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ABSTRACT

Immediacy and continuity of feedback are desirable properties dur-
ing programming. Automated tests are a widely used practice to
gain feedback on whether test authors’ expectations are consis-
tent with an implementation. With growing test suites, feedback
becomes less immediate and is obtained less frequently because
of that. The objective of test prioritization is to choose an order of
tests that catches errors as early as possible, ideally within a time
frame that we can consider live.

Research in test prioritization often relies on dynamic analysis,
which is expensive to obtain. Newer approaches focus on most
recently edited source code locations and propose IR (information
retrieval) approaches that regard a change to the software as query
against a collection of tests.

We study the capability of the IR approach to reduce testing time
in the presence of faults using the example of open-source Python
projects, identify trade-offs in classical tf-idf-based IR frameworks,
and propose different approaches that consider lexical and semantic
context of a change, including topic modeling.

We conclude that even simple IR strategies achieve immediate

error detection, especially when tests themselves were edited along-
side program code. We further discuss applications of this approach
in live programming environments, where change granularity does
not leave sufficient time to run a test suite entirely.
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1 INTRODUCTION

Immediacy and continuity of feedback are desirable during pro-
gramming activities. Automated tests, often manifesting themselves
as unit tests, are a best practice to receive feedback on whether the
test authors’ expectations are consistent with the implementation
at hand. With growing test suites and, consequentially, longer exe-
cution times, feedback becomes less immediate and is obtained less
frequently by programmers. As a result, the benefits of frequent
testing begin to cease, among them the cost benefits of early-caught
errors, and the psychological benefits of perceiving causality be-
tween change and test failure.

Test prioritization. The goal of test prioritization is to choose a
better order in which tests are executed – in our case, the test that
is most likely to fail should run first. (Alternative ranking criteria
include covering the source code as fast as possible or selecting n
tests that are most likely to detect a fault together, but these are
not considered here.)

While ranking tests does not speed up the test suite as a whole,
it reduces the time programmers wait for test failures (if any are
present) and increases the chance of fault detection under time
constraints. Examples where this can be helpful include:

• Live programming environments [6] that rely on immediate
feedback as primary part of their experience

• Programming environments that run tests on every change
but are not given sufficient time to run the full test suite
between subsequent edits

• Continuous integration services where a “red” build needs
to be discovered and resolved quickly as it impedes progress

• Continuous delivery infrastructures with multiple stages,
where the most frequently updated stage is tested against a
small, but fast subset of tests, while more stable deployments
are exercised with larger and larger test suites the closer
they move to production.

Change-based Test Prioritization. Our focus on feedback dur-
ing programming activities demands that we set our scope to ap-
proaches targeting the most recent change to a program. Our objec-
tive will be to find the tests that likely detect an error introduced in
the immediate past and do so fast enough that prioritization itself
does not significantly increase testing overhead.

Lexical Test Prioritization. Prioritizing tests based on the vocabu-
lary they share with the most recent change is an approximate, but
fast strategy to discover relevant tests. State of the art in lexical test
prioritization [11] follows a standard IR approach, where lexical
features in each test are tf-idf (term frequency–inverse document
frequency)-weighted, scored against a query computed from the
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Figure 1: Lexical text prioritization aims at running tests first that share vocabulary with the most recent change.

last change, and returned in descending order with respect to this
similarity score.

The IR approach to test prioritization does not yet include the
module or concept structure of the system at hand, which makes
them unable to detect semantically related changes that have no
lexical overlap with the failing test. Examples where this happens
include tests that probe an abstraction, while the underlying imple-
mentation is changed, or tests that use synonyms or semantically
related words, but not the exact vocabulary used by the tested
implementation.

In the scope of this work, we show that even without the inclu-
sion of latent semantic information, modern tf-idf-based retrieval
strategies can save significant time, and explore the trade-offs in-
volved in adding structural information or switching to a topic

model that does not compare lexical features directly, but the more
general concepts they belong to. We present a fault-seeding strategy
that simulates faulty changes made by programmers and generates
a large quantity of example test runs.

We then re-rank testing results based on the widespread IR ap-
proach bm25 (Okapi best match 25) and the lda (latent Dirichlet
allocation) topic model, and study their fault detection capacities
with regard to immediate feedback. We further discuss how these
approaches can be integrated into live programming environments
to balance immediacy of feedback with the benefits of a test suite.

2 LEXICAL TEST PRIORITIZATION

Ranking tests based on howwell their lexical features (e.g., identifier
names) coincide with those affected by the most recent change
is an inexact, but quick strategy to prioritize the tests that are
semantically related to the change.

From an IR perspective, our tests play the role of documents to be
retrieved in response to a query. The relevant variation points of an
IR strategy are the conversion of a change to a query, the selection
of lexical features, and the similarity metric used to compare tests
with the query.

2.1 Background and State of the Art

State of the art in IR-based test prioritization relies on extracting
variables, methods, classes, comments, and other programmatic
concepts affected by a change, normalizing the features (e.g. by
splitting camel case identifies, stemming, etc.), and assigning tf-
idf weights to them. Given a change to the code base, a query
vector can be analogously computed from the features occurring

in edited lines of code. The query vector is compared to each test’s
feature vector, usually using an inner product or variation thereof.
In this section, we shortly describe bm25 and the lda topic model.

tf-idf. The idea behind the tf-idf scheme is to construct per-
document (in our case, per-test) vectors in which a weight is as-
signed to each feature (e.g. word or identifier) proportional to how
often it appears within that document, called tf (term frequency),
while discounting words that occur in a large proportion of doc-
uments by multiplying with the feature’s idf (inverse document
frequency).

Additionally, the resulting weight can be adjusted by document
length such that a feature occurring more often due to being in
a longer block of test code is not at an unfair advantage. tf-idf-
vectors are sparse, the weight of a non-occurring feature can be
implicitly regarded as 0.

bm25. The Okapi bm25 model is a widespread variation [8] of
tf-idf to compute a document d’s score S(q,d) with respect to a
query q:

S(q,d) =
∑
f ∈q

idf(f ) ·
tf(f ,d)(k1 + 1)

tf(f ,d) + k1
(
1 − b + b

(
|d |/d̂

)) (1)

Here, idf(f ) of a feature f is defined as idf(f ) = loд
N−nf +0.5
nf +0.5

with N as the total number of documents and nf the number of
documents containing feature f . tf(f ,d) is the number of times
feature f appears in document d , |d | is the document length and d̂
the average document length. k1 is a free parameter that determines
how fast term frequencies saturate, and the value of b determines
how much the frequency is scaled with respect to the document
length.

lda. The lda topic model [1] groups semantically related fea-
tures into topics. Instead of reporting the frequency tf(f ,d) of a
feature in a document or query, it reports the probability p(t |d) of
that document being concerned with a topic t and the probabilities
p(f |t) that each feature f belongs to a topic t . It is important to
note that the topics and thus p(f |t) are shared across all documents.

In the lda model, the term frequency tf(f ,d) is considered
a sample from the multinomial term probability p(f |d) over all
topics t :

p(f |d) =
∑
t
p(f |t)p(t |d) (2)
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Two parameters, α and β control the sparsity of p(t |d) and p(f |t)
respectively, i.e., for higher α more topics are allowed to emerge
per document, while higher β allows more features to participate
in a topic and thus increases overlap between topics.

Typically, the number of topics (≈ 10 – 20 in small programs) is
much smaller than the number of features (≈ 1000 – 1500), hence
dealing with p(t |d) and p(f |t) for every combination of input pa-
rameters is effectively a lossy compression of the full document-
feature-matrix spanned by tf(f ,d).

Using lda is a two-step process: First, topics need to be com-
puted over a large training set of documents. This requires the
full program to be broken down into documents (e.g. individual
methods). Second, the test features need to be “compressed” to topic
vectors, i.e., instead of storing tf(f ,d) for each feature, the topic
vector stores p(t |d) for each topic. The same applies to the query.

The scoring function needs to compare two topic vectors. Since
they are probabilities that sum up to 1, the square root is taken
to obtain a vector whose sum of squares is 1, i.e., a unit vector.
This geometric representation can now be compared using cosine
similarity:

S(q,d) =
∑
t

√
p(t |d)p(t |q) (3)

More sophisticated comparisons between two probability distri-
butions exist, e.g., KL divergence, or in the special case of probabilis-
tic models like lda, the conditional probability of a test given the
query topics, but comparing these with respect to test prioritization
is beyond the scope of this work.

2.2 Tradeoffs in IR-based Test Prioritization

IR-based test prioritization as implemented through tf-idf retrieval
models offers a number of trade-offs. The most important ones in
the scope of this work are:

Context By using only the change as reported by a Unix-diff-
like algorithm, the approach remains largely language ag-
nostic, but the lexical context within the program structure
(e.g. the surrounding method or class) is lost. Often, tests
call a method or instantiate a class under test, while the
change only affects the implementation thereof. The lexical
context, e.g., the class or method name in which a change
occurred could reveal which test is affected. In this work, we
will explore the influence of including context in the query.

Structure tf-idf weighting prioritizes features that have high
information content based on their frequency, but not on
their importance in source code. Related work has shown
that differentiating between features from comments, class
or method names, temporary variables, etc. can improve
retrieval performance in fault localization tasks [10]. How-
ever, as shown by the REPiR project [11], the resulting test
prioritization does not improve significantly.

Latent semantics/abstractions A tf-idf model would only
consider exact matches of features. Synonyms (e.g. count /
number, str / string, ...) and semantically related words (e.g.
draw & color, file & read, ...) are regarded as distinct. For ex-
ample, a change in a color-related methodmay affect drawing

tests, but their relation is not reflected yet. On closer consid-
eration, semantic relatedness is often asymmetric: Drawing
routines use colors, hence the drawing test may fail more
likely when color-related code is modified, but no color test
should fail when drawing routines are updated. One fea-
ture (drawing) is at a higher level of abstraction, and color

is an implementation detail. In the scope of this work, we
investigate the use of lda-based topic modeling on ranking
performance, and leave the asymmetric case for future work.

Updatability A simple tf-idf-based model can be cheaply
updated when a new test is introduced or an existing one
is changed, as only idf scores of the affected features need
to be recomputed, as well as tf scores of the new/changed
test. Any model involving latent semantics or abstractions
is likely much larger as it is concerned with semantically
related features beyond those found in tests. These models
would need to be updated after any code change, or fully
re-trained.

In our experimental setup, we will primarily focus on context
and latent semantic relations, since they are still underexplored in
related work.

3 CHANGE-BASED FAULT SEEDING

If historical code changes and subsequent testing reports from a
program were available, we could evaluate test prioritization strate-
gies without user involvement. Simulating the impact a “treated”
test order would have had on the report and comparing metrics
(e.g., position of first failure) helps estimating how much faster the
desired feedback would have been obtained if the treatment was in
place.

Unfortunately, realistic examples of changes causing test failures
rarely leave traces in publicly available data. Most programmers
ensure all tests are green before committing their change to a public
repository, and only in infrequent cases did a continuous integration
(CI) server (e.g. TravisCI) produce a detailed log of a failed build. In
the light of this data scarcity, we see the need to synthesize faulty
changes and corresponding test results.

A strategy used by Saha et al. [11] is focused on sampling regres-
sions by running the regression test suite of an old version against
a newer version of the program. This way, the old test suite lacks
tests for new functionality, but the changes that lead to test fail-
ures represent real programming activity. In contrast, our approach
aims at keeping test suite and program in sync, while relaxing the
requirement that the fault is caused by the change.

Change-based fault distribution. To obtain synthetic, yet realistic,
faulty changes and associated test results, we propose a fault seed-
ing strategy based on the actual edit history of the program. We
compare each version, e.g., a Git commit, against the previous ver-
sion and only changed or inserted lines are considered for seeding
faults. We exclude non-code files (documentation, configuration,
resources, build scripts, etc.). Moreover, test code is excluded from
fault seeding, because compromising one test should not cause any
test other than the faulty one to fail if best practices have been
followed.

Our fault seeding tool is designed for and written in Python.
The approach is general enough to be applied to other dynamic
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languages but is not guaranteed to generate a valid program under
static type systems.

Mutation operators. The actual fault seeding relies on operators
known from mutation testing. In our case, an operator is an ast
(abstract syntax tree) transformation that consists of two rules: A
definition to which ast nodes it applies, and a transformation that
takes an ast node and returns a new one replacing the originally
matched node.

We make use of similar operators as used in the Javalanche
[12] tool. A notable difference is that we are working on asts rather
than bytecode for practical reasons: since the parser keeps track of
the origin of each node, it is easier to link ast nodes with modified
lines of code in a Git commit. In contrast to Java infrastructure, our
test runner operates on source directories rather than compiled
artifacts, hence a source-to-source transformation makes sense.

Negate Branch Condition: Applies to asts nodes in the role
of an if-condition. Mutation returns the asts node wrapped
into a unary negation node.

Omit Method Call: Applies to Call nodes. Mutation returns
the None literal. If the call was a statement, it has no effect
anymore. If it was part of an expression, it simulates forget-
ting to return a value.

Swap Arithmetic Operator: Applies to asts nodes of binary
operator type. Mutation swaps + with - and * with /. For
simplicity, we ignore logical operators (their frequent use
in conditions is already covered by Negate Branch Condi-
tion), rarely used bit-operations, and the modulo (%) operator
which is primarily used for string formatting in Python.

Modify Number: Applies to asts leaves representing numeric
literals. Mutation increments them by 1 with the intent of
causing off-by-one or indexing errors. However, many num-
bers have non-functional roles, such as buffer sizes and time-
outs, or are exchangeable by design, such as port numbers
or error codes.

In a first step, each operator is applied to the program’s asts
and all suitable locations in the code are collected, no modification
happens yet. For each operator, its set of locations is then intersected
with the lines changed in the respective version, yielding a set of
candidate locations.

If the candidate set is empty, this particular version is uninter-
esting and we proceed to the previous version (i.e., the parent Git
commit). This usually happens when documentation or configura-
tion fixes are being committed, but no change in program logic.

For each candidate location, we apply the matching operator
once to create a mutant with a single seeded fault. This way, we
obtain multiple mutants per program version, each representing
a different fault that could have happened while the programmer
was implementing this particular change.

Collecting test results. The collection process starts with the most
recent version of a software repository and then iterates backwards
through the main line of changes. This way, we can use an up-to-
date test framework that works with recent versions and stop the
iteration once a version is old enough to be incompatible to the
current set of dependencies.

The test suite is version-controlled alongside the program, so
we run the test suite corresponding to this particular version for
the unmodified program (control result) and all mutants (single-
fault results). For further processing of single-fault results we only
consider tests that passed in the control result and were executed
in the presence of the fault, too.

4 EXPERIMENTAL RESULTS

To assess the effectiveness of different variations of lexical test
prioritization, we ran an exploratory experiment on three GitHub
projects written in Python. We investigate the following prioritiza-
tion strategies:

UNT The native (untreated) order of the test suites as chosen
by the test runner.

BM25 Tests ranked according to their relevance score assigned
by the bm25 model with k1 = 10 and b = 0.5.

BM25C The same as bm25, except the change query includes
lexical context, i.e., class and function names where the
change occurred in.

LDA Tests ranked according to their topical similarity given
by an lda model trained on the most recent version with 20
topics, α = 0.05, and β = 0.1.

RAND The tests in random order.
Our setup aims at assessing the following questions:
(1) To which degree do the three strategies improve test priori-

tization over the native ordering and a random order?
(2) Do inclusion of contextual features or a switch to a topic

model improve prioritization?
(3) Regarding immediacy of feedback, how likely can a priori-

tized test suite detect faults when execution time is limited?

4.1 Implementation

Project selection. With Python, we have chosen an interpreted
language that avoids build overhead before test runs and between
different program versions. The PyTest test runner is easy to in-
strument to obtain the desired data about test runs, failures, and
timings. For our projects, we expected them to be testable with
PyTest directly from their download location given their depen-
dencies are installed, and belong to the top 100 in popularity on
GitHub (measured by number of stars after selecting those marked
as Python) at the time of writing. Unexpectedly, almost none of the
projects on GitHub turned out to be testable out of the box without
compiling separate libraries, requiring a modified test runner, or a
specific platform to run the tests. This left us with three popular
projects to sample from1:

Flask After Django (which uses its own test runner) the second
most popular Python web framework

Requests Library for web requests
Sphinx Documentation generator

Fault seeding. For each project and each Git commit, we perform
a control run of the test suite (usually located in the tests directory)
with Python’s import path set to the checked out working tree of

1The PyTest project itself fulfills these requirements but had to be dropped. Our setup
could not sufficiently isolate the colliding namespaces of the PyTest instance we use
for testing and the fault-seeded PyTest version under test
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Table 1: Number of commits, total number of faults seeded,

and average number of tests executed per test suite run

Project Commits Faults Tests per fault

Flask 74 322 364.7
Requests 38 55 505.6
Sphinx 30 355 1364.4

that commit. If the control run was able to report at least one
successful test, all *.py files that have changed since the previous
Git commit are gathered (via theGitPython library) and the differing
ranges of lines are computed using Python’s SequenceMatcher.

Subsequently, the files are parsed using the astmodule to obtain
their asts. Mutation operators, implemented as NodeTransformer
subclasses (a mutating visitor pattern), are then applied in a “dry
run” to gather candidate mutations. Candidates are identified by a
mutant ID (concatenation of file path, operator name, line number,
and column offset) and discarded when their line is not within one
of the previously computed diff ranges.

For each remaining candidate, the operator that generated it
is applied to the exact location only, the resulting asts is written
back into the Git working tree, and PyTest executed in a separate
process. PyTest is instrumented using a plugin that writes (test,
success, duration)-tuples to a file that is identified by commit hash
and mutant ID. Individual tests that did not succeed in the control
run, and full test suite runs that match their control run exactly are
discarded, since they did not detect failures caused by the seeded
fault.

Flask and Requests began to show incompatibilities to the in-
stalled dependencies (we opted not to re-install dependencies for
each version, since this would increase sampling time by orders
of magnitude) and the sampling process for Sphinx exceeded 48
hours.

The number of selected commits, seeded faults (which is equiv-
alent to the number of obtained test suite runs), and the average
number of tests per run is listed in Table 1.

Test indexing. For each test run, we parse the source files con-
taining the executed tests and extract the following features using
a NodeVisitor subclass:

• Name of the test method
• Names of fixtures and parameters (in parametrized testing)
given to the test

• The test method’s documentation (“docstring”)
• Identifiers (asts nodes of type Name)
• Strings

Composite features are broken down and normalized to lower
case, e.g. CamelCase results in camel and case, HTTPServer becomes
http and server, and any non-alphabetic character is considered a
delimiter.

Change query construction. The query against the set of tests
is constructed analogously to the feature extraction described for
tests. As discussed above, the context of a change is not reflected
in line-based diffs but might be important. To be able to assess the

value of the outer lexical context, we provide two ways to construct
a query from a change:

Without Context Used in BM25. The visitor, although it scans
the whole asts, only emits features when the asts nodes lie
within the diff to the previous commit.

With Context Used in BM25C. The visitor carries class and
function names along and adds them to the list of features
when a change affects the respective class/function.

lda. To use the lda topic model, we first need to train it on a
set of documents. This set is constructed by collecting features as
described for test indexing, except that all source code from themost
recent version of the program is processed. We choose functions as
units of granularity, i.e., features in the same function constitute a
document. Surrounding features, e.g. those at class or module level,
get their own document each. Definitions are duplicated to appear
in both their implementation and the surrounding document, as
the following example illustrates:

Listing 1: Example Python code

class C:
v1 = v2
def f1(self):

g(); h()
def f2(self):

i(); j()
k = C(); l = C()

Listing 1 generates the following documents:
• Function f1: f1, self, g, h

• Function f2: f2, self, i, j

• Class C: C, v1, v2, f1, f2 (Function names duplicated)
• Module: C, k, C, l, C (Class name duplicated)

To make sure that lda training does not cause detrimental over-
head, we use a low-level implementation of a Gibbs sampler. For
this evaluation, we used a conservative number of Gibbs sampling
iterations (500) that completes in under 6 s on the Flask project2.
The perplexity metric that measures how well the topic model
approximates the test suite only improves marginally after 50 itera-
tions, which leaves room for trade-offs if faster training is desired.
The topic model is never re-trained between runs, making training
overhead a constant warm-up cost.

4.2 Results

To quantify the effectiveness of a prioritization strategy, we employ
the apfd metric. We then compare the percentage of detected faults
(recall) each strategy achieves when run under time constraints
and measure the average time to detect the seeded failure over all
test suite runs.

apfd. The apfd metric is frequently used to assess the effec-
tiveness of a prioritized test suite. It is defined over a set of faults
F = { f1... fm } and a sequence of tests t1...tn as:

APFD(F ; t1...tn ) = 1 −
∑
f ∈F argmini ti (f ) = fail

n ·m
+

1
2 ·m

(4)

2Compiler: rustc 1.31.1, Platform: Intel Core i7-8650U, 16GB DDR4, Windows Build
17763.253
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Table 2: apfd (average percentage of faults detected) scores (first test failure only)

Project UNT BM25 BM25C LDA RAND

Flask 0.8036 0.9894 0.9945 0.9918 0.9366
Requests 0.8672 0.9983 0.9968 0.9791 0.8987
Sphinx 0.9600 0.9876 0.9878 0.9955 0.9831

Table 3: Percent of faults detected within 0.1 and 1 second of running tests

UNT BM25 BM25C LDA RAND

Project 0.1 s 1.0 s 0.1 s 1.0 s 0.1 s 1.0 s 0.1 s 1.0 s 0.1 s 1.0 s

Flask 8.1 88.2 78.4 91.9 79.3 92.5 77.2 93.4 49.9 96.0

Requests 6.8 6.8 72.9 91.5 72.9 93.2 78.0 98.3 25.4 45.8
Sphinx 0.0 40.1 18.7 63.8 18.7 63.8 21.2 63.5 7.9 38.9

where ti (f ) represents the result of the i-th test in the presence of
fault f . The sum aggregates the positions of the first failing tests
per fault. Tests vary slightly across commits, so we fix n as the
maximum number of tests.

Since our fault seeding produces single-fault subjects, our apfd
scores are not directly comparable to related work that computes
scores formmulti-fault test suite runs, where some faults can remain
undetected for longer and reduce the score. The reported number
is the apfd over all test suite runs with respect to all faults.

Table 2 summarizes the apfd score averaged over all test runs
compared to the untreated (UNT) score that PyTest has chosen.

Detection probability. One objective of test prioritization is to
run a smaller set of tests that still reveal relevant faults. Considering
liveness as our goal, we use timeouts of 0.1 s and 1 s second respec-
tively and measure the percentage of faults detected within this
timeout in Table 3. The majority of faults can be detected within
one second, and the two faster test suites achieve above 70 % fault
detection rate within 0.1s. In the Flask project, a randomly ordered
test suite outperforms all other strategies in the (1.0 ± 0.2) s range.

All prioritization strategies show an improvement compared to
the untreated order of tests, with context-augmented bm25 and lda
performing slightly, but not significantly better than the baseline
bm25 model with respect to both apfd and detection probability
under time constraints.

Average time to detection. apfd scores only refer to the position of
tests in the test suite, so we compare execution times until the first
test failure in Figure 2, and also plot how the number of detected
faults evolves over time when running the test suite. We assume
the durations of individual tests are insensitive to their ordering,
hence we are re-using durations measured during the untreated
test run. The highly I/O-sensitive set-up time needed to discover
and load tests from the file system is not included.

Measurements show strong variability (outliers omitted). Al-
though average times to detect the fault are consistently lower with
all prioritization strategies, variability suggests that prioritization
can, in some cases, move tests to the end of the test suite when
the unmodified test runner would run them earlier. Differences

between the individual strategies are mostly insignificant given the
variability.

4.3 Discussion

Our preliminary experiments, although only taken from three well-
tested Python projects, are consistent with related work on re-
gression testing and provide additional evidence that lexical test
prioritization is able to shorten fault detection times up to a level
suited for immediate feedback, a criterion not yet evaluated by
previous research. Studying programs in other programming envi-
ronments with qualitatively different test suites would be required
to better support generalizability of the findings, for example live
programming environments like Smalltalk.

The apparent problem addressed by topic modeling, i.e., the
use of semantically related but not exactly matching names is not
supported by this data, as tf-idf prioritization performs so well
that lda could not add significant benefits except in a few test
suite runs. However, the inclusion of contextual features has shown
minor improvements. We cannot conclude from this experiment
that the benefits of lda or even the context-augmented bm25 model,
are worth the added complexity yet.

Upon further investigation, it is common in open-source projects
to not only modify program logic, but also tests within the same
commit. Even if these tests are disjoint from the set of failing tests,
they introduce vocabulary into the change that is used by the rele-
vant tests as well (e.g. fixtures). A follow-up study could investigate
how much improvement is explained by programmers modifying
their tests compared to modifications to program code only.

Limitations. The scope of our conclusions is limited given the
small selection of projects in a single language. Moreover, they are
well tested compared to projects with less users and contributors,
and mostly relate to web-centered topics where the Python ecosys-
tem sees widespread use. The size of the test suites is less than 2000
tests (including parametrized tests) and they run in less than 10
minutes on consumer hardware, so we cannot generalize this to
larger test suites yet.

A property of the PyTest framework is that it loads dependencies
and scans the full project directory upfront, which is a constant
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Figure 2: Time to detect a fault and cumulative faults detected over time for the example projects

overhead we did not measure. Similar cold-start behavior should
be expected from most test runners, except those that never shut
down the execution environment in between test runs (e.g. SUnit
in Smalltalk).

Regarding the used algorithms, we are dealing with hyperpa-
rameters that might not be optimally tuned, i.e., k1 and b in the
Okapi formula, and α , β , and the number of topics in lda. The
Okapi parameters originate from from related work [7], while lda

parameters were determined by searching a limited section of the
parameter space and choosing the values that managed to represent
the test suite of the most recent commit with lowest perplexity.

Usage of lda for source code is notoriously difficult since the way
code is broken down into documents leaves much room for varia-
tion, hyper-parameters are rarely transferable between software
projects, and document sizes are rather small. Hence, we expect
that there are better configurations of lda, code-oriented topic

7
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models, such as [3], or more recent software similarity metrics,
such as those derived from kernel-based learning [9], which are
worth studying in future work.

On one hand, the fact that we trained lda only once per project
and re-used it limits its ranking performance when confronted
with tests from distant versions. On the other hand, updating a
topic model for every change incurs substantial run-time costs.
Viable trade-offs involve re-training the model occasionally when
the programming environment is idling, or re-training it externally
by the continuous integration infrastructure, but more research is
needed on the trade-offs of incrementally updating topic models
used in development tools.

5 OUTLOOK: LIVE TESTING

Our exploratory results show that shared vocabulary between tests
and production code allows to identify tests that are likely to fail,
and manage to detect faults within (almost) immediate time frames
with high probability. This gives rise to further exploration in the
context of live programming environments.

AutoTDD. Our proposed tool integration targets live program-
ming environments, such as Squeak/Smalltalk

3. We propose a work-
flow in which tests are executed after every modification, i.e., saving
(via ctrl + s) in Squeak. Existing testing frameworks, such as SUnit
in connection with edit-triggered test runners (AutoTDD4) already
provide this functionality. They can be extended to collect edit
features and prioritize tests accordingly. Additional priority can be
given to recently edited tests and recently failed tests.

Continuous testing. A yet unexplored challenge emerges when
test runs are restarted after every edit, leaving not enough time for
low-priority tests. A continuous testing approach must balance the
probability of catching an error against the uncertainty associated
with not running a test for a long time. Relevant insights could
be gained by studying the granularity and time intervals in which
changes are saved in a live programming environment, how these
relate to test execution times, and how much of an asynchronous
delay programmers are willing to accept to maintain the impression
of causality and continuity.

Concept-aware programming environments. Combining live pro-
gramming environments with automated topic/concept mining
capabilities, like proposed in [4], would also associate test cases
with concepts. Instead of using lexical features only, test ranking
would operate similarly to what we did using lda, except the under-
lying topic model would learn from a wider range of programming
activities, e.g. co-changed code locations. Since lda does not seem
to perform worse than tf-idf-style IR, a model that not only learns
the vocabulary distribution of a program, but also auxiliary infor-
mation is a promising candidate for test prioritization.

Live examples. A novel approach to integrate example data with
source code has been designed by Rauch et al. [5]. Especially in
live programming environments, tests and examples serve a sim-
ilar role in providing immediate feedback. Both are conceptually
interchangeable, i.e., (failing) tests can provide explorable examples

3https://squeak.org/, retrieved 2019-01-30
4https://github.com/hpi-swa-teaching/AutoTDD, retrieved 2019-01-30

while an example with an assertion/expectation becomes a test
case. If a large set of examples is present, the same prioritization
strategies that help selecting important tests may help selecting
live examples as well. Their goal could be to provide the user with
examples that are most relevant in the context of the current editing
task.

6 RELATEDWORK

Saha, Zhang, Khurshid, and Perry studied the effectiveness of IR-
based regression test prioritization with their REPiR project [11].
With a focus on regression testing, the authors generate test fail-
ures by running new versions of Java projects against the test suite
of the previous version, thereby obtaining regression faults. Their
approach uses the Okapi tf and idf weights on both query and
document features. A notable extension of classical IR is their strat-
egy to classify features according to their role in the source code
and to the type of change they appear in, which allows comparing
different roles (e.g. added/deleted fields, added/deleted methods)
separately. This approach has been successfully used for bug local-
ization in the BLUiR system before [11]. Due to differing foci on
regression testing and live unit testing respectively, and different
fault generation strategies, our results are not directly comparable
to REPiR.

Static test case prioritization operates without change data and
tries to spread similar tests to cover many concepts (diversity) or
most of the program (coverage) upfront [2]. Topic models have been
used by Thomas, Hemmati, Hassan, and Blostein [13] to address
this problem from a lexical viewpoint.
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CONCLUSION

Unit testing and immediate feedback are not mutually exclusive
as long as running the test suite yields the most relevant feedback
upfront. We explored the field of lexical test prioritization and con-
ducted a preliminary study that demonstrates how unit test suites
of several hundreds of tests can detect faults in under a second
when prioritized by the amount of vocabulary they share with the
change containing the fault. The results highlight that simple mod-
els, which are likely the least expensive in terms of implementation
and run-time costs, already offer competitive performance.

Motivated by these results, we look forward to integrating test
prioritization in live programming environments and studying the
interplay between short edit cycles, feedback generated by unit
testing, and the capability to interact with live objects and examples
during programming activities.
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APPENDIX

Uncalibrated APFD scores. To make our prioritization curves
quantitatively comparable to related work, we also report uncali-
brated apfd scores in Table 4. We use the same formula as above,
but assume each test failure constitutes an individual fault. This
assumption is not compatible with our single-fault seeding strategy,
but can be made when information on the underlying number of
faults cannot be obtained.

Uncalibrated apfd scores are much lower, as test failures occur-
ring later in the test suite are considered as well, and exhibit much
higher variability between test runs. The reported range spans 95%
of the test runs (not a confidence interval).

Profiles of test runs. To visualize the raw data on which the met-
rics computed above are based, we plotted each test run from the
Flask project in Figure 3. Each one-pixel line constitutes a full run
of the test suite on an individual faulty version, test failures are
marked. The gray area is padding, as test suites had fewer tests in
earlier revisions.

In the untreated version, clustering can be seen as failures often
co-occur within the same test class or module, and tests within the
same unit of modularity are executed together. When ranked deter-
ministically, e.g. using bm25 with context, the “bar code” pattern
intensifies as individual test cases are moved towards the beginning
of the test suite. If seeding different faults in the same Git commit
causes the same tests to fail, bm25 would re-order them in the same
way, as the query vector remains the same for that particular com-
mit. This is the reason that similar lines in the untreated profiles
remain similar in the ranked version. The “bar code” dissolves with
the LDA topic model as estimating the topics from the change uses
a probabilistic algorithm. Since we re-compute topics each time,
even if the faulty version is based on the same change, a minor
variation in ranking can be observed.
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Table 4: Uncalibrated apfd scores (all faults as failures)

Project UNT BM25 BM25C LDA RAND

Flask 0.477 ± 0.291 0.679 ± 0.238 0.675 ± 0.242 0.667 ± 0.252 0.507 ± 0.202
Requests 0.627 ± 0.270 0.701 ± 0.227 0.690 ± 0.211 0.695 ± 0.191 0.485 ± 0.205
Sphinx 0.489 ± 0.225 0.586 ± 0.222 0.590 ± 0.233 0.574 ± 0.198 0.500 ± 0.087
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(a) Untreated test runs (Flask)

0 100 200 300 400 500

Test cases

0

50

100

150

200

250

300

F
au

lt
y

ve
rs

io
n

s

Test run profiles for Flask / BM25C

(b) BM25C-ranked test runs (Flask)
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(c) LDA-ranked test runs (Flask)

0 100 200 300 400 500

Test cases

0

50

100

150

200

250

300

F
au

lt
y

ve
rs

io
n

s

Test run profiles for Flask / RAND

(d) Shuffled test runs (Flask)

Figure 3: Test run profiles, one line per test suite run, each pixel representing a test success (blank) or failure (dark red)
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