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ABSTRACT
In software engineering, programs are ideally partitioned into inde-
pendently maintainable and understandable modules. As a system
grows, its architecture gradually loses the capability to modularly
accommodate new concepts. While refactoring is expensive and the
language might lack appropriate primary language constructs to
express certain cross-cutting concerns, programmers are still able
to explain and delineate convoluted concepts through secondary
means: code comments, use of whitespace and arrangement of code,
documentation, or communicating tacit knowledge.

Secondary constructs are easy to change and provide high flexi-
bility in communicating cross-cutting concerns and other concepts
among programmers. However, they have no reified representation
that can be explored and maintained through tools.

In this exploratory work, we discuss novel ways to express a wide
range of concepts, including cross-cutting concerns, patterns, and
lifecycle artifacts independently of the dominant decomposition
imposed by an existing architecture. Our concepts are first-class ob-
jects inside the programming environment that retain the capability
to change as easily as code comments. We explore new tools that
allow programmers to view and change programs from conceptual
perspectives rather than scattering their attention across existing
modules.

Our designs are geared towards facilitating multiple secondary
perspectives on a system to co-exist alongside the original archi-
tecture, hence making it easier to explore, understand, and explain
complex contexts and narratives not expressible in traditional mod-
ularity constructs.
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1 INTRODUCTION
Expressive programming languages offer constructs to partition sys-
tems into modules. In currently popular languages, these constructs
include functions, methods, classes, modules, packages, namespaces,
etc. We will generically refer to them as modularity constructs and
their instances (e.g. a concrete class) as meta-objects.1

Most constructs are syntactic, some are given by the environ-
ment. For example, the file system serves as modularity construct
in Python by providing module and package boundaries, while
Smalltalk meta-objects exist at run-time and do not rely on syntax
to delimit classes and methods.

Roles of modules. Modules serve different purposes. To support
program comprehension, they provide means of abstraction and
facilitate chunking – a cognitive process that makes it easier to rea-
son about large domains by grouping related information. To help
with maintenance, modules encapsulate responsibilities and design
decisions, such that revisiting individual decisions and changing
a single responsibility rarely cascades into cross-module changes.
Testability is improved by the capability to exercise and verify parts
in isolation. Deployment modules can help install and run different

1In light of recent developments in projectional editing, we extend the definition of
meta-objects to cover all reified executable elements of a system, including expressions.
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parts of a system on different host systems (e.g., services) or share
components between multiple systems (e.g., libraries).

Ideally, eachmodule corresponds to a single concept from the real-
world domain or from its technical or architectural implementation.
However, not all concepts relevant to understand a system can be
demarcated by modules.

Limits of the dominant decomposition. As of now, most modu-
larity constructs enforce a dominant decomposition of the system
because they are persisted in syntax or as a particular arrangement
of files, directories, or run-time objects. Cross-cutting concerns (e.g.
logging, authorization, handling I/O errors, etc.) cause the scatter-
ing of some concepts across multiple modules and, consequentially,
multiple concepts get entangled within a single module [12, 20].

A similar case can be made for design patterns [15], where dif-
ferent roles in the pattern are played by several objects, but there
is rarely any modularity construct that coherently identifies and
names the parts of a pattern.

Advanced modularity constructs like aspects, layers [6], roles,
or traits alleviate some of these concerns but have not found wide-
spread adoption. Even if they did, they would require significant
re-engineering to show any benefits in legacy systems.

Primary and secondary modularity constructs. The constructs
discussed above are behaviorally significant: they affect how the
program behaves or represents its state. Changing module bound-
aries without impacting behavior, an important activity during
refactoring, requires rewiring program parts to reproduce the old
behavior within the newmodule structure. This can be expensive in
legacy systems which have accumulated design decisions that are
difficult to revert, and does not always lead to more maintainable
decompositions in the presence of cross-cutting concerns.

In analogy to the dichotomy between primary and secondary
notation from the cognitive dimensions of notations [2], we call them
primary modularity constructs and distinguish them from secondary
modularity constructs that only help perception and tooling, but
never influence the program’s run-time behavior.

Up to date, there are only a few examples of such secondary
constructs in a narrower sense, for example categories in Smalltalk,
comments for documentation generators (e.g. Javadoc) that form
a small hypertext-like language to document code, or the #region
pragma in C# that allows the editor to collapse code blocks regard-
less of their primary structure. In contrast to a refactoring, changing
secondary constructs does not require cascading changes to the pro-
gram and offers opportunities to document different architectural
perspectives.

In a broader sense, if syntactic constraints are dropped, several
other mechanisms help with modularity: free-form comments, ad-
ditional linebreaks to induce a sense of grouping by introducing
distance, or the order of methods in a class (e.g. putting core re-
sponsibilities first and cross-cutting concerns last). The granularity
of these structuring elements is still dominated by primary mod-
ule constructs, e.g., the order of methods within a class remains
linear and relatively stable no matter how many empty lines sep-
arate logical groups of methods, and it is challenging to express
a comment that refers to multiple elements in different code files
without duplication or (hypertext) links. Notebooks (e.g. Jupyter)
invert primary and secondary constructs, allowing the executable
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Figure 1: Reification of concepts thatwere previously implicit

program parts to exist in between headings, text, and figures, but
only in a linear document-like form.

Problem statement and research opportunity. Our working hy-
pothesis is that primary modularity constructs can be hard to
change to re-modularize existing systems and dominant decompo-
sition subordinates potentially equally relevant concepts.

In contrast, existing secondary constructs contain little machine-
readable information and mostly express additional concepts by
means of natural language.

To bridge this gap, we explore the design space of first-class sec-
ondary modularity constructs that allow a wide range of concepts
to be expressed in a program without significantly re-organizing
the underlying primary module composition. The existence of first-
class concepts creates new tooling capabilities for exploration and
maintenance.

2 REPRESENTING CONCEPTS
This section refines our notion of concepts and describes how we
intend to represent them in a programming environment.

2.1 Requirements
We are proposing secondary modularity constructs to represent
concepts in a way that is more formal than comments, but less
constrained with respect to their association with the underlying
code. In particular, they should have the following properties (this
list is not exhaustive):

Independent of the dominant decomposition A concept
can be connected to multiple code artifacts, meta-objects,
or expressions regardless of their location in the package
tree, file, or enclosing meta-object. Refactorings should cause
concepts to move together with the moved code.

Non-exclusive In contrast to hierarchical decompositions or
categories, any part of the program should be able to play a
role in as many concepts as needed, allowing technical and
domain concepts to overlap.

Non-executable A concept should not interfere with com-
pilation and run-time behavior, much like a comment or
non-code cells in notebooks.

Reified In contrast to comments, the content of a concept
should allow tools to automatically process them. Persistence
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Figure 2: A concept tag can be attached to any meta-object,
including expressions within one module’s AST.

and serialization are beyond the scope of this paper, so for
our discussion we assume they exist as meta-objects with
an interface that can be used by tools.2.

2.2 Type of Origin
The need to designate a part of the program as belonging to a
concept can originate internally or externally:

Internal concepts are used to engineer the program itself. In
the scope of this work, we consider three major sub-types:
(1.) Domain concepts, e.g. a controllable character in a game,
or a rectangle in a graphical editor; (2.) Technical concepts,
e.g. a file handle, database transaction, or thread; and (3.)
Architectural concepts, e.g. a pattern, invariant, or relevant
design decision.

External concepts originate from the program’s lifecycle, e.g.
issues, which programmers sometimes link to code by stat-
ing the issue number in a comment. Other elements of the
software lifecycle, such as relations to tests, dependencies,
or build artifacts.

Most existingmodularity constructs cover only internal concepts,
leaving external concepts encoded in build configuration, issue
trackers, and other systems outside the programming environment.
In our design space, we try to cover both in a unifying way.

2.3 Tag-Like Concepts
In their simplest, least expressive manifestation, a concept behaves
like a tag (label) attached to one or more meta-objects or expres-
sions as illustrated in Figure 2. This tag carries an identity and a
(potentially ambiguous) descriptive name. For example, the parts of
a design pattern can be tagged with the pattern name. This allows
bidirectional identification of the concept: Displaying an "observer
pattern" label near the code that invokes a notification mechanism
signifies that this particular code is involved in said pattern, and
the label allows programmers to navigate to all the observers that
might subscribe to this notification. Meta-objects can carry multiple
tags.

Smalltalk method categories already allow to group methods (e.g.
a specific protocol implementing pattern interactions) into a named
category, but they lack identity, making it difficult to distinguish
different instances of the same pattern. Methods can only belong to
2Imagine them being stored in a Smalltalk image without ever taking a "serialized"
form.
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Figure 3: Two simple distributional concepts. a - d are syntac-
tic features, e.g. specific names, types or call sites that occur
in AST nodes.

one category, so overlaps between technical concepts (the pattern)
and domain terms are inexpressible. The Smalltalk message send
self flag: #symbol can be used to tag a method with a symbol.
Tooling is able to display a flag icon next to such methods.

More expressive tags. As tags become (secondary) meta-objects
themselves, they can apply to other tags, thus creating hierarchies
of tags, e.g. by tagging individual roles of a pattern in code and
tagging their tags as instance of that pattern like in Figure 1. A
generalization to ontologies is possible, but out of scope for this
work.

2.4 Distributional and Statistical Concepts
While a tag-like concept discretely refers to a set of meta-objects
or expressions, we propose that concepts can also refer to either
code locations or code features with a degree of uncertainty (see
Figure 3). These types of concepts are not mutually exclusive, a
concept should be able to both attach discretely to locations and
still be able to carry statistical and generalizable data.

Connection to natural language. Most concepts show a distinct
vocabulary in their choice of names. When tagging, e.g., the differ-
ent methods involved in a large visitor pattern, it becomes apparent
that the concept involves names like "accept" and "visit". This lin-
guistic distribution should become part of the concept. This allows
inference from new code, detection of inconsistent naming within
a concept (e.g. using "logon" for a concept previously named "lo-
gin") or ambiguous naming between concepts (e.g. using "client" to
designate both a technical concept in a server-client setting and a
domain concept in a customer relationship management system).
Linguistic concepts can be inferred in both fully automated [10] and
programmer-supported ways [18] using topic modeling and have
found their ways into programming environments already [5, 11].

Evolutionary concepts. Besides linguistic features, concepts should
ideally align with code evolution. Even if we are dealing with a
cross-cutting concern and changes involve multiple primary meta-
objects, the change should cover very few distinct concepts. If that
is not the case, this could hint at either a missing concept and
thus lead to a recommendation by the development environment,
or misaligned changes, which could be used as feedback to moti-
vate programmers to commit more fine-grained or more coherent
changes in a version control system. If higher-resolution data is
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Figure 4: Lifecycle artifacts can be expressed using their own
tag-like modularity constructs, in this example, a build fail-
ure and a fixed issue are (automatically) attached to the in-
volved code.

available, e.g., which code is read at the same time, we expect even
better support in concept inference.

Concept expertise. Some programmers tend to specialize in spe-
cific concepts. If concepts accumulated data about who reads, edits,
and maintains program parts associated with them, programmers
could seek out information in complex teams more effectively. Be-
sides automatic data collection, programmers could be able to set
themselves as contact persons for individual concepts. When teams
change composition or workload over time, these expertise proper-
ties can be early warning signs for knowledge loss or bottlenecks.

2.5 Lifecycle Concepts
To accommodate externally originating concepts, their reifications
could be accessible by lifecycle tools, such as test runners, ver-
sion control, continuous integration and delivery infrastructure,
or deployment and monitoring tools. These tools would be able to
consolidate data they generate at concept-level and express their
output in terms of concepts (see Figure 4).

As an example, a particular artifact in which a meta-object ends
up in the build cycle can be attached as concept. Especially utility
code that might be included in multiple artifacts can be easily iden-
tified this way and both developers and operators of the resulting
system now share a common understanding of the deployment
concepts. Concept labels could also mark the build configuration or
feature set each meta-object is included in, the relevance to certain
subsystems, releases, customers, or whether a piece of code is part
of a time-critical bottleneck or potentially deployed many times for
scalability reasons.

3 PROGRAMS THROUGH THE LENS OF
CONCEPTS

First-class concepts enable multiple stakeholders to understand the
system from their perspective, create opportunities to augment
existing tools, and motivate novel tools to interact with them.

3.1 Automating Concept Allocation
Reified concepts allow different degrees of automation to help pro-
grammers designate and re-arrange concepts, as well as editing a
program in such a way that it conforms to its concept structure.

{

}

{

}

Primary Modules Concept View

Tag

Figure 5: A concept expressed through tagged code can be
rendered as single on-demand module with additional meta
data explaining how the constituents relate to each other.

Automation of secondary modularity constructs carries a lower
risk to break the program than tools that manipulate primary mod-
ules (e.g. automated refactorings) and, as such, can more readily
benefit from statistical methods.

Manual basic tool support should allow manual concept as-
signment at meta-object level.

Reactive recommendations When opting to assign anymeta-
object to a concept or vice versa, the programming environ-
ment might use a recommender system to rank the most
relevant concepts or meta-objects, or suggest to add a new
one if no good match exists.

Proactive recommendations The programming environment
might actively propose concepts while programmers work
with code, programmers need to accept or reject such rec-
ommendations.

Partial inference of latent concepts Based on existing con-
cepts and programmers’ behavior in accepting and rejecting
recommendations, they system might latently infer concepts
for all remaining parts of the source code. Programmers must
actively override the inferred concepts (which in turn can
cause other inferred concepts to be retracted or re-computed
to match the new constraint).

Full inference No intervention is needed. This requires un-
supervised machine learning and could be used to automat-
ically analyze a yet un-tagged code base for the first time,
then transition into one of the more interactive automation
modes. Existing code-bases can be used to pre-train such
models and discover common concepts in a novel code base.

Once the system is covered by either manually placed concepts
or automatically inferred (latent) concepts, the programming en-
vironment is able to assist with programming tasks themselves.
Three examples are given below:

Naming distributional concepts can detect when an identifier
is misplaced, suggest alternative names that match the con-
cept, or suggest locations concerned with the concept this
name should belong to.

Linting the mismatch between primary and secondary mod-
ularity constructs is an indicator for technical debt. While
reified concepts reduce the "interest rate" of technical debt by
enabling cross-module and cross-artifact units of modularity,
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a wide gap between both architectures helps to prioritizing
refactorings.

Versioning commits (and their commit messages) in version
control systems benefit from including a coherent change,
even if that change itself is scattered over multiple modules.
The programming environment might help programmers
join or split their change sets according to the underlying
concepts.

3.2 Composable Perspectives
Concepts, by being independent of the dominant decomposition,
provide the basis for re-arranging code in a way that coherently
displays the elements of the concept. Instead of programmers hav-
ing to open multiple editors, potentially even duplicating some
editors to scroll to different positions, an individual concept could
be "opened" and interacted with as if it were expressed as single
unit in primary modularity constructs. The view would need to
clarify "module breaks" and communicate the origin of each piece
of code.

Concepts as presentation of scattered code. As of now,meta-objects
have order in their primary hierarchy (e.g. methods in a class) but
not in concepts when following a tag-like approach. If we extend
our notion of concepts to include a particular arrangement of pri-
mary meta-objects, e.g. an overall order, "opening" a single concept
could resemble a Notebook, with individual cells displaying differ-
ent slices from the underlying program as illustrated in Figure 5.
If a cross-cutting concern is tagged, its perspective provides an
overview over its usage throughout the system. When performing
changes to a cross-cutting concern, programmers can then ver-
ify that the changes are implemented correctly in all occurrences
without switching through various places in the code.

Editing in perspectives. Editing in a conceptual perspective is
more ambiguous, as any code removed from its primary construct
is deleted, but removing code from its conceptual view must dis-
ambiguate between just removing the link between meta-object
and concept, or deleting both. Adding code to a conceptual perspec-
tive can be done both by pulling in (non-tagged) meta-objects or
creating a new meta-object within the view. For the latter, there
needs to be a mechanism to re-attach the newly added construct
to the primary hierarchy (e.g. using a recommender that finds the
conceptually most coherent place in the program tree), but this is
not always necessary. If the new code is just an example invoca-
tion, it might as well exist within the concept only as part of its
documentation.

Comments. Composable perspectives should not be limited to
functional code. Representing comments as meta-objects and in-
cluding it in an (ordered, Notebook-style) view on a concept might
help with documentation. Any comment would need a place in the
primary hierarchy, thus being automatically updatedwhen edited in
either the primary hierarchy or the conceptual view. Similar ideas
have been explored in the context of Literate Programming [4],
where techniques of object-oriented programming are applied to
documentation to facilitate its reuse.

{

}

{

}

Code in same ConceptDependent Concepts

Figure 6: Concept-level navigation allows rapid naviga-
tion/preview of (scattered) code within the same concept
or dependent concepts, thus forming a navigable graph be-
yond the dominant decomposition.

{

}

Prototype {

}

++

Existing Modules
Recommendation

Figure 7: Concepts can help move exploratorily prototyped
code into conceptually sound locations within the existing
architecture.

3.3 Spatial Arrangements
With no hierarchical constraints, concepts can generalize to two-
dimensional arrangements of parts of a system. Composable per-
spectives could thus break from the linearity of code files or note-
books, and instead embed their structure in a canvas (similar to
Code Bubbles [3]), potentially linking multiple concepts in a map.
Zooming, panning, and searching facilitates exploration of larger
systems and concept interactions.

Maintaining spatial arrangements. Distributional concepts allow
embedding algorithms from data science to cluster meta-objects
based on their concepts, and concepts based on their vocabularies
or co-evolution. Such an embedding does not need maintenance,
but would update itself based on changes in the primary program
structure and evolution.

Expressing concept interconnectedness. Spatial views can use two-
dimensional space to display adjacent concepts, e.g. code that be-
longs to another layer or a cross-cutting concern, in proximity.
Instead of navigating to other concepts via an extra view or via
hypertext, each meta-object could display indicators of other con-
cepts it belongs to, and provide interactions to "open" this concept
adjacent to the current concept as illustrated in Figure 6.

3.4 Prototyping
When exploring solutions to a problem, a common approach is to
rapidly prototype various ideas and gain a better understanding
of the problem as one develops a solution. Often, the source code
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produced in this manner may not fit well into the primary hierarchy
or could even have been written entirely in a REPL or (Smalltalk-
style) workspace. Eventually, programmers may choose to discard it
and rewrite the solution from scratch to fit the existing architecture.

If the existing architecture is enriched with first-class concepts,
the concepts associated with the new code can be inferred statisti-
cally. This way, the programming environment can help integrate
prototypical code more easily, or derive new architectural compo-
nents.

Integration into pre-existing architecture. We envision that the
system should be able to propose an integration of new prototypical
code into the existing architecture. Distributional concepts would
provide the necessary heuristics: New code should be placed at
locations already concerned with the newly prototyped concepts
like shown in Figure 7.

Inferring the primary structure. Automatic code formatters and
pretty printers alleviate programmers from having to think about
secondary notation of formatting, allowing them to exclusively
enter syntactically valid notation for the structures they want to
use and have the formatter provide an embedding in the project’s
source that is adequate. Similar to this, we envision that a first-class
concept-driven system should allow programmers to enter code in
arbitrary contexts as they think of it and alleviate the burden of
organizing the code.

Rather than impeding creativity by forcing programmers to first
locate an adequate place to position their code, such a system
empowers them to start typing and introduce structure as soon
as both the system and maybe also the programmers themselves
understand the structures they are trying out better.

4 DISCUSSION AND OUTLOOK
Limits in applicability to traditional IDEs. Our designs rely on

the existence of programing environments that go far beyond tra-
ditional text editing and diff-/patch-based versioning and assume
the ground truth representation of the system is the graph of fine-
grained meta-objects rather than a set of text files.

With fully reified live-programming systems like Smalltalk in
combination with modern projectional editors [1, 22], these designs
are easier to implement than in traditional IDEs. Object-based ver-
sion control like Git3 and continuous integration4 can work seam-
lessly on meta-object graphs, implementing our designs would add
additional objects.

Traditional text-based IDEs and workflows require serialization
of the concept model, e.g. as (likely much less readable) code com-
ments.

Mental maps. A dominant decomposition might have the ben-
efit of creating a stable mental map while working with the code.
Even if concepts are scattered and entangled, programmers might
eventually remember where to find them. On-demand navigation
along conceptual relations and composable views that coherently
display code of one concept lose these landmarks. Further research
might be needed to determine whether programmers might "get
lost" when viewing the system from the perspective of its secondary
3Squeak Object Tracker: https://github.com/hpi-swa/Squot (retrieved 2021-04-26)
4SmalltalkCI: https://github.com/hpi-swa/smalltalkCI (retrieved 2021-04-26)

structure or miss the big picture, and which techniques (e.g. bread-
crumb navigation or showing sufficient primary context) alleviate
this problem. A similar problem is frequently observed in the C#
language that allows physical code files to exist independently of
their namespace hierarchy [9].

Path to fully integrated lifecycle. We proposed to link lifecycle
artifacts like build information, issues, or history to the affected
code as a reified concept. This gives rise to fully integrate these
artifacts into the program’s meta-object graph. For example, issues
would be a (cross-cutting) meta-object linked to code and tools
could treat them in the same fashion as, e.g., a class or method with
respect to version control, navigation, and even debugging.

Extrapolating from there, concepts could replace other currently
syntactic mechanisms, such as access modifiers (public/private) or,
in a more controversial proposal, (static) types, when they are only
used for correctness checks but are not behaviorally significant.

5 RELATEDWORK
ConcernMapper [17] and FEAT [16] are Eclipse plug-ins that use
a reified concept model allowing to link concerns to Java meta-
objects. They demonstrate that IDE features, e.g. navigation and
code search, can benefit from knowing which "concern" the code
belongs to and coherently display search results or rank them if
they fit the currently edited/viewed concern.

The Archface language [21] can model the correspondence be-
tween architectural elements and their implementation using lan-
guage concepts from aspect-oriented programming. Archface sup-
ports multiple concurrent and cross-cutting views on the system. Its
exactness offers the capability to automatically verify architecture
at the expense of ease of change.

Code Bubbles [3] are a style of programming environments that
make use of spatial secondary notation to group conceptually re-
lated sections of code without imposing a strict dominant decom-
position.

CodeTalk [19] reifies conversational comments at meta-object
level and provides comprehensive tooling to access and manipulate
them. Cross-cutting Commentary [7] solves the problem that com-
ments are often tied to individual code locations and thus scatter
when they explain a cross-cutting concern. By designing meta-
objects that tie together cross-cutting comments and tools to inter-
act with them, they support system exploration from a "secondary"
viewpoint.

Similarly, UseCasePy [8] makes use cases a first class concept
that enables tracing requirements to an implementation via code
annotations. In this way, programmers can make use of specific
views on the source code that are centered around use cases. Fur-
ther, the authors propose a semi-automatic manner to recover use
case annotations from legacy code bases by using trace data from
acceptance tests.

To enable exploration and verification of aspects in software
systems, the intentional view model [13, 14] allows programmers to
create views on software that go beyond module boundaries. For
example, programmers can get a mapping between test coverage
and source code by outlining relevant language constructs in one
view and tests that make use of the listed language constructs in
another.
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CONCLUSION
In this exploratory work, we illustrated first-class concepts as a way
to express multiple competing conceptual perspectives on a system
without the need to refactor the underlying module structure.

We discussed requirements for the model that supports linking
concepts to code with varying degrees of granularity, ranging from
sub-expression level to large modularity constructs. We extended
the notion of concepts to include both discrete phenomena (like
patterns and cross-cutting concerns) as well as implicit concepts
associated with uncertainty that can be managed with the help of
statistical methods. These concepts can originate internally from the
desire to structure and explain the system as well as from external
lifecycle tools, thus offering diverse domain-oriented and technical
perspectives to view the system.

Building on these ideas, we opened up the design space for tools
that operate on the conceptual architecture and provide better ways
to assist program comprehension, documentation, maintenance,
and exploratory programming in architecturally convoluted legacy
systems.

While these designs are high-level and preliminary, recent de-
velopments in machine learning, projectional editors, and live pro-
gramming environments render prototypes and their evaluation
feasible.
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