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Abstract

To design and implement a program, programmers choose
analogies and metaphors to explain and understand program-
matic concepts. In source code, they manifest themselves as a
particular choice of names. During program comprehension,
reading such names is an important starting point to un-
derstand the meaning of modules and guide the exploration
process.

On the one hand, understanding a program in depth by
looking for names that suggest a particular analogy can
be a time-consuming process. On the other hand, a lack of
awareness which concepts are present and which analogies
have been chosen can lead to modularity issues, such as
redundancy and architectural drift if concepts are misaligned
with respect to the current module decomposition.

In this work-in-progress paper, we propose to integrate
first-class concepts into the programming environment. We
assign meaning to names by labeling them with a color corre-
sponding to the metaphor or analogy this name was derived
from. We hypothesize that aggregating labels upwards al-
ong the module hierarchy helps to understand how concepts
are distributed across the program, collecting names belon-
ging to a specific concept helps programmers to recognize
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which metaphor has been chosen, and presenting relations
between concepts can summarize complex interactions be-
tween program parts. We argue that continuous feedback
and awareness of how names are grouped into concepts and
where they are located can help preventing modularity issues
and ease program comprehension.

As a first step towards an implementation, we define crite-
ria that help to detect names belonging to the same concept.
We then investigate how techniques from natural language
processing can be re-used and modified to compute an initial
concept allocation with respect to these criteria. Eventually,
we show design sketches how we plan to arrange and pre-
sent concepts to programmers through tools, and what kind
of information they can provide to help programmers make
informed implementation decisions.
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1 Introduction

Programming is an activity that extends far beyond typing
source code into an editor and occasionally investigating
execution state in a debugger. To design and implement a
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program, programmers have to make a large number of deci-
sions on how to map real-world ideas to concepts understood
by the execution environment at hand. Naur described this
process as theory building and the resulting mental model
as the theory that allows its possessors to effectively create
and manipulate programs[10]. Therefore, it is crucial that
programmers cognize this theory to succeed at editing an
existing program or module they have not yet worked with.

Explaining concepts through analogies We assume that
a significant portion of the theory building consists of fin-
ding analogies. Whenever we recognize the structure of an
already understood concept in a new idea, it provides us with
vocabulary to talk about the new idea as well as hypotheses
on how to deal with and what to expect from it. Such ana-
logies range from simple metaphors, e.g., an object named
stack suggesting that things can be pushed onto and popped
off its top, to composite domain concepts, e.g., that a traffic
network consisting of intersections and roads is analogous
to a graph with vertices and edges, that an asynchronous
control flow can be understood as a promise, or that a struc-
ture should be traversed using the Visitor design pattern.
This analogy-making process plays a central role in the ab-
straction' process that separates implementation details from
external presentation. A recent, more detailed description
of how metaphorical reasoning helps programmers can be
found in [15].

Problem statement Programming environments are obli-
vious of the fact that names carry meaning. Names are only
aliases to be eventually resolved to executable code or me-
mory locations using string matching. At the same time, pro-
grammers trying to recognize the underlying theory tend to
rely on names and the analogies they suggest. They provide
programmers with a heuristic to form testable hypotheses on
the program’s structure and behavior, e.g., seeing the messa-
ges push and pop successively sent to an object suggests that
the latter resolves to the same object that was pushed before
and lessens the urge to investigate further. The theory has
been simplified by making an analogy. However, discovering
concepts based on scanning for revealing names and how
they relate to each other can be a time-consuming process
[4]. Most programming environments dictate the way in
which code can be arranged and modularized, often in a
hierarchy, causing cross-cutting concepts to become scatte-
red, and modules to lose their coherence by accommodating
parts of a scattered concept. This comprehension process be-
comes even more challenging when the concepts gradually
sheer from the initial module decomposition during pro-
gram evolution, a process referred to as architectural drift.
A lack of awareness of the chosen analogies can also lead
to inconsistent classification and naming, e.g., by introducing
synonyms instead of using a single name for the same idea,

!n the SICP sense of data and procedural abstraction[1].
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or duplication by failure to recognize a very similar concept
somewhere else.

Towards first-class concept support in development en-
vironments Our goal is to address these challenges in pro-
gram comprehension and modularity by providing concept-
awareness to programming environments.

In our proposed model, each occurrence of a name would
carry one or more context-dependent labels that represent
which abstract concept or analogy this particular term was
derived from - imagine the variable named vertex to carry
a graph label when used as the mathematical concept, or a
geometry label when it is used in the context of a 3D renderer.
These labels can be accumulated and propagated upwards
in the hierarchical structure of the system, making it easier
to recognize at top level how concepts are distributed.

Retrieving all names that carry the same label allows to
assess the analogy or metaphor that has been chosen for
this particular concept. The concentration of labels within
a module provides a metric of coherence, and architectural
drift can be observed by a flux of labels between modules
during program evolution. At run-time, these labels can be
propagated to live objects and call frames, giving semantic
meaning to dynamically emerging parts of a program.

The standard tools in a programming environment, e.g.,
an editor or graphical debugger, can view these labels or
their summarized proportions on demand and provide addi-
tional navigation by concept to locate or recommend related
artifacts. Run-time propagation and analysis of concepts al-
lows to better retrieve relevant data and call frames during
debugging sessions. Integration with version control allows
to track concepts, quantify how concepts tend to misalign
with modules over time, and make refactoring decisions to
counter this trend.

As a first step, we acquire the labels using a statistical
approach based on name co-occurrence. Later, this approach
can be extended to include programmer feedback.

Choice of environment In the scope of this work, we will
discuss primarily object-oriented languages with class and
package/module support, since they are widely used and
serve as example for hierarchical decomposition. For expe-
riments, we chose the Smalltalk environment Squeak [8],
since it allows quick prototyping of tools and immediate
feedback during exploration. In Smalltalk, all program parts
are readily available as live objects, which greatly supports
building tools that operate on the program, and allows us
to extend this live object graph with support for first-class
concepts.

2 Finding Concepts

In our approach, lexical tokens should carry semantic labels.
Each label is uniquely defined by the position of the token it
is attached to and the concept it denotes. Since we have no
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City » planRouteTo: destination
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Figure 1. A piece of source code with concept labels. Diffe-
rent colors indicate different concepts.
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Figure 2. A concept overview with the most salient names.
Concepts can refer to other concepts when they use them
for their implementation. The strength of usage is denoted
by arrow size.

clear definition what concept means, apart from the cognitive
image induced by looking at its vocabulary and structure, we
will refer to the label’s concept as color. Instead of imagining
the two variables vertex and edge having a label saying graph
on it, just imagine they have a blue tag on them, like in
Figure 1. The programmer might get the idea that blue means
graph by looking at the parts of the program that are colored
blue.

Concepts itself should not be standalone bubbles of voca-
bulary, but need to be linked to other concepts reflecting the
way different modules associated with these concepts inte-
ract (see Figure 2). Concepts should be as independent from
the current modularization of the program as possible, since
they will be used to assess the modularity of the program
from a more independent viewpoint.

Given the large number of labels, we propose to follow
a semi-supervised learning approach: Most of the label as-
signments are found using an automated technique while
giving programmers the chance to manually intervene and
correct proposed labels or concepts. To bootstrap an initial
label assignment, we need to investigate clues about which
tokens should carry which labels.

2.1 Detecting Names

Our first goal should be to find the names that programmers
have chosen. Typical places include the names of variables,
arguments, classes, methods, fields, and types. Moreover, short
strings or, in case the language has syntax for it, symbols,
carry meaning. They can be found as dictionary keys, in
metaprogramming, error messages, etc. Operators can be re-
garded as names when defining and overloading operators is
common in that language. In Smalltalk and related languages
there are class categories and method categories (protocols)
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Table 1. Co-occurrence scores for a few pairs of names

1 1) E(t, 1)
visitor accept 70.1
bounds origin 13.7
collect select 6.8
collect color 1.5
visitor color 0.0

for refined grouping of classes and methods, while other
languages may have package names.

Each of these lexical tokens can be constructed from mul-
tiple names, which justifies the decision to attach multiple
labels to a single lexical token. Typical examples are camel-
case and underscore identifiers like isEmpty or open_file,
or Smalltalk’s multi-part messages at : put :, where each part
can be camel-cased again. Our analysis is not constrained
to nouns, or even actual words, but builds an exhaustive
vocabulary of potential names used in the source code.

Most language keywords do not convey a programmer-
chosen analogy and can be removed from the analysis. When
confronted with pseudo-variables, such as this or self, one
can either ignore them or attach context-dependent labels.
In Smalltalk, we suggest to propagate labels from the class
to self.

2.2 The Distributional Hypothesis

In semantics, the distributional hypothesis states that two lex-
ical tokens that share meaning also share the same statistical
distribution of where they occur. That means, they are more
likely co-occurring (and co-missing) than two unrelated to-
kens.

If the lexical tokens in a program are derived from analo-
gies, the distributional hypothesis should hold for program
source code as well. For example, when a structure resembles
a graph and programmers decide to name the parts vertex
and edge, they will be more frequently occurring together
than, e.g., vertex and compile.

We can demonstrate this phenomenon using identifiers
found throughout the Squeak/Smalltalk image. For two iden-
tifiers ¢; and t, we compute the proportion of methods®
they occur in, f(#;) and f(t;). We also count in which pro-
portion of methods both terms are present, f(t;,1,). If the
occurrence of both terms is statistically independent, then
f(t1,t2) = f(t1)f(t2) would hold, otherwise they would be
co-occurring in a higher proportion. Hence, we can use the

. A t, £
ratio F(ty, t) = J%
the following terms. Values close to 1 indicate random co-
occurrences, larger values indicate shared concepts, smaller

values suggest mutual exclusion.

to measure semantic relatedness of

Znumber of methods containing the term divided by the total number, here
74589, for Squeak 5.1 excluding empty methods and accessors.
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The values computed in Table 1 indicate that visitor and
color never occur together, collect and color at least share
some usage, but not significantly more than if they were
independent. The other pairs show increasing affinity, with
visitor and accept being one of the most correlated name
pairs in Squeak/Smalltalk. collect and select are part of the
Smalltalk collection protocol.

Concerning our label-name model, we should ensure that
having a label of the same color corresponds to a high co-
occurrence score, using either the F metric or a similar me-
asure, e.g., pointwise mutual information®. We will discuss
formalizations of that optimization problem later when we
discuss algorithms to solve it.

Determining the number of concepts Our objective can
be formalized as an optimization problem* that will generate
color-name-assignments for any number n of colors specified
in advance. For smaller values, e.g., n = 3, there is not much
information for programmers except a very rough decom-
position. For larger numbers, such as n = 300, programmers
can become lost and we would need a lot of data (gigabytes of
code) to have sufficient support for distinguishing hundreds
of different concepts.

We propose to address this issue by allowing experts to
split, join, and create new concepts when the original parti-
tioning seems unfit.

A second option would be a hierarchical approach, in
which we establish a tree of colors, where each internal node
represents a higher-level concept and its children smaller
sub-concepts. This allows to increase the number of colors
without sacrificing clarity, because a node that is too fine
grained for the given task can be collapsed, its distinct colors
are then represented as a single one again. In this scenario,
the labels attached to each name would describe a path from
the root of the tree to a leaf.

Granularity of co-occurrence neighborhood Through
defining co-occurrence as being part of the same method, we
achieve a simple, yet effective baseline to automatically dis-
tribute labels. However, methods are a modularity concept
themselves, which makes them susceptible to design defects
and architectural drift. The optimization criterion still works
reasonably well on a large number of methods, since inco-
herence within individual methods appears to cancel out
statistically.

However, we should regard the neighborhood in which we
define co-occurrence as interchangeable and explore further
definitions of that relation, for example:

e Names in the same class. This works for large numbers
of classes, but we lose information due to the coarser
granularity. In the example above, F(visitor, accept)

3pmi(ty, ) = logzﬁ(tl, ty), resulting in 6.13, 3.78, 2.77, 0.64 and —oo bits
for the above example.
4Variants of what can be optimized are discussed in subsection 2.4.
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Figure 3. llustration of two neighborhood definitions, green
indicates a’s neighborhood, orange b’s neighborhood. On
the left, everything inside the same method is defined as
co-occurring with the reference names a and b; if both are in
different methods, they have disjoint neighborhoods. On the
right, co-occurrence is defined by maximum distance within
the abstract syntax tree which may extend into method, class,
and package nodes; neighborhoods may overlap.

would shrink to 18.7 and ﬁ(collect, select) to 4.9, ma-
king their relative co-occurrence less salient.

e Names not more than n edges apart in the abstract
syntax tree (AST) of the method. This gives high lo-
cality and is stable against a lot of perturbations (e.g.,
the extract method refactoring mildly affects the neig-
hborhood of most names). We have not implemented
this scenario yet.

A graphical comparison between method-based and AST-
based neighborhoods can be seen in Figure 3.

2.3 Summarizing Abstractions and Dependencies

A method or other unit of modularity is typically not self-
contained, i.e. it makes use of other units and is being used
by units building on top of it. This naturally limits the cohe-
rence of names within a unit, since it tries to express itself
consistent with one analogy while internally depending on
vocabulary exposed by other concept’s interfaces, e.g., a stack
using a list internally.

Such abstraction barriers still manifests as highly corre-
lated names using undirected co-occurrence metrics like F |
and therefore force different sides of the abstraction barrier
into being labeled with the same color, although both might
be different concepts.

To incorporate this phenomenon, we relate names that are
provided publicly (e.g the method name push of a stack) to
names that are prevalent in the respective implementation
(e.g., a call to add in the underlying list).

A simple way is to adapt occurrence and co-occurrence
measures f and F: First, we define f,(t,) as the proportion of
methods carrying #; in their signature including argument
names, and f;(f;) as proportion of methods that use ¢, in their
implementation. Analogously, we define f,;(;, f;) as the pro-
portion of methods matching both criteria at the same time,

fai(tl» tZ) ThlS

and the directed co-occurrence f(tl, t) = A AE
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would be approximately 1 if both terms were used indepen-
dently and increase with higher correlation.

In our Squeak/Smalltalk image, we compute F and two
directions of F to collect evidence for the following hypot-
heses:

o The drawing metaphor (draw, canvas, color, ...) often
makes use of the geometry concept (bounds, corner,
origin, ...):

- F(draw, bounds) = 15.46
- ﬁ(draw, bounds) = 17.08
-F (bounds, draw) = 7.43

e The parser concept often makes use of streams:
- ﬁ(parse, next) = 2.18
- ﬁ(parse, next) = 3.29
- ﬁ(next, parse) = 1.43

In this example, the directed measure is higher than the
undirected version and largely exceeds the inversely directed
measure, giving strong evidence for the orientation of the
abstraction barrier.

We can extend the initial optimization problem that na-
mes with high co-occurrence should receive labels of the
same color by allowing labels of different color if the directed
co-occurrence is significantly higher in one direction. Ad-
ditionally, we should keep track of the transition choices,
i.e. how often which abstraction color has been linked to
which implementation color and make sure each of these
concept transitions have the maximum expected directed (ﬁ )
co-occurrence in addition to each individual color having
maximum expected undirected (F) co-occurrence between
pairs.

Again, the F measure can be seen as a placeholder in this
framework, and might as well be replaced by probabilistic
or information-theoretic measures.

2.4 Algorithms

Topic Models The distributional hypothesis is extensively
exploited in natural language to extract topics of co-occurring
words. Similar to our approach that starts with defining co-
occurrence within methods, topic models typically operate
on natural-language documents, often represented as an
unordered histogram or multi-set of words, called the bag of
words model. The colors of our labels correspond to topics,
methods (or any co-occurrence neighborhood) can serve as
documents.

Topic models are particularly useful because of their cold-
start capability. Without any prior knowledge on real-world
concepts, they are capable of guessing concepts from statis-
tical co-occurrence only.

Adapting LDA A prominent topic model is Latent Diri-
chlet Allocation (LDA)[6]. Related work [9][3][5][11] has
frequently applied LDA to source code in order to interpret
the discovered topics as concepts, so we are confident that
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LDA gives us a good starting point for computing an initial
label assignment.

LDA describes a random process that serves as a model
how documents are generated. This probabilistic model can
be turned around (in the sense of Bayes’ Rule) and instead of
generating documents we can estimate the models parame-
ters that most likely generated an observed set of existing
documents.

Metaphorically speaking, the model equips us with a num-
ber T of differently colored, unfair word dice, all of them
having all the available words on their sides but with dif-
ferent chances of rolling them. They represent topics (e.g.,
the blue die would roll the words push and pop more fre-
quently than draw and canvas, as opposed to the orange die).
A document is the result of a set of subsequent dice rolls.
Additionally, each document itself has a unique T-sided die
which has each die color on its sides. It is rolled first to decide
which of the T dice should roll the next word.

The task is to find out the weights of the dice, i.e. which
die rolls which word how often, and how the document-
specific multi-colored T-sided dice are weighted. The weight
assignment should maximize the probability of the observed
documents.

Our labeled-name model fits well in the LDA framework,
since the colors of the labels correspond exactly to the color
of the die in the above analogy that generated that name.
LDA does not maximize the mutual F measure, but a joint
probability instead. A standard algorithm, which we can also
use for our purpose, is known as Gibbs sampling [7], which
we do not describe in detail in this paper. It is a randomized
algorithm that generates a series of increasingly likely po-
tential topic (or color) assignments to each word or name.
By observing these assignments over a large number of ite-
rations, the most frequent one can be chosen as our concept
label, or even multiple ones if they are almost tied.

When we compute the average co-occurrence score (F) of
the ten most likely words in each topic, i.e.,
Fy = 3 z}im E(t;, t;) for t being the topic’s words
sorted descending by frequency, we obtain values between
1.7 and 7.2 across six topics, averaging to 3.4. These values
can be compared to other topic models we applied to our
problem.

Adapting BTM The Bi-term Topic Model (BTM)[16] does,
compared to LDA, not model document-specific dice to select
the next topic inside a document; it is much simpler. It models
pairs of words as the result of rolling a topic-specific die
twice. Inversely, we can take any two co-occurring names
and estimate the most likely die that would have shown both
when rolled twice, and propagate the label to both names.
This causes names with many neighbors (e.g., all the other
names in a large method) to accumulate a large number of
labels, of which we chose a single one using majority vote.
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Gibbs sampling is as effective in this model as it is with
LDA, but while LDA stores a single die color per name
occurrence, BTM stores a color for each possible pair, ef-
fectively squaring memory and run-time effort per method.
However, compared to LDA, this model generates average
co-occurrence scores of about Fjo ~ 5.1, outperforming LDA
when it comes to intra-concept coherence. However, quanti-
tative assessments of how well a topic model fits our concepts
are to be taken with a grain of salt, since only a user study
can tell us if the labels are meaningfully distributed.

What makes this model more attractive than LDA is that
it does not take bags of words as input, but an extensionally
defined co-occurrence relation, which does not even require
transitivity. That means, we can fit this model on a syntax
tree (or arbitrary graph) and define co-occurrence as being
reachable in certain number of steps. This way, we can also
include class-level co-occurrence, e.g., two method names in
the same class can co-occur rather than only names within
a method.

Integrating Abstractions A shortcoming of both topic
models is that they are unable to explain the abstractions and
would mix abstraction with implementation details. Spea-
king in terms of the dice analogy, we need a second die, the
implementor’s die alongside each single-colored topic die,
that rolls colors instead of words. This color indicates which
die to roll to obtain an implementation-specific name. For
example, given a blue die with a focus on the names push
and pop and an orange die with a preference for list and add,
the fact that stacks use lists internally would be encoded as
the blue implementor’s die preferably rolling orange.

Mathematically speaking, when we only consider the co-
lored sides, we build a Markov transition matrix between
concepts. The dice rolls that generate words are the output
function of a hidden Markov model (HMM). When following
a specific control flow, the concept transitions occurring on
its way should reflect a Markov chain represented by this
transition matrix, and the observed method names are the
output of the underlying HMM. While this interpretation
gives rise to a run-time algorithm to fit the model via esti-
mating the HMM transition matrix from the dynamic call
graph, we have not exploited this property yet.

3 Integrating Concepts into the
Environment

Given a way of distributing differently colored labels to each

name, and also knowing conceptual transitions and depen-

dencies between label colors, we elaborate on our planned

tool integration. The following section should be seen as

future work.

3.1 Exploration

In accordance with Biggerstaff et al. [4], we suppose that
understanding a program requires both relating concepts
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to parts of the program and relating concepts to one anot-
her. We will focus on one type of inter-concept relation, the
abstraction-implementation relation capturing the recursive
nature of defining a concept in terms of another concept,
but anticipate that the part-of relation might be useful as
well once we have arrived at a hierarchical concept model.
Especially for explorative phases of program comprehension,
we would like to address the following questions:

e Which concepts are there and which names have been
chosen to communicate them?

e Given a concept,

— Where is it located in the program?

— Which concepts does it use for its implementation?

— Which other concepts use this one for their imple-
mentation?

e Given a unit of modularity (e.g., class, file, method, ...)
— Which concepts is the unit concerned with at all?
— Which sub-units (e.g. methods of a class) are concer-

ned with which concept?

Example We often encounter these questions in the con-
text of reviewing students’ group projects submitted at the
end of a lecture, a use case in which it is crucial to quickly
build a theory on how the software works and which analo-
gies a group has chosen to solve the problem at hand. Since
the modularity of submissions varies greatly between groups,
and groups tend to invent new concepts we have never seen
before, we cannot always rely on a class diagram as a first
impression.

Concept-augmented Class Diagram We propose to in-
troduce a new tool to explore the program at concept-level
and address the information needs stated above.

City

=1

—_— | Edge 5]

O5&E

Vertex ]

Canvas =

Figure 4. A class diagram with a selected concept. Concepts
are represented as colored collection of relevant names, the
corresponding parts of the program are highlighted using
this color. Links to implementation-specific concepts are
shown. Each module has colored indicators to show which
additional concepts it is dealing with.

The design studies in Figure 4 and 5 show a class diagram
with color-coded concepts. Selecting a concept from the
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Figure 5. The same class diagram as in Figure 4 with a
different selected concept.

top highlights methods which have a majority of names
labeled with this concept, making clear where the concept is
prevalent. It should be possible to collapse or hide classes not
concerned with the selected concepts, since class diagrams
tend to use up a lot of space for larger systems. Even if not
selected, the other concepts are indicated by color markers
alongside modules, they might as well show proportions
rather than just a binary indicator, but with many concepts
such miniature charts might get cluttered. A major challenge
will be automated layouting, such that classes related by
concept are arranged closer to each other. For a user-layouted
class diagram, we can provide linting, e.g., assessing how
well the spatial grouping of classes reflects concepts and help
re-arrange a diagram for better readability.

3.1.1 Concept-Aware Browser and Editor

=]

Figure 6. Schematic code browser and editor with color
indicators for two active conceps and a warning when names
from unrelated concepts have been introduced.

-
Browser

+ —
+ —

For less explorative tasks or tasks requiring programming,
the standard code browser and editor can be augmented to
support first-class concepts in multiple ways. Similar to the
class view, we can use color-coding to indicate relatedness
of certain modules to a given concept, illustrated in Figure 6.
Concepts should be available anywhere, e.g., by selecting
any identifier within the source code the editor should ex-
plain which concepts this identifier is labeled with (e.g., by
showing a colored indicator near the identifier and some
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names associated with it). Interacting with any colored con-
cept indicator, e.g., by hovering or clicking, should highlight
every part of the program that belongs to the same concept.

Besides color-coding, the editor may warn programmers
when they use names that are inconsistent with the context.

City » planRouteTo: destination
~ (self

name
position

vertex
drawOn:

City » planRouteTo: destination

" (self vertex |shortestPathTo: g
edges

addEdge:

Figure 7. Code completion is scoped to a concept and addi-
tionally proposes completions from related concepts. When
a concept transition is detected, code completion updates its
concept context accordingly.

Concerning code completion, each typed name indicates
what concept programmers are dealing with. Combined with
the context (e.g., concepts in the currently active method
and class), code completion can prefer those names that are
either inside the concept, or in frequently used related con-
cepts, like illustrated in Figure 7 (top). When a transition into
another concept is detected, e.g., because a specific imple-
mentation detail uses a different concept, syntax completion
can snap into that concept again, as in Figure 7 (bottom). This
can be combined with traditional code completion ranking
mechanisms, such as type inference and most-recently-used
heuristics, but details on the exact mechanism need to be
explored and tested yet.

3.2 Debugger

A common challenge with debugging complex systems in
graphical debuggers is that the call stack does not reflect ab-
stractions in the original program design. Especially highly
modular architecture expands to a call stack that slices through
a high number of abstractions which are likely unrelated to
the problem at hand.

First-class concepts can help to structure a debugging
session, since they can collapse call frames that belong to
unrelated concepts, or at least mark the relevant ones.

Since modern debuggers have access to live objects in
the running program, there is the opportunity to arrange or
retrieve them by their concept.

3.3 Version Control

With modern version control systems, changes can be trac-
ked in small increments and attributed to their author. When
reviewing individual change sets, the difference in terms of
concepts (e.g., how many labels of each concept have been
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removed or added) may already give away what the code
change was about. By aggregating the number of concept
labels affected per author, we can compute what each author
is an expert for.

3.4 Assessing Modularity

The distribution of concept labels in each module can be used
to assess the module’s coherence as well as the locality of the
respective concept. Related work dealing with an LDA-based
modularity assessment proposes to use entropy measures
[9]. We can adapt this idea to the labeled names and define
per-method entropy as:

H(m) = = " plclm) log,(p(c|m))

With p(c|m) being the proportion of concept ¢ with regard
to all labels in module m. The larger this number, the less
coherent a module is with regard to naming. As a refinement
we could eliminate implementation-specific concept labels
from the analysis and only focus on the labels given to the
method signatures. This would give us a measure for the
entropy in a module’s interface and not consider the fan-out
caused by implementation details.

Using the same mechanism, we can quantify cross-cuttingness

of a concept by measuring its entropy across all modules:

H(e) = = ) p(mlc) log,(p(mle))

With p(m|c) given by Bayes’ Rule as p(m|c) = W,

and estimating p(c) as the global proportion of concept c in
all labels, and p(m) as the global proportion of labels used
by module m of all the labels available.

Quantifying architectural drift Incombination with ver-
sion control, we could track the entropy measures across
change sets and score each change according to whether it
was an improvement (decreasing H(m)) or a sign of deterio-
ration (increasing H(m)). This difference might become more
apparent when versions with many changes in between are
being compared.

Using visualizations similar to the ones discussed above,
we can visualize the drift, as in Figure 8. Browser and edi-
tor should be aware of those metrics and track them for
programmers to stay informed.

3.5 Including Programmers’ Feedback

All of our designs rely on the fact that concepts detected
using topic-modeling and similar techniques group names
in a way that they are recognizable as coherent concept by
humans. Since they only make use of artifacts created by
programmers, they can only better arrange information that
is already there, but not recover parts of the programmers’
mental model that were never encoded in the program.
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Figure 8. A visualization of architectural drift for two classes.
Two versions, 8 change sets apart, are inspected and the flow
of concept labels is summarized. The timeline in the lower
half plots entropy over time and which concepts have been
modified in each version.

At any point where concept labels appear, experts should
be able to correct the current label. This may trigger a cas-
cade of automated updates trying to optimize the remaining,
automatically chosen labels to reflect the change made by
the expert. Other operations on concepts that we want to
support include:

e Merge two concepts. This is simple, as each label of
the second concept can just flip its color to the first
concept.

o Automatically split a concept. This requires computing
an optimal split, where each sub-concept retains the
highest possible coherence while making sure that the
names with the lowest semantic similarity are put into
different sub-concepts.

e Manually split a concept. Experts drag and drop names
into a new concept (similar to [11]). The environment
may recommend additional names to move to the new
concept, e.g., those that have high co-occurrence with
the ones already moved.

o Shuffle a set of concepts. This might be the last resort
when automated concept allocation fails. The good
concepts remain fixed and the (randomized) algorithm
is re-run on the remaining concepts, probably finding
a different solution”.

SGibbs samplers are randomized algorithms. Especially when a large range
of near-optimal, but completely different solutions exist, re-running a Gibbs
sampler with a different starting configuration can give a better solution.
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3.6 First-class Concepts as Reflection Facility

All of the above tools motivate a common interface to access
concepts programatically, which is yet to be designed. As it
reflects on a program itself, we propose to integrate it with
existing meta-programming facilities.

For example, where the name of a variable or argument
is accessible through reflection, we would add accessors
for reading and modifying the concepts attached to that
identifier. Especially for the explorative part, meta-objects
like class objects or method objects would need a method that
reports on the proportion each concept occupies within the
respective meta-object’s code. Concept objects itself should
behave like nodes in an edge-weighted directed graph, with
each outgoing edge pointing to an implementation-specific
concept and the edge-weight indicating the relevance of
the target concept for the source concept’s implementation.
In later stages, the model might evolve to include part-of
relationships or other inter-concept relations. Each concept
should be able to return the names it is most frequently
attached to.

If code itself is present as abstract syntax tree, the leaves
of the AST could be refined to store not only names, but also
concepts associated with lexical tokens present in such a
name, e.g. the identifier “shortestPathTo” would cause the re-
spective AST node to have children for “shortest”, “path”, and
“to”, with at least “path” having the graph concept attributed
to its node. Upper levels of the AST could then recursively
aggregate the concept labels to obtain a concept distribution
for each inner AST node up to the full unit of modularity
represented by a single AST.

An interesting challenge manifests itself when concept-
aware reflection facilities or client tools are used by multiple,
collaborating developers. In a fully automated setting, the
assignment algorithm may be tuned to compute the same re-
sults for each identical working copy of a shared repository.
When decentralized expert feedback is taken into account,
we need a way to synchronize concept assignments, for exam-
ple, by serializing them into code comments or files managed
by version control. Alternatively, a repository of concepts
and their lexical features can be maintained independently
from version control, feedback would be submitted to this
repository, and automated analyses on different code bases
can re-use this “crowd-sourced” knowledge.

Providing a meta-programming interface to interact with
concepts through code and vice versa would not only help
implementing the above tools, but also encourage future
tool builders and programmers interested in code analysis
to make use of concepts, and potentially become a source
of collecting valuable expert feedback on the meaning of
identifier names.
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4 Related Work

In the following section, we shortly discuss earlier examples
dealing with “concepts” at tooling level, as well as related
statistical models which have potential applications to auto-
mated concept inference.

DESIRE and DM-TAO An early instance of program-
assisted concept assignment was the DESIRE system [4]. It
was founded on a model that distinguishes programming-
oriented concepts (formal, unambiguous, data-manipulating)
from human-oriented concepts (informal, possibly ambigu-
ous, domain-based). The authors identified the mapping be-
tween them as a crucial part in program comprehension
similar to Naur and highlighted that natural language tokens
and proximity of statements (including grouping, e.g., by
linebreaks) are important to automatically discover these
links. Particularly interesting is their first approach to an in-
telligent agent called DM-TAO that can both locate concepts
in code and explain code in terms of domain-model concepts,
thereby serving two of our main use cases. It relied on a
semantic graph that, similar to a neural network, computes
the likelihood of a domain-model concept given observable
syntactical and term-like features, can be trained by user
feedback and bootstrapped from an existing domain model.

Topic models on code The discipline of topic modeling, ori-
ginally from the domain of natural language processing, has
been applied to software in several circumstances. Linstead et
al. [9] successfully applied LDA to a large repository of Java
source files to discover globally prevalent concepts. They
also introduced entropy as a method to measure tangling
and scattering of topics in the sense of aspect-oriented pro-
gramming. Saeidi et al. [11] refined LDA and included expert
feedback in the form of manually defined must-link and
cannot-link constraints between names. Asuncion et al. [3]
extend topic modeling to related artifacts surrounding the
programming environment. This allows information retrie-
val and software traceability across large projects. Thomas
et al. [14] propose to track topic evolution in source code,
especially the points in time where new concepts were in-
troduced or removed, by a specifically designed topic model.
Binkley et al. [5] investigated LDA on source code in detail
and provided relevant insights that helped parametrize our
own LDA implementation as a first step towards automated
concept assignment.

Other statistical models Beyond topic modeling, the dis-
cipline of graph clustering and community detection rese-
arches similar structures, such as the mixed-membership
stochastic block model [2], which can be understood as a
topic model on graphs.

The problem of structuring concepts in a hierarchy has
been addressed for natural language and images using a
hierarchical Dirichlet process [13], but not yet applied to
source code.
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Computational biology is concerned with detecting subsys-
tems (analogous to concepts) in reaction pathways to un-
derstand and classify lifeforms in terms of these subsys-
tems. The models used to summarize reaction pathways into
subsystems resemble modern topic and graph clustering mo-
dels [12]. The fact that abstractions (implementation details,
interface) in programming resemble reactions in chemical
pathways (reagents, products) makes these models partially
applicable to our domain.

5 Conclusion

In this work-in-progress paper, we have explored a frame-
work for integrating first-class concepts into a programming
environment at both the source code and tooling level, and
have given a bottom-up plan how to realize such an environ-
ment.

At the bottom level, we decomposed source code into
names and attached concept-specific labels to each name.
Subsequently, we looked into co-occurring pairs of names
to approach a formal model of which names should receive
the same label, thereby defining the term concept implicitly
as both the result of an optimization procedure as well as
the metaphor recognized by programmers when dealing
with names of the same concept. We have shown that topic
modeling provides us with already well-researched tools to
derive label assignments from, but more research on topic
modeling in the context of programs is needed.

Based on this code-level model and a set of high-level
information needs, we show tool designs that summarize
potentially large numbers of labels at several levels of mo-
dularity. With regard to the feedback programmers receive
during programming, we consider the co-evolution and alig-
nment of names and concepts with the hierarchical decom-
position chosen by the programmer as an important part to
steer modularity and comprehensibility for other program-
mers or their future selves. To better co-design topic models
with programming environments and test these working
hypotheses, we are currently in the process of implementing
adequate tools and must defer this evaluation to a later stage.
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