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Abstract

Program code needs to be understood by both machines
and programmers. While the goal of executing programs
requires the unambiguity of a formal language, program-
mers use natural language within these formal constraints to
explain implemented concepts to each other. This so called
naturalness — the property of programs to resemble human
communication — motivated many statistical and machine
learning (ML) approaches with the goal to improve software
engineering activities.

The metaprogramming facilities of most programming en-
vironments model the formal elements of a program (meta-
objects). If ML is used to support engineering or analysis
tasks, complex infrastructure needs to bridge the gap be-
tween meta-objects and ML models, changes are not reflected
in the ML model, and the mapping from an ML output back
into the program’s meta-object domain is laborious.

In the scope of this work, we propose to extend metapro-
gramming facilities to give tool developers access to the
representations of program elements within an exchangeable
ML model. We demonstrate the usefulness of this abstrac-
tion in two case studies on test prioritization and refactoring.
We conclude that aligning ML representations with the pro-
gram’s formal structure lowers the entry barrier to exploit
statistical properties in tool development.

CCS Concepts « Computing methodologies — Machine
learning; « Software and its engineering — Abstraction,
modeling and modularity; Object oriented languages.

Keywords meta-objects, metaprogramming, machine learn-
ing, naturalness
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1 Introduction

The complexity of modern software systems requires col-
laboration among multiple programmers. Hence, the source
code itself becomes an artifact of communication and per-
sisted domain knowledge. The idea that programmers should
“concentrate rather on explaining to human beings what we
want a computer to do” has been a prominent hypothesis in
Knuth’s work on Literate Programming [9].

Even if modern programs are usually not “literate” in
Knuth’s sense (yet), machine learning and information re-
trieval techniques that worked well on literature and text
documents have successfully been applied to source code.
Examples include semantic clustering, a reverse-engineering
approach by Kuhn et al. [10] that uses the semantic related-
ness between identifiers to cluster software artifacts, or the
extraction of latent concepts from large source code corpora
using topic modeling by Linstead et al. [12]

More recent analyses performed by Hindle et al. in their
work on the Naturalness of Software [6] systematically show
that programs possess statistical regularities that correspond
to those exploited by the natural language processing (NLP)
community. Especially as the transition from formal (rule-
based) methods to statistical (probabilistic) methods has
proven very productive in the NLP domain, we can reason-
ably expect that software engineering can analogously ben-
efit from statistical/ML methods augmenting the currently
prevalent formal methods.

Problem An obstacle in applying these insights to software
engineering is the heavyweight infrastructure needed to con-
nect program and “black-box” ML models, and then mapping
their output back into the program. The following problems
play a role in this infrastructure and will be assessed in this
work:
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e The metaprogramming domain and the input domains
of ML models are often misaligned. For example, NLP-
based models will likely use documents or n-grams
as primary abstraction, which need to be mapped to
classes, methods, or ASTs.

e ML models have a resource-intensive training and rela-
tively fast application mode, which works well on nat-
ural language with stable meanings of words. Abstrac-
tions and the corresponding identifiers in programs
evolve much faster, requiring ML models to readjust
on-line and within the granularity of programmers’
changes.

e Introducing ML into a tool can introduce significant
technical debt, since model-specific state needs to be
passed through all interfaces that eventually need ML-
determined properties. Re-use of ML models, interme-
diate representations, and results between multiple
tools is not standardized and to the authors’ knowl-
edge rarely observed in practice.

Goal Our goal is to extend metaprogramming facilities to
provide access to the output generated by a large class of
ML models. Today’s prevalent form of metaprogramming
provides a reification of the formal elements of a program
(e.g. classes and methods in object-oriented systems), which
we call meta-objects in the scope of this work. Static analy-
sis tools, test runners, frameworks, or language extensions
can be based on meta-objects, and should be able to access
probabilistic properties computed through ML models as
well.

To address the problems stated above, our design follows
the following principles:

Mapping Each meta-object should have a representa-
tion inside the ML model. This principle should elim-
inate the need to manage mappings between meta-
object domain and ML domain in client code for using
and updating the model.

Decoupling model from application Code using prop-
erties computed by the ML model should not interleave
with code managing the ML model itself. This allows
both to vary independently so that analysis tools can
continue to focus on operating in the meta-object do-
main like they did for formal analyses.

Shared representation Different tools using the same
ML-derived properties should access them through the
same meta-objects. No separate pipelines need to be
constructed.

This is not an exhaustive list of improvements, but a first
take on overcoming misaligned inputs, outputs, and updates,
while reducing the invasiveness of ML pipelines.

In this paper, we first elaborate on the role of naturalness
in software and give a high-level overview over techniques
utilizing this information in section 2 (algorithmic details
of specific machine learning models are out of scope). In
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section 3, we then present a novel extension to Smalltalk
meta-objects for accessing this information. We proceed to
use this framework in section 4 to improve two development
tools: The automatic test runner and the refactoring capabil-
ities of the code browser, each with minimal changes to the
existing meta-object code. In section 5, we elaborate on de-
sign decisions and document the requirements an ML model
needs to satisfy in order to work in this new framework. In
section 6, we discuss related and possible future work.

2 Naturalness in Programs

Although it is possible to derive representations and ma-
chine learning input from the formal structure of a system,
their power stems from their capability to capture statisti-
cal effects associated with natural language and structure,
such as patterns emerging at run-time or in the development
process.

2.1 Manifestations of Naturalness

In programs, names, often joined from multiple words via
camel case or separators, provide the basis for communicat-
ing computational concepts. From a statistical viewpoint,
words that appear in similar contexts likely share the same
meaning (“difference of meaning correlates with difference
of distribution” [5]), which can be used to measure semantic
relatedness of program parts independently of their formal
relations between each other.

A wider range of language can be found in comments, rang-
ing from pure natural language documentation to commented-
out code. Ordering, spacing, alignment, indentation, and
other “negative space” can convey meaning by visibly group-
ing code passages and, at the same time, separating them
from less related code.

Beyond source code, related artifacts like issues, discus-
sions, pull requests, build logs, or documentation can convey
meaning. In a software repository, the version history reveals
how spatially unrelated program parts can still be semanti-
cally connected by being frequently changed together. Dy-
namic information generated at run-time plays a significant
role in program understanding, as the widespread use of
graphical debuggers or print £-style logging indicates. Con-
crete data and control flows can be observed and statistically
mined.

2.2 Exploiting Naturalness in Software Engineering

There are multiple approaches to exploit natural information
through statistical and ML models in software engineering.
A comprehensive study by Allamanis et al. identifies three
families of models [1]:

Code-generating Models statistically learn how code
is composed from simpler parts (e.g. AST nodes or
tokens). Examples are grammars with probabilities
at each rule; or n-gram language models that record
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which tokens likely follow a sequence of previous
tokens. They can be replayed to generate new code
that follows the learned conventions (code completion,
program synthesis, project migration), locate unusual
code (fault detection, code review), or generate un-
likely code for fuzzing and obfuscation purposes.

Representational Models learn a compact, semantic
representation of code (analogous to a lossy compres-
sion), e.g., embeddings into a vector space where con-
ceptually related code is in close proximity and unre-
lated code more distant'. Such representations can be
compared for “smart” code search or clone detection, or
serve as input for classifiers that predict faults. Natural
language generators can use semantic representations
as input to generate names, commit messages, or code
summarizations.

Pattern Mining extracts groups of statistically often co-
occurring features from programs. These can be struc-
tural (e.g. design patterns, high-level relationships),
lexical (e.g. topics), or mixed. A popular approach that
belongs in this category is topic modeling, where top-
ics are generated by grouping semantically related or
often co-occurring features (e.g. identifier names), and
each unit of code (e.g. class) is assigned a probability
of being concerned with each topic. In many cases,
topics can be directly mapped to domain concepts and
help with reverse engineering, search, recommender
systems, and clone detection.

In the scope of this work, we focus on expressive pro-
grammatic access to existing meta-objects rather than mech-
anisms to generate new program code or meta-objects from
ML models. Representational as well as pattern mining mod-
els are prevalent in this domain.

2.3 Working with Representations

A milestone in dealing with the inherently ambiguous and
redundant nature of human communication artifacts was
the use of representations to model their meaning in a robust,
machine-understandable way. A representation preserves
the relevant semantic properties of each linguistic item and
the relations between them without the need to store each
individual, possibly noisy, relationship. Given two artifacts
(e.g. words or texts), their relationship can be approximately
re-computed from their representations, and unobserved
relationships can be predicted effectively.

Obtaining a representation is usually preceded by feature
extraction. During feature extraction, raw data is converted to
an input representation suited for the model. Typical feature
sets are vectors with each coordinate corresponding to the
frequency of a specific word in an artifact, or bags of words.
Stemming, weighting, and the removal of frequent words
can be applied. In programs, for example, camel case can

1 Word2Vec is the analogous approach from the NLP domain [15]
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Figure 1. Illustration of a representational model embed-
ding identifiers into a vector space, preserving their rela-
tionships approximately. In some models, the axes might
reflect human-interpretable concepts (e.g. LDA), in others
(e.g. word2vec) not. Typically, the embedding has more di-
mensions (up to 300) than depicted in this illustration.

be split, and the range of features extends to syntactic and
semantic elements of the programming language.

Both representational and pattern mining models compute
output representations that indicate how specific features or
parts of the program relate to the latent concepts or patterns
mined by the model. Often, these representations are vectors,
like depicted in Figure 1, that exhibit a range of properties:

Topicality Individual vector dimensions indicate the de-
gree to which the represented entity coincides with a latent
factor or topic. One of the most widely used models that
exhibits this property is the LDA model [2]. In software
engineering, such concepts can represent parts of the imple-
mented domain, clusters of technical vocabulary, or different
coding styles among others.

Preserving semantic distance An inner product, ®, of two
representations can be defined, which results in a scalar that
indicates how closely related the two represented features or
meta-objects are. The semantic distance of units of software
has many uses in software engineering, ranging from clone
detection, over code search, to recommender systems. It can
serve as code metric with respect to coupling (inner product
between separate modules) and cohesion (inner product be-
tween module constituents). In section 4, we demonstrate
its use in prioritizing tests that are semantically related to a
change, and judging whether moving code to another class
improves cohesion.

Composing meanings Some models have additive prop-
erties, i.e., if we compose two meta-objects or features with
representations r; and ry, their composition can be repre-
sented as r; ® r,. The & operation may need to preserve
certain constraints beyond just adding vector elements, e.g.
that probabilities sum up to 1 or vector magnitudes stay
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normalized. In software engineering, composition becomes
more relevant and we need to define a standard protocol
even for models whose representations are not directly com-
posable. In this work, we rely on composition to compute
the meaning of a class from its methods, e.g. in Listing 8.

Analogical reasoning Besides composition, a small fam-
ily of representations provide semantics for subtraction,
©, of representations. With such an operation, the differ-
ence between meta-objects or features represent the relation
in which they participate. Assume we have four classes,
IntArray, String, Integer, and Char, then a representa-
tion with subtraction would approximate: 7ssring © rchar
TIntArray © TInteger> indicating the system has learned that
strings relate to characters like arrays relate to numbers.
While this property is listed here for completeness reasons,
implementing analogy in metaprogramming is left for future
work.

3 A Metaprogramming-based Interface to
Representations

Our goal is to extend meta-objects with properties that reflect
the output of a (late-bound) statistical or ML model. We
propose to introduce common abstractions for dealing with
semantic information mined from natural language elements
and other properties of a software system and attach them
to the meta-object graph.

This way, meta-objects do not purely serve as input to an
ML pipeline, but as both ends of an ML model. As a trade-
off, this accessibility at meta-object level requires the ML
model to no longer be a black box or run in a single-shot
pipeline, but to match the structure of the program and react
to changes at meta-object granularity (e.g. for individual
classes or methods).

A note on notation We use the Smalitalk language as no-
tation and the Squeak/Smalltalk [8] system as implementa-
tion platform. In Smalltalk, a program consists of live meta-
objects that can be inspected and manipulated rather than
merely source code. This simplifies dealing with the meta-
object domain compared to languages where reflection and
run-time metaprogramming has life cycles and object models
that differ from code-based or binary-based metaprogram-
ming. (In Java, for example, the Eclipse JDT infrastructure
can provide tool developers access to a method’s AST, while
reflection can provide Method objects at run-time, but nei-
ther does the AST exist at run-time, nor does a change to the
Method object affect the source code or class file. In Smalltalk,
there is only a single compiledMethod instance playing both
roles.)

3.1 Models and Meaning

In one of our case studies, we sort unit tests according to their
relevance to the most recently changed method as a way to
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prioritize their order of execution. To access representations
at meta-object level, we introduce the meaning method on
each meta-object. Obtaining the meaning of a test method
can be done using testMethod meaning.

The resulting meaning can be compared to other meanings
with respect to semantic similarity (<->) and helps us judge
the relevance of a test method given a change: relevance
:= testMethod meaning <-> changedMethod meaning.
The comparison returns larger values for more related meth-
ods with respect to the ML model. The model itself is ab-
stracted away and not a concern at this point in the program,
but can be accessed using a dynamically scoped variable
ActiveModel.

In general, we provide the following entry points:

Meaning The meaning of a meta-object m, obtainable
via the accessor method m meaning, encapsulates its
representation with respect to the model that is active
at the time of calling this method.

Model The model, accessible via the dynamically scoped
variable activeModel, determines which representa-
tion is chosen for a meaning and provides implementa-
tion for comparison and composition operators. Differ-
ent models for different machine learning algorithms
can co-exist, but only one is active at a time.

The correspondence between meta-objects, their mean-
ings, and the model is illustrated in Figure 2. By equipping
any meta-object with a meaning method, we realize the map-
ping principle.

Meaning objects provide the following two operations:

Comparison The comparison m1 <-> m2 between two
meaning objects implements the inner product © of
their encapsulated representations and returns a nu-
meric value indicating how similar the underlying
meta-objects are.

Composition Creating a new meaning by composing
two meta-objects’ meanings mc := ml + m2 results in
a representation for a (hypothetic) meta-object consist-
ing of the two initial meta-objects. This implements
the composition operator @.

Implicit models Instead of writing

model meaningFor: m, we prefer the shorter notation m
meaning, With meaning then invoking the dynamically scoped
variable Act iveModel via a mechanism described in section 5.
This design is controversial from a modularity viewpoint, be-
cause meta-objects are extended by ML-specific functionality
rather than keeping the new functionality separate and im-
porting it when needed. However, we found that it eliminates
the need to pass a model object through several interfaces
and discourages storing a (potentially outdated) model in
some field. In Smalltalk, we have several mechanisms to ex-
tend existing abstractions in a modular way, e.g. through
extension methods (defined at a class from one package but
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Figure 2. Correspondence between meta-objects and representations in an ML model, and the role of Meaning objects as

abstraction over the representation details chosen by the model.

loaded and version-controlled by a different software pack-
age) or context-oriented programming (outlined in section 5),
which keeps the development life-cycle of the mechanism
separated from the core reflection APL

4 Case Studies

In this section, we show how a fully decoupled ML model
can be used from within the meta-object domain, using two
examples that make heavy use of metaprogramming and
benefit from integrating ML-learned representations: test
prioritization and automated refactorings.

4.1 Test Prioritization

Unit and regression testing is a widely practiced approach to
detect faults during software evolution. However, test suites
for larger software projects tend to run for several hours,
thereby limiting how often they are run, how up-to-date
their feedback is, and how easy a defect can be fixed when
finally found.

The goal of test prioritization is to identify tests that most
likely fail and run them earlier. This both reduces the time
to obtain feedback in the presence of faults, and increases
the confidence in test results when only a limited set of tests
is run due to time constraints.

There are two major approaches: the static approach takes
a program and a set of tests as input and tries to order tests
in a way that large parts of the program are covered early on,
while moving redundant, long-running, or highly specific
tests into later stages. Change-based prioritization takes the
most recent change as input and predicts which tests best
detect faults introduced in this particular change. In this case

study, we extend an existing change-triggered test runner to
apply change-based prioritization before running tests.

Prioritizing by meaning Since changes and test cases can
be considered collections of meta-objects as well, they have
a conceptual meaning within the program. Since we defined
an inner product on representations that yields a number of
their relatedness, we can use this as a metric to compare tests.
The priority p of a test ¢ in response to changed meta-object
m can be expressed as p(t, m) = R(t) © R(m) and thus allows
tests to be sorted beforehand.

The AutoTDD runner Smalltalk has a change-triggered
test runner, AutoTDD, that runs a previously selected test
suite after every individual method update. During configu-
ration by the user, it creates a Testsuite object consisting
of Testcase instances, each test case instance represent-
ing a test method (implemented at that specific class) to
be executed. The runner then attaches itself to Smalltalk’s
SystemChangeNotifier and, whenever a method within the
scope of the test suite is changed, all tests are re-run. The
change event is an instance of ModifiedEvent that refer-
ences the old meta-object and the new version replacing
it.

Prioritizing tests To implement test prioritization, what
needs to be done is parametrizing the TestautoRunner >>

runsuite method (which gets called in the event handler
upon modification) to runSuiteGiven: aMethodChange in
order to pass the current change to the test suite, and in-
stead of only iterating over Testsuite >> tests, the runner



META 19, October 20, 2019, Athens, Greece

Listing 1. Sorting Tests
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Listing 2. Checking a refactoring

TestSuite >> prioritizedTestsGiven: aMethodChange
| changeMeaning |
changeMeaning := aMethodChange newMethod
meaning.
~ self tests sorted:[:testMethodl :testMethod2 |
(testMethodl meaning <-> changeMeaning)
> (testMethod2 meaning <-> changeMeaning) ]

now iterates over TestSuite >> prioritizedTestsGiven:
aMethodChange, allowing it to yield sorted test methods in
response to the current change.

We use the <-> operator, which asks the ML model to
compute the inner product (®©) between a test method’s rep-
resentation and the changed method’s representation (see
Listing 1).

Choosing a model Test prioritization itself already works
with simple lexical models. For our initial prototype, the
model extracts identifier names from each meta-object. The
representation is a multi-set of these features, with the inner
product defined as the relative size of their intersections.
Composition is realized as (multi-)set union. More sophis-
ticated lexical models for test prioritization, including TF-
IDF-based and LDA-based variants have been discussed in a
previous study [14] and implemented in Smalltalk using the
new abstractions. In the LDA case, the model needs an initial
setup to configure hyper-parameters and train for several
iterations. The model registers as change listener, so any
new method or change in the specified package causes an
incremental re-training. Using such a model in test prioriti-
zation can detect introduced defects within the first few unit
tests, as shown in [14].

Discussion At this point, no direct reference to any ML
model has been made, as our entry points to access the ML
representations are fully defined by the meaning property
of the meta-objects. The meta-objects themselves, however,
must be passed to a suitable location, which required most
of the changes in adapting the AutoTDD runner.

The sort method uses merge sort, requiring a number of
comparisons in O(nlog n). Each comparison requests repre-
sentations of two method meta-objects. If the model itself
provides lazy caching, there is only the need to compute
n representations (with n being the number of test meth-
ods). An eager caching strategy, with the model listening
for any changed test method and updating their representa-
tion proactively, requires no computation of representations
during test runs, which might even be the preferable option
given our goal to reduce feedback time during tests.

The quality of the prioritization results and their perfor-
mance now depends on which model is being set up. This
raises the question of the scope in which a model is active
- in this case, we might want to have either a global scope,
i.e., the test runner uses the system-wide default model, or a

Browser >> dropOnMessageCategories: method at:

index
"

... "drag/drop handling

destinationMatchesSemantically :=

(destinationClass meaning <-> method meaning)

> (sourceClass meaning <-> method meaning) .
destinationMatchesSemantically ifFalse: [

"y st £

let user confirm the move"]

tool/ module scope, where a model optimized for test priori-
tization is active anytime the control flow originates from
any module in the test runner package.

4.2 Refactoring

Refactoring often aims at improving the modularity of a
program. With a representational model, we can quantify
modularity in terms of semantic similarity (inner product).
If, for example, our aim is to move a method to another class,
we can check if the destination class provides a more similar
environment to that method than the original class.

In Squeak/Smalltalk, we can instrument the code browser
that handles a simple variant of the Move Method Refactoring
by drag and drop: in Listing 2, we compare the similarities
of the dragged method to both classes and request user con-
firmation if the change would move the method to a less
related class.

Reified refactorings The Smalltalk Refactoring Browser
[16] was one of the earliest tools to help programmers per-
form a range of common behavior-preserving modifications
without manually editing the code. In this tool, refactorings
are reified, i.e., they store the relevant configuration and pro-
vide a method to eventually re-write the source code. We can
add an analogously simple code snippet to the transform
method of a MoveMethodRefactoring to check the above
constraint, see Listing 3.

Most refactorings can be extended by an effectiveness
metric that takes the difference between modularity before
and after the refactoring. For example:

Analogously, renaming a class or extracting parts of an
AST into another method can easily compare the fitness of
their new name given the code.

Discussion Refactorings, especially the reified family used
by the Refactoring Browser, are formal and meta-object-
heavy operations that can benefit from insights generated
by machine learning. The new capability to not only rely
on formal modularity metrics (e.g. tight class cohesion or

Listing 3. Computing the effectiveness of a refactoring

RBChangeMethodNameRefactoring >> effectiveness
| methodMeaning |
methodMeaning := (self class >> oldSelector)
parseTree body meaning. "inc ts"

~ludes comments
(newSelector meaning <-> methodMeaning)
- (oldSelector meaning <-> methodMeaning)

~
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cyclomatic complexity [11]) but to factor in naturalness, al-
lows these refactoring metrics to quantify how well the intent
to refactor towards semantically coherent modules is met.
Even if improvement of cohesion is insignificant in most
smaller refactorings, a scoring mechanism can prevent code
relocations to completely unrelated classes by mistake or
misunderstanding.

In programming environments, suggesting names based
on their adequacy for the module they describe, or highlight-
ing the most promising targets for code-moving refactorings,
can now be implemented based on the refactoring effec-
tiveness. Combining natural and formal modularity metrics
gives rise to future work on evaluating and recommending
refactorings.

Shared representation Both test prioritization and refac-
toring can rely on the same model and even re-use the rep-
resentations. The Meaning instances that become updated
following the change event triggered by the refactoring are
immediately available to the prioritizing test runner. This
demonstrates our third principle — shared representation — in
action.

5 Implementation

This section elaborates on design and implementation deci-
sions underlying the meaning/model protocol.

ML meodels as context The primary entry point is the
method meaning on any meta-object. The returned object
encapsulates the implementation details of the meta-objects’
representation in the currently active ML model. A design
decision is how the model can be properly separated to not
interfere with code operating in the meta-object domain, as
required by our principle of decoupling model from applica-
tion.

Both dynamic variables [19] and context-oriented program-
ming [7] are suitable to separate ML model from meta-object
code:

As a dynamic variable, a model can be brought in scope
during certain control flow. Any code requiring the model
asks the dynamic variable ActiveModel. At the point of
configuration, programmers can use ActiveModel value:

model during: [code] to run code under the specified
model model (see Listing 4).

In context-oriented programming (Listing 5), the model
can become a layer that provides method adaptations when
activated. In contrast to a dynamic variable, client code does
not need to address the active model, but provide variation
points (methods), which the layer will dynamically override.

If the host language supports dispatch on multiple argu-
ments, which is not the case in Smalltalk, a multimethod can
serve the same role.
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Listing 4. Dynamic variable and double dispatch

CompiledMethod >> meaning
~ ActiveModel value meaningOfMethod: self

Class >> meaning
~ ActiveModel value meaningOfClass: self

Model >> meaningOfMethod: aMethod
~ self represent: aMethod parseTree

Model >> meaningOfClass: aClass

"

compute representation or aclass

ActiveModel value: myModel new during: [
metaObject meaning].

Listing 5. Context-oriented Programming

Object >> meaning

erault 1mplementation

Model (layer) >> CompiledMethod >> meaning

" A 17e ~+1 Ao me B aYed 1 F ~Yalal v
override meaning if a ve

~ thisLayer représent: self parseTree

"

layer) >> Class >> meaning

representatio f

entctacliol O cClass

myModel withLayerDo: [
metaObject meaning].

While the context-oriented variant provides stronger sep-
aration between model and meta-objects and avoids double-
dispatch to obtain specific representations for each type of
meta-object, it raises complexity by using a non-standard
language concept. With dynamic variables, only a single
model can be active, while layers allow multiple models to
be stacked and provide composition semantics. Dynamic
variables are sufficient for the use cases in this paper, so we
continue to use them and leave a context-oriented imple-
mentation for future work.

5.1 Meaning Objects

Our Meaning objects require information about the model
that generated them, the meta-object they represent, and
operations to compare and combine them.

Structure of Meaning instances Each Meaning instance
holds the following private state:

e The model that owns this representation,

e The features, i.e., the input representation to the ML
model, per default a set,

e The output representation, whose type is specific to
what the model’s implementation uses

e The version the model had when generating this in-
stance, since re-training/updating the model invali-
dates all existing representations,

o The meta-object represented by this instance, to avoid
duplication of data already present in the meta-object.
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Listing 6. Implementing the similarity operator

Toni Mattis, Patrick Rein, and Robert Hirschfeld

Listing 7. Implementation of the composite meaning

Meaning >> <=> other

"(ensur

e ire sa sion) "

~ self model

similarityBetween: self representation
and: other representation

The construction of such an instance involves the follow-
ing steps:

1. The model is asked to provide the meaning for the
requested meta-object, double-dispatching according
to its type.

2. The model retrieves the meta-object features (e.g. words),
again a double-dispatch protocol is used that leaves
variation points for different feature extraction rou-
tines and re-use.

3. The model retrieves its representation of the given set
of features (e.g. a vector) and constructs the Meaning
instance.

4. Features and representations remain cached. The rep-
resentation cache must be discarded if the model is re-
trained, both must be discarded when the meta-object
changes.

Inner Product In common scenarios where naturalness
is utilized, the representations of meta-objects are used to
compute similarity. Examples include recommender systems,
where similarity to a context or task decides which item is
proposed, information retrieval, where similarity to a query is
used to rank results, or software modularity, where similarity
of items between modules relate to coupling and within a
module to cohesion.

The analogical mathematical concept underlying similar-
ity is the inner product between two representations,
R(m;) ® R(my) with R being the representing function and
m; any meta-object. In Smalltalk, the <-> operator (Listing 6)
is used.

It is only defined between Meaning instances of the same
model having the same version.?.

Composition When a meta-object is composed of other
meta-objects (e.g. classes consist of name, superclass, class
comments, fields, and methods), representations of the con-
stituents can be reused to infer the meaning of their compo-
sition. However, not all representations lend themselves to
simple composition: While models like word2vec [15] can ap-
proximate the meaning of compound sentences from adding
individual word vectors, a probabilistic topic model would
need to recompute the most likely representation not just
from the constituents’ representations but from their fea-
tures.
We therefore provide two ways to compose meaning:

2Not storing derived properties from meta-objects for a long time is ad-
visable in general, and in this case not only the meta-objects but also the
model can change, invalidating the stored representation

CompositeMeaning >> features
~ self meanings gather: [:meaning |
meaning features]

CompositeMeaning >> representation
~ self model collapseComposite: self

Model >> collapseComposite: aCompositeMeaning
~ self representationForFeatures:
aCompositeMeaning features

Immediate Composition R(m.) = R(m;) ® R(m;),
where @ is provided by the model

Destructuring Composition First, R(m) is explicitly
modeled as R(m) = r(f(m)) where r computes the rep-
resentation of a set of features, while f extracts these
features from meta-object m. Then, R(m;) & R(my) =
r(f(my)Uf(msy)),i.e., the combined set of features from
both metaobjects is jointly represented. In contrast to
immediate composition, which may apply normaliza-
tion or other non-associative operations, this operation
is associative and commutative. The implementation
of this mechanism is visualized in Figure 3.

Most models from the NLP domain support destructuring
composition, because they originally worked on documents.
Joining the features of two documents treats them like a
single concatenated document. In our implementation, de-
structuring composition is performed by default, unless a
hook (Model >> collapseComposite:)in the modelis over-
ridden to directly compose two Meaning instances.

To model intermediate results during composition, we
introduce the compositeMeaning class, which holds a col-
lection Meaning objects, including other composites, and a
NullMeaning, which will return the other meaning object
whenever composed and yields an empty set of features if
queried.

When asked for the representation, the compositeMeaning
recursively collects the features from child meanings (imple-
mented by Meaning >> features, see Listing 7) and passes
them to the model to be converted to the final representation.
A composite meaning can be associated with a meta-object
or a collection of meta-objects, in which case the representa-
tion will be cached and retrieved once the same meta-object
or collection occurs again.

5.2 Model Objects

To implement an own model, Mode1 needs to be subclassed
and the following interface implemented:

e For each type of meta-object, a method
featuresFor<T>: a<T> Wwith <T> being the class name
(double dispatch). This should return a collection of
features the model needs to represent the particular
meta-object.
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Figure 3. Compositional structure of meanings over their
corresponding meta-objects. Data flow via features is high-
lighted. All data flows are supervised by the model.
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Listing 8. Representing a class as composition of its methods

Model >> meaningForClass: aClass
"~ (aClass selectors

collect: [:selector | (aClass >> selector)
meaning])

inject: Meaning null

into: [:methodMeaningl :methodMeaning2 |

methodMeaningl + methodMeaning?2].

® representationForFeatures: which takes a collec-
tion of features and returns their representation within
the model.
® similarityBetween: rl and: r2 computing the in-
ner product r; © r, from two representations.
Around this minimal core, which already covers a wide
range of simple models with word-like or n-gram features
like word2vec or LDA-style topic models, a number of hooks
can be overridden:

® representationFor<T>: can be overridden for spe-
cific types of meta-objects <T> to bypass feature extrac-
tion and directly emit a representation. This is useful if
the model has already pre-computed a representation
as part of the training phase.
® meaningFor<T>: can analogously be overridden to pro-
vide specific Meaning instances or custom subclasses,
e.g. as part of an optimization that requires the Meaning
to cache additional information, or to override the
composition operator.
® collapseComposite: to implement a custom resolu-
tion for composite meanings.

The default implementation of meaningForClass in List-
ing 8 illustrates how composition can be used to express the
meaning of a class as the sum of their methods.

Observer protocol To keep a model up-to-date, it needs to
subscribe to the systemChangeNotifier after initial training
and implement an event handler to deal with meta-objects
changing. Different types of changes (add, remove, change) of
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methods and classes need to be handled, but not necessarily
immediately.

6 Related Work and Outlook

ML in Software Engineering State-of-the-art models used
in software engineering go beyond the meta-object domain:
Saeidi et al. [17] make use of kernel-based methods to learn
representations of software modules that encode relation-
ships in the evolutionary and dynamic domain as well by
considering version history and call graphs.

The idea of representing changes as first-class meta-objects,
e.g. via Change Boxes [4] and representing them inside a
model that is capable of dealing with evolutionary informa-
tion is appealing — it allows the model to “understand” what
a change is about and, at the same time, learn new semantic
correlations from co-changed program parts.

Tool building frameworks Frameworks that aim at build-
ing development tools, like Vivide [18], can benefit from
added capabilities of meta-objects. Since building tools with
Vivide requires the implementation of relatively small trans-
formation steps that extract the desired information from
meta-objects, dealing with ML models would have been pro-
hibitively complex before. Having access to the meaning of
each object, however, allows individual parts of a tool to
quickly sort by relatedness to another meta-object, cluster,
or visualize large collections of meta-objects by projecting
their representations in 2D.

Mirrors Mirrors are a reflection concept that inspired our
dual architecture. Mirrors are separated from the objects
they reflect on and thus provide what Bracha et al. [3] call
encapsulation, stratification, and ontological correspondence.
Our meaning infrastructure realizes both encapsulation by
separating the meaning interface from a concrete ML model
implementation, and to a limited degree ontological cor-
respondence by following the compositional structure of
programs through composite meaning objects. Stratification
is not fully achieved, as each meta-object is directly extended
by the meaning method. A context-oriented approach where
access to meanings is modularly separated into a layer would
be more stratified.

Concept-aware IDEs Programming environments that “un-
derstand” what code is about [13] can help with a wide range
of program comprehension and engineering activities. Min-
ing a code base for concepts that constitute semantically
connected source code locations, e.g. via topic models, and
identifying their distinguishing vocabulary, can help with
reverse engineering activities and highlight refactoring op-
portunities. Code completion can sort suggestions by seman-
tic relatedness to the current context, changes can trigger
recommendations for related code locations that are likely
relevant, and code search is more robust when based on
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conceptual similarity rather than exact lexical matches. Pro-
viding access to concept-level information at meta-objects
minimizes the changes required at tooling level to implement
this functionality.

7 Conclusion

Applications of machine learning in software engineering
are often approximative and unsound, as they make prob-
abilistic statements about the system rather than deducing
formal properties. Similar approaches have proven power-
ful in the domain of natural language, where ambiguity,
redundancy, and noise would make formal models too brittle.
Analogously, many parts of programs that are essential for
their comprehension, such as names, have meaning beyond
their formal role. This “natural” aspect can be utilized by
natural-language inspired ML techniques and put to use for a
variety of development activities, often in liaison with formal
methods.

Metaprogramming and its corresponding meta-object do-
main have been representing formal elements of programs
in the past and are frequently used in analyses and program-
ming tools. Introducing the capabilities of machine learning
by giving programmers access to the natural meaning of
each meta-object as determined by an ML model serves as
important starting point to better integrate ML models with
programming environments. We could demonstrate in our
test runner and refactoring case studies that meta-object
code can, without major changes, directly prioritize tests or
judge the quality of a refactoring based on their similarity
in the natural domain.

We conclude that much of the architectural overhead,
which is rarely addressed by the research of ML in software
engineering, can be eliminated through such a framework.
With the possibilities of machine learning readily available
for metaprogramming, future ML-based programming tools
might also integrate better into the programming workflow,
like code completion, syntax highlighting, or graphical de-
bugging already do today.
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