen-
dencies and update all dependent Web Component instances.
In rare cases, some core modules will affect the whole sys-
tem and will trigger a complete migration of nearly all Web
Components, causing the system to nearly fully reload. We
experimented with maintaining a blacklist for modules that
should not update all dependents, but opted for manually
disable dynamic feedback as needed.

4.8 Problems of Combined Run-Time- and
Development Environments

Evolving a running system from inside can lead to some
challenging situations, e.g. when trying to debug something
that is used by the editing tools. We experimented with using
Context-oriented Programming [10] to scope the changes in
development layers [9], whenwewereworking on JavaScript
modules.
While working on Web Components, this approach

was not enough. But we kept our environment working
through making use of the per instance migration. This al-
lowed us further to exclude special objects as needed. In
the bootstrapping phase of developing the lively-editor
and lively-container components, we excluded specially
marked instances so making an error while working on the
editor code would not break the whole system since there
was still a working editor around that used an stable tem-
plate. Later we disabled this because we seldom ran into such
problem. If we did, we had a second system to fall back to,
so we could fix the first one.

5 Related Work
Squeak/Smalltalk [3][6] with its explorable world of ob-
jects and its Morphic framework [12] already features a pro-
gramming at run-time experience, that many systems are
still not capable of today. Free from the security and design
limitations of current Web browser technology, the develop-
ers have full control over all objects. All objects are persisted
in an image, can be mutated and even replaced. Objects can
become other objects, making object migration trivial. Since
code can be changed and debugged at run-time, a live devel-
opment experience can be achieved in case an application
continuously uses the code under development. Different to
our approach, the (UI) initialization code in Smalltalk is not
continuously executed, giving no feedback when changing
it.

Lively Kernel [7][8][5] was used to continuously evolve
itself in a self-supporting manner, experimenting with vari-
ous approaches of providing a direct manipulation experi-
ence and live feedback. Even though it runs in the browser
and can use all kinds of JavaScript libraries, its tools and
workflow only excel when working on content created in
and for Lively Kernel. Creating a similar experience but with
a broader reach by targeting plain HTML is part of the moti-
vation of this paper.

Live programming [17][4][14] is a development experi-
ence that brings editing static source code and its dynamic
behavior closer together. The implementation strategies to
achieve immediate feedback while programming depends a
lot on the application domain and restrictions of the used
programming language. Implementing a feedback mecha-
nism for editing code that expresses just a functional view is

33

Designing a Live Development Experience for Web-Components PX/17.2, October 22, 2017, Vancouver, BC, Canada

Figure 4. Tools in Lively4: (A) code browser and editor, (B) Element and object inspector (C) Halo for direct manipluation, (D)
GitHub version control tool

trivial, providing the same experience in an object-oriented
world were objects and meta-objects live together, is much
harder. Giving live feedback while imperatively constructing
UIs is easier to achieve and often studied. In “it’s alive!”, the
approach is to separate “UI state from ordinary state, and
the render code that builds UI state from ordinary code” [2].
In our approach, we also take advantage of having different
kinds of state: we treat HTML elements and attributes differ-
ently from JavaScript object state. In Lively Kernel and other
environments, objects hold the model and the view is often
thrown away and rendered again. In our approach we keep
the elements defining the view and throw away the objects

Cascading Tree Sheets [1] address the problem of sep-
arating content and presentation, where Cascading Style
Sheets (CSS) do not go far enough. This approach allows
programmers to add HTML elements that are not part of the
actual content, but needed for the presentation and UI later
by inserting HTML elements and scripts based on CSS selec-
tors. This approach is not suited for run-time development,
because at run-time, the separation is not there any more.
Web Components share a similar motivation, but preserve
the separation between content and presentation elements
even at run-time by keeping private elements hidden in each
element’s shadow DOM.

6 Conclusion
Lively Kernel, as the Smalltalk-like Web-based development
environment, provides an explorative and live development
experience based on a JavaScript Morphic framework. In this
paper, we discussed the problem of providing a similar expe-
rience when working with plain HTML elements and how
we solved it by using Web Components in live programming
experience.

As our key contribution, we showed how we allow devel-
opers to modify the source code (both template and class of
the HTML element) of Web Components to be changed at
run-time: in our approach, we control the instantiation of
each Web Component and use the latest template and class
for new usages of theWeb Component. Existing instances are
migrated by replacing the old instance with a new instance.
This includes going through the whole initialization code
and applying the persisted state, such as attributes, external
styles and external child nodes.

Striking the balance in the ongoing self-supportive devel-
opment of Lively4 between practical usability and a live and
explorative programming experience can cause friction, but
also provides interesting challenges for future work.

34

PX/17.2, October 22, 2017, Vancouver, BC, Canada Lincke, Rein, Ramson, Hirschfeld, Taeumel, Felgentreff

References
[1] Edward O. Benson and David R. Karger. 2013. Cascading Tree Sheets

and Recombinant HTML: Better Encapsulation and Retargeting of
Web Content. In Proceedings of the 22Nd International Conference on
World Wide Web (WWW ’13). ACM, New York, NY, USA, 107–118.
https://doi.org/10.1145/2488388.2488399

[2] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean
McDirmid, Michal Moskal, Nikolai Tillmann, and Jun Kato. 2013. It’s
Alive! Continuous Feedback in UI Programming. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). ACM, New York, NY, USA, 95–104.
https://doi.org/10.1145/2491956.2462170

[3] Adele Goldberg. 1984. SMALLTALK-80: The Interactive Programming
Environment. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[4] Chris Granger. 2012. Light Table. Sofware. (2012). http://www.
lighttable.com/

[5] Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld, Robert Krahn, Jens
Lincke, Marko Röder, Antero Taivalsaari, and Tommi Mikkonen. 2016.
A World of Active Objects for Work and Play: The First Ten Years
of Lively. In Proceedings of the 2016 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward! 2016). ACM, New York, NY, USA, 238–249. https:
//doi.org/10.1145/2986012.2986029

[6] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
1997. Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. ACM SIGPLAN Notices 32, 10 (1997), 318–326. https:
//doi.org/10.1145/263700.263754

[7] Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari,
and Tommi Mikkonen. 2008. The Lively Kernel A Self-Supporting
System on a Web Page. In S3 2008 (LNCS 5146). Springer-Verlag Berlin
Heidelberg.

[8] Robert Krahn, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and
Krzysztof Palacz. 2009. Lively Wiki A Development Environment
for Creating and Sharing Active Web Content. In WikiSym ’09. ACM.

[9] Jens Lincke. 2014. Evolving Tools in a Collaborative Self-
supporting Development Environment. phdthesis. Universität
Potsdam. https://lively-kernel.org/publications/media/Lincke_
2014_EvolvingToolsInCollaborativeSelfSupportingDevelopment\
Environment_PRINT.pdf

[10] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld.
2011. An Open Implementation for Context-oriented Layer Com-
position in ContextJS. Science of Computer Programming (2011).
https://doi.org/DOI:10.1016/j.scico.2010.11.013

[11] Jens Lincke, Robert Krahn, Dan Ingalls, Marko Röder, and Robert
Hirschfeld. 2012. The Lively PartsBin–A Cloud-Based Repository
for Collaborative Development of Active Web Content. In Hawaii
International Conference on System Sciences. IEEE Computer Society,
Los Alamitos, CA, USA, 693–701. https://doi.org/10.1109/HICSS.2012.
42

[12] John Maloney. 2001. An Introduction to Morphic: The Squeak User In-
terface Framework. Squeak: OpenPersonal Computing and Multimedia
(2001).

[13] John H. Maloney and Randall B. Smith. 1995. Directness and Liveness
in the Morphic User Interface Construction Environment. In UIST
’95: Proceedings of the 8th annual ACM symposium on User interface
and software technology. ACM, 21–28. https://doi.org/10.1145/215585.
215636

[14] SeanMcDirmid. 2007. Living It Up with a Live Programming Language.
SIGPLAN Not. 42, 10 (Oct. 2007), 623–638. https://doi.org/10.1145/
1297105.1297073

[15] Sean McDirmid. 2013. Usable Live Programming. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming (Onward! ’13). ACM, New York, NY, USA,
53–62. https://doi.org/10.1145/2509578.2509585

[16] Patrick Rein, Robert Hirschfeld, and Marcel Taeumel. 2016. Gramada:
Immediacy in Programming Language Development. In Proceedings of
the 2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2016). ACM,
New York, NY, USA, 165–179. https://doi.org/10.1145/2986012.2986022

[17] Bret Victor. 2012. Learnable programming. (2012), 2012.

35

https://doi.org/10.1145/2488388.2488399
https://doi.org/10.1145/2491956.2462170
http://www.lighttable.com/
http://www.lighttable.com/
https://doi.org/10.1145/2986012.2986029
https://doi.org/10.1145/2986012.2986029
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/263700.263754
https://lively-kernel.org/publications/media/Lincke_2014_EvolvingToolsInCollaborativeSelfSupporting Development\Environment_PRINT.pdf
https://lively-kernel.org/publications/media/Lincke_2014_EvolvingToolsInCollaborativeSelfSupporting Development\Environment_PRINT.pdf
https://lively-kernel.org/publications/media/Lincke_2014_EvolvingToolsInCollaborativeSelfSupporting Development\Environment_PRINT.pdf
https://doi.org/DOI: 10.1016/j.scico.2010.11.013
https://doi.org/10.1109/HICSS.2012.42
https://doi.org/10.1109/HICSS.2012.42
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/1297105.1297073
https://doi.org/10.1145/1297105.1297073
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2986012.2986022

	Abstract
	1 Introduction
	2 Development at Run-Time with Web Components
	2.1 Lively Kernel Development Experience
	2.2 Web Components in Modern Browsers

	3 Live Web Component Migration
	3.1 Object Mutation and HTML Element Migration
	3.2 Different Kinds of Feedback in the System

	4 Discussion
	4.1 Lively4 Development Experience
	4.2 Stale Code and Dangling Event Listeners
	4.3 JavaScript Objects and HTML Elements
	4.4 Losing Object Identity
	4.5 Dynamic Elements in Static Templates
	4.6 Level of Preserving Context
	4.7 Changing of a JavaScript Module
	4.8 Problems of Combined Run-Time- and Development Environments

	5 Related Work
	6 Conclusion
	References

