Proceedings of the 6th
Ph.D. Retreat of the
HPI Research School
on Service-oriented
Systems Engineering

Christoph Meinel, Hasso Plattner, Jurgen Dollner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese, Patrick Baudisch

Technische Berichte Nr. 76

des Hasso-Plattner-Instituts fur
Softwaresystemtechnik
an der Universitat Potsdam

\5{\'\‘1 €rs;y 5
. ‘ Hasso
@ﬁ@ Plattner
"T Kemp Institut
Ry

° Q’am IT Systems Engineering | Universitat Potsdam
° []

Technische Berichte des Hasso-Plattner-Instituts fur
Softwaresystemtechnik an der Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts fur
Softwaresystemtechnik an der Universitat Potsdam | 76

Proceedings of the 6th Ph.D. Retreat of the
HPI Research School on Service-oriented
Systems Engineering

herausgegeben von
Christoph Meinel
Hasso Plattner
Jurgen Dollner
Mathias Weske
Andreas Polze
Robert Hirschfeld
Felix Naumann
Holger Giese
Patrick Baudisch

Universitatsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet Uber http://dnb.de/ abrufbar.

Universitatsverlag Potsdam 2013
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitat Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts flr Softwaresystemtechnik
an der Universitat Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschutzt.

Online veréffentlicht auf dem Publikationsserver der Universitat Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2013/6677/

URN urn:nbn:de:kobv:517-opus-66777
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66777

Zugleich gedruckt erschienen im Universitatsverlag Potsdam:
ISBN 978-3-86956-256-8

mailto:verlag@uni-potsdam.de

Contents

Synonym Discovery in RDF Data 1
Ziawasch Abedjan

Methodologies for Goal-Oriented Process Performance Management 11
Evellin Cardoso

Hybrid parallel computing with Java 21
Frank Feinbube

On the Complex Nature of MDE Evolution — A Meta Study 31
Regina Hebig

Steuerung der Datenlibertragung in 6ffentlichen zellularen Netzen im
Kontext telemedizinischer Anwendungen 41
Uwe Hentschel

Heterogeneous Computing for Algorithms with Low Numerical Intensity 53
Fahad Khalid

3D Gevisualization Services for Efficient Distribution of 3D Geodata 63
Jan Klimke

Applications of Virtual Collaboration Monitoring in Software Development
Projects 73
Thomas Kowark

Muscle Propelled Force-feedback: ultra-mobile haptic devices 85
Pedro Lopes

Discovering SPARQL Query Templates for Dynamic RDF Triple
Prefetching 95
Johannes Lorey

The Role of Objects in Process Model Abstraction 107
Andreas Meyer

Fall Workshop 2012 [

Contents

Comprehensible 3D Maps and Building Panoramas
Sebastian Pasewaldt

Demonstrating Test-driven Fault Navigation
Michael Perscheid

Migrating Traditional Web Applications into Multi-Tenant SaaS
Eyad Saleh

Challenges in the Visualization of Large Multi-Dimensional Hierarchies
Sebastian Schmechel

Memory Management in a Many-Core Distributed Hypervisor
Jan-Arne Sobania

Interleaving Programming Tasks: Challenges for Interruption Handling
in Programming Environments
Marcel Taeumel

Workload Prediction and Utilization Change Detection in Virtualized Data
Centers
Ibrahim Takouna

Understanding Code with Execution Traces
Arian Treffer

Duplicate Decision for Data Quality Web Services
Tobias Vogel

Integrated Software Development for Embedded Robotic Systems
Sebastian Watzoldt

117

133

145

157

165

179

191

205

209

221

ii Fall Workshop 2012

Synonym Discovery in RDF Data

Ziawasch Abedjan

Information Systems Group
Hasso-Plattner-Institut
ziawasch.abedjan@hpi.uni-potsdam.de

Linked Open Data brings new challenges and opportunities for the data mining
community. lts underlying data model RDF is heterogeneous and contains machine
readable semantic relations. The amount of available open data requires profiling and
integration for desired applications. One of the promising underlying techniques is as-
sociation rule mining. However there has been only limited application of association
rules on semantic web data. We introduce the concept of mining configurations that
allows us to mine RDF data on statement level. We described elaborated use cases
such as ontology engineering, data imputation that are based on configurations in the
context of RDF subjects. A novel application that is based on mining configurations
is synonym discovery. Synonym discovery is useful for discovering globally valid syn-
onyms for a thesauros as well supporting the completeness of SPARQL query results
by including results that are connected to synonym predicates. We show that synonym
discovery in RDF data can be done efficiently using the proposed techniques based on
association rule mining.

1 Synonyms in LOD

The increasing amount of Linked Open Data (LOD) in the World Wide Web raises new
opportunities and challenges for the data mining community [13]. LOD is often repre-
sented in the Resource Description Framework (RDF) data model: Data is represented
by a triple structure consisting of a subject, a predicate, and an object (SPO). Each
triple represents a statement/fact. Fig.1 illustrates some RDF facts describing Barack
Obama. When processing RDF data, meta information such as ontological structures
and exact range definitions of predicates are desirable and ideally provided by a knowl-
edge base. However in the context of LOD, knowledge bases are usually incomplete or
simply not available. When dealing with an LOD source without a satisfiable knowledge
base, it is useful to automatically generate meta information, such as ontological de-
pendencies, range definitions, and topical associations of resources. These metadata
faciliate the understanding and integration of the data source. Data mining applica-
tions, such as association rule mining and frequency analysis are obvious approaches
to create such metadata.

The URI representation of subjects, predicates, and objects and their connections
within statements harbor many hidden relations that might lead to new insights about
the data and its domain. Resources are connected with each other through multi-
ple predicates, co-occurring in multiple relations. At this point, frequencies and co-
occurrences of statement elements become an interesting object of investigation.

Fall Workshop 2012 1

Synonym Discovery in RDF Data

subject | http://dbpedia.org/resource/Barack_Obama
predicate | http://dbpedia.org/ontology/birthDate
object | 1961-08-04
subject | http://dbpedia.org/resource/Barack_Obama
predicate | http://dbpedia.org/ontology/birthPlace
object | http://dbpedia.org/resource/Honolulu
subject | http://dbpedia.org/resource/Barack_Obama
predicate | http://dbpedia.org/ontology/orderInOffice
object | President of the United States.
subject | http:/rdf.freebase.com/ns/en.barack_obama
predicate | http://rdf.freeb. .. /celebrities.friendship.friend
object | http://rdf.freebase.com/ns/en.oprah_winfrey

Table 1: RDF triples from DBpedia and Freebase

One sort of meta data that can be derived by applying association rule mining on
RDF data is synonymic relations. Synonym discovery might first of all be interesting for
the general purpose of enriching an existing synonym thesaurus using new synonyms
that have been evolving through the time as multiple people use different terms for
describing the same phenomenon. Current research on synonym discovery is mostly
based on web mining techniques [5, 19]. We elaborate the task of synonym discovery
in LOD sources. Linked Open Data is semi structured. Therefore synonym candidate
terms are easy to extract and easier to compare with regard to their contextual occur-
rence. Note, synonym discovery in unstructured data such as web documents needs
to consider natural language processing rules. In addition to the general purpose of
creating a synonym database, the discovery of synonym predicates benefits the us-
age of LOD. As we mentioned before for many data sources meta-data is only poorly
provided. ldentifying synonymly used predicates can support the evaluation and im-
provement of the underlying ontology and schema definitions. Furthermore the quality
of query results on RDF corpora can be improved. When a user is looking for artists of
a movie and uses the predicate artist, the knowledge base could also provide him
with artists that are connected to movies by the predicate starring. Usage of global
synonym databases is not sufficient and might lead to misleading facts in this scenario
because of the heterogeneity of LOD, as predicates are used in different knowledge
bases for different purposes by different data publishers. So it is necessary to have a
data-driven approach dissolving the existing synonym dependencies. We introduce an
approach that is based on aggregating positive and negative association rules at state-
ment level based on the concept of mining configurations. A configuration specifies
the context of rule mining (the transaction identifiers) and the target of rule mining (the
items and transactions) within a triple. As a proof-of-concept we applied our algorithm
several LOD sources including the popular DBpedia data set [6].

The rest of this paper is organized as follows: In the next section we present re-
lated work with regard to synonym discovery and schema matching. Next we present
necessary foundations with regard to RDF and association rules. In Section 4 we de-
scribe our algorithm. Section 5 contains our evaluation plan and some results and we
conclude in Section 6

2 Fall Workshop 2012

2 Related Work

2 Related Work

In this paper, we apply existing data mining algorithms on the new domain of LOD and
propose a resulting synonym discovery approach. Therefore, we present related work
with regard to data mining in the semantic web as well as existing applications in the
fields of synonym discovery. As most of our techniques for synonym discovery de-
rive from schema matching approaches, we also give an overview of existing schema
matching approaches.

2.1 Mining the Semantic Web

There is already much work on mining the semantic web in the fields of inductive logic
programming and approaches that make use of the description logic of a knowledge
base [14]. Those approaches concentrate on mining answer-sets of queries towards
a knowledge base. Based on a general reference concept, additional logical relations
are considered for refining the entries in a answer-set. This approach depends on a
clean ontological knowledge base, which is usually not available. Furthermore, that
approach ignores the interesting opportunities of mining of rules among predicates.

As RDF data spans a graph of resources connected by predicates as edges, an-
other related field of research is mining frequent subgraphs or subtrees [15]. However,
in LOD no two different nodes in an RDF graph have the same URI. Therefore, fre-
quency analysis cannot be performed unless we assume duplicate entries in the data
set. But if we consider the corresponding type of each URI pattern analysis can be
performed because multiple URIs belong to the same type. Thus, any graph mining
would be restricted to type mining and not data mining.

Among profiling tools, ProLOD is a tool for profiling LOD, which includes association
rule mining on predicates for the purpose of schema analysis [7]. The method of mining
association rules on predicates is also applied in our work, however we go further
than just analyzing the schema und show concrete applications that are based on this
method and show how it can be combined to rule mining scenarios that also involve
the objects of RDF statements.

2.2 Synonym Discovery

Most existing work for discovering synonyms is based on different language processing
and information retrieval techniques. A commmon approach is to look for co-occurence
of synonym candidates in web documents [5,19]. The idea behind this approach is
that synonymous word co-occur in documents. So they calculate the ratio of real co-
occurrence of two terms and the independent occurrence of each term. Note that for
these approaches there are already known candidate pairs that have to be validated.
In our scenario this assumption does not hold as we also have to retrieve the candidate
pairs.

While Baronis work concentrates on globally valid synonyms the authors of [19]
address context sensitive synonym discovery by looking at co-clicked query results.

Fall Workshop 2012 3

Synonym Discovery in RDF Data

Whenever the distance between two clusters of clicked query results is below a certain
threshold, the query terms can be seen as synonyms.

The approaches so far are very different from our domain where we want to dis-
cover synonym schema elements in semi-structured data. An approach that has a
similar characteristic is the synonym discovery approach based on eextraced webta-
bles [9]. The authors introduce a metric that enables to discover synonyms among
table attributes. However their approach is quite restrictive as they assume a context
attribute given for making attributes comparable. Furthermore they ignore instance-
based techniques as they only process extracted table schemata.

2.3 Schema Matching

Schema matching differs from synonym discovery within schemata in the sense, that
two schema elements may be synonyms but still may not share a remarkable number
of values. On the other hands two attributes may share a lot of values but their cor-
responding labels may not be synonyms from a global point of view. Still approaches
for the discovery of attribute matches and synonyms follow similar intuitions [18]. Ac-
cording to the classification of Rahm and Bernstein, we would classify our approach
as mixture of an instance-based and a schema level matching algorithms. On schema
level we apply existing techniques to RDF data and evaluate their effectivity.

Existing instance-based approaches are different from our work as they compare
the content of each attribute column-wise [10,11,17]. Chosing features for matching is
cumbersome and algorithms that look for value overlaps lack efficiency. We propose
an association rule based approach that discoveres overlaps between attribute values
in an RDF corpus.

One could also perform schema matching on schema element level by using dic-
tionaries but existing work already neglects the fact it works well in real data sce-
narios [16]. Furthermore as RDF data does not always conform to dictionaries and
contains abbreviations and domain-specific labels as predicates makes it even more
difficult to discover similarities on this level.

3 Association Rules and Triples

We briefly define the relevant foundations of association rule mining on RDF data.

3.1 Association Rule Mining

The concept of association rules has been widely studied in the context of market
basket analysis [3], however the formal definition is not restricted by any domain: Given
asetofitems I ={iy,is,...,in}, an association rule is an implication X — Y consisting of
the itemsets X,Y C I with XNY =0. Given a set of transactions T = {¢|t C I}, association
rule mining aims at discovering rules holding two thresholds: minimum support and
minimum confidence.

4 Fall Workshop 2012

3 Association Rules and Triples

Support s of a rule X — Y denotes the fraction of transactions in T that include the
union of the antecedent (left-hand side itemset X) and consequent (right-hand side
itemset Y) of the rule, i.e., s% of the transactions in T contain X UY. The confidence
¢ of a rule denotes the statistical dependency of the consequent of a rule from the
antecedent. The rule X — Y has confidence c if ¢% of the transactions T that contain
X also contain Y. There are also other metrics for evaluating rules, such as lift and
conviction [8], but for our approach support and confidence as the basic metrics are
sufficient. Algorithms to generate association rules decompose the problem into two
separate steps: (1) Discover all frequent itemsets, i.e., itemsets that hold minimal sup-
port. (2) For each frequent itemset a generate rules of the form [— a— 1 with [C 4, and
check the confidence of the rule.

While the second step of the algorithm is straightforward, the first step marks the
bottleneck of any algorithm. The three best known approaches to this problem are
Apriori [4], FP-Growth [12], and Eclat [20]. We use the FP-Grwoth algorithm for our

paper.

3.2 Association Rules on RDF Statements

To apply association rule mining to RDF data, it is necessary to identify the respective
item set I as well as the transaction base T and its transactions. Our mining approach
is based on the subject-predicate-object (SPO) view of RDF data as briefly introduced
in [2]. Table 2 illustrates some SPO facts extracted from DBpedia. For legibility, we omit
the complete URI representations of the resources and just give the human-readable
values. Any part of the SPO statement can be regarded as a context, which is used
for grouping one of the two remaining parts of the statement as the target for mining.
So, a transaction is a set of target elements associated with one context element that
represents the transaction id (TID). We call each of those context and target combi-
nations a configuration. Table 3 shows an overview of the six possible configurations
and their preliminarily identified use-cases. Each can be further constrained to derive
more refined configurations. For instance, the subjects may be constrained to be of
type Person, as happens to be the case in our example.

Subject Predicate Object

B. Obama birthPlace Hawaii

B. Obama party Democratic Party
B. Obama orderInOffice President of the US
A. Merkel birthPlace Hamburg

A. Merkel orderInOffice Chancellor of GFR

A. Merkel party Cbu
J. Lennon birthPlace Liverpool
J. Lennon instrument Guitar

Table 2: Facts in SPO structure from DBpedia

The application of Configuration 1 from Tab. 3 to our example data set would trans-
form the facts into three transactions, one for each distinct subject as illustrated in
Tab. 4. In this example, the itemset {birthPlace, party, orderinOffice} is a frequent item-

Fall Workshop 2012 5

Synonym Discovery in RDF Data

Conf. | Context Target Use case
1 | Subject Predicate Schema discovery
2 | Subject Object Basket analysis
3 | Predicate Subject Clustering
4 | Predicate Object Range discovery
5 | Object Subject Topical clustering
6 | Object Predicate Schema matching

Table 3: Six configurations of context and target

set (support 66.7%), implying rules, such as birthPlace — orderinOffice, party and
orderinOffice — birthPlace, party with 66.7% and 100% confidence, respectively.

TID transaction

B. Obama ({birthPlace, party, orderinOffice}
A. Merkel {birthPlace, party, orderinOffice}
J. Lennon {birthPlace, instrument}

Table 4: Context: Subject, Target: Predicate

TID transaction

birthPlace {B. Obama, A. Merkel, J. Lennon}
party {B. Obama, A. Merkel}
orderInOffice {B. Obama, A. Merkel}
instrument {J. Lennon}

Table 5: Context: Predicate, Target: Subject

The reverse configuration (Conf. 3 in Tab. 3) in the context of predicates would cre-
ate the transactions presented in Tab. 5. The frequent itemsets here contain subjects
that represent similar real world objects, such as heads of government {B. Obama, A.
Merkel}. The analysis of each configuration requires the investigation of its capabilities,
technical challenges, and use cases. In this paper, we concentrate on Configurations 1
and 6, which have both predicates as their targets.

4 Synonym Discovery

We introduce three basic strategies that we combine for synonym discovery. Our ap-
proach makes direct usage of the configurations 1 and 6 from Tab. 3. These config-
urations benefit two major intuitions. In configuration 1 we do schema analysis in the
context of subjects. Configuration 6 enables to mine similar predicates in the context
of objects. Additionally we look into range structure of predicates by looking at value
type distributions. All three applications are derived from existing schema matching
scenarios with schema-level and instance-based strategies.

6 Fall Workshop 2012

4 Synonym Discovery

4.1 Schema Analysis

Configuration 1 enables us to do frequency analysis and rule discovery per entities. For
instance positive rules between predicates can be used for re-validating existing ontolo-
gies [1]. In our use case we have a different intuition. Synonym predicates should not
co-occur for entities. It is more likely for entities to include only one representative of
a synonymous predicate group within their schema. That is why we look for negative
correlations in Configuration 1. For this purpose we adapted an FP-Growth [12] imple-
mentation that retrieves all negative correlations for a set of synonym candidate pairs.
The approach can also be used stand-aloe looking at all possible pairs that have a
negative correlation in the data set. Negative correlation can be expressed by several
score functions. One could look at the bidirectional correlation coefficient or consider
some kind of aggregations of the negative rules’ confidence values such as minimum,
maximum or the f-measure of both.

Bare schema analysis leads also to results including pairs such as birthDate
and author as both occur for different entities. So a negative correlation is not a
sufficient condition. The context or the range of the predicates should also be taken
into account. In [9] the authors introduce an approach for synonym discovery in dif-
ferent webtables that includes a context attribute. We also adapted this score function
and compared the results to the scoring functions named before. In the following we
describe our strategies that complement the schema analysis by considering also the
range of predicates.

4.2 Range Content filtering

The first intuition is that as synonym predicates will have a similar meaning they also
share a similar range of object values. Configuration 6 constitutes a mining scenario
where each transaction is defined by a distinct object value. So each transaction con-
sists of all predicates containing the distinct object value in there range. Frequent
patterns in this configuration are sets of predicates that share a significant number of
object values in their range. As each Configuration is an adaption of frequent itemset
mining the threshold that decides whether two predicates are similar or not is support
and depends on the number of all baskets or all existing distinct objects. Normally when
trying to compute the value overlap between two predicates one would look at the ratio
of overlaps depending on the total number of values of such a predicate. Furthermore
our approach ignores value overlaps that occur because of multiple occurrence of one
distinct value in the ranges. We will analyze the effect of these differences and show
that our approach is much more efficient without any loss of quality. We further restrict
the configuration to discover only frequent predicate pairs that will be regarded as syn-
onym candidate pairs in the schema analysis or range structure filtering phase. Similar
to the schema analysis strategy also the range content filtering based on value over-
laps is not a sufficient condition for discovering synonyms. For example the predicates
birthPlace and deathPlace will share a remarkable percentage of their ranges but
are obviously no synonyms. However this candidate pair can be pruned looking at their
exclusion rate per entity during schema analysis.

Fall Workshop 2012 7

Synonym Discovery in RDF Data

4.3 Range Structure Filtering

In some scenarios value range content filtering might not be the most appropriate tech-
nique as it requires two synonym predicates to share a portion of exactly equal values.
However, real world data might contain synonym predicates with completely disjoint
range sets where the range elements are only ontologically similar. This is often the
case when looking at predicates describing numbers and dates. Therefore existing
work not only looks at exact overlaps but also on general string or token characteristics
such as string length and character distributions [10, 17]. However as the motivation
of our work was to analyze the capabilities of mining on statement level we do not ap-
proach this problem on string level. Instead we look at type distributions in predicate
ranges. So for every object in the range of a predicate we retrieve its type from the
graph and create type vectors per predicate containing the number of the occurences
of this type. As each entity in RDF might have several types due to existing type hierar-
chies, i.e., Barack Obama is a Politician as well as a Person, we examined two different
vector constructions. The first construction just retrieves all types per entity in a pred-
icate range and the second construction only considers the most specific type of an
entity. Having type vectors for a predicate pair both can be compared using measures
such as cosine similarity or weighted jaccard similarity. After preliminary experiments
weighted jaccard similarity seems more promising because cosine similarity results
into high scores as soon as one component value of one vector is very large while all
other components have very small values. Missing type values, e.g., in case of dates
and other numerical values, have been handled as unknown types, whereas no two
unknown types are equal.

4.4 Combined Approach

We have introduced three different ways of generating or evaluating synonym candi-
date pairs. It is crucial to find a reasonable order for combining those three to make
best use of the intuitions and achieve optimal quality and to be efficient at the same
time. One strategy is to first retrieve all predicate pairs through range content filter-
ing filter those pairs by range structure filtering and then analyzing their schema co-
occurrences. This strategy has two advantages: as retrieving negative correlations
and type vectors is inefficient, it is reasonable to perform both on given candidates
instead of using them on the complete data set to retrieve candidates. Furthermore
as we compare very different correlation measures on schema level all of them can be
performed at the end of the discovery process after having done the instance-based
approaches first.

5 Evaluation Plan

We will evaluate the synonym discovery algorithm on different levels. First of all, we will
compare all measures on each level of our synonym discovery approach. Further we
will compare our three strategies each as a stand alone approach to another and iden-

8 Fall Workshop 2012

6 Summary and Future Work

tify weaknesses and strengths in our use case. Finally, we will evaluate the algorithm
with regard to our claims that are:

e There are synonym predicates in RDF data sets that can be useful for optimizing
queries.

e Configuration 6 is as effective as a naive overlap approach but more efficient.

6 Summary and Future Work

We proposed a statement-level mining methodology for RDF data that is based on six
basic configurations with the aid of different real examples. On this basis, further re-
search directions include reasoning and formalizing constraints and refinements that
allow unlimited configuration scenarios for different purposes. We use this method-
ology for creating a syonym discovery algorithm that identifies synonymous predicate
pairs in RDF data sets. All described approaches have been implemented and the next
step is to evaluate the claims. Further study aims at combining the first and second
Configuration as a pre-processing step for advancing frequent graph mining in RDF
data.

References

[1] Ziawasch Abedjan, Johannes Lorey, and Felix Naumann. Advancing the Discovery of
Unique Column Combinations. In Proceedings of the International Conference on Infor-
mation and Knowledge Management (CIKM), Maui, Hawaii, October 2012.

[2] Ziawasch Abedjan and Felix Naumann. Context and target configurations for mining
RDF data. In Proceedings of the International Workshop on Search and Mining Entity-
Relationship Data (SMER), Glasgow, 2011.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between
sets of items in large databases. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pages 207-216, Washington, D.C., USA, 1993. ACM.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules
in Large Databases. In Proceedings of the International Conference on Very Large
Databases (VLDB), pages 487—499, Santiago de Chile, Chile, 1994.

[5] Marco Baroni and Sabrina Bisi. Using cooccurrence statistics and the web to discover
synonyms in technical language. In International Conference on Language Resources
and Evaluation, pages 1725—-1728, 2004.

[6] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Séren Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. DBpedia - A crystallization point for the Web of Data.
Journal of Web Semantics (JWS), 7:154—-165, September 2009.

[7] Christoph B6hm, Felix Naumann, Ziawasch Abedjan, Dandy Fenz, Toni Gritze, Daniel
Hefenbrock, Matthias Pohl, and David Sonnabend. Profiling linked open data with Pro-
LOD. In Proceedings of the International Workshop on New Trends in Information Integra-
tion (NTIl), pages 175—-178, 2010.

Fall Workshop 2012 9

References

[8] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic itemset
counting and implication rules for market basket data. In Proceedings of the 1997 ACM
SIGMOD international conference on Management of data, Proceedings of the ACM In-
ternational Conference on Management of Data (SIGMOD), pages 255-264, New York,
NY, USA, 1997. ACM.

[9] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang. WebTa-
bles: exploring the power of tables on the web. Proceedings of the VLDB Endowment,
1:538-549, August 2008.

[10] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of disparate
data sources: a machine-learning approach. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), pages 509-520, New York, NY, 2001.

[11] Georg Gottlob and Pierre Senellart. Schema mapping discovery from data instances.
Journal of the ACM, 57(2):6:1-6:37, 2010.

[12] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate gen-
eration. In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), pages 1-12, 2000.

[13] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data Space.
Morgan Claypool Publishers, 2011.

[14] Joanna Jozefowska, Agnieszka Lawrynowicz, and Tomasz Lukaszewski. The role of se-
mantics in mining frequent patterns from knowledge bases in description logics with rules.
Theory Pract. Log. Program., 10:251-289, 2010.

[15] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In Proceedings of
the IEEE International Conference on Data Mining (ICDM), pages 313—-320, Washington,
D.C., 2001.

[16] Wen-Syan Li and Chris Clifton. Semint: A tool for identifying attribute correspondences
in heterogeneous databases using neural networks. Data and Knowledge Engineering
(DKE), 33(1):49 — 84, 2000.

[17] Felix Naumann, Ching-Tien Ho, Xuging Tian, Laura M. Haas, and Nimrod Megiddo. At-
tribute classification using feature analysis. In Proceedings of the International Conference
on Data Engineering (ICDE), page 271, 2002.

[18] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 10(4):334—350, December 2001.

[19] Xing Wei, Fuchun Peng, Huihsin Tseng, Yumao Lu, and Benoit Dumoulin. Context sen-
sitive synonym discovery for web search queries. In Proceedings of the International
Conference on Information and Knowledge Management (CIKM), pages 1585—1588, New
York, NY, USA, 2009.

[20] Mohammed J. Zaki. Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 12:372-390, May 2000.

10 Fall Workshop 2012

Methodologies for Goal-Oriented
Process Performance Management

Evellin Cardoso

Business Process Technology Group
Hasso Plattner Institute
evellin.cardoso@hpi.uni-potsdam.de

Although modeling goals provide a more strategic view for business processes;
little attention is devoted to explicitly modeling goals as well as using the concept of
goal to increase the value of the process modeling techniques. The purpose of this
report is to enhance the current BPM lifecycle with new activities in order to support
goal-oriented process performance management. In order to so, we propose new
methodological steps within the BPM lifecycle that must be done in order to support
such goal-orientation and how the existent methodologies can support the execution
of these new activities.

1 Introduction

The increasing competitiveness drives organizations to constantly evaluate their po-
sition in the market and promote changes in an attempt to improve the quality of the
services and products they offer. In recent years, many of the efforts related to the
management of organizations have been conducted in the scope of Business Process
Management (BPM) activities. BPM is based on the fact that each product or service
that a company provides to the market is the outcome of a process. As a consequence,
changes in processes should generate radical improvements in critical performance
measures (such as cost and quality).

However, predicting how an environment should respond to changes by simply
adopting a process-centered view is unfeasible since there are a large number of is-
sues to be considered, such as infrastructure, power and politics, managerial control,
organizational culture, among others. Given this multitude of issues, understanding an
organizational setting often requires a number of perspectives or domains.

Among these perspectives, the domain of "motivation" has been recognized as an
important element of organizations as highlighted in Zachman framework’s motivation
column. Goal modeling is the artifact employed for capturing the motivational aspect
and strategies behind the organizational practices. Moreover, by adopting goal model-
ing, the company can systematically express the choices behind multiple alternatives
and explore new possible configurations for an organizational setting. This is essential
for business improvement once changes in the company’s goals have significant con-
sequences within all domains of the organization. However, although modelling goals

Fall Workshop 2012 11

Methodologies for Goal-Oriented Process Performance Management

provide a more strategic view for business processes; little attention is devoted to ex-
plicitly modelling goals as well as using the concept of goal to increase the value of
the process modelling techniques. Moreover, few approaches in process performance
management and business process management address the problem of monitoring
processes in order to quantify the progress towards strategic goals, rather taking an
operational view for process performance.

The purpose of this report is to situate our goal-oriented approach within the current
BPM lifecycle and how it enhances the current state of art. In order to so, we describe
the current state of art in each of the phases of the BPM lifecycle in terms of languages
and methodologies and how we enhance some phases of this lifecycle. The rest of
this paper is organized as follows: section 2 describes the state of art in the current
BPM lifecycle (in terms of activities, languages and methodologies that support a goal-
oriented view) and how we intend to enhance this lifecycle with this thesis and section
3 concludes the paper with directions for future research.

2 General Overview of a Goal-Oriented Methodology
for Process Performance Management

In order to obtain the benefits from adopting the alignment between goal-related con-
cepts and the business processes in enterprise architectures, researchers must rely
on two main components [1]. The first one is a metamodel for defining the modeling
language for goals and business process models, i.e., a metamodel for defining the
modeling constructs syntax, semantics and graphical notation used to create models.
The second component corresponds to a systematic methodology for creating aligned
models. During this process different ways of working are applied in order to elicit and
develop the knowledge of business stakeholders or domain experts.

Regarding the language component, we have already provided a framework [8] with
the correspondent concepts for modeling goals, indicators and business processes. In
relation to the methodology component, this report intends to enhance the current BPM
lifecycle with the correspondent activities to perform a goal-oriented analysis of busi-
ness processes. The current BPM lifecycle required to manage operational business
processes [28] [26] [25] consists of four major phases, namely: business process strat-
egy, business process design, business process implementation and business process
controlling. The addition of strategic concepts in the BPM lifecycle in fact do not require
the creation of additional phases, but instead, only requires the introduction of new ac-
tivities within the existent phases.

In the remainder, we have two sections, namely business process strategy and
business process controlling, each one corresponding to the phases of the BPM lifecy-
cle that we contribute. For each section, we present a current overview of the existent
state of art (in terms of activities, languages and methodologies) with their open points
for contribution and how we already contributed with our framework. In the following,
we enumerate how our framework addresses some open points in terms of language
and the methodologies that we have obtained so far.

12 Fall Workshop 2012

2 General Overview of a Goal-Oriented Methodology for Process Performance
Management

2.1 Business Process Strategy Phase

The Business Process Strategy phase forms the foundation for aligning business
processes with general corporate strategy [27], establishing the organizational prereg-
uisites for the project that implement business processes management initiatives. Once
the long-term strategies are set up, projects can be established to implement them [28].
In this phase, the strategies are captured as organizational requirements that support
the designing and management of enterprise architectures [22]. Further, the numerical
quantification in which extent goals have been achieved is also addressed in this phase
by providing a set of metrics and Key Performance Indicators (KPI) that are used to
measure organizational/processes performance in later phases [28]. Currently, these
goals and strategies are established in an ad hoc manner, but no explicit knowledge
about goals and strategies are currently captured in some artifact like a model. We
divide the approaches for addressing the performance within business processes into
two groups:

2.1.1 Approaches for Goal Modeling

These approaches are concerned about providing languages and methods for goal
modeling. Approaches:

Enterprise Architecture Methods (Business Requirement Modelling). Enter-
prise modelling approaches structure an enterprise architecture in terms of various
related architectural domains or viewpoints which focus on specific aspects of the en-
terprise like business processes, information systems that support organizational activ-
ities, organizational structures and so forth. Among the various architectural domains,
the domain of "motivation" has been recognized as an important element of enterprise
architectures. Within these approaches, goal modelling is the artefact employed for
capturing the motivational aspect and strategies behind the organizational practices,
helping in clarifying interests and intentions from different stakeholders. Among the
approaches, architectural methods are the only methodologies that explicitly model
goals and strategies in the format of artefacts (goal models). The explicit modelling of
such artefacts enables the development of automated and model-based techniques to
analyze business goals. However, in terms of languages for goal modeling, there is
a little support in the current literature, as evidenced in [2]. Among these languages,
the most expressive as argued in [22] is the so called Motivational ArchiMate Exten-
sion or ARMOR language. The language enables one to model business goals and
requirements for enterprise architectures, but do support KPlI modeling. Concerning
methodologies, an open point in literature is how to identify, elicit and model business
goals in the context of enterprise architectures, since any papers concerning this topic
have been found.

Our contributions here are twofold:

e Language: We proposed a framework [8] that provides the concept of goals to
capture the organizational goals as in the ArchiMate Motivational Extension. The
contribution here is that we include some goal attributes that are important to
characterize goals and exclude other concepts whose practical application is not

Fall Workshop 2012 13

Methodologies for Goal-Oriented Process Performance Management

clear according to [7]. Furthermore, the language is not precise with respect to
the semantics for one to decide if goals are achieved or not. A precise relation
with the concepts of Enterprise Architecture would be sufficient to assign this
semantics. However, the only current relation of the goal language with the en-
terprise architecture is the realization (means-end relationship) between a Goal
and the Services/Processes. We solve this problem creating a relation between
a Goals and a KPI, that in its turn, the KPIs serve to measure in which extent the
goals are achieved.

e Methodology: we propose a methodology for goal modeling here based in the
attributes that must characterize goals and how to measure their achievement.

2.1.2 Approaches for KPI Modeling

These approaches are concerned about providing languages and methods for KPI
modeling. It is also important to highlight that indicators must be derived from the or-
ganizational goals to monitor the organizational performance in this phase. Concerning
the creation of process indicators, they may be set up in this phase (through a refine-
ment of the organizational indicators) or it can be postponed until the business process
design phase where process indicators are modeled together with the business pro-
cess (and subsequently aligned with the organizational indicators). Approaches:

Business Activity Monitoring approaches (BAM) [11,15]. BAM approaches are
concerned about determining process performance by monitoring indicators values
in a real-time fashion. For this reason, there are several approaches that provide a
language for KP1 modeling [11] [6] [3] [4] (in order of expressiveness of modeling lan-
guage), but no methodology standpoint to elicit and derive KPls on the basis of existent
ones.

Performance Measurement Systems [9, 18, 21,23]. Performance Measurement
(PM) systems consist of a number of indicators (and their relationships) that are used to
describe and evaluate the organizational performance. These approaches arise from
several areas, mainly in management sciences, such as strategy management, oper-
ations management, human resources, organizational behavior, information systems,
marketing, and management accounting and control [9] and for this reason, they do not
provide languages for KPI modeling, but instead, methodologies for the construction of
PM systems. Basically speaking, there are two types of methodologies for developing
PM systems [27]: (1) develop the indicator system based on existing generic indicators
and/or complete PM systems libraries and (2) develop the indicator system selecting
the appropriate indicators for the company on the basis of its business objectives and
success factors, resulting in a list that it is company-specific.

In the first type, several PM libraries for the development of PM systems within a
company-wide scope are available, such as the best-known Balanced Scorecard [14],
Performance Prism [20], SMART System/Performance Pyramid [5]. These libraries
have a number of indicators and come with a methodology perspective associated
so that who use the library also is able to derive indicators for a specific organization,
adapting the questions suggested in the library to some specific organizational context.
The challenge consists in selecting the appropriate indicators from an extensive list of

14 Fall Workshop 2012

2 General Overview of a Goal-Oriented Methodology for Process Performance
Management

potential indicators. Furthermore, other disadvantage that can be mentioned is the fact
that these libraries aim at providing indicators for determining the performance of the
entire company or organization units (the indicators are very high-level and related with
several business process at the same time), in opposition to the evaluation of individual
business processes [27] [16].

The second type of methodologies is based on the evidence that it seems very un-
likely that a universal set of performance indicators can be applied successfully to all
business processes. For this reason, some papers propose methodologies for deriva-
tion of process-specific indicators on the basis of goals. In contrast to the use of li-
braries, these methodologies (i) develop PM systems to evaluate the performance of
business processes (in opposition to measure the performance of entire corporations
or organizational units) and (ii) are related to the goals of each business process that
are a good starting point for gathering the right indicators [16] [27] [10]. However, while
there is a plethora of libraries for business indicators and methodologies for derivation
of process-specific indicators, only very few approaches propose a modeling method
for indicators [10].

Our contribution here is:

e Creation of modeling methodology for the development of process-indicator sys-
tem based on the previously modeled goals. In relation to the existing methods,
we may highlight that our method adds value because: (i) present a modeling
method (just one related methodology does [10]) (ii) concentrate in the derivation
of process-specific indicators instead of in organizational ones like literature in
PM systems (iii) assume goals models before deriving indicators in opposition to
use strategic goals in a ad-hoc manner as the proposals in current literature.

2.2 Business Process Controlling Phase

Once the implementation of measurements has been defined in the previous phase,
the Business Process Controlling phase enables the obtainment of insights about
qualitative and quantitative measures, revealing areas with potential for improvement.
These insights can be motivated by either performance or compliance considerations
[27]. From a performance perspective, the intent of process analytics is to shorten
the reaction time of decision makers to events that may affect changes in the process
performance, and to allow a more immediate evaluation of the impact of process man-
agement decisions on process metrics. From a compliance perspective, the intent of
process analytics is to establish the adherence of process execution with governing
rules and regulations, and to ensure that contractual obligations and quality of ser-
vice agreements are met. From a compliance perspective, although there is a body
of knowledge that addresses the enforcement of "compliance goals" during the de-
sign/execution time of business processes; our focus is concentrated on performance
issues within business processes. We divide the approaches for addressing the per-
formance within business processes into two groups:

Fall Workshop 2012 15

Methodologies for Goal-Oriented Process Performance Management

2.2.1 Approaches for guiding the (re)design

These approaches are concerned about guiding the (re)design of processes so that
they contain only activities that generate value for the organization (i.e., they address
the structural properties of business processes). Approaches:

Business process reengineering. Constitutes an area which is closely related to
optimizing business process quality. Reengineering approaches commonly comprise
recommended best practices and other informal methods like "classic" reengineering
view [13] which are mostly based on anecdotal evidence. This view is also reflected in
the OMG Business Process Maturity Model [12] which suggest criteria to allocate busi-
ness processes to maturity levels without giving clear evidence on how this structure is
devised. While this informal character fits well with practical applicability, we still lack
an overarching comprehensive model to ensure causal relations between measures
recommended and intended results as well as completeness of coverage of quality
aspects [19].

Architectural Analysis (Enterprise Architecture Methods) [17]. Functional anal-
ysis is performed to gain insight into the functional aspects of an architecture, illustrat-
ing the dynamic behavior of a system. Among others, it is used to understand how a
system that conforms to an architecture works, to find the impact of a change on an
architecture, or to validate the correctness of an architecture.

2.2.2 Approaches for evaluating the operating process

Once the business process has already structurally designed e evaluated accordingly,
the operating quality of the executing business process must be evaluated. In that re-
spect, there are three types of analysis that can be made on the basis of the execution
of business processes [27]: to evaluate what happened in the past (past analysis), to
detect what is happening at the moment (real-time analysis) and to predict what may
happen in the future (predictive analysis):

Past analysis. Process Controlling [30] focuses on post analysis of completed
processes that may or may not be based on a pre-existing formal representation of
the business process. Process mining techniques [24] inductively discover the process
model when no explicit process model exists,

Real-time analysis. Business Activity Monitoring (BAM) [15, 29] is concerned
about real-time monitoring of currently active business process,

Predictive analysis. Process Intelligence [3, 11] uses business process data to
forecast the future behavior of the organization through techniques such as scenario
planning and simulation. Quantitative simulation in enterprise architecture methods
[17] is used to make statistical statements about the quantitative measures of a sys-
tem based on multiple simulation runs. It can be seen as performing measurements
in a given model, enabling the examination of performance measures in a model in a
specific situation. Further, Analytical techniques [17] are not statistical by nature and
produce a unique and reproducible result. They are usually more suitable for quantita-
tive analysis than quantitative simulation, usually providing architects with indications
of performance measures and bottlenecks in a given process model. They are useful

16 Fall Workshop 2012

3 Conclusions

when a comparison of a large number of alternatives is needed in a so called "what-if"
analysis.

Currently, no activities for process analysis considering explicitly modeled goals
have been found. In order to perform a goal-oriented analysis, we identified three
methodological steps:

e Mapping the goals to the other architectural domains (operationalization),
e Determine if the goals are being achieved in the current enterprise architecture,
e If not, one must:

— Redesign the business processes considering structural issues like remov-
ing activities that are adding no value, decisions that are no longer required,

— Redesign the business processes addressing performance violations like
trends of negative performance in the target values of indicators.

The current surveyed methods can be used to perform these aforementioned method-
ological steps in the following way:

e Approaches for guiding the (re)design can be used to redesign business process
considering structural issues

e Approaches for evaluating the operating process can be used to redesign the
business processes addressing performance violations.

At this moment, the literature review is pointing out that the best methodologies to
be adapted in order to perform a goal-oriented analysis are the techniques for enter-
prise architecture analysis depicted in [17]. Furthermore, we are not sure yet about the
scope of the thesis, i.e., which of the aforementioned steps we aim at solving with this
thesis.

3 Conclusions

This paper reported the state of art in BPM in terms of activities, languages and
methodologies to support a goal-oriented BPM. Furthermore, it positions our approach
for a goal-oriented methodology, by depicts the current achievements in terms of lan-
guage and methodologies that we have obtained so far.

As a general conclusion, we may say that there is a huge gap between linking busi-
ness strategies to the management of operational performance from a methodological
point of view, as also noticed by [19]. This can be accounted by the fact that goals are
stated from a management perspective, while the existent methods in BPM for evalua-
tion of process quality are not yet fully effective from a management perspective [19].

A roadmap of this thesis can be summarized as follows:

e Contributions obtained up to this moment: proposal of a framework to tackle the
language component of the problem of goal-oriented process analysis,

Fall Workshop 2012 17

References

e Work in progress: methodology for goal elicitation and modeling and modeling
methodology for process specific indicators,

e Expected future contributions: goal operationalization and goal-oriented enter-
prise architecture redesign method, however, the scope is not well-defined yet.

References

[1] Persson Anne Bubenko, Janis and Janis Stirna. D3 Appendix B: EKD User Guide.
Project Deliverable, 2001.

[2] Evellin Cristine Souza Cardoso, Jodo Paulo A. Almeida, and Renata S. S. Guiz-
zardi. On the support for the goal domain in enterprise modelling approaches. In
EDOCW, pages 335344, 2010.

[38] M. Castellanos, F. Casati, U. Dayal, and M. Shan. A Comprehensive and Auto-
mated Approach to Intelligent Business Processes Execution Analysis. Distrib.
Parallel Databases, 16:239—-273, November 2004.

[4] M. Castellanos, F. Casati, M. Shan, and U. Dayal. iBOM: A Platform for Intelligent
Business Operation Management. Data Engineering, International Conference
on, 0:1084—-1095, 2005.

[5] K. Cross and R. Lynch. The SMART way to define and sustain success. 1989.

[6] A. del Rio-Ortega, M. Resinas, and A. Ruiz-Cortes. Defining process performance
indicators: An ontological approach. In Robert Meersman, Tharam Dillon, and
Pilar Herrero, editors, On the Move to Meaningful Internet Systems: OTM 2010,
volume 6426 of Lecture Notes in Computer Science, pages 555-572. Springer
Berlin / Heidelberg, 2010. 10.1007/978-3-642-16934-2_41.

[7] Wilco Engelsman and Roel Wieringa. Goal-oriented requirements engineering
and enterprise architecture: Two case studies and some lessons learned. In
Bjérn Regnell and Daniela Damian, editors, Requirements Engineering: Founda-
tion for Software Quality, volume 7195 of Lecture Notes in Computer Science,
pages 306—-320, London, March 2012. Springer Verlag.

[8] Cardoso Evellin. A Conceptual Framework for Goal-Oriented Process Monitoring.
BPT Technical Report 12, 2012.

[9] M. Franco-Santos, M. Kennerley, P. Micheli, V. Martinez, S. Mason, B. Marr,
D. Gray, and A. Neely. Towards a definition of a business performance mea-
surement system. International Journal of Operations & Production Management,
27(8):784-801, 2007.

[10] Ulrich Frank, David Heise, Heiko Kattenstroth, and Hanno Schauer. Design-
ing and utilising business indicator systems within enterprise models-outline of
a method. In MoblS, pages 89—-105, 2008.

18 Fall Workshop 2012

References

[11] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M. Shan. Business
process intelligence. Comput. Ind., 53:321-343, April 2004.

[12] The Object Management Group. Business process maturity model (bpmm), 2008.

[13] James Hammer, Michael und Champy. Reengineering the Corporation: A Mani-
festo for Business Revolution. Harper Business, 2003.

[14] R. Kaplan and D. Norton. Using the Balanced Scorecard as a Strategic Manage-
ment System. Harvard Business Review, (January-February):75-85, 1996.

[15] J. Kolar. Business Activity Monitoring. PhD thesis, Czech Republic, 2009.

[16] P. Kueng and A. J. W. Krahn. Building a process performance measurement
system: some early experiences. Journal of Scientific and Industrial Research,
58:149-159, 1999.

[17] Marc Lankhorst. Enterprise Architecture at Work: Modelling, Communication and
Analysis. Springer, 3 edition, 2012.

[18] M.J. Lebas. Performance measurement and performance management. 1995.

[19] Matthias Lohrmann and Manfred Reichert. Understanding business process qual-
ity. In Advances in Business Process Management. Springer, 2012.

[20] A. Neely, C. Adams, and P. Crowe. The performance prism in practice. 2001.

[21] A. Neely, M. Gregory, and K. Platts. Performance measurement system design:
A literature review and research agenda. International Journal of Operations &
Production Management, 15(4), 1995.

[22] Dick Quartel, Wilco Engelsman, Henk Jonkers, and Marten Sinderen van. A goal-
oriented requirements modelling language for enterprise architecture. In Proceed-
ings of the IEEE International Enterprise Distributed Object Computing Confer-
ence, EDOC 09, pages 3—13, Los Alamitos, CA, USA, 2009. IEEE Computer
Society Press.

[23] S. and J. Ballantine. Performance measurement in service businesses revisited.
International Journal of Service Industry Management, 7:6—-31, 1996.

[24] Wil M. P van der Aalst. Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

[25] W.M.P. van der Aalst, A. H. M. Ter Hofstede, and M. Weske. Business Process
Management: A Survey. In Proceedings of the 1st International Conference on
Business Process Management, volume 2678 of LNCS, pages 1-12. Springer-
Verlag, 2003.

[26] Jan vom Brocke and Michael Rosemann. Handbook on Business Process Man-
agement 1: Introduction, Methods, and Information Systems. Springer Publishing
Company, Incorporated, 1st edition, 2010.

Fall Workshop 2012 19

References

[27] Jan vom Brocke and Michael Rosemann. Handbook on Business Process Man-
agement 2:Strategic Alignment, Governance, People and Culture. Springer Pub-
lishing Company, Incorporated, 1st edition, 2010.

[28] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer, 2 edition, 2012.

[29] B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic, S. Dustdar, and F. Leymann.
Monitoring and Analyzing Influential Factors of Business Process Performance.
In 2009 IEEE International Enterprise Distributed Object Computing Conference,
pages 141-150. IEEE, September 2009.

[30] Michael zur Muehlen. Workflow-Based Process Controlling: Foundation, Design,
and Application of Workflow-Driven Process Information Systems. Logos Berlin,
2004.

20 Fall Workshop 2012

Hybrid parallel computing with Java

Frank Feinbube
Frank.Feinbube@hpi.uni-potsdam.de

State-of-the-art computer systems are a combination of general purpose proces-
sors and special function accelerators. The most common type of accelerators are
GPU compute devices, which are used for some years to compute a variety of data
parallel tasks fast and energy efficient. Since the release of Intel's Sandy Bridge ar-
chitecture and AMD’s APU technology graphic compute units are integrated into each
new processor. Despite their wide availability only a relatively small amount of projects
makes extensive use of these hybrid systems. That applies in particular to projects that
are realized in standard languages like Java. One main reason for this is the fact that
it is laborious to learn to use the software libraries for hybrid architectures and that a
deep understanding of the characteristics of the underlying hardware is often neces-
sary, as well. The burden of that this creates is often too much for small and mid-sized
enterprises and project teams.

In this paper we show a way to allow such projects to get access to the hidden per-
formance of hybrid systems while keeping the effort to learn new language constructs
as low as possible. Our solution supports the development of new software projects as
well as the refactoring of existing software systems.

1 Introduction

The solution that we present in this paper serves as a bridge between developers using
standard languages and state-of-the-art hybrid hardware that can be found in almost
every computer system on the market. These two classes are described in detail in
Section 1.1 and 1.2.

1.1 Target Group

Standard languages like Java and C# still have a strong popularity. [24] This is not sur-
prising, since they enable developers to create portable programs for different domains
and tasks in a time and cost efficient way. This is achieved mainly by abstraction.
The virtual machine (JVM, .NET Framework, ...) allows developers to focus on their
application logic without having to think about the underlying hardware and operating
system. This is particularly interesting for small and medium-sized projects, because
they rarely can afford experts that get into the details of the underlying systems. De-
velopers in such projects are usually already working to their full capacity with the
implementation of the business logic. Thus they want to be able to rely on a runtime
library, which supports them with all tasks that they need to implement and if neces-
sary use a few special libraries with which they have experience or that provide very
fast and easy access - which means in most cases, a limited set of special features.

Fall Workshop 2012 21

Hybrid parallel computing with Java

There is a huge code base of such Java-based projects. And ideally this code is
reused in follow-up or side projects. If the code has to be changed in order to suit these
projects, usually refactoring and subsequent expansion is applied. Thereby the code is
converted to a more appropriate representation, which then allows the implementation
of the new features. As for the rebuild of software development time and costs are
important here as well.

1.2 Target Systems

Computer system architectures are currently at a crossroads. Due to the power wall,
the ILP wall and the memory wall it is clear that the economic potential of traditional so-
lutions to improve performance with new generations of processors are exhausted. [23]
Nevertheless, in order to provide further resources for performance-hungry applica-
tions alternative architectures are tested, that violate well-established system features
such as cache coherence or fixed memory mappings. [12] Also, accelerators are stud-
ied [7,10] and integrated into end-user systems progressively. [3, 25, 26] Hybrid sys-
tems of accelerators and conventional general purpose processors are now available
in almost all computer classes: from server systems [15] to COTS computers to net-
books [20]. The current trend in smartphones suggests that their powerful accelerators
will be programmable soon, as well.

The most common type of accelerators is GPU compute devices. Many successful
projects show what performance gains can be achieved with them. [4, 18] This perfor-
mance potential is waiting in a myriad of systems to accelerate computationally inten-
sive projects of all kinds.

Currently, it is necessary to have a deep understanding of the characteristics of the
hardware of the accelerator and the interaction with the host system in order to take
advantage of hybrid systems. But that is about to change soon ...

2 Bridging the Gap

How to bridge the gap between the target audience introduced in Section 1.1 and cur-
rent hardware presented in Section 1.2 while making it as easy as possible to program
new software and adapt existing software. In this chapter, the possible approaches to
bring hybrid computing to developers using standard languages are presented.

2.1 Don’t do anything

The first way to deal with this situation is to do nothing at all. In this case, developers
rough the additional performance gain and the accelerator resources remain untapped.
The advantage of this solution is clear in the minimum effort for the developer - namely
none at all. The biggest disadvantage beside the untapped potential is mainly the fact
that such software systems cannot expect any performance gains by future generations
of processors, since these will not be faster, but more parallel instead. [23]

22 Fall Workshop 2012

2 Bridging the Gap

2.2 Let the Operating System / Virtual Machine handle it

The main task of operating systems and virtual machines is the abstraction from and
standardization of access to lower system layers. Therefore, they are the ones who
take care of the provision of uniform interfaces to existing hardware. Particularly for
the management of execution resources and the distribution of tasks and data, the
operating system and the virtual machines were responsible.

The new generations of hardware are supported already indeed and NUMA-based
systems can be used also, and their run-time behavior can be improved by the use of
thread pinning, for accelerators, however, this does not apply. Both GPU compute de-
vices as well as the integrated GPU compute units of Intel's Sandy Bridge architecture
and AMD’s APUs are neither managed automatically by the virtual machines nor by
the operating system. Initial work regarding the integration of these accelerators with
the operating system exist already [21], but an actual implementation in mainstream
operating systems will leave some time in coming. In contrast to this, there are already
promising approaches to accelerate parts of the runtime libraries of common virtual
machine. [16]

The advantage for the developers is clearly the lack of additional effort. The down-
side is the unpredictability of whether and how their software systems will benefit from
future enhancements in the operating system and virtual machines. Short to medium
term we cannot expect any performance gains this way.

2.3 Use Special Libraries

Accelerators have been designed for a specific purpose; the primary function of GPU
compute devices for example, is the transformation and rendering of vertices, matrices
and textures. Therefore usually there are already some libraries that include an efficient
implementation of algorithms related to their specific purposes for the corresponding
accelerators. They range from matrix multiplications and fast Fourier transforms to
radix sort, and more. Many of these libraries are freely available and some of them
even combine a variety of useful functions. [6,11] The portfolio of libraries that provide
special solutions grows daily.

From the perspective of a developer these libraries are especially interesting be-
cause the cost of developing and maintaining the functionality is being taken care of
by others. On the other hand, however, one needs to become acquainted with these
libraries and meet the conditions of open source licenses where necessary. Moreover,
developers using special libraries become dependent on them; if such a special library
is no longer maintained, it could negatively affect their software project. Also, as a
user of such a library one usually has only limited influence on its further development
direction.

2.4 Dig into Details

If developers want to have full control of the implementation of an algorithm essential
for their project or want to implement their own, accelerated algorithms not yet pro-

Fall Workshop 2012 23

Hybrid parallel computing with Java

vided by others, they need to familiarize themselves with the details of the accelerators
hardware. This demands the use of C/C++ and low level APIs. [17,19] In any case,
it is necessary to know the manufacturer-specific and version-specific features of the
hardware in the system and to take into account. [8] This is often realized by shipping
a variety of specific implementations with the program - one implementation for each
hardware generation / configuration of each manufacturer. The appropriate implemen-
tation is selected, compiled and executed at runtime.

The advantage of this approach is the full control of every detail of the implemen-
tation and the associated possibility of achieving the best possible performance. How-
ever, this approach also results in the greatest effort. In general, this approach is,
therefore, impractical for small and medium projects.

2.5 Use Abstractions

There are already some APIs that promise abstractions and easier access indeed, [1,5]
but in order to achieve acceptable performance, it is still necessary to be aware of the
execution behavior and the memory hierarchy of the accelerators and evaluate specific
best practices. [9] Still it is important to be aware of the specific characteristics of dif-
fering manufacturers, hardware generations, and the configuration of the accelerators
that are available in the system where the program is running and to respond to this in
code accordingly at runtime.

For developers, these APls are very promising because they allow integrating the
accelerator-specific algorithms seamlessly into their software and reducing the cod-
ing overhead that is required to use of low-level APIs. Unfortunately, it is still often
necessary to formulate the code that is executed on the accelerator in a C/C++ deriva-
tive. [5,22]

Our solution that overcomes these disadvantages and combines the advantages of
abstractions with the advantages of special libraries is presented below.

3 HyFor.parallel - Hybrid Loops in Java

Although there are already technologies that make it possible to use accelerators, there
is still no solution, which allows an efficient and convenient use of hybrid systems. Our
solution fills this gap.

3.1 Requirements

From the approaches presented in Section 2, as well as, the experiences of other
projects [13] we conclude that the following properties are relevant for acceptable, use-
ful solutions:

1. The effort (lines of code, code complexity, time, and cost) for new development,
software advancement (refactoring) and maintenance should be as low as possi-
ble. Then the solution is suitable for small and medium sized projects, as well.

24 Fall Workshop 2012

3 HyFor.parallel - Hybrid Loops in Java

2. The available resources should be utilized. The performance gain should be
rewarding.

3. A good share of the large variety of compute devices types that are available on
the market should be supported. The solution should also be suited for future
hardware generations.

4. The details of the underlying hardware (execution behavior, memory hierarchy)
should be abstracted. This division of responsibilities also makes it possible that
different developers focus on their respective area of expertise.

5. Common functions (sorting, linear algebra, ...) should be part of the package and
implemented as efficiently as possible. [13]

6. A solution should be comprehensive. In this way, it reduces the number of de-
pendencies, which arise in projects that use many partial solutions.

7. Developers should have comprehensive control on the execution characteristics
of the library. In particular it should be possible to conduct high-level performance
tuning. [13]

8. The solution should be implemented as a high-level API, so that it seamlessly
integrates with the developer’s language of choice.

9. The execution layer should realize the known best practices as well as possible
to ensure good execution performance. [9]

3.2 Concept

In order to reduce the burden of training and to ensure seamless integration in a familiar
environment, we decided to use a parallel loop as an interface to our implementation.
Loops are a fundamental programming construct; parallel loops in which the indepen-
dent loop bodies are executed in parallel, are widespread. [2,14] Parallel port loops are
thereby suitable for both task parallel problems and for the calculation of data-parallel
algorithms. (Requirement 1, 4, 8)

The access to the accelerators is realized via OpenCL [17]. This standard was
precisely designed to create a bridge between high-level languages, as well as, ab-
stractions and the underlying hybrid systems. It is thus very detailed and close to
hardware. Since we use OpenCL, we can not only support all current accelerators, but
at the same time guarantee the future viability of our solution. (Requirement 3, 2)

The best practices in the area of performance optimization of hybrid systems show
that many of them can be implemented automatically by the execution layer. To en-
able this static and dynamic code analysis can be used. Better results are achieved,
however, if developers enrich their code with information to improve runtime decisions
on possible optimizations. In Java this could be realized with Java annotations. In
particular the distribution of data to the different kinds of memory in the memory hier-
archy and to individual devices is very performance-critical. By using annotations to
provide information to influence these mappings, developers can conduct performance

Fall Workshop 2012 25

Hybrid parallel computing with Java

tuning and influence the realization of best practices by the runtime. Here is a rule
of thumb that the solution should already deliver good performance with little effort -
namely the absence of annotations - and that a slightly higher effort should result in
a large potential for further performance. The effort to performance gain ratio should
therefore be reasonable. (Requirement 7, 9) To ensure that the abstraction remains
and that developers are relieved from learning the details of the accelerator hardware,
these annotations are only used to describe the data access pattern of the algorithm.
The mapping on the memory of the accelerator is taken care of by our execution layer.
Because developers know their algorithms best, they are able to describe the type
of access, the access frequency, the relative sequence of accesses, etc., which are
crucial for the mapping. (Requirement 1, 4, 8)

In addition, our solution delivers a portfolio of useful and commonly used functions
that are applied in many data-parallel application domains: sorting, graph algorithms,
linear algebra, ... (Requirement 5)

Our solution opens the way for the use of hybrid systems in Java projects. The
special focus is on light-weight, seamless integration, the full control of your own code,
and the resulting mapping onto the accelerator hardware. While developers focus on
the description of their algorithms, our library takes care of the realization of possi-
ble optimizations. Because we support a fundamental construct countless algorithms
can be implemented and parallelized. To further increase the comfort and improve
the performance of the projects based on our solution even further, we provide a set of
high-performance implementations for frequently used functions. By using our compre-
hensive solution the dependence on many small projects that provide partial solutions
using hybrid systems is reduced. (Requirement 6)

3.3 Implementation

Listing 1 shows how our solution integrates with a Java program. The call to Hy-
For.parallel replaces the normal loop. The inclusive start value and the exclusive target
value must be passed - as usual with loops; the loop body is described in the overrid-
den run method on an anonymous class of type ForLoopBody.

If HyFor.parallel is called, the course of action shown in Figure 1 is executed. First, if
this step has not already been taken before, our solution analyzes the system structure
and existing accelerators. In addition, metadata is created for the algorithm. These
are used in the second step to sort out those accelerators that are not capable of ex-
ecuting the algorithm. For example, because they do not support recursion, atomics
or double precision floating point operations, but these are used in the algorithm. The
third step is to estimate the performance of the execution of the given algorithm on
the system components. In order to do this, the instructions used in the algorithm are
considered and compared with the characteristics of the accelerator. In addition, the
current workload and the performance numbers collected from the previous executions
on the accelerators are taken into account. Now suitable accelerators for execution are
selected in consideration of the task size. After that the actual code for the accelerator
is generated. In this step both, the known features of the hardware and the properties
of the algorithm that are apparent from the code or identified by annotations are con-

26 Fall Workshop 2012

3 HyFor.parallel - Hybrid Loops in Java

int size = 512;

final float[] values = new float[size];

for (int i = 0; i < size; i++) {
values[i] = i;

}

final float[] squares = new float[size];

HyFor.parallel (0, size,
new ForLoopBody<Integer >() {

@Override
public void run(Integer id) {
squares[id] = values[id] = values[id];

}
1)

for (int i = 0; i < size; i++) {
System.out. printf ("\%6.0f \%8.0f\\n", values[i], squares[i]);
}

}
Listing 1: Squares example using our approach. values contains the numbers from 0
to size; as a result of the calculation, squares contains the squares of these numbers.

@ Algorithm Analysis (based
on Code and Annotations)

Predict Performance (based

Filter by . :
s O on Algorithm & Device
Feasibility / Characteristics, current Load

System Analysis (Memory, Correctness and Historical Information)
Processing Elements,
Capabilities, ...) é
Distribute Data Create Code (base Memory Select Devices (based
and Schedule [«()<{ Mapping on Algorithm & [¢O<{ on Performance
Tasks Device Analysis) Prediction)
| Execute Tasks on Accelerators Collect Results |

6

Figure 1: Hybrid Parallel Library - Course of Action

sidered. The code is loaded onto the accelerator, the data is distributed, the portions
of the calculation are identified by indices and finally the calculation is triggered. When
the results are ready, they are joined together and the function returns.

Our solution is implemented as a library that is structured as shown in Figure 2.
The user program uses HyfFor.parallel and annotations if applicable to describe the
data access. Algorithm Analysis and System Analysis compile information about the

Fall Workshop 2012 27

Hybrid parallel computing with Java

Java Application
| |

v v
N
hyFor *
t i
Algorithm Analysis
t t t
Correctness / Performance 5
Feasability Checker Prediction é
' . Memory Mapper [§ Hybrid
Execution L & “g P " |
ilsichi Task Scheduler g E ?ra €
o Library
System Analysis - 3
| | |
' ! ! ,
‘ CPU Access Layer | Low Level Special
| Accelerator Access Layer Libraries
i |
(CPUs, GPU Compute Devices, Accelerators)

Figure 2: Hybrid Parallel Architecture. (Boxes represent software components, arrows
represent usage relations, the eight-edged shape at the bottom represents hardware.)

mix of instructions of the algorithm and the characteristics of the hardware. The Cor-
rectness Checker and Performance Predictor select appropriate compute devices and
Memory Mapper as well as TaskScheduler then assign data and subtasks to them.
The code transformer delivers the source code that is compiled for each accelerator. It
is realized as an adaptation and extension of the project Aparapi [1], which was origi-
nally developed by AMD and is now available as open source. In order to access the
accelerators, OpenCL is used.

Our library ships with a portfolio of implementations of frequently used functions.
These functions are realized either based on highly optimized native solutions or are
implemented by the use of HyFor.parallel themselves.

4 Conclusion

An important factor in the creation of our solution was the strong focus on creating a
light weight tool for the developer. The goal was that with a few lines of code and a
simple construct, programmers should be enabled to use our library and take advan-
tage of hybrid systems. In this paper we discussed a programming model as well as an
implementation. Based on our research hybrid programming could be made available
to programmers by learning only one new function: HyFor.parallel.

28 Fall Workshop 2012

References

References

[1] Advanced Micro Devices, Inc. Aparapi .

[2] and Chuck Koelbel. High Performance Fortran Specification Version 2.0, January
1997.

[3] A. Branover, D. Foley, and M. Steinman. AMD Fusion APU: Llano . Micro, IEEE,
32:28-37 , 2012.

[4] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy Sheaffer, Sang-
Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous com-
puting. IEEE Workload Characterization Symposium, 0:44-54, 2009.

[5] CLyther. CLyther. http://srossross.github.com/Clyther/.

[6] J. Diaz, C. Munoz-Caro, and A. Nino. A Survey of Parallel Programming Models
and Tools in the Multi and Many-Core Era. 23:1369 —1386 , 2012.

[7] A. Duran and M. Klemm. The Intel®Many Integrated Core Architecture. In High
Performance Computing and Simulation, pages 365 —366.

[8] Frank Feinbube, Bernhard Rabe, Martin Léwis, and Andreas Polze. NQueens on
CUDA: Optimization Issues. In 2010 Ninth International Symposium on Parallel
and Distributed Computing, pages 63—70, Washington, DC, USA, 2010. IEEE
Computer Society.

[9] Frank Feinbube, Peter Tréger, and Andreas Polze. Joint Forces: From Multi-
threaded Programming to GPU Computing. /EEE Software, 28:51-57, October
2010.

[10] H. Franke, J. Xenidis, C. Basso, B. Bass, S. Woodward, J. Brown, and C. John-
son. Introduction to the wire-speed processor and architecture. IBM Journal of
Research and Development, 54, 2010.

[11] Jared Hoberock and Nathan Bell. Thrust: open-source template library for de-
veloping CUDA applications.

[12] Intel Labs. SCC External Architecture Specification (EAS), April 2010.

[13] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of High Perfor-
mance Fortran: an historical object lesson. In third ACM SIGPLAN conference on
History of programming languages, pages 7—1, New York, NY, USA, 2007. ACM.

[14] Daan Leijen and Judd Hall. Parallel Performance - Optimize Managed Code For
Multi-Core Machines, 2007.

[15] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. Micro, IEEE, 28:39-55, 2008.

[16] Microsoft Corporation. Microsoft Accelerator v2 Programming Guide, 2011.

Fall Workshop 2012 29

References

[17] Aaftab Munshi. The OpenCL Specification - Version 1.1, June 2010.
[18] Nvidia. CUDA Show Case.

[19] NVIDIA. CUDA Developer Zone. http://developer.nvidia.com/
category/zone/cuda-zone, 2011.

[20] Nvidia. NVIDIA ION Graphics Processors. http://www.nvidia.com/
object/picoatom_specifications.html, October 2012.

[21] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, Emmett
Witchel, Ted Wobber, and Peter Druschel. PTask: operating system abstractions
to manage GPUs as compute devices. In Proceedings of the 23rd ACM Sympo-
sium on Operating Systems Principles 2011, pages 233-248. ACM, 2011.

[22] SourceForge. OpenCL .Net.

[23] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software. Dr. Dobb’s Journal, 30, March 2005.

[24] TIOBE Software. TIOBE Programming Community Index. http://www.tiobe.
com/index.php/content/paperinfo/tpci/index.html, October 2012.

[25] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts. A fully integrated multi-CPU,
GPU and memory controller 32nm processor . In Solid-State Circuits Conference
Digest of Technical Papers, pages 264 —266. |IEEE International.

[26] Ying Zhang , Baton Rouge, and Lu Peng. Architecture comparisons between
Nvidia and ATl GPUs: Computation parallelism and data communications . In
Workload Characterization, pages 205-215. IEEE.

30 Fall Workshop 2012

On the Complex Nature of MDE
Evolution — A Meta Study

Regina Hebig
System Analysis and Modeling Group
Hasso-Plattner-Institut

regina.hebig@hpi.uni-potsdam.de

In context of MDE, evolution plays an important role to improve productivity and ad-
dress newly arising requirements on the usually built software, like the need to provide
functionality in form of services. Therefore, it is of paramount importance to under-
stand how MDE evolves in organizations. In this report, we approach the question how
MDE evolution manifests in practice. Using a meta study we systematically compared
literature that proposes techniques for evolving or changing MDE settings with reports
about actual applications of MDE in industry. We categorize the observed evolution
steps and illustrate a mismatch between literature and practice. In that context, we
characterize an important class of evolution steps that has substantial impact on the
MDE settings and has been not recognized yet.

1 Introduction

Model-driven engineering (MDE) is used in many domains for software development.
The overarching characteristic of MDE is the use of models and dedicated automated
development steps that operate on models to systematically derive large fractions of
the software from models rather than general purpose programming language code.

In context of MDE evolution plays an important role to improve productivity and
reduce time-to-market, e.g., by improving automation of development. Also newly aris-
ing requirements on the usually built software can be addressed by evolution, e.g., by
evolving applied domain specific languages (DSLs). Therefore, it is of paramount im-
portance to understand how MDE evolves in organizations and how to cost-effectively
realize the necessary evolution steps.

The literature on MDE evolution is mainly considering language evolution [2, 10,
26], phenomena related to metamodel evolution, and the corresponding adjustment of
consuming or generating transformations [13,20,33,35]. An additional form of evolution
focuses on adding languages to the MDE settings [32]. Literature that targets the
problem at a broader scope, looking at aspects such as Capability Maturity Model
(CMM) for MDE [28] or the life cycle for transformation development [11], employs
a similar understanding of evolution. However, in a number of studies on capturing
MDE settings (the details how the models and manual as well as automated activities
relate to each other) in practice [12], we got the feedback that the people have been
exposed to rather substantial changes during the evolution of MDE settings in their
organizations. Thereby, they experienced great impact on their daily work.

Fall Workshop 2012 31

On the Complex Nature of MDE Evolution — A Meta Study

In this report, we approach the question how MDE evolution manifests in practice.
In a first step we performed a meta study comparing systematically literature that pro-
poses techniques for evolving or changing MDE settings with reports about actual MDE
settings in industry. We categorize the observed evolution steps and illustrate a mis-
match between literature and practice. In that context, we characterize an important
class of evolution steps that has substantial impact on the MDE settings and has not
been recognized yet.

2 Meta Study on Evolution

We performed a meta study to answer the question, whether the scope of current
research approaches is sufficient to capture evolution of MDE settings that occur in
practice. Following the review process is described followed by a survey of research
support for evolution and reports on evolution that occurred in practice. We classify
change types that occur in practice and change types that are supported by research
approaches. We discuss differences between the change types and characterize a
lack in literature that prevents us from understanding the nature of MDE evolution.

2.1 Review process

To identify literature for this meta study, we systematically searched through the pro-
ceedings of the MODELS conference from 2007 to 2011 and ECMFA, respectively
ECMDA-FA conferences from 2007 to 2012. the proceedings of the Workshop on
Models and Evolution ME, as well as its predecessors MCCM (Workshop on Model
Co-Evolution and Consistency Management) and MoDSE (Workshop on Model-Driven
Software Evolution) from 2007 to 2011, the proceedings of the OOPSLA Workshops
on Domain-Specific Modeling from 2007 to 2011, as well as the Software and Systems
Modeling journal (SoSyM) from 2007 to 2012, including papers published online first
until end of July 2012. In addition, we performed online key word search and followed
references in reviewed papers. In particular we used ACM digital library for keyword
search in the proceedings of the ICSE conference. First, we searched for approaches
that aim to support changes in model operations (e.g., transformations and genera-
tion of code), languages, or combinations of modeling techniques. The sample in this
report was chosen so that the existing diversity of types of supported changes is rep-
resented: [2,4,6,7,10,13,16,18-20,22-27,31, 33, 35].

Second, we searched for reports on the application of model-driven techniques or
domain-specific modeling languages in practice. Thereby, we identified thirteen reports
or case studies that describe MDE introduction or usage: [1,3,5,7,17,21,25,29,30, 34]
and three case studies in [14]. Cases where different aspects of the same application
are described in multiple papers are counted as one report. We filtered the reports
according to two criteria. First, it was necessary to ensure that the chosen reports
capture a period of time that is long enough to expect evolution. Thus, reports that
focus only on the an initial introduction of MDE or on settings that were used for a
single project only, were not suitable. Second, the changes need to be described
sufficiently for rating. Reports that only mention changes without further descriptions

32 Fall Workshop 2012

2 Meta Study on Evolution

could not be included. Finally, we chose five reports for this meta study: [3,7,17, 25,
30]. These reports stem from different domains, such as telecommunication industry,
financial organizations, and development of control systems.

2.2 Literature on support for evolution

In this section we give an overview of evolution steps or changes in MDE approaches
that are expected and supported by literature approaches. A first group of approaches
deals with the application of changes to the implementation of a transformation (re-
ferred to as change type Cf7 in the following). For example, the MDPE workbench,
which is introduced in [8, 9] and further discussed as one of the case studies in [25],
contains a transformation chain that transforms input models of different (partly pro-
prietary) languages to a representation that conforms to an intermediate meta-model
(Tool-independent Performance Model (TIPM)). The TIPM models are then automati-
cally transformed to input formats of different performance analysis tools. The analysis
results are transformed back to be presented within the context of the input model.
Due to this mechanism, the MDPE workbench enables the extension of the quality as-
surance with additional performance analysis tools. From the perspective of the user,
such an extending evolution step only has effects on the results. Thus, the evolution is
experienced as an evolution of the implementation of an automated analysis activity.

Evolutionary changes are not the only motivation for changing a transformation. For
example, in [18], a generator is built so that it can easily be configured to implement
architectural decisions met within a project. In [19], the incremental development of a
transformation chain is discussed. Thereby, implementations of involved transforma-
tions are evolved systematically to reach the desired result.

A second group of approaches deals with language evolution and migration of mod-
els, such that they become valid for a new version of a meta-model (referred to as
change type C2 in the following). In [26], the Model Change Language (MCL) is intro-
duced. MCL can be used to specify migration rules for models between two versions
of a meta-model. In [10], the differences between two meta-models are analyzed and
used to generate a transformation that can be used to migrate the corresponding mod-
els. In [2], the Modif meta-model for describing meta-model evolution is introduced.
Based on that description the new meta-model version and a transformation for migrat-
ing corresponding models is generated. Further examples are [31], [24], or [4], where
the usage of higher-order model transformations to support co-evolution of models to
changes in the corresponding meta-model is proposed.

A third group of approaches deals with the adaption of transformations when meta-
models of consumed models change. For some of these approaches the change of a
language is the motivation for providing techniques for modular design and adaption
strategies for transformations. For example, Yie et al. [35] deal with the question how a
fully automated transformation chain can be adapted due to additional concepts in the
input language. They propose a solution where the initial transformation chain is com-
plemented by a further chain of transformations that handles the additional concepts
and a correspondence model to maintain the relations between the different transfor-
mation results. Similarly, the flexibility of the MasterCraft code generator presented
in [18] is motivated by the introduction of additional concepts.

Fall Workshop 2012 33

On the Complex Nature of MDE Evolution — A Meta Study

Other approaches deal with the question how information about language changes
can be used systematically to adapt consuming transformations (e.g., [13]). In [20],
a semi-automated approach for the adaption of the model transformations is intro-
duced. Vermolen et al. lift the semi-automated evolution of models and consuming
transformations to a more technology-independent layer by allowing also migrations of
programming languages or data structures [33].

Similar to the third group of approaches, the fourth group of approaches is based
on exchanging modeling languages and transformations. However, here the motivation
is not the evolution of a language, but the migration to a new platform. As already pro-
posed in the OMG’s MDA [27], the transformation between platform-independent model
and platform-specific model might be exchanged to address the needs of a new plat-
form during generation. In [7], a corresponding migration process is presented. The
proposed approach has to be configured by exchanging the transformation between
platform-independent model and platform-specific model. In addition, languages of
code might change. Meyers et al. present a combined view of evolution approaches.
They subdivide language- and model evolution into four primitive scenarios, describ-
ing how evolution of models, meta-models, or transformations enforces co-evolution
among each other [22,23]. The considered scenarios are combinations of the changes
supported by the approaches described above (supporting change types C1 and C2).

Finally, we identified two examples for approaches that lead to an addition of input
models to an automated transformation or generation activity, which is exchanged or
evolved (referred to as change type C3 in the following). This changes not only the
number of models that play a role within the affected MDE approach (referred to as
change type C4 in the following), but might also increase the number of used (model-
ing) languages (referred to as change type C5 in the following). Furthermore, adding
new input models can imply a change in the number of manual modeling activities (re-
ferred to as change type C6 in the following). This is not necessarily the case, since
the new models might be reused or automatically created. However, the changes C4,
C5, and C6 introduced here are manifested in change C3. As it will be shown below,
the numbers of used models, languages, and manual activities can also be affected for
other reasons than the addition of an input model to an automated activity.

Motivated by the need to raise the level of abstraction, starting from an existing
DSL, Johannes et al. present an approach where a composition system is used to
automatically compose models of different DSLs that are defined hierarchically on top
of an existing DSL in [16]. Thus, the definition of a new DSL within this approach will
lead to an additional input language for the automated composition and generation
based on the composition result. Estublier et al. present a similar approach for the
composition of DSLs as an alternative to extending existing DSLs in [6]. They present
a modifiable interpreter, where a composition model can be used to define how different
domain-specific models are related. Additionally, this approach allows adaptation for
the interpreter in case of changes in the DSL (manifestation of C7).

34 Fall Workshop 2012

2 Meta Study on Evolution

2.3 Evolution observed in practice

In the following we summarize the results of the five reports (selected in Section 2.1)
on changes of MDE settings in practice. Since the description of the change was not
the main focus of the papers, we can only include changes explicitly described in the
papers, but cannot exclude that certain types of changes are part of the example.

As described in Section 2.2, Fleurey et al. present a process for the migration of
systems to new platforms in [7]. To apply the process it is proposed to substitute the
used transformations to fit the current use case. In addition, they describe how they
actually did adapt the process to apply it for the migration of a banking application.
Interestingly, the changes actually applied differ strongly from the proposed changes.
In this special case, it was necessary that the resulting system conforms to the de-
velopment standards of the customer. Thus, it was not sufficient to produce code,
but to provide corresponding models that were synchronized with the code, such that
round-trip engineering on the migrated system was possible. Therefore, they replaced
the code generation with an automated UML extraction. They integrated the Ratio-
nal Rose code generator used by the customer to generate code skeletons out of the
models. Thus, the number of tools changed (referred to as change type C7 in the
following). Further, they added a generation to migrate the remaining code from the
platform-independent model (extracted from the original code) into the code skeletons
(C1, C2, C4,C5). Not only the chain of automated steps was affected. Conforming
to the round trip engineering, some manual migration tasks have to be applied to the
models (C6). The corresponding reapplication of the Rational Rose code generation
adds an additional automated step to the MDE settings (referred to as change type C8
in the following). Thus, instead of being only followed by manual migration, the auto-
mated migration is followed by manual migration activities on the Rational Rose model,
a generation of code and further manual migration activities on the code. Thereby, the
order of manual and automated tasks change, as manual migration is intermixed with
automated code generation (referred to as change type C9 in the following).

For the Telefénica case study presented in [25], it is reported that the developed
DSML for the generation of configuration files was changed later on. The first change
was the integration of the verification language EVL to incrementally check the correct-
ness of the models during development. This feedback mechanism intermixes manual
modeling activities with an added automated analysis for correctness (C8,C9).

As a second change, the generation of the configuration files was exchanged by
an implementation that is based on a composition system conforming to the approach
reported in [16], which was already discussed in Section 2.2. Motivation for this change
was the wish to be flexible to reach higher levels of abstraction. Thus, the number of
input models and used modeling languages changed from one to a flexible number
(C3,C4,C5). With it, also the number of manual modeling activities changes for the
developer, who has to create a number of different DSL models (C6).

In [17], a tool vendor reports how the language FBL together with its engineering
environment changed. They started with providing the visual programming language
FBL together with an editor and a code generator. Over time they introduced the tool
function test to enable developers to debug FBL (C7). Starting from manual program-
ming with a following automated generation, the introduction of automated verification

Fall Workshop 2012 35

On the Complex Nature of MDE Evolution — A Meta Study

or debugging operations changes the order of manual and automated tasks. As result
manual programming is followed by automated debugging and further manual correc-
tion before the automated generation is applied (C8,C9). A second evolution step was
the introduction of templates to allow programming on a higher level of abstraction. De-
velopers have to choose and configure templates by specifying parameters. A chosen
template with parameters is then automatically translated to FBL and from there code
is generated. Thus, the used language (templates instead of FBL) and the generation
implementation (transformation plus generation) changed (C1,C2).

In [30], the adoption of MDE in a financial organization is reported. The report ends
with a note that further changes to the MDE settings are planned in the future. They
want to reach better integration of different used tools (C7) and more automation of
the construction phase of the lifecycle (C8). In [3], Baker et al. describe the usage of
MDE within Motorola. They report about changing tools (C7) and a changing number
of languages and used models (C4,C5) with the introduction of Message Sequence
Charts (MSC) and SDL. Further, they report about changes in MSC (C2) that enabled
the introduction of automated generation of test cases (C8).

2.4 Summary of change types

In the following we compare changes supported by literature approaches with changes
occurring in practice. Therefore, we want to discuss the extent of the change types.
Change C1 concerns exchanging or evolution of an automated activity, which might be
any model operation or code generation. Whether C1 is applied or a new automated
activity is added C8, is sometimes difficult to distinguish. Here, we consider all cases
where an automated activity is added and used in each case together with an existing
automated activity as a change of type C1. C2 concerns exchanging or evolving a
used language, while C5 concerns the addition of languages in use. Thereby, both
changes concern modeling languages as well as programming languages or other
kinds of artifacts. Change C3 actually describes a set of constellations how changes
C4, C5, and C6 can be applied. C4 concerns the change of artifact roles (i.e., expected
input and output of manual or automated activities). Thereby, an artifact can be a model
or code. In case of additions of input models, we rated the modeling activity for creating
the additional model as an additional manual activity (C6). However, whether modeling
of two distinct models is experienced as two modeling activities or not is a subjective
question. Similarly, it is not always distinguishable how an additional tool is experienced
by developers. If a new tool is highly integrated into am already used tool or framework,
developers might recognize it as new feature, while in other cases an additional tool
can lead to extra effort (e.g., when artifacts have to be explicitly exported and imported
to be used). Finally, the change of the order of activities (C9) describes a consequence
of the application of change C6 or C8.

2.5 Structural changes vs. non-structural changes

Evolution supported in literature results from a combination of three change types:
change of a model’s or artifact’s language (C2), change of a model operation’s imple-

36 Fall Workshop 2012

2 Meta Study on Evolution

mentation (C7), and addition of input artifacts consumed in a model operation (C3).
However, combinations of these change types do not always suffice to describe evo-
lution in practice. We first differentiate between non-structural and structural changes.
Structural changes affect the number and order of tools, activities, languages, and
models a developer has to deal with. In contrast, non-structural change only concern
which (modeling) language is concretely used for an artifact/model and how an auto-
mated activity (i.e., transformation or generation) is implemented. Thus, only one kind
of structural change is currently supported in the literature, which is the addition of input
artifacts to an automated activity.

Changing an MDE setting leads to changes for developers and a company. This
can affect the degree of automation of development, the complexity to work with the
MDE setting, and the changeability and maintainability of the software that it built with
the MDE setting. Further, the effort for maintaining consistency and integration effort
when working with different tools is affected. Finally, tools and automated activities that
are used in an MDE setting, need to be maintained and, therefore, affect the costs of
ownership of a company. Since these aspects imply potentials and risks for the pro-
ductivity of developers or the overall productivity of a company, respectively, we call
them productivity dimensions in the following. Changes in an automated activity (C7)
as well as changes in the number of automated activities (C8) can affect the degree
of automation. Changing a used (modeling) language (C2) or the number of used lan-
guages (C5) can have benefits concerning the degree of abstraction, but yields the risk
that the developers lack the know how to use that language (affecting the complexity of
the MDE settings) [3]. Similarly, a growing number of models (C4), necessary manual
activities (C6), or tools (C7) increases complexity for developers. In addition, a change
in the number of models affects the need to maintain the consistency of different mod-
els [15]. Further, additional tools might lead to additional activities to move artifacts
between them (increasing the integration effort). As tools and implementations of au-
tomated activities have to be maintained, changes in both, number of tools C7 and
number of automated activities C8, can affect the costs of ownership.

Finally, a main risk results from the addition of automated or manual activities if this
leads to a change of the order how manual and automated activities occur (C6, C8, and
C9). This is not only due to growing complexity for developers, but also the occurrence
of constellations where automatically created artifacts are touched manually. Further
these changes can lengthen the chain of activities that is required to apply a change.
This implies risks for changeability and maintainability, when the automated step has
to be reapplied. The main risks and potentials for non-structural changes concern the
degree of automation and the complexity of the MDE settings. In contrast, structural
changes imply some important additional risk and potentials, like changes in the ef-
fort required to maintain consistency of all required artifacts or changes in the costs of
ownership. Further structural changes can have stronger effects on the different do-
mains of productivity than non-structural changes. For example, increasing the number
of used languages (C5) has in most cases a worse impact on the required know how
than just applying changes to a used language (C2). Finally, there is a group of struc-
tural changes (C6, C8, and C9) that can affect the changeability and maintainability of
the software that is built with the MDE settings. This group of changes can lead to MDE
settings that contain constellations that are well known for their risks, but has also the

Fall Workshop 2012 37

On the Complex Nature of MDE Evolution — A Meta Study

potential to eliminate these risks. Therefore, we call these structural changes substan-
tial structural changes in the following. Interestingly, the only structural change that is
proposed in literature (C3: adding additional input artifacts to an automated activity) is
restricted in its risks to an increasing complexity and increasing effort in maintaining
consistency between the different models. With the introduction of additional input ar-
tifacts C3 might lead to the additional introduction of manual activities preceding the
changes activity for creating these input artifact (unless these artifacts are reused). If
this change type is not combined with the introduction of automated activities C8 to
support the creation of the additional input artifacts automatically, C3 does not lead to
a risky change of the order of manual and automated activities.

To sum up, non-structural changes tend to affect only single productivity dimensions
(C1 affects degree of automation, C2 affects the complexity). In contrast, a structural
change affects multiple productivity dimensions (e.g., C8 affects degree of automation,
costs of ownership, and changeability and maintainability). In consequence, structural
changes yield the difficulty that improvements in one productivity dimension can come
along with a change for the worse for another dimension. Evolution of MDE settings
results from a single or combined occurrence of changes. A change can comply with
multiple change types. E.g., adding a new automated activity (C8) in between two man-
ual activities changes the order of automated and manual activities (C9), too. However,
different changes can also occur in combination, e.g., exchanging the implementation
of an automated activity (C7) can render a manual activity unnecessary (C6). Evo-
lution consists of evolution steps, which include one or more changes. Thereby, an
evolution step contains all changes that modified a version of an MDE setting that was
practically used to another version that is or was practically used. We call an evolu-
tion step structural evolution step if the set of changes contains at least one structural
change. Similarly, we call an evolution step substantial evolution step if the set of
changes contains at least one substantial structural change. We call the evolution of
an MDE setting that contains a least one structural evolution step structural evolution.
The combined occurrence of different changes in one evolution steps can enhance
the difficulty to improve one productivity dimension without a change for the worse for
another dimension.

Subsuming, changes that occur in practice (like substantial structural changes) can
imply risks that are not caused by changes supported by literature approaches. Fur-
ther, especially structural evolution, affects multiple productivity dimensions.

2.6 Threats to validity

We identified that structural changes occur. However, we cannot provide any empirical
statement about the probability that an MDE settings is affected by structural changes.
We do not expect structural changes to be seldom, since we found occurrences for
structural changes not only in the meta study. Initially we were confronted with struc-
tural changes in a field study, where we did not focus on evolution. Further, it cannot
be claimed that structural changes occur in every domain in software engineering.
However, the examples discussed in this report are from different domains, such as
telecommunication industry, financial organizations, and enterprise applications.

38 Fall Workshop 2012

3 Conclusion

3

Conclusion

Using the meta study we identified the class of structural evolution steps that can be
observed in industry. It turned out that this kind of evolution steps is rarely or, in case
of substantial structural evolution steps, not at all covered by techniques proposed in
literature for evolving or changing MDE settings.

References

(1]

(2]

(3]

(4]

(5]

(7]

(8]

[10]

[11]
[12]

[13]

[14]

[18]

[16]

7]

(18]

Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree. A modeling language’s evolution driven by tight interaction
between academia and industry. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 2, ICSE ’10, pages 49-58, 2010. ACM.

Jean-Philippe Babau and Mickael Kerboeuf. Domain Specific Language Modeling Facilities. In Proceedings of the 5th
MoDELS workshop on Models and Evolution, pages 1-6, October 2011.

Paul Baker, Shiou Loh, and Frank Weil. Model-Driven Engineering in a Large Industrial Context — Motorola Case Study. In
Lionel Briand and Clay Williams, editors, Model Driven Engineering Languages and Systems, volume 3713 of Lecture Notes
in Computer Science, pages 476—491. Springer Berlin / Heidelberg, 2005.

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. Automating Co-evolution in Model-Driven
Engineering. In Proceedings of the 2008 12th International IEEE Enterprise Distributed Object Computing Conference,
pages 222—-231, 2008. IEEE Computer Society.

Gan Deng, Tao Lu, Emre Turkay, Aniruddha Gokhale, Douglas C. Schmidt, and Andrey Nechypurenko. Model Driven Devel-
opment of Inventory Tracking System. In Proceedings of the ACM OOPSLA 2003 Workshop on Domain-Specific Modeling
Languages, October 2003.

Jacky Estublier, German Vega, and Anca lonita. Composing Domain-Specific Languages for Wide-Scope Software En-
gineering Applications. In Lionel Briand and Clay Williams, editors, Model Driven Engineering Languages and Systems,
volume 3713 of Lecture Notes in Computer Science, pages 69-83. Springer Berlin / Heidelberg, 2005.

Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas, and Jean-Marc Jézéquel. Model-Driven Engineering for Soft-
ware Migration in a Large Industrial Context. In Gregor Engels, Bill Opdyke, Douglas Schmidt, and Frank Weil, editors, Mode/
Driven Engineering Languages and Systems, volume 4735 of Lecture Notes in Computer Science, pages 482—497. Springer
Berlin / Heidelberg, 2007.

Mathias Fritzsche, Hugo Bruneliere, Bert Vanhooff, Yolande Berbers, Frédéric Jouault, and Wasif Gilani. Applying Meg-
amodelling to Model Driven Performance Engineering. In ECBS '09: Proceedings of the 2009 16th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems, pages 244—253, 2009. IEEE Computer Society.

Mathias Fritzsche and Jendrik Johannes. Putting Performance Engineering into Model-Driven Engineering: Model-Driven
Performance Engineering. In Holger Giese, editor, Models in Software Engineering, volume 5002 of Lecture Notes in Com-
puter Science, pages 164—175. Springer Berlin / Heidelberg, 2008.

Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Managing Model Adaptation by Precise Detection of Meta-
model Changes. In ECMDA-FA '09: Proceedings of the 5th European Conference on Model Driven Architecture - Founda-
tions and Applications, pages 34—49, Berlin, Heidelberg, 2009. Springer-Verlag.

Esther Guerra, Juan de Lara, Dimitrios Kolovos, Richard Paige, and Osmar dos Santos. Engineering model transformations
with transML. Software and Systems Modeling, pages 1-23. 10.1007/s10270-011-0211-2.

Regina Hebig and Holger Giese. MDE Settings in SAP. A Descriptive Field Study. Technical Report 58, Hasso-Plattner
Institut at University of Potsdam, 2012.

Markus Herrmannsdoerfer, Daniel Ratiu, and Guido Wachsmuth. Language Evolution in Practice: The History of GMF. In
Mark Van den Brand, Dragan Gasevic, and Jeff Gray, editors, Software Language Engineering, volume 5969 of Lecture
Notes in Computer Science, pages 3—22. Springer Berlin / Heidelberg, 2010.

John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven engineering practices in industry. In Proceeding of the
33rd international conference on Software engineering, ICSE "11, pages 633-642, 2011. ACM.

John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Empirical assessment of MDE in industry. In
Proceeding of the 33rd international conference on Software engineering, ICSE '11, pages 471-480, 2011. ACM.

Jendrik Johannes and Miguel Fernandez. Adding Abstraction and Reuse to a Network Modelling Tool Using the Reuseware
Composition Framework. In Thomas Kiihne, Bran Selic, Marie-Pierre Gervais, and FranCois Terrier, editors, Modelling Foun-
dations and Applications, volume 6138 of Lecture Notes in Computer Science, pages 132—143. Springer Berlin / Heidelberg,
2010.

M. Karaila. Evolution of a Domain Specific Language and its engineering environment — Lehman'’s laws revisited. In Pro-
ceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling, 2009.

Vinay Kulkarni, Souvik Barat, and Uday Ramteerthkar. Early Experience with Agile Methodology in a Model-Driven Approach.
In Jon Whittle, Tony Clark, and Thomas Kiihne, editors, Model Driven Engineering Languages and Systems, volume 6981
of Lecture Notes in Computer Science, pages 578-590. Springer Berlin / Heidelberg, 2011.

Fall Workshop 2012 39

References

[19]

[20]

(21]

[22]
(23]

(24]

(28]

(26]

[27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Jochen Kister, Thomas Gschwind, and Olaf Zimmermann. Incremental Development of Model Transformation Chains Using
Automated Testing. In Model Driven Engineering Languages and Systems: 12th International Conference, MODELS 2009,
volume 5795/2009 of Lecture Notes in Computer Science (LNCS), pages 733—-747. Springer Berlin / Heidelberg, 2009.

Tihamer Levendovszky, Daniel Balasubramanian, Anantha Narayanan, and Gabor Karsai. A Novel Approach to Semi-
automated Evolution of DSML Model Transformation. In Mark Van den Brand, Dragan Gasevic, and Jeff Gray, editors,
Software Language Engineering, volume 5969 of Lecture Notes in Computer Science, pages 23—41. Springer Berlin / Hei-
delberg, 2010.

Nikolai Mansurov and Djenana Campara. Managed Architecture of Existing Code as a Practical Transition Towards MDA. In
Nuno Jardim Nunes, Bran Selic, Alberto Rodrigues da Silva, and Ambrosio Toval Alvarez, editors, UML Modeling Languages
and Applications, volume 3297 of Lecture Notes in Computer Science, pages 219-233. Springer Berlin / Heidelberg, 2005.

Bart Meyers, Raphael Mannadiar, and Hans Vangheluwe. Evolution of Modelling Languages. In 8th BElgian-NEtherlands
software eVOLution seminar (BENEVOL), 2009.

Bart Meyers and Hans Vangheluwe. A framework for evolution of modelling languages. Science of Computer Programming,
Special Issue on Software Evolution, Adaptability and Variability, 76(12):1223 — 1246, 2011.

Bart Meyers, Manuel Wimmer, Antonio Cicchetti, and Jonathan Sprinkle. A generic in-place transformation-based approach
to structured model co-evolution. In Proceedings of the 4th International Workshop on Multi-Paradigm Modeling (MPM’10)
@ MoDELS’10. Electronic Communications of the EASST, 2010.

Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, Miguel Fernandez, Bjgrn Nordmoen, and Mathias Fritzsche. Where
does model-driven engineering help? Experiences from three industrial cases. Software and Systems Modeling, pages
1-21. 10.1007/s10270-011-0219-7.

Anantha Narayanan, Tihamer Levendovszky, Daniel Balasubramanian, and Gabor Karsai. Automatic Domain Model Migra-
tion to Manage Metamodel Evolution. In Andy Schiirr and Bran Selic, editors, Model Driven Engineering Languages and
Systems, volume 5795 of Lecture Notes in Computer Science, pages 706—711. Springer Berlin / Heidelberg, 2009.

Object Management Group. MDA Guide Version 1.0.1, June 2003. Document — omg/03-06-01.

Erkuden Rios, Teodora Bozheva, Aitor Bediaga, and Nathalie Guilloreau. MDD Maturity Model: A Roadmap for Introducing
Model-Driven Development. In Model Driven Architecture — Foundations and Applications, volume 4066/2006 of Lecture
Notes in Computer Science, pages 78—89. SpringerLink, 2006.

Andrey Sadovykh, Lionel Vigier, Eduardo Gomez, Andreas Hoffmann, Juergen Grossmann, and Oleg Estekhin. On Study
Results: Round Trip Engineering of Space Systems. In Richard Paige, Alan Hartman, and Arend Rensink, editors, Mode/
Driven Architecture - Foundations and Applications, volume 5562 of Lecture Notes in Computer Science, pages 265—276.
Springer Berlin / Heidelberg, 2009.

Dov Shirtz, Michael Kazakov, and Yael Shaham-Gafni. Adopting model driven development in a large financial organization.
In Proceedings of the 3rd European conference on Model driven architecture-foundations and applications, ECMDA-FA’07,
pages 172—-183, Berlin, Heidelberg, 2007. Springer-Verlag.

Mark Van den Brand, Zvezdan Protic’, and Tom Verhoeff. A Generic Solution for Syntax-Driven Model Co-evolution. In Judith
Bishop and Antonio Vallecillo, editors, Objects, Models, Components, Patterns, volume 6705 of Lecture Notes in Computer
Science, pages 36-51. Springer Berlin / Heidelberg, 2011.

Arie van Deursen, Eelco Visser, and Jos Warmer. Model-Driven Software Evolution: A Research Agenda. In D. Tamzalit,
editor, CSMR Workshop on Model-Driven Software Evolution (MoDSE 2007), pages 41—-49, March 2007.

Sander Vermolen and Eelco Visser. Heterogeneous Coupled Evolution of Software Languages. In Krzysztof Czarnecki,
lleana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Vélter, editors, Model Driven Engineering Languages and Systems,
volume 5301 of Lecture Notes in Computer Science, pages 630—644. Springer Berlin / Heidelberg, 2008.

Regis Vogel. Practical case study of MDD infusion in a SME: Final Results. In Dalila Tamzalit, Dirk Deridder, and Bernhard
Schétz, editors, Models and Evolution Joint MODELS’09 Workshop on Model-Driven Software Evolution (MoDSE) and Model
Co-Evolution and Consistency Management (MCCM),, pages 68-78, 2009.

Andrés Yie, Rubby Casallas, Dennis Wagelaar, and Dirk Deridder. An Approach for Evolving Transformation Chains. In
Andy Schiirr and Bran Selic, editors, Model Driven Engineering Languages and Systems, volume 5795 of Lecture Notes in
Computer Science, pages 551-555. Springer Berlin / Heidelberg, 2009.

40

Fall Workshop 2012

Steuerung der Datenlbertragung in
offentlichen zellularen Netzen im Kontext
telemedizinischer Anwendungen

Uwe Hentschel

FG Betriebssysteme & Middleware
Hasso-Plattner-Institut
uwe.hentschel@hpi.uni-potsdam.de

Die Bearbeitung und Weiterleitung von medizinischen Daten folgt dem Grundsatz
der Datensicherheit. Das bedeutet vor allem, dass einmal erfasste Daten nicht mehr
aus dem System verschwinden dirfen, auch wenn einzelne Teile oder das gesamte
System ausfallen sollten. Speziell fiir die Ubertragung heiBt das, dass alle Daten beim
Sender zumindest solange dauerhaft gespeichert werden, bis der Empfanger seiner-
seits die erfolgreiche Speicherung quittiert. Das heif3t, eine reine Empfangsquittung
des Empfangers ist nicht ausreichend, um die Daten auf der Senderseite zu I6schen.

Verallgemeinert man die aus dem Fontane Projekt bekannte medizinische Nutzung
der Endgerate auf der Klientenseite, kann man von einer oder mehreren medizini-
schen Anwendungen auf jedem Endgerat ausgehen. Bei der Nutzung gemeinsamer
Netzwerkressourcen muassen also unterschiedliche Endgerate im Netzwerk als auch
unterschiedliche Anwendungen auf jedem der Endgeréate synchronisiert werden.

1 Synchronisation auf Anwendungsebene

Die Anwendungen auf den mobilen Endgeréten sollen Daten entsprechend ihrer Dring-
lichkeit an den zentralen Server tbermitteln und sich dabei auf unterschiedliche Kom-
munikationsbedingungen einstellen, indem sie die Menge der pro Zeiteinheit gesende-
ten Daten variieren. Daflir muss sich das Verhalten der Anwendungen entsprechend
anpassen lassen — wir bendtigen ein adaptives System innerhalb der Endgerate. Die-
ser Ansatz geht davon aus, dass jedes Endgerat ein autonomes Element entsprechend
des MAPE-K Modells darstellt [12,13]. In unserem Fall ist das verwaltete Element die,
fir die Kommunikation zwischen den Client-Geraten und dem Server, zur Verfligung
stehende Datenlbertragungsrate; verwaltet wird es auf Anwendungsebene. Dieser An-
satz lasst sich mit Standardkomponenten flur die Hardware, das Betriebssystem und
den Protokollstapel realisieren.

1.1 Anwendung des MAPE-K Modells

Obwohl die Art und Weise wie sich die Kommunikationsstrategie einer Anwendung
andert, stark vom Zweck ihres Einsatzes abhangig ist, erscheint die Implementierung

Fall Workshop 2012 41

Steuerung der Datenlbertragung in 6ffentlichen zellularen Netzen im Kontext
telemedizinischer Anwendungen

aller Komponenten zur Verwaltung der Kommunikation in den einzelnen Anwendungen
als ineffektiv. Dies griindet sich vor allem darauf, dass einige dieser Komponenten, wie
die Uberwachung der Kommunikation und die Analyse dieser Ergebnisse, vom Um-
feld der Kommunikation abhangig sind und sich somit bei allen Anwendungen in der
selben Umgebung gleichen. Aus diesem Grund sind diese beiden Komponenten Tell
einer von allen Anwendungen genutzten Middleware, die im Fontane Projekt SaPiMa
genannt wird [14]. Die beiden restlichen Komponenten, die Planung und die Ausfih-
rung der notwendigen Anpassungen sind dagegen konzeptioneller Bestandteil jeder
Anwendung (vgl. Abbildung 1).

[Anwendung (rekonfigurierbar) } [Anwendung (rekonfigurierbar)]
(Zugangskontrolle / Anwendungssteuerung)
Middleware Uberwachung des (-
: Ubertragungspfades >4 Modell des Ubertragungspfades J
-_— S SsSsSsSsass
TCP UDP -
Uberwachung des ([J
- Protokollstapels = Modell des Protokollstapels

0SI-Schicht 2

Uberwachung des
Modems

Kommunikationsmodell

—>[Modell des Modems J

0SI-Schicht 1
Abbildung 1: Modell der Steuerung auf Anwendungsebene (Client-Seite)

Die Schnittstelle zwischen der Middleware und den Anwendungen wird durch eine
Zugangskontrolle (engl. Call Admission Control) gebildet. Bevor eine Anwendung Da-
ten Uber das Netzwerk austauschen kann, muss sie der Zugangskontrolle ihren Kom-
munikationswunsch unter Angabe ihrer Anforderungen an die Ubertragungsstrecke
mitteilen. Anforderungen sind die Prioritdt der zu sendenden Daten und die unter-
stiitzten Ubertragungsraten. Die Kontrollinstanz Gberpriift dann, ob die Kommunika-
tionsumgebung einen gewtinschten Datenaustausch ermdglichen kann oder nicht und
akzeptiert die neue Datenverbindung oder weist sie ab (vgl. Abschnitt 1.2).

Eine weitere Aufgabe der Zugangskontrolle ist die Uberwachung der Kommunika-
tionsendpunkte. Sie kontrolliert, dass die vereinbarten Parameter der Kommunikation
eingehalten werden, um eine ungewollte gegenseitige Beeinflussung der Datenver-
bindungen zu vermeiden. Dies wird erreicht, indem die maximal durch die jeweilige
Anwendung benutzbare Ubertragungsrate beschrankt wird.

Die Uberwachung der Kommunikation teilt sich im Umfeld zellularer Funknetze in
die drei Hauptbestandteile:

e Uberwachung des Ubertragungspfades
o Uberwachung des Protokollstapels im Endgerat

e Uberwachung des Funk-Modems (nur auf der Client-Seite)

42 Fall Workshop 2012

1 Synchronisation auf Anwendungsebene

Die Uberwachung des Ubertragungspfades basiert auf Ende-zu-Ende Messungen der
verfligbaren Dateniibertragungsrate. Die Uberwachung des Protokollstapels erfolgt mit
Hilfe der Funktionalitét, die die pcap-Bibliothek! und das Socket-API bieten. Fiir die
Uberwachung des Funkmodems werden AT-Kommandos benutzt.

Zur Analyse der Ergebnisse der Uberwachung wird ein modell-basierter Ansatz ge-
wahlt. Das Modell besteht aus drei Teilmodellen, die den jeweils tUberwachten Teilkom-
ponenten der Kommunikation — dem Ubertragungspfad, dem Protokollstapel und dem
Funk-Modem — entsprechen. Jedes dieser Modelle leitet aus den Daten der Uberwa-
chung eigene Parameter ab, die dann zur Beurteilung des Umfeldes der Kommunikati-
on benutzt werden. Die Middleware 16st bei Anderungen des Kommunikationsumfeldes
die Anpassung der jeweiligen Anwendungen aus.

1.2 Aufteilung der verfiigbaren Ubertragungsrate

Die Zugangskontrolle teilt die verfiigbare Ubertragungsrate entsprechend der Priori-
tat der Daten auf die Anwendungen auf, die bereit sind Daten zu Ubertragen. Dafir
erhalt sie mit der Anmeldung des Ubertragungswunsches von jeder Anwendung die
Datenprioritat und eine Liste der unterstiitzten Ubertragungsraten. Fiir die Aufteilung
der verfiigbaren Ubertragungsrate gibt es zwei grundsatzliche Verfahren, deren Ziel es
ist, dass entweder nur die Anwendungen mit den jeweils hdchsten Datenprioritaten ihre
Daten Ubertragen dirfen, oder die Zahl der Anwendungen, die ihre Daten Ubertragen
dirfen maximiert werden soll.

Variante 1: Wenn nur die Anwendungen mit den jeweils héchsten Datenpriori-
taten ihre Daten Ubertragen sollen, dann muss die Zugangskontrolle die folgenden
Schritte ausfuhren:

1. Weise der Anwendung mit der hdchsten Datenprioritdt die gréBtmagliche Uber-
tragungsrate aus der Liste zu. Gibt es mehrere Anwendungen mit dieser Daten-
prioritat, dann:

(a) Weise jeder von Ihnen die minimale Ubertragungsrate aus der jeweiligen
Liste zu.

(b) Erhdhe die zugewiesene Ubertragungsrate jeder Anwendung bis entweder
die verfligbare Ubertragungsrate vollstandig ausgeschdpft oder die maxima-
le Rate fur jede Anwendung erreicht ist. Ist es nicht mdglich, jeder Anwen-
dung ihre maximale Ubertragungsrate zuzuweisen, soll jeder dieser Anwen-
dungen eine annahernd gleich gro3e Datenrate ermdglicht werden.

2. Wiederhole den Schritt 1 mit der Anwendung mit der nachstkleineren Datenprio-
ritat, bis entweder die verfigbare Ubertragungsrate komplett aufgeteilt ist oder
allen Anwendungen die gréBte unterstlitzte Rate zugewiesen wurde.

Variante 2: Wenn die verfiigbare Ubertragungsrate méglichst auf alle Anwendun-
gen aufgeteilt werden soll, dann missen die folgenden Schritte ausgeflihrt werden:

TWeitere Informationen sind fiir Windows Systeme unter http: //www.winpcap.org/ bzw. fiir alle
anderen Betriebssysteme unter http://www.tcpdump.org/ zu finden.

Fall Workshop 2012 43

Steuerung der Datenlbertragung in 6ffentlichen zellularen Netzen im Kontext
telemedizinischer Anwendungen

1. Weise der Anwendung mit der héchsten Datenprioritéat die niedrigste Datenra-
te aus der Liste zu. Gibt es mehrere Anwendungen mit dieser Datenprioritat,
dann verfahre mit allen anderen auf die gleiche Weise bis die verfiigbare Uber-
tragungsrate ausgeschopft ist oder allen Anwendungen kleinste unterstitzte Rate
zugewiesen wurde.

2. Wiederhole den Schritt 1 mit der Anwendung mit der nachstkleineren Datenprio-
ritat, bis entweder die verfigbare Ubertragungsrate vollstandig aufgeteilt ist oder
allen Anwendungen die kleinste unterstitzte Rate zugewiesen wurde.

3. Erhdhe die zugewiesenen Ubertragungsrate der Anwendung mit der héchsten
Datenprioritat auf den gréBtmoglichen Wert aus der zugehdrigen Liste. Gibt es
mehrere Anwendungen mit dieser Datenprioritat, dann erhdhe die zugewiesene
Ubertragungsrate bis entweder die verfiigbare Ubertragungsrate vollstandig aus-
geschopft oder die maximale Rate flr jede Anwendung erreicht ist. Ist es nicht
méglich, jeder Anwendung ihre maximale Ubertragungsrate zuzuweisen, soll je-
der dieser Anwendungen eine annahernd gleich grof3e Datenrate erméglicht wer-
den.

4. Wiederhole den Schritt 3 mit der Anwendung mit der nachstkleineren Datenprio-
ritat, bis entweder die verfligbare Ubertragungsrate komplett aufgeteilt ist oder
allen Anwendungen die gréBte unterstltzte Rate zugewiesen wurde.

1.3 Uberwachung des Modems

Die Daten werden vom Funkmodem mit Hilfe von AT-Kommandos abgefragt, die mit-
tels eines virtuellen seriellen Ports Uber eine USB-Verbindung gesendet werden. Die
USB-Schnittstelle wird sowohl fiir das interne als auch das externe Modem verwendet.
Das Format der Daten und deren Umfang hangt stark vom verwendeten Modem ab. Es
gibt zwar eine Vielzahl standardisierter AT-Kommandos, aber ihre Implementierung ist
gréBtenteils optional [1,3]. Gleiches gilt fir die von den Abfragekommandos zurlickge-
lieferten Parameter. Zudem kann der Hersteller eines Funkmodems auch zuséatzliche
selbst definierte AT-Kommandos zur Verfigung stellen.

Je nach Modem stehen demzufolge unterschiedliche Informationen zur Verfigung.
Beim GenPro 35e von Erco & Gener, einem externen Funkmodem, kann man mit Hilfe
der Kommandos ATIGSTATUS?, ATIGSMINFO?, AT+COPS?, ATIGETRAT?, AT+CSQ, AT*CNTI=0,
AT+USET?x, AT+RSCP?, AT+ECIO?, ATIHSDCAT? und AT/HSUCAT? z. B. die folgenden Daten
ermitteln:

e Zugriffstechnologie (Global System for Mobile Communications (GSM), Universal
Mobile Telecommunications System (UMTS), ...)

o Ubertragungsverfahren (Enhanced Data Rates for GSM Evolution (EDGE), High
Speed Uplink Packet Access (HSUPA), ...)

e Ortsinformationen (Location Area Code (LAC), Base Station Color Code (BCC),

)

44 Fall Workshop 2012

1 Synchronisation auf Anwendungsebene

e Statusinformationen von Protokollautomaten (GPRS Mobility Management (GMM),
Radio Resource Control (RRC), ...)

e Empfangspegel fur die aktuell genutzte Zelle und ihre Nachbarn

e Auswahlkriterien beim Wechsel einer Zelle (Path loss criterion C1, Reselection
criterion C2, ...)

Das Modem HP un2400 stellt im Vergleich dazu deutlich weniger Informationen
zur Verflgung. Mit den Kommandos AT+COPS?, AT+CGREG?, AT+CGATT?, AT+CSQ und
AT*CNTI=0 lassen sich folgende Daten ermitteln:

e Zugriffstechnologie
e Anschluss an die paketvermitteinden Doméne
o Empfangspegel der aktuellen Zelle (Received Signal Strength Indicator (RSSI))

In Smartphones mit Windows Phone als Betriebssystem gibt es eine andere Még-
lichkeit Informationen aus den untersten Schichten des Protokollstapels zu erhalten —
das Application Programming Interface (API) des Microsoft .NET Framework. Die zur
Verfagung gestellten Informationen entsprechen im Umfang etwa denen des Modems
von HP, sind inhaltlich aber weniger prazise. Folgende Daten kénnen ermittelt werden:

e Zugriffstechnologie (GSM nur indirekt (iber das Ubertragungsverfahren)

e Verfliigbare und aktuell genutztes Ubertragungsverfahren (General Packet Radio
Service (GPRS), EDGE, High Speed Downlink Packet Access (HSDPA))

e Anschluss an die paketvermittelnden Doméne

e Empfangspegel der aktuellen Zelle als prozentualer Anteil der vollen Signalstarke

1.4 Modell des Modems

Das Modemmodell leitet aus den Daten, die vom Funkmodem gewonnen werden kén-
nen, Informationen zu Ressourcen des Zugangsnetzes ab. Da in Abhangikeit des ver-
wendeten Modems die zur Verfligung gestellte Datenbasis sehr stark variieren kann,
sind auch die, aus dem Modell gewonnen Informationen, stark vom eingesetzten Funk-
modem abhé&ngig. Im Rahmen dieser Arbeit wurde die Mehrzahl der Analysen mit dem
externen Funkmodem durchgefihrt.

In Abhangigkeit der genutzten Zugriffstechnologie werden unterschiedliche techni-
sche Verfahren auf der Luftschnittstelle eingesetzt — z. B. Frequency Division Duplex
(FDD) und Time Division Multiple Access (TDMA) bei GSM aber FDD und Wideband CD-
MA (WCDMA) bei UMTS. Sie wird also auf die grundlegenden Ubertragungsparameter,
wie Ubertragungsrate und Ubertragungsdauer, Einfluss ausiiben.

Das aktuelle Ubertragungsverfahren, z. B. GPRS oder Enhanced GPRS (EGPRS) im
Fall von GSM, und das verwendete Modulations- und Kodierungsschema (MKS) be-
stimmen die maximal mégliche DatenlUbertragungsrate der logischen Kanale auf der

Fall Workshop 2012 45

Steuerung der Datenlbertragung in 6ffentlichen zellularen Netzen im Kontext
telemedizinischer Anwendungen

Luftschnittstelle [5]. Dieser Punkt kann im Rahmen der Arbeit jedoch nicht umgesetzt
werden, da bei keinem der eingesetzten Funkmodems das verwendete MKS abgefragt
werden kann.

Die Ortsinformationen geben den Aufenthaltsort des mobilen Endgerates im Fun-
knetz an. Sie kénnen lokale und globale Gltigkeit haben. Globale Bezeichner, wie die
Cell Global Identification (CGl), beschreiben den Ort eindeutig innerhalb des gesamten
Funknetzes; lokale Bezeichner dagegen, wie der Base Station Identity Code (BSIC),
sind nur im Umkreis des jeweiligen Strukturelementes, hier eine Basisstation, gultig
und kédnnen innerhalb des Funknetzes mehrfach verwendet werden. Mit Hilfe der Orts-
informationen kénnen Zellwechsel erkannt und die Endgerate in Abhangigkeit ihres
Aufenthaltsortes gruppiert werden.

Parameter, die den Status von Protokollautomaten beschreiben, kénnen zur Be-
stimmung von Zustandes der Kommunikationsverbindung genutzt werden. Damit Iasst
sich z. B. erkennen, ob dem Endgerat ein Kanal zur Ubertragung von Daten zugewie-
sen ist oder nicht, oder ob gerade ein Zellwechsel stattfindet.

Die Auswahl einer Zelle erfolgt oft anhand des Pegels des Empfangssignals. Ein
hoher Empfangspegel macht ein hohes Signal-Rausch-Verhaltnis und damit eine gute
Signalqualitat wahrscheinlich. Deshalb bilden die Empfangssignalpegel die Grundlage
zur Bestimmung der Auswahlkriterien flr die zu benutzende Zelle. Im Fall von GSM
muss vor einem Zellwechsel das Kriterium C1 (Path loss criterion) erflllt sein [4]. Es
wird wie folgt berechnet [6]:

Cil=A- max(B,O)
A =RLA_C—-RXLEV_ACCESS MIN
B=MS TXPWR_MAX CCH-P

wobei alle Parameter in dBm angegeben werden. Der Wert A entspricht dabei dem, mit
dem minimal notwendigen Empfangssignalpegel (RXLEV_ACCESS_MIN) bewerteten,
gleitenden Mittelwert des gemessenen Pegels des empfangenen Signals (RLA_C). Er
ist ein Maf3 fur die Qualitat des Empfangssignals. Der Wert B gibt an in welchem Ver-
héltnis die maximal mégliche Sendeleistung des mobilen Endgeréates (P) und die maxi-
mal notwendigen Leistung liegt, die bendtigt wird, um mit dem Netzwerk Informationen
auszutauschen (MS_TXPWR_MAX_CCH). Er ist ein Maf3 fir die Leistungsreserve des
Senders. Das Kriterium C1 ist erflllt, wenn der berechnete Wert gréBer als Null ist. Mit
Kenntnis dieser Parameter von allen Zellen, die gerade vom Endgerat empfangbar
sind, lassen sich so Zellwechsel mit gewisser Wahrscheinlichkeit vorhersagen.

1.5 Uberwachung des Ubertragungspfades

Bei den aktiven Ende-zu-Ende Messungen muss beachtet werden, dass die Messun-
gen parallel zur Ubertragung der Nutzerdaten durchgefiihrt werden sollen. Es ist al-
so nicht méglich, eine eigenstéandige Datenquelle zu benutzen, die die Kapazitat des
Ubertragungspfades voll auslastet, oder davon auszugehen, dass wahrend des ge-
samten Messzyklus keine weiteren Daten gesendet werden. Deshalb wurde ein Ver-
fahren eingesetzt, das auf der Ubertragung von Paketpaaren beruht [10]. Die beiden
Pakete mlssen die gleiche Gré3e haben und direkt nacheinander gesendet werden.

46 Fall Workshop 2012

1 Synchronisation auf Anwendungsebene

Diese Bedingungen lassen sich auf zwei Wegen erreichen: zum einen kann man
in bestimmten Abstanden ein Paket aus dem Datenstrom der Anwendungen verdop-
peln, indem man es zweimal nacheinander Ubertragt, und zum anderen kann man den
Datenstrom neu formatieren und somit gleichgro3e Pakete mit unterschiedlichem In-
halt erzeugen. Der zweite Ansatz vermeidet es die zu Ubertragende Datenmenge zu
Messzwecken zu vergrdBBern; seine Umsetzung ist aber aufwéandiger. Im Rahmen der
vorliegenden Arbeit wurde deshalb der erste Ansatz umgesetzt. Sollen Ende-zu-Ende
Messungen durchgefihrt werden, wenn keine Anwendungsdaten zur Verflgung ste-
hen, dann kénnen die bendtigten Datenpakete in vorgegebenen zeitlichem Abstanden
von der Messumgebung generiert werden.

Um den Empfénger des Datenstromes in die Lage zu versetzen, die Messdaten-
pakete zu erkennen und korrekt zu behandeln, missen diese entsprechend gekenn-
zeichnet werden. Dabei sind die folgenden drei Informationen zu bertcksichtigen:

¢ st das Datenpaket Teil einer Ende-zu-Ende Messung oder nicht

e Handelt es sich bei einem Messdatenpaket um das Erste oder das Zweite Paket
des Paares

e Stammt das Paket aus dem Strom der Anwendungsdaten oder wurde es speziell
flr die Messung erzeugt

Da alle drei Informationen bindren Charakter haben, wurden zur Kennzeichnung der
Daten drei Bits im Kopf jedes Paketes benutzt.

1.6 Kommunikationsmodell

Das Kommunikationsmodell liefert einen Schatzwert fir die aktuell verfigbare Daten-
Ubertragungsrate. Dazu bedient es sich Informationen, die aus drei Bereichen des Pro-
tokollstapels gewonnen werden. Aufgrund der unterschiedlichen Ausrichtung der Kom-
munikation in den drei Bereichen, basiert das Kommunikationsmodell auf drei Teilm-
odellen — jeweils eines flr jeden Informationsbereich.

Der Schatzwert der verfligbaren Datentbertragungsrate wird mit den Ergebnissen
der Ende-zu-Ende Messungen und dem Wissen Uber den aktuellen Verbindungszu-
stand bestimmt. Letzteres setzt sich aus Informationen Uber die physische Verbindung
(0SI-Schicht 1) und Uber die Verbindung auf Ebene der Transportschicht (OSI-Schicht
4) zusammen. Der Zustand einer Verbindung in der Transportschicht wird aus dem
Modell des Protokollstapels gewonnen und nur bei der Nutzung eines verbindungsori-
entierten Protokolls, wie Transmission Control Protocol (TCP), analysiert. Der Zustand
der physischen Verbindung wird vom Modell des Modems zur Verfliigung gestellt und
stUtzt sich darauf, ob aktuell ein Zellwechsel im Funknetz stattfindet oder demnéachst
einer erwartet wird (vgl. Algorithmus 1.1).

Welchen Einfluss haben Zellwechsel auf den Zustand der physischen Verbindung?
Ein Wechsel der Zelle kann als Hard oder Soft Handover durchgefuhrt werden. Im
Fall eines Hard Handover existiert wahrend des Wechsels keine physische Datenver-
bindung mit dem Netzwerk, da zuerst die alte, bestehende Verbindung beendet und
erst danach eine neue aufgebaut wird. Im Fall eines Soft Handover dagegen wird erst

Fall Workshop 2012 47

Steuerung der Datenlbertragung in 6ffentlichen zellularen Netzen im Kontext
telemedizinischer Anwendungen

Eingabe: ein bei der Ende-zu-Ende Messung ermittelter Wert [bit/s],
Informationen Uber die Verbindung in der 0sI-Schicht 4,
Informationen zu Zellwechseln im Funknetz

Ausgabe: Schatzwert der verflgbaren Dateniibertragungsrate [bit/s]

1: R+<0
2. if (aktuell wird kein Zellwechsel durchgefiihrt) and
(demnéachst wird kein Zellwechsel erwartet) and
((ein verbindungsloses Protokoll wird benutzt) or
(die Ubertragung auf osI-Schicht 4 erfolgt momentan stérungsfrei)) then
3 R < Wert der Ende-zu-Ende Messung
4. end if
5. return R

Algorithmus 1.1: Algorithmus zur Schatzung der verfiigbaren Ubertragungsrate im
Kommunikationsmodell

eine zweite, neue Verbindung zum Netz aufzubauen bevor die alte beendet wird. Da
also jeder Zellwechsel mit einem kurzzeitigen Verlust der physischen Datenverbindung
einhergehen kann, wird der Schatzwert der Ubertragungsrate wahrend dieser Zeit ge-
nerell mit Null angenommen.

Wieso wird die Qualitat der Verbindung in der OSI-Schicht 4 beriicksichtigt? Bei
der Nutzung von TCP deutet das wiederholte Senden von Daten auf Probleme inner-
halb des Ubertragungspfades hin. Mégliche Ursachen sind iiberlastete Knoten oder
fehlende Verbindungen im Netzwerk. Bedingt durch ihre Funktion verwaltet jede TCP-
Implementierung intern die noch zu sendenden und die noch nicht bestéatigten Daten.
Flhrt eine schlechte Verbindungsqualitat aus Sicht von TCP zum Abbruch der Verbin-
dung erhalt die Anwendung Uber Standardschnittstellen, wie das Socket-API, keine
Rickmeldung, welche der Daten noch nicht Gbertragen wurden. Aus diesem Grund ist
es sinnvoll, der Transportschicht keine neuen Anwendungsdaten zu Gbergeben, wenn
die intern noch gespeicherten Daten wiederholt Gbertragen werden.

2 Synchronisation der Endgerate im Netzwerk

Die Endgerate auf der Klientenseite sollen Daten entsprechend ihrer Dringlichkeit an
den zentralen Server Ubermitteln und sich dabei in die gemeinsam genutzten Netz-
werkressourcen teilen. Dafiir muss sich das Kommunikationsverhalten der Endgerate
entsprechend regeln lassen — wir benétigen ein System zum Austausch von Informa-
tionen zwischen den Endgeraten. Da die Endgerate der Klientenseite nur Kommuni-
kationsverbindungen mit dem Server haben, wird dieser in den Informationsaustausch
einbezogen [11].

Ziel der Synchronisierung ist es, die Ubertragung von Nicht-Echtzeit-Daten ein-
zuschranken, wenn Daten héherer Dringlichkeit im gleichen Bereich des Netzwerkes
bertragen werden. Die Ubertragung von Echtzeitdaten wird dabei nicht reglementiert.
Damit wird die Datenprioritat aller Endgerate im betrachteten Netzwerkbereich bertck-
sichtigt ohne die Ubertragung von kritischen Daten zu beschranken.

48 Fall Workshop 2012

2 Synchronisation der Endgerate im Netzwerk

Gemeinsam genutzte Ressourcen treten in zellularen Netzen in jedem Fall in Ab-
hangigkeit der Zellenstruktur auf, da innerhalb einer Zelle alle mobilen Endgeréate mit
dem Punkt im Zugangsnetz kommunizieren, der die Zelle versorgt (vgl. Abbildung 2).
Welche Ressourcen in welcher Weise gemeinsam genutzt werden, ist stark von der
Netzstruktur und der Zugriffstechnologie abhangig. GSM verwendet z. B. unterschiedli-
che Tragerfrequenzen flr den Zugriff in benachbarten Zellen und die Zellen sind nicht
ineinander geschachtelt; UMTS dagegen verwendet unterschiedliche Spreizcodes und
kann verschachtelte Zellstrukturen benutzten. Die Synchronisation der mobilen End-
gerate basiert deshalb auf Informationen Uber die Struktur des Netzwerkes.

@

Patient 1 §gg
2al

Patient 2

Abbildung 2: Prinzip der Synchronisation der unterschiedlichen Endgerate im zel-
lularen Netzwerk

Das grundlegende Prinzip der Synchronisation ist recht einfach: wenn die Daten-
kommunikation jedes einzelnen Endgeréates steuerbar, der Aufenthaltsort jedes End-
gerates im Netzwerk bekannt und ein zentraler Punkt zur Koordination vorhanden ist,
dann lasst sich auch die Kommunikation der Gerate untereinander steuern. Wie las-
sen sich diese Punkte im einzelnen erflllen? Die Middleware in den Endgeraten steuert
die Datenkommunikation innerhalb eines Gerates (vgl. Abschnitt 1). Der Aufenthaltsort
im Netzwerk kann mit Hilfe der CGI bestimmt werden [7]. Dazu muss jedes Endgerat
den far ihn glltigen Wert ermitteln und an den zentralen Koordinationspunkt tbertra-
gen. Der Server im Telemedizinzentrum (TMZ) kann zu Koordinationszentrale benutzt
werden. Er bestimmt anhand der Datenprioritat und der Ortsinformationen die erfor-
derlichen Steuerinformationen.

Als Basisstruktur zur Steuerung der Datenkommunikation im Netzwerk dienen Lo-
cation Areas (LAs). Hier stellt sich die Frage: warum werden LAs und nicht die benutzten
Zellen, innerhalb derer Ressourcen gemeinsam benutzt werden, fir die Synchroni-
sation benutzt? Der Grund dafir ist die Optimierung des Synchronisationsprozesses
bezlglich das Menge und der Haufigkeit der auszutauschenden Daten — Zellwechsel
treten deutlich haufiger auf als Wechsel des LA.

Die GréBe jedes LA wird vom Netzbetreiber festgelegt und soll zur Verringerung
des Datenverkehrs fir die Aktualisierung der Ortsinformationen im Netzwerk beitragen.

Fall Workshop 2012 49

References

Vom 3rd Generation Partnership Project (3GPP) wird ein LA wie folgt definiert:

The Location Area (LA) is defined as an area in which a mobile station
may move freely without updating the VLR. A location area includes one or
several GERAN/UTRAN cells. [9]

A location area is an area in which, after having performed a location
update once, MSs may roam without being required to perform subsequent
location updates for reason of location change. A location area consists of
one or more cells. [8]

Ein zweiter Punkt, der hier beachtet werden muss, ist der Aufbau einer Verbin-
dung zu einem mobilen Endgerat. Will das Netzwerk eine solche Verbindung aufbau-
en, muss die Zelle bekannt sein, von der das Endgerat versorgt wird. Da das Endgerat
das Netzwerk nur auf Ebene von LAs Uber seinen Aufenthaltsort informiert, sendet das
Netzwerk eine Broadcast-Nachricht im gesamten LA, um das Endgeréat zu suchen. Die-
ser Vorgang wird als Paging bezeichnet [2]. Im Fall von GPRS wird die Paging Prozedur
wie folgt beschrieben:

In A/Gb mode, paging is used by the network to identify the cell the MS
has currently selected, or to prompt the mobile to re-attach if necessary as
a result of network failure. ... In lu mode, paging is used by the network
to request the establishment of PS signalling connection or to prompt the
mobile to re-attach if necessary as a result of network failure. [2]

LAs sollen dazu beitragen, die Ubertragung von Signalisierungsinformationen zwi-
schen dem mobilen Endgerat und dem Netzwerk zu optimieren. Die Gré3e eines LA ist
also ein Kompromiss: es muss grof3 genug sein, um die Anzahl der Aktualisierungsmel-
dungen zu reduzieren und es muss klein genug sein, um die Suche nach einem Gerét
noch schnell und effizient zu gestalten. Es liegt also nahe anzunehmen, dass die Nut-
zung vonLA anstatt von Zellen auch zu einer besseren Synchronisation der Endgerate
im Netzwerk flhrt.

Die Synchronisation der Endgerate wurde experimentell durch Einfihrung eines
Steuerprotokolls und eines Kontrollalgorithmus umgesetzt und mit Hilfe von OMNet++
(siehe auch http://www.omnetpp.org/) simuliert.

References

[1] 3GPP. Technical Specification Group Core Network and Terminals; AT command
set for User Equipment (UE) (3GPP TS 27.007 V10.4.0 (Release 10)), June 2011.

[2] 3GPP. Technical Specification Group Core Network and Terminals; Mobile radio
interface Layer 3 specification; Core network protocols; Stage 3 (3GPP TS 24.008
V10.3.0 (Release 10)), June 2011.

50 Fall Workshop 2012

References

[3] 3GPP. Technical Specification Group Core Network and Terminals; Use of Data
Terminal Equipment - Data Circuit terminating Equipment (DTE - DCE) interface
for Short Message Service (SMS) and Cell Broadcast Service (CBS) (3GPP TS
27.005 V10.0.0 (Release 10)), March 2011.

[4] 3GPP. Technical Specification Group GSM/EDGE Radio Access Network; Func-
tions related to Mobile Station (MS) in idle mode and group receive mode (3GPP
TS 43.022 V10.0.0 (Release 10)), March 2011,

[5] 3GPP. Technical Specification Group GSM/EDGE Radio Access Network; Phys-
ical layer on the radio path; General description (3GPP TS 45.001 V10.1.0 (Re-
lease 10)), November 2011.

[6] 3GPP. Technical Specification Group GSM/EDGE Radio Access Network; Radio
subsystem link control (3GPP TS 45.008 V10.1.0 (Release 10)), May 2011.

[7]1 3GPP. Technical Specification Group Services and System Aspects; Vocabulary
for 3GPP Specifications (3GPP TR 21.905 V10.3.0 (Release 10)), March 2011.

[8] 3GPP. Technical Specification Group Core Network and Terminals; Location man-
agement procedures (3GPP TS 23.012 V11.0.0 (Release 11)), June 2012.

[9] 3GPP. Technical Specification Group Services and System Aspects; Network
architecture (3GPP TS 23.002 V11.3.0 (Release 11)), June 2012.

[10] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. Packet-
Dispersion Techniques and a Capacity-Estimation Methodology. IEEE/ACM
Transactions on Networking, 12:963—-977, December 2004.

[11] Uwe Hentschel, Fahad Khalid, and Andreas Polze. An Approach to Con-
trol Transmission of Medical Data over Cellular Networks Using Location Infor-
mation. In Proceedings of the 2012 15th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC
12, pages 87-94, Washington, DC, USA, 2012. IEEE Computer Society.

[12] IBM. An architectural blueprint for autonomic computing, 2003.

[13] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.
Computer, 36:41-50, January 2003.

[14] Friedrich Kéhler. Gesundheitsregion der Zukunft — Nordbrandenburg [FONTANE],
2009.

Fall Workshop 2012 51

Heterogeneous Computing for
Algorithms with Low Numerical Intensity

Fahad Khalid

Operating Systems and Middleware Group
Hasso-Plattner-Institut
fahad.khalid@hpi.uni-potsdam.de

The Scientific Computing community has witnessed a significant increase in ap-
plications that utilize GPUs as accelerators; complementing CPU based processing.
However, the feasibility of porting an algorithm to the GPU is dependent on a com-
plex combination of factors that include numerical intensity, data access patterns and
data reuse. E.g. algorithms with very low numerical intensity are less likely to gain
performance if implemented on a GPU.

In this report, a problem from Systems Biology is taken as a case study for uti-
lizing heterogeneous computing to improve the performance of an algorithm with low
numerical intensity. It is shown that the Map-Reduce structural pattern for parallel ap-
plications can be used to split the algorithm into two phases; where the Map phase
can be optimized for a GPU implementation, while the Reduce phase can be efficiently
implemented on the CPU. The result is a significant performance gain over a serial
CPU-only implementation.

The primary objective of this research project is to determine performance improve-
ment strategies that can be generalized to broader classes of low numerical intensity
algorithms. If so, heterogeneous computing can be utilized to accelerate processing
for a much larger set of problems.

1 Introduction

In recent years, research community in the High Performance Computing (HPC) and
Scientific Computing sectors has witnessed an increasing application of Heteroge-
neous Computing [10]. The term Heterogeneous Computing (as used in this docu-
ment) refers to the design of applications that can harness the power of both the CPU
and the GPU for problems amenable to massive parallelism.

The rapid adaptation of the scientific community to Heterogeneous Computing is
often attributed to the GPUs’capability to perform massive amounts of arithmetic oper-
ations, at very high speeds. Majority of the silicon chip area in a GPU is dedicated to a
number of arithmetic processing units. This makes it possible for the GPU to execute a
very large number of arithmetic instructions in parallel. However, since most of the chip
area is committed to arithmetic processing, only small amounts of low latency memory
resides on-chip. Therefore, a memory hierarchy (similar to the traditional CPU based
systems) is employed, but with very small sizes for low latency memory as compared
to the CPU.

Fall Workshop 2012 53

Heterogeneous Computing for Algorithms with Low Numerical Intensity

A significant number of algorithms have been successfully ported to GPUs, attain-
ing up to 100x speedup over serial execution on a CPU [7]. However, due to the
aforementioned architectural limitations (w.r.t. low latency memory size), this success
holds only for a certain set of algorithms that can take full advantage of the GPU archi-
tecture. This set of algorithms typically shows one important execution characteristic;
i.e. high arithmetic/numerical intensity (compute-to-memory access ratio). The most
common example for such an algorithm is matrix-matrix multiplication [1].

Nevertheless, even for algorithms with high numerical intensity, porting and opti-
mizing the algorithm is a tedious task that requires investing a significant amount of
time and effort. Moreover, several important algorithms have low numerical intensity
e.g. Sparse Matrix-Vector Multiplication [2]. With the advent of Big Data revolution,
the significance of such algorithms is further amplified; since this involves algorithms
associated with processing of very large datasets. For such algorithms, CPU-only ar-
chitectures (equipped with the much larger low latency memory) would appear more
suitable.

In the context of Heterogeneous Computing, the above considerations raise the
following important question:

e Is it possible to effectively utilize Heterogeneous Computing for algorithms with
low numerical intensity? Or must such algorithms be executed on CPU-only sys-
tems?

In the sections to follow, the above posed question is approached by looking at a low
numerical intensity algorithm from the domain of Systems Biology. The algorithm has
already been successfully parallelized on both shared-memory [13] and distributed-
memory [4] CPU based architectures. Here, a heterogeneous architecture based
parallelization is presented.

2 Heterogeneous Computing for Enumeration of Ele-
mentary Flux Modes

The set of all Elementary Flux Modes (EFM) represents the complete set of minimal
pathways in the metabolic network of an organism [11]. Under steady-state conditions,
the problem of enumerating EFMs is mathematically equivalent to the enumeration of
extreme rays of polyhedral cone [3]. The Nullspace algorithm [14] is known to be the
most efficient algorithm for EFM enumeration. It consists of the following steps:

1. Solve a system of linear equations to get the Kernel matrix

2. Process the Kernel matrix to remove redundancies and permute it so that it is
feasible for further processing

3. For each row in the Kernel matrix (EM Matrix):

(a) Generate Candidate EM vectors

54 Fall Workshop 2012

2 Heterogeneous Computing for Enumeration of Elementary Flux Modes

(b) Verify elementarity using Rank tests
(c) Update the EM matrix

The most compute intensive part of the algorithm is Candidate Generation. Follow-
ing is the pseudocode for the serial candidate generation algorithm [4]:

d Input: Matrix A, Matrix B - where both are bit matrices
d Output: Candidate column pairs of the form:
Q {(a,b)|la € Aand b € B}
Q For each column in MatA
3 For each column in MatB
3 candidate = col(A) V col(B)
Q nonZeros = popCount(candidate)
Q If (nonZeros < maxNonZerosAllowed)
Q Keep the index pair corresponding to (a, b)

Note: Index values are retrieved from another pair of arrays available as
input

The core of the algorithm is based on an element-wise binary operation (bitwise
OR) between the two input matrices. The popCount() function is implemented as a
lookup operation that computes the Hamming weight i.e. the number of set/on bits in
the vector. Let the size of Matrix A be m, and size of Matrix B be n, then the total
number of binary operations is m x n. In the worst case, this leads to a result matrix
that grows quadratically as a function of input size.

As can be inferred from the above description, the serial Nullspace algorithm has
very low numerical intensity. In the sections to follow, the experience of parallelizing
the Nullspace algorithm for execution on NVIDIA GPUs is presented.

2.1 Parallel Candidate Generation Model for GPU

Since the generation of each candidate vector is independent of the others, the paral-
lelization strategy used is one where each thread computes a single candidate vector.
This is a data parallel model that results in a massively parallel GPU application.

Fall Workshop 2012 55

Heterogeneous Computing for Algorithms with Low Numerical Intensity

2.2 Memory Partitioning and Multiple Grid Invocations

The input size for the Nullspace algorithm grows very fast [6] and as a result just a
few iterations lead to a very large size for the result data structure. The GPU global
memory is quite limited; only 1GB for GTX 295. Therefore, a mechanism is required
to divide the result data structure into smaller partitions that easily reside in the GPU
global memory.

Even though partitioning is an obvious procedure, it has a rather important conse-
guence in terms of performance. Ideally, a single kernel invocation should execute the
entire candidate generation algorithm. However, the use of partitioning results into at
least one kernel invocation per partition. This in turn leads to a lower bound on the
number of kernel invocations, which is equal to the number of partitions.

lower bound on number of kernel invocations = number of partitions

For each kernel invocation, the result values have to be copied from the device to
the host. This adds a performance penalty.

Moreover, there is an upper bound on the maximum number of blocks per grid. For
GTX 295 as well as for Tesla 2050, this limit is 65535. The upper bound on the number
of threads per grid is then derived as:

upper bound on number of threads per grid =
number of threads per block x maximum number of blocks per grid

The datasets computed by the Nullspace algorithm are very large, and as a result,
multiple girds must be utilized. Therefore, for large input sizes, not only are multiple
partitions required, multiple grid invocations per partition are necessary as well.

2.3 Index Algebra

In order for each thread to correctly index into the input matrices and the distributed
result data structure, an Index Algebra is required. The unique thread ID for the corre-
sponding element of the result matrix is given by:

indexMatC = (blockIndex x blockDim + threadlndex)
+ (gridld x gridDim x blockDim)

This thread ID is unique within a single partition. A thread ID unique over all parti-
tions is then derived as:

uniqueld = indexMatC + (partitionld X partitionDim)

The input matrices are indexed using Modular arithmetic. The required values are
computed as follows:

56 Fall Workshop 2012

2 Heterogeneous Computing for Enumeration of Elementary Flux Modes

e period = sizeOf(MatB) + columnLength
o indexMatA = (uniqueld | period) x columnLength
o indexMatB = (uniqueld % period) X columnLength

Integer division (for indexMatA) ensures that the value increments only once per
period. For indexMatB, the value is incremented by one column per thread. However,
at each period, the value is reset to 0. This is why the modulus operator is used.

2.4 Naive Kernel

Following is the pseudocode for the kernel based on memory partitioning with the given
index algebra:

Q indexMatC = (blockIndex X blockDim + threadIndex)
+(gridld X gridDim X blockDim)

uniqueld = indexMatC + (partitionld X partitionDim)
indexMatA = (uniqueld / period) X columnlLength
indexMatB = (uniqueld % period) X columnlLength

candidate = MatA[indexMatA] Vv MatB[indexMatB]

nonZeros = popCount(candidate)

o o o o o o

result[indexMatC] = (nonZeros < maxNonZeros)

Given the massively parallel nature of the GPU, it would appear that the above ker-
nel would perform magnitudes faster than the serial CPU-only algorithm. The results,
however, show that the GPU performs even worse than the serial CPU-only code. Fig-
ure 1 shows that the GPU performance degrades with the increase in the input size.
Overall, the serial CPU-only implementation outperforms the naive GPU implementa-
tion.

An analysis of the GPU kernel shows that every column pair results in a write to
the result matrix; which translates to a total of m x n global memory write operations.

Fall Workshop 2012 57

Heterogeneous Computing for Algorithms with Low Numerical Intensity

L L L
30 33 40

Figure 1: Performance comparison between the serial CPU-only implementation (blue)
and the naive GPU code (red). X-axis represents iterations of the Nullspace algorithm,
which correspond to the growing input size. Y-axis represents the time taken in sec-
onds.

Given that each result value is a 64-bit integer, this results in a very large result array.
Therefore, most of the time is spent in transferring the result data structure between
the device and the host.

2.5 Employing the Map-Reduce Structural Pattern for Parallel Ap-
plications

In the aforementioned pseudocode for the GPU kernel, the final step is a comparison
that results in a Boolean value i.e. ‘0’ or ‘I’. However, as per the serial version of the
algorithm, this is just an intermediate step that eventually leads to fetching and storing
the index pair corresponding to the input elements. The kernel has been designed
in a way so that only the Boolean value is computed on the GPU, and the index pair
computation is left as a post-processing step to be performed on the CPU. This division
of work between the GPU and the CPU corresponds to the Map-Reduce structural
pattern [5] with the following two phases:

e Map: The GPU kernel. Generates candidates and stores Boolean values as the
result. Each result value represents the decision whether the pair of input vectors
should be stored.

58 Fall Workshop 2012

2 Heterogeneous Computing for Enumeration of Elementary Flux Modes

e Reduce: A post-processing step performed on the CPU. Parses the result data
structure populated by the GPU. For all values where the decision is positive, the
corresponding pair of indices is fetched and stored in a dynamic data structure.
This phase is implemented as a shared-memory parallel procedure.

One of the benefits of implementing a heterogeneous Map-Reduce pattern is that
the GPU kernel is relieved from executing further memory intensive index fetch opera-
tions. Also, the massively parallel nature of a GPU application results in concurrency
issues (mutual exclusion) if a dynamic global data structure is used to store the re-
sulting index values. Therefore, relegating such operations to the CPU, results in a
relatively efficient kernel.

2.6 Introducing the Compression Factor

A significant advantage of employing the Map-Reduce pattern is the possibility to ex-
ploit the Boolean nature of the result computed per thread, in order to reduce the num-
ber of global memory write operations by a constant factor. Since each result value is
a Boolean, instead of storing the result as an integer, it is stored as a single bit. There-
fore, with compressionFactor = 64, 64 results can be stored in one element of the result
array (assuming 64-bit unsigned integers are being used in the result data structure).
This makes it possible to compute compressionFactor number of candidates per thread.

As a result, size of the result data structure for the Map phase is reduced by a
factor of compressionFactor. Following are two major advantages of the reduction in
result size:

1. Previously, the time spent in data transfer between the device and the host over-
shadowed the time spent on computation. With the compressionFactor scheme,
the balance is shifted in the favor of computation time i.e. time spent in device-
host-device data transfers is negligible in comparison to the time spent in kernel
execution. This results in better utilization of the GPU resources.

2. Much more efficient user-managed caching [12] schemes can now be employed.

The performance results after implementing the Map-Reduce pattern with
compressionFactor are shown in Figure 2. The heterogeneous algorithm outperforms
the serial CPU version by achieving a relative speedup of ~ 3.5x. Please note that
this speedup does not include all the typical performance optimizations [9] applied to
CUDA code. Efforts to further improve the performance by applying such optimiza-
tions are underway. These optimizations are well known within the CUDA program-
mers’ community, and therefore, will not be discussed in detail here.

2.7 Brief Overview of Planned Optimizations

Following is a brief discussion of further optimizations applicable to the heterogeneous
implementation:

Fall Workshop 2012 59

Heterogeneous Computing for Algorithms with Low Numerical Intensity

400 F

300F

200 -

100 -

1 1
30 35 40

Figure 2: Performance comparison between serial CPU-only implementation (blue)
and the heterogeneous Map-Reduce based implementation with compressionFactor
(red). X-axis represents iterations of the Nullspace algorithm, which correspond to the
growing input size. Y-axis represents the time taken in seconds.

e Coalesced Global Memory Access and Result Caching: Due to the use of
compressionFactor, access to the global memory is no longer coalesced from
threads in the same block. An improved index algebra, coupled with a coop-
erative caching mechanism is being implemented to ensure coalesced accessed
to the global memory. This is expected to result in a significant performance
improvement.

e Tiled Input and Caching: Tiling can be used to implement efficient caching for the
input data. However, it is not clear at the moment if this will result in a significant
performance gain.

e Asynchronous Map-Reduce: The current implementation executes the Map and
Reduce phases in sequence. A multi-threaded asynchronous implementation
may lead to better overall performance.

In addition to the above mentioned possible optimizations, several typical CUDA
optimizations will be implemented.

60 Fall Workshop 2012

3 Open Questions

3 Open Questions

At this point, not all possible optimizations have been implemented. Therefore, the full
potential of heterogeneous computing is yet to be measured for the candidate genera-
tion algorithm.

The scope of this research project, however, is not limited to the implementation
and optimization of the candidate generation algorithm. In terms of generalization of
results, an attempt will be made to address the following questions:

¢ In the context of Heterogeneous Computing, can the use of the Map-Reduce
structural pattern be generalized to a broad class of algorithms?

e For a given serial algorithm, how can one determine the optimal hardware archi-
tecture in order to maximize performance?

— This is a critical decision in most situations, since cost is often a major con-
straint.

— Also, this is a valid question even if the choice of hardware architectures
excludes GPUs. Even for CPUs alone, it has been shown that the value for
theoretical FLOPS is not always an accurate measure of CPU performance
[8]. It depends on factors such as the numerical intensity of the algorithm.

4 Conclusions and Outlook

In order for software designers to take full advantage of heterogeneous computing,
generic patterns in low numerical intensity algorithms need to be identified that can
make it possible to gain significant performance gains over multi-threaded shared-
memory CPU-only implementations. A positive result in this direction is presented
by utilizing the Map-Reduce structural pattern to improve algorithm efficiency for an
algorithm from Systems Biology.

A set of further optimizations will be implemented for this application, which will
provide further insight into the full potential for utilizing Heterogeneous Computing for
this particular problem. Moreover, research will be carried out in order to see if the
results can be generalized for a broader class of algorithms.

References

[1] Aydin Bulug, John R. Gilbert, and Ceren Budak. Solving path problems on the
gpu. Parallel Computing, 36(5-6):241-253, 2010.

[2] John D. Davis and Eric S. Chung. Spmv: A memory-bound application on the
gpu stuck between a rock and a hard place. Technical report, Microsoft Research
Silicon Valley, September 2012.

Fall Workshop 2012 61

References

[3] Julien Gagneur and Steffen Klamt. Computation of elementary modes: a unifying
framework and the new binary approach. BMC Bioinformatics, 5(1):175, 2004.

[4] Dimitrije Jevremovi¢, Cong T. Trinh, Friedrich Srienc, Carlos P. Sosa, and Daniel
Boley. Parallelization of nullspace algorithm for the computation of metabolic path-
ways. Parallel Computing, 37(6-7):261-278, 2011.

[5] Kurt Keutzer, Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. A
design pattern language for engineering (parallel) software: merging the plpp and
opl projects, 2010.

[6] Steffen Klamt and Jérg Stelling. Combinatorial complexity of pathway analysis in
metabolic networks. Molecular Biology Reports, 29(1):233—-236, 2002.

[7] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100x gpu
vs. cpu myth: an evaluation of throughput computing on cpu and gpu. In Proceed-
ings of the 37th annual international symposium on Computer architecture, pages
451-460. ACM, 2010.

[8] Josh Mora. Do theoretical flops matter for real application performance?, 2012.
HPC Advisory Council Spain Workshop.

[9] NVIDIA. Cuda c best practices guide. Design guide, January 2012.

[10] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krlger,
Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose compu-
tation on graphics hardware. Computer Graphics Forum, 26(1):80—113, 2007.

[11] S. Schuster and C. Hilgetag. On elementary flux modes in biochemical reaction
systems at steady state. J. Biol. Syst, 2:165—-182, 1994.

[12] Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney, and John D. Owens.
Efficient computation of sum-products on gpus through software-managed cache.
In Proceedings of the 22nd annual international conference on Supercomputing,
ICS "08, pages 309-318, New York, NY, USA, 2008. ACM.

[13] Marco Terzer and Jorg Stelling. Accelerating the Computation of Elementary
Modes Using Pattern Trees, volume 4175 of Lecture Notes in Computer Science,
pages 333-343. Springer Berlin / Heidelberg, 2006.

[14] C. Wagner. Nullspace approach to determine the elementary modes of chemical
reaction systems. The Journal of Physical Chemistry B, 108(7):2425—-2431, 2004.

62 Fall Workshop 2012

3D Geovisualization Services for Efficient
Distribution of 3D Geodata

Jan Klimke

Computer Graphics Systems
Hasso-Plattner-Institut
jan.klimke@hpi.uni-potsdam.de

Design, implementation, and operation of services for interactive 3D geovisualiza-
tion are faced with a large number of challenges including (a) processing and integra-
tion of massive amounts of heterogeneous and distributed 2D and 3D geodata such
as terrain models, buildings models, and thematic georeferenced data, (b) assembling,
styling, and rendering 3D map contents according to application requirements and de-
sign principles, and (c) interactive provisioning of created 3D maps on mobile devices
and thin clients as well as their integration as third-party components into domain-
specific web and information systems. This report presents a concept and implemen-
tation of a service-oriented platform that addresses these major requirements of 3D
web mapping systems. It is based on a separation of concerns for data management,
3D rendering, application logic, and user interaction. The main idea is to divide 3D
rendering process into two stages. In the first stage, at the server side, an image-
based representation of the 3D scene is created by means of multi-layered virtual 3D
panoramas; in the second stage, at the client side, the 3D scene is interactively recon-
structed based on these panoramas. Beside the interactive client introduced earlier,
scalable variant for provisioning of virtual 3D city models is described, that utilizes the
capabilities of our rendering service for data preparation.

1 Introduction

The availability of 3D geodata, its volume and its quality are constantly growing. There-
fore, a high quality 3D visualization of massive and detailed data sets represents a
computationally expensive task: It consumes large amounts of main memory, disk,
network, CPU, and GPU resources in order to deliver an interactive user experience
and a constantly good visual quality. For distribution of such 3D contents in a web envi-
ronment, two principal concepts can be found in existing 3D web mapping approaches,
client-side 3D rendering, i.e., assembly and streaming of 3D display elements such as
3D geometry and textures by a 3D server, whereby the corresponding 3D clients man-
age scene graphs and perform real-time 3D scene rendering (e.g., Google Earth, OGC
W3DS); and server-side 3D rendering, i.e., assembly and rendering of 3D display ele-
ments by the 3D server, which delivers views of 3D scenes to lightweight clients (e.g.,
OGC WVS).

Taking into account the increasing complexity and size of geodata for 3D maps
(e.g., complex 3D city models), the need for high-quality visualization (e.qg., illustrative

Fall Workshop 2012 63

3D Geovisualization Services for Efficient Distribution of 3D Geodata

or photorealistic rendering), and rapidly growing use of mobile applications (e.g., smart
phones and tablets), these principal concepts are faced by fundamental limitations:
client-side 3D rendering fails to provide fast access to massive models due to band-
width limitations and cannot guarantee high-quality rendering results as the graphics
capabilities of nearly all mobile devices differ significantly, while a pure server-side 3D
rendering is inherently limited with respect to interactivity and does not take advantage
of todays mobile device graphics capabilities.

In this report i will present a framework based on a Web View Service as core com-
ponent encapsulating the complexity of 3D model data and computer graphic tech-
niques. Conventional techniques for visualization of 3D geodata, in particular virtual
3D city models, are built upon client-side rendering of 3D geometry and texture data
transmitted from remote servers to client applications. These approaches are usually
limited in terms of complexity of models and the visual quality they can provide, since
high-end computer graphic technique demand for state of the art 3D hardware.

Utilizing this type of service as a basis for client applications allows for provisioning
high quality visualization of 3D model data of nearly arbitrary sizes on devices and plat-
forms, that would otherwise not be able to provide usable, high-quality 3D visualization.
Through externalizing image-generation from client side on server side, a consistent
presentation of 3D geodata is possible, regardless of client hardware or software.

Approaches for image-based client applications presented earlier, are allays bound
by the performance of the underlying rendering server system in order to provide a
fully interactive user experience. In applications, this full 3D interactivity is often not
necessary and leads to a larger complexity for users regarding camera interaction.
Therefore, in Section 5, we introduce a scalable application that was implemented for
mobile devices as well as for web browsers. These applications addresses these two
challenges, be limiting the possible camera interaction. This allows to pregenerate the
necessary image data that has to be transmitted to clients.

The remainder of this report is organized as follows. Section 2 introduces related
work in the are of image based remote visualization. Section 3 introduces the specific
challenges that arise when building service-based visualization system in more detail.
Section 4 describes briefly the overall architecture of the visualization system which
forms the basis of my work. Finally, an outlook of planned future work concludes this
report in Section 6.

2 Related Work

The interoperability of systems and applications dealing with geodata is an central is-
sue in order to build systems out of interoperable software components for geodata
access, processing, and visualization. Beside a common understanding on informa-
tion models [3], definitions of service interfaces are necessary. The Open Geospatial
Consortium (OGC) defines a set of standardized services, models, and formats for
geodata encoding and processing. For example, a Web Feature Service (WFS) [16]
can provide geodata, encoded in the Geography Markup Language (GML) [13] or City
Geography Markup Language (CityGML) [6], and processed by a Web Processing
Service (WPS) [15]. For geovisualization processes a general portrayal model is pro-

64 Fall Workshop 2012

3 Challenges

vided by the OGC that describes three principle approaches for distributing the tasks of
the general visualization pipeline between portrayal services and consuming applica-
tions [1,7]. While the OGC Web Map Service (WMS), providing map-like representa-
tions of 2D geodata, is widely adapted and used, 3D geovisualization services have not
been elaborated to a similar degree. Several approaches for 3D portrayal have been
presented [2]. Two types of 3D portrayal services, currently discussed in the OGC con-
text, can be distinguished: Web 3D Service (W3DS) [14]: It handles geodata access
and mapping to renderable computer graphics primitives (e.g., textured 3D geome-
try represented by scene graphs) and their delivery to client applications. Web View
Service (WVS) [8]: It encapsulates the image generation process (i.e., it implements
the geovisualization pipeline) of 3D models, delivering rendered image representations
("portrayals") to client applications.

By focusing on developing international standards for 3D Portrayal, an interopera-
ble, service-based system can be built, that allows replacing component implementa-
tions selectively with other implementations. Further, system components, especially
a 3D rendering service or a W3DS instance can be reused in other systems. Several
approaches exist for remote rendering of 3D virtual environments [4,12].

Mostly, they rely on constant transmission of single images [17] or video streams [10,
11] to client applications. In contrast to those applications that are completely depen-
dent on the current data throughput of the network connection, our approach uses a
latency hiding technique. This technique allows for a continuous user interaction op-
erating on the locally available data also in situations with very low data transmission
rates between 3D rendering server and clients. Another approach is to manage and
render a low resolution 3D model on client side, to allow users to explore the model
interactively; when interaction stops, remote rendering is used to create and display an
image of the high-resolution 3D model [9]. For delivery of, e.g., large-scale textured 3D
city models, this approach is not suitable, since a transmission and rendering of low
resolution model representations on client-side would still exceed network and client-
side rendering capabilities. In approach an image-based 3D approximation of a model
is created by the client, using image data transmitted from a 3D rendering service.

3 Challenges

Design, implementation, and operation of interactive 3D geovisualization services are
faced with a number of challenges including:

Data processing and integration Massive amounts of heterogeneous and distributed
2D and 3D geodata such as terrain models, buildings models, and thematic geo-
referenced data form the basis for 3D maps. This data has to be processed for
visualization and integrated into the overall visualization system in order to be
combined in a 3D map.

3D map content assembly, rendering and styling To communicate spatial and geo-
referenced information, 3D map content must be selected, styled and rendered
according to application requirements and design principles.

Fall Workshop 2012 65

3D Geovisualization Services for Efficient Distribution of 3D Geodata

Interactive provisioning Created 3D maps should be available on mobile devices
and thin clients in an interactive manner. Further, third-party vendors should
be able to integrate 3D maps as components into their domain-specific web and
information systems.

Interoperability A system for 3D web mapping should rely on established standards
in terms of data formats and service interfaces.

Upscaling When it comes to publishing of high-quality 3D visualization of 3D geo-
data, there should be a way to provide at least parts of the functionality to large
numbers of concurrent users.

In particular, challenge (c) influences the way a service-oriented system for 3D
mapping can be built. Large amounts of data have to be transmitted, processed, and
stored for generating a useful 3D map, common client applications have to scale with
the size of the underlying 3D model, because they deal with the massive amounts and
the complexity of model data on client side. In order to provision 3D maps on a large va-
riety of devices with heterogeneous hardware and software capabilities and undefined
as network connection speed, the effort of processing, transfer, and rendering of 3D
map content should be decoupled from a client application, while still providing a user
with an interactive user experience. This diversity and performance considerations is
especially an issue, when designing applications for mobile devices or browser-based
3D mapping solutions. Clients for these platforms should provide a equally high visual
quality, regardless of the capabilities of the individual device or platform.

4 A Service-based 3D Visualization System

An architectural overview over the system is provided in Figure 1. There are many
heterogeneous sources and formats for 3D geodata, many of them are not optimized
for visualization purposes, although containing information about the detailed visual
appearance of features. In order to be rendered efficiently by the 3D rendering service,
the different formats are translated into an intermediate format that fulfills two require-
ments: (a) allow for highly efficient rendering of massive data amounts on the one hand
side and (b) maintains the semantical structure of the original geodata in order to al-
low for professional applications requiring access to the underlying data sources and
their structure. The Preprocessing service provides this type of functionality. In course
of the preprocessing, a database is built up, containing meta informations, such as
the coordinate bounding box, parent-child relation of objects, their type (e.g., building,
road, city furniture, etc.), and a mapping from the original id of an imported feature and
the assigned object id that is later used for rendering.

The resulting data format allows for a consistent implementation of 3D rendering
techniques, since these can be built against a widely consistent kind of data (e.g.,
numerical scale of coordinates, geometry structure, and texture format). This eases
the development of graphical stylizations and real-time rendering techniques for the
3D rendering service implementation significantly. The 3D rendering service, as core
component of the service-based visualization system, creates rendered images of 3D

66 Fall Workshop 2012

4 A Service-based 3D Visualization System

geodata. It integrates data locally available preprocessed data as well as data avail-
able from external services, such as map data from standardized Web Map Services
or 3D model data from Web 3D Services. The integration of external data services
for provides more flexibility for visualization applications using the 3D rendering ser-
vice. Especially, constantly changing, dynamic data, such as vehicle positions or water
levels, can be integrated without a prior translation into an intermediate data format.

C Preprocessed
A

3D data <R
Ia
\9
3D Image Formats
R . Server via HTTP
Va ende_rlng Config
Service
ool Client O %
oca licati <R faati
Pre- pe Apg(;z?i gllon Application User
processing Geodata O 3 50 aoe! Service XOML
Service via HTTP via HTTP Configuration
Local ¢ HTTe
3D WMS W3DS .
Geodata % Admin

Figure 1: Architecture of a service-based system for 3D geovisualization. The 3D
Rendering Service encapsulates the visualization pipeline for geodata and hides away
the complexity of dealing with large, complex structured, and possibly distributed data
sets.

To provide client applications that are both, universally applicable in different work-
ing processes and interactively manageable, an application configuration service is
used to setup 3D rendering servers as well as corresponding client applications. Appli-
cation specific configuration of multi purpose client applications is done remotely. This
allows us to provide an individual application configuration, including, e.g., appropriate
model data, map data, styling effects or predefined, or generated camera positions, for
specific users, roles, or use cases.

4.1 Stylization of 3D Contents

Stylization of 3D maps is one of the main issues of the 3D map generation process. It
supports the efficient communication of geoinformation. In our 3D rendering service,
we support flexible stylization of 3D map contents. For this it provides a number of
options to style the 3D maps. Specific textures can be applied to each model element,
e.g., a terrain model can be textured using different 2D maps. Further, different 3D
rendering effects can be applied per model element, e.g., a specialized rendering for
planned constructions. Additionally, the 3D rendering service offers so called image
styles that affect the overall appearance of the 3D scene.

This stylization is implemented as an image-based post-processing executed after
the 3D rendering of the scene geometry and textures has been performed. Data from

Fall Workshop 2012 67

3D Geovisualization Services for Efficient Distribution of 3D Geodata

Figure 2: Examples for different stylization applied to a 3D scene: a) Without any
explicit stylization b) With a self shadowing effect that improves depth perception c) an
image abstraction effect, removing details from surface textures.

different image layers is used together with additional configuration options to config-
ure the image stylization effect, e.g. the id of a scene object to be highlighted by a
halo effect. Stylization effects are implemented efficiently using the graphics hardware.
Unnecessary copy operations of source image-layers are avoided by reusing them on
the graphics card without prior download into the main memory. This way, the graphics
hardware of the rendering server is used in a very efficient way for image-based com-
putations, e.g., non-photo-realistic rendering. Examples for image-based styling are
depicted in Figure 2.

The image-based stylization has one major advantage compared to conventional
techniques for 3D-stylization: The computational complexity does not depend on the
model size and complexity. The computational costs are mainly dependent on the
resolution of the source and target images and the complexity of the desired effect.
Image-based techniques can also be used to visualize thematic data, e.g. through
projection of image data or applying color values for certain objects encoding specific
data values.

5 Thin-Clients for Map-Like Visualization
of 3D Geodata

Integration of 3D visualization of geodata in a variety processes and application areas,
e.g., in city planing, infrastructure management, tourism or city marketing, gains more
and more importance. In contrast, the problem of provisioning, deployment and scaling
3D visualization applications for a large scale audience (e.g., thousands of concurrent
users) in a cost efficient way remains a challenging task. Existing approaches for 3D

68 Fall Workshop 2012

6 Conclusions and Future Work

visualization of geodata often require a client system that is capable of performing
complex 3D rendering for massive amounts of data. The server-side requirements and
especially the complexity of implementing high-quality rendering techniques for a large
number of highly heterogeneous client hardware and software platforms makes it very
hard to implement a usable 3D visualization component that can be integrated into third
party applications.

Recently, we presented a client application that reconstructs a lightweight represen-
tation of a complex server-side model in order to allow and interactive user exploration
and free navigation in 3D world [5]. While this kind of application addresses a lot of
issues that arise when massive amounts of 3D geodata, such as virtual 3D city models,
is used in mobile or web-based visualization applications, the issue of the complexity
of 3D navigation in 3D geovirtual environments remains. To address this issue, and to
provide a solution for exploring 3D city models in connection with related 2D and 3D
application data, we created a map-like visualization that uses image data that can be
pregenerated while still keeping the connection between underlying 3D geometry and
the semantic data they represent. Therefore we use parts of the framework presented
in Section 4, in particular preprocessing and rendering services, to generate tileable
views of a 3D dataset. A restriction of user interaction, conceptually to a motion in
parallel to the earth’s surface and a modification of the distance between surface and
camera, makes it possible to create sets of image tiles for applications that cover a
specific spatial region. In contrast to earlier clients, which where using a conventional
perspective projection for image generation, this application works with an orthographic
projection. In this way, it is possible to generate we can create a specific image for each
numbered spatial region (image tile). This way, each tile does exclusively contain a cer-
tain part of the overall model geometry. A script is used to generate all tiles for a spatial
region, in our case the region covered by the city model of Berlin, in several discrete
zoom levels (discrete distance steps for surface-camera distance).

The files for image tiles are organized in conformance to the Tiles Map Service, as
a quasi standard for providing a simple access scheme for tiles georeferenced image
data. The corresponding client application, depicted in Figure 3, requests tiles that are
needed for the current zoom level and visible spatial region.

Besides the efficient visual presentation of 3D geodata, linkage of the visual entities
and their underlying geodata plays a major role for visualization solutions to be applica-
ble in every day working processes. Therefore, images containing object identifiers for
an color image tile are generated. They can be used to get object identifiers for specific
positions given in pixel coordinates for single tiles. The rendering service instance is
then able to map these identifiers back to the original identifier in the source dataset.
Besides these capabilities for data access, id images can be utilized for rendering ef-
fects on client side, e.g., highlighting of single objects.

6 Conclusions and Future Work

In this report | presented a service-based framework for 3D portrayal of 3D geodata
implementing the 3D visualization process. Using the extended image generation ca-
pabilities of the 3D Rendering service, significant amounts of computational complexity

Fall Workshop 2012 69

3D Geovisualization Services for Efficient Distribution of 3D Geodata

Figure 3: Example for a Web-based Visualization of the virtual 3D city model of Berlin
created using the service pipeline. The created map-like visualization can be arbitrarily
styled and customized. Underlying image data can be pregenerated in order to serve
a large number of clients.

can be implemented on server-side, allowing for a more resource efficient implementa-
tion of client applications. Besides interactive, image-based, real-time 3D-clients pre-
sented earlier, map-like applications using pregenerated image-data provide further
advantages with regard to server-side effort. Generated image-tiles can be served
easily for a large number of users, e.g. by using highly scalable cloud storage services.

The next steps in research on our framework for service-based 3D visualization will
be to perform performance tests and evaluations for several large-scale datasets in
order to reveal potential for further optimizations and extensions to the overall system
and explicitly to interactive client applications. Measuring the performance of the ser-
vice based visualization system will be part of my work during the next month. Both,
the performance of the rendering service itself, as well as the performance of the over-
all image-based visualization system need to be explored in more detail in order to
identify possible bottlenecks, arising, e.g., from client accessing the rendering service
concurrently.

Further we see, that 3D interaction and rendering techniques that support latency
hiding seem promising in order to improve the overall user experience of image-based
3D visualization applications. Within the next term i am therefore going to focus on
such techniques in connection with specific rendering technique for that purpose.

70 Fall Workshop 2012

References

References

[1] A. Altmaier and T. H. Kolbe. Applications and Solutions for Interoperable 3D Geo-
Visualization. In Proceedings of the Photogrammetric Week 2003, pages 251—
267, Stuttgart, 2003. Wichmann.

[2] J. Basanow, P. Neis, S. Neubauer, A. Schilling, and A. Zipf. Towards 3D Spa-
tial Data Infrastructures (3D-SDI) based on open standards experiences, results
and future issues. In Advances in 3D Geoinformation Systems, Lecture Notes in
Geoinformation and Cartography, pages 65—86, 2008. Springer.

[3] Y. Bishr. Overcoming the semantic and other barriers to GIS interoperability. In-
ternational Journal of Geographical Information Science, 12(4):299-314, 1998.

[4] A. Boukerche and R.WN Pazzi. Remote rendering and streaming of progressive
panoramas for mobile devices. In Proceedings of the 14th annual ACM . .., pages
691-694, 2006.

[5] J. Doellner, B. Hagedorn, and J. Klimke. Server-based rendering of large 3d
scenes for mobile devices using g-buffer cube maps. In Proceedings of the 17th
International Conference on 3D Web Technology, Web3D 12, pages 97-100,
New York, NY, USA, 2012. ACM.

[6] Gerhard Groéger, Thomas H. Kolbe, Claus Nagel, and Karl-Heinz Hafele. OpenGIS
City Geography Markup Language (CityGML) Encoding Standard Version 2.0.0.
Technical report, Open Geospatial Consortium Inc., 2012.

[7] R. B. Haber and D. A. McNapp. Visualization Idioms: A Conceptual Model for
Scientific Visualization Systems. In Visualization in Scientific Computing, pages
74-93. IEEE, 1990.

[8] B. Hagedorn. Web view service discussion paper, Version 0.6. 0. Open Geospatial
Consortium Inc, 2010.

[9] D. Koller, M. Turitzin, and M. Levoy. Protected Interactive 3D Graphics via Remote
Rendering. Transactions on Graphics (TOG), 2004, ACM.

[10] F. Lamberti and A. Sanna. A streaming-based solution for remote visualization of
3D graphics on mobile devices. IEEE transactions on visualization and computer
graphics, 13(2):247-60, 2007.

[11] D. Pajak, R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Seidel. Scalable
Remote Rendering with Depth and Motion-flow Augmented Streaming. Computer
Graphics Forum, 30(2):415-424, April 2011.

[12] G. Paravati, A. Sanna, F. Lamberti, and L. Ciminiera. An open and scalable ar-
chitecture for delivering 3D shared visualization services to heterogeneous de-
vices. Concurrency and Computation: Practice and Experience, 23(11):1179—
1195, 2011.

Fall Workshop 2012 71

References

[13] C. Portele. OpenGIS Geography Markup Language (GML) Encoding Standard,
Version 3.2.1, July 2007, Open Geospatial Consortium.

[14] A. Schilling and T.H. Kolbe. Draft for Candidate OpenGIS Web 3D Service Inter-
face Standard, Version 0.4.0, 2010, Open Geospatial Consortium.

[15] P. Schut. OpenGIS Web Processing Service, Version 1.0.0, 2007, Open Geospa-
tial Consortium.

[16] P.A. Vretanos. OGC Web Feature Service Implementation Specification, 2005,
Open Geospatial Consortium.

[17] A. Wessels, M. Purvis, J. Jackson, and S. (S.) Rahman. Remote Data Visual-
ization through WebSockets. 2011 8th International Conference on Information
Technology: New Generations, pages 1050—-1051, April 2011, IEEE.

72 Fall Workshop 2012

Applications of Virtual Collaboration
Monitoring in Software Development
Projects

Thomas Kowark
thomas.kowark@hpi.uni-potsdam.de

This report summarises my research work of the last six months. The focus resided
on the creation of a concept to include process metrics within Team Collaboration Net-
works (TCN) to enable reasoning about effects of virtual collaboration behaviour. The
concept was prototypically implemented and applied in a classroom software engineer-
ing project to analyse the effects of conformance with software development principles
on team progress. Based on the experiences of this case study, further applications in
the analysis of existing open-source project data and experiments in software engineer-
ing research are outlined. The report concludes with initial insights from an ongoing
test project that applies our prototype platform for virtual collaboration analysis in an
industry setting.

1 Introduction

Virtual collaboration analysis aims to detect correlations between the way project mem-
bers interact with groupware systems and different metrics that determine the state of
a project. Two basic approaches are available for detecting such indicators and their
effects on the measured process metrics.

In the top-down approach, researchers start by modelling potential indicators for
the adherence-to or violation-of investigated collaboration activities. In the domain of
software engineering, these activities usually relate to principles of the used develop-
ment process. Secondly, data needs to be collected from the systems employed by the
teams under investigation or by using an openly available data set. Finally, the indica-
tors need to be translated into queries on the data and occurrences can be statistically
tested for correlations with collected process metrics.

The bottom-up approach starts with the captured data and extracts frequently oc-
curring usage patterns that correlate with process metrics. These patterns are subse-
quently described in a formal manner to enable their usage in a top-down analysis of
other data sets. By that, project-specific phenomena can be separated from behaviour
with general validity regarding its correlation with process metrics.

The main challenge for this kind of research is reproducibility. In case a freely avail-
able dataset has been used, it needs to be specified how the data was prepared (e.g.,
conversion of files in comma-separated-value (CSV) format into a database schema)
and which queries have been carried out. In case a custom data set was created, e.g.,

Fall Workshop 2012 73

Applications of Virtual Collaboration Monitoring in Software Development Projects

by analysing an industry case study or conducting experiments, even more informa-
tion is required. Tools employed by the team, programs used to capture data from the
different groupware systems, data structures used to store the data, and queries that
were executed on the data need to be made available for complete reproducibility. A
simplification of this approach requires the following three components:

e Open access to the investigated data,
e a common data format for storing traces of virtual collaboration activity,

e a standardised query language that allows to formally model the previously de-
scribed indicators and reproducibly detect their occurrences across projects.

1.1 Data Repositories in Empirical Software Engineering

Researchers have previously acknowledged that data sharing is essential to promote
rigour in empirical software engineering research. An approach like the PROMISE
repository of empirical software engineering data [11] provides a quasi-standard data
set that can be used to verify or falsify theories about the correlations between different
software process metrics (e.g. [2]) across multiple projects. Thereby, such repositories
provide a solution for the first challenge. In their current implementation, however,
they do not cover the second challenge. Data is stored in a CSV format and potential
semantic links are described in accompanying text files, leaving room for interpretation
by users of the data.

Linked open data provides a solution to this challenge. Repositories like SeCold
[6] are based on ontologies that describe the different concepts of the mined data
sources, such as source code repositories and bug trackers, and consequently remove
ambiguity in data handling. The named repository contains data from approximately
18,000 software development projects. Though the ontologies slightly differ from the
ones created in the Team Collaboration Network (TCN) approach [12], the conceptual
similarities confirm the viability of our approach and the provided data set will be used
as an extension to the database created through data capturing in our own case studies
[8-10].

The third aspect is partly covered by SPARQL, which is the de-facto standard query
language for Resource Description Framework (RDF) data. Queries created for a sam-
ple project can be applied to other projects without adoptions as long as the same
ontologies are used. Query results, however, will have a project specific bias, as termi-
nology, cardinalities, or timeframes can differ between projects. Hence, either queries
have to be created in a very generic manner, or abstract descriptions of the monitored
activities (e.g., using Business Process Modelling Notation (BPMN) or Event-Driven
Process Chains (EPC)) are translated into SPARQL queries, taking into account the
characteristics of the projects. We have presented a potential solution for this in [7].

1.2 Outline

An aspect that is currently not handled by the aforementioned approach is the explicit
representation of process metrics within the linked data. This is required to not only

74 Fall Workshop 2012

2 Team Collaboration Network Extensions

detect recurring patterns in the collected collaboration activities but measure their ef-
fect on the underlying development processes. In this report, | present a prototypical
integration of process metrics into TCN ontologies. Section 2 also discusses the costs
of this approach with regards to storage requirements for TCN. Section 3 presents an
initial application of our approach that investigates the impact of the adherence-to or
violation-of the principle of Test-Driven Development in a sample software engineer-
ing project. The paper concludes with initial insights from an ongoing test project that
applied our prototype platform for virtual collaboration analysis in an industry setting.

2 Team Collaboration Network Extensions

The definition of TCN as presented in [12] already includes support for attributed rela-
tions. Each Attribute A of the network was defined to be a 5-tuple < s,r,0,txar,tenad >
where s, the entity of the graph the attribute is attached to, could either be a node v € V
or an edge e € E of the TCN. Hence, the same attributes that could be assigned to a
node could also be assigned to an attribute.

The OWL ontology created for the prototypical TCN implementation, however, did
not include an explicit representation of this concept due to performance reasons.
Since only temporal information was stored in addition to the source and target node
of a relation, a workaround solution using custom table fields in the underlying SQL-
database was created. As we intend to introduce additional information for relations
within the graph, this solution is no longer feasible and an explicit representation of
relations between graph nodes becomes inevitable. To this end, we introduced the
class AttributedRelation to the TCN ontology. Figure 1 presents the respective ontol-
ogy model using the graphical notation created in [12].

http:/hpi-web.de/ns/dstore/0.1/ |

@prefix dstore: http://hpi-web.de/ns/dstore/0.1
@prefix xsd: http://www.w3.0rg/2001/XMLSchema#

dstore:OntologyRelation

dstore:target

dstore:AttributedRelation ’— dstore:val_start xsd:dateTime
dstore:val_end xsd:dateTime

dstore:Resource

dstore:metric dstore:ProcessMetric

Figure 1: An ontology for the concept of attributed relations.

Temporal validity information is modelled as an attribute of the relation. Process
metrics, on the other hand, are not included as attributes but need to be added as
relations linking to the respective measurements. Since process metrics are gener-
ally captured through discrete samples, they themselves can be attributed with validity

Fall Workshop 2012 75

Applications of Virtual Collaboration Monitoring in Software Development Projects

dates (e.g., the reported developer satisfaction over a given timeframe, velocity for a
given sprint, etc.) and linking relations to those discrete samples reduces the overall
statement count. Furthermore, not storing process metrics directly with relations allows
rule-based inference of metrics, e.g., by specifying that relations are always linked to
the measurement that was valid at the moment of their creation. By that, the statement
count within the repository can be further reduced, however, at the cost of computa-
tional overhead required by the inference engine. In total, the statements describing
the measurements plus one additional statement per measurement per relation (i.e.,
the link to the measurement) need to be added to include process metrics within TCN.

3 Classroom Application

In this section we present experiences from applying the system presented in [9] in
a classroom software engineering setting. From this application we infer guidelines
for future applications and outline experiment settings that can enhance rigour in the
evaluations and minimise project specific influences.

3.1 Project Background

The lecture under investigation is a third year undergraduate software engineering
class [8]. The 96 participants of the course were divided into two development groups,
each consisting of eight teams. Those eight teams had the task of jointly developing a
customer relationship management system (CRM). We used the approach presented
in [7] to model indicators for violations of different practices prescribed in the course
and continuously monitored the captured TCN for occurrences. A feedback system was
installed to allow project tutors to provide subjective judgements about team progress
and effort. After each meeting, they had to rank the perceived effort that the team put
into the work and their progress (i.e., the fraction of planned work that was successfully
completed) on a 10-point Likert scale (higher values indicate greater effort or progress).
The collected metrics were included into the project TCN as described in Section 2.

3.2 Modelling Process Violations

Process violations were modelled according to a template created by Zazworka et.
al [13]. It contains the process name, a categorisation, a textual description, data re-
quired to observe violations, and a description of investigated violations. The original
template permits description of violations in a language of choice. To enhance repro-
ducibility of analyses, we limit the possible languages to ones that can be mapped to
SPARQL queries on TCN. Consequently, we use the notation presented in [7] to model
indicators for potential violations of well-established software engineering principles [3].
Furthermore, the required data needs to be specified using TCN terminology and by
defining types of resources, attributes, and relations that need to be present within the
networks.

76 Fall Workshop 2012

3 Classroom Application

Process Name Test-First

Process Focus Correctness

Process Description | Version control revision history, test coverage for each revi-
sion of a file.
* Resources: ves:VesRevision, ves:FileRevision, ves:Method,
vcs: TestMethod

* Attributes: vcs:test_coverage

* Relations: vcs:successorOf, ves:committedBy, ves:includes,
vcs:testedBy,

Process Violation See Figures 2(a) and 2(b)

Table 1: Process Conformance Template (based on [13]) for Test-Driven Development.

We use the example of Test-Driven Development (TDD) [1] to outline the process of
modelling indicators for process nonconformance. TDD requires developers to create
a test case for a given implementation, first. Afterwards, an implementation is created
that implements the tested functionality. A strict adherence to this principle would as-
sure that no application code is being written without at least one test case that checks
whether written functions generate the desired output for a given set of input data.
This principle was tested in different related studies for its effects on metrics related
to software development processes (e.g., team velocity, code quality, bug frequency in
productive systems, etc.), but no consistent results emerged. In [14], Zazworka et al.
identify differences in the way nonconformance with TDD is being recorded and mea-
sured as a potential source for differing results with regards to the impact of TDD on the
measured metrics. Through tightening the constraints regarding allowed languages for
violation descriptions and specification of required data, we aim at improving the tem-
plate even further and help increasing repeatability of analyses of virtual collaboration
activities.

Table 1 presents the process conformance template for TDD. The violation indicator
shown in Figure 2(a) denotes that test coverage, i.e., the fraction of source code that is
covered by tests, decreases from one source code revision to the next. Due to limited
tool availability for measuring test coverage in Ruby on Rails, only statement coverage
could be captured. This is only possible in two cases: if a) code is being written
without a test or if b) tests are deleted. Initially, only case a) was modelled. During the
project, it became apparent that failing builds at the continuous integration server were
sometimes “fixed” by deletion of tests. In some cases this deletion had effects only
on branch coverage of the code, not statement coverage. Hence, a second indicator
needed to be modelled to identify such violations, too (cp. Figure 2(b)).

3.3 Data Analysis

We utilised the detected violations in two ways. Firstly, email alerts were triggered upon
each violation. Accordingly, the teaching team could review the revision and contact
the team or person responsible, if necessary. This proved to be especially helpful
with regards to the violation described in Figure 2(b) as a total of 5,275 commits was

Fall Workshop 2012 77

Applications of Virtual Collaboration Monitoring in Software Development Projects

a_tc: test_coverage test_coverage <:a_tc File successorOf File
Revision

Revision

includes includes

File B successorOf File
Revision | Revision t: Test . t: Test
hod a: Method
testedBy(1,”) Method testedBy(0,0) Method

a: Metl
(a) Creation of a source code revision that lowers (b) Removal of a test case for a given method.
test coverage.

Figure 2: TCN subgraphs representing violations of the TDD principle.

created, only 35 of which removed test cases. Given that through these commits a total
of 123,166 revisions of the project’s source code files were created, such violations
could otherwise only have been detected with intensive manual efforts.

Secondly, we calculated a conformance level with the respective principles. Based
on [14], we define the conformance level CL,;,; with the principle of TDD as follows:

CLgq = (L1 rev_count(i)/ Y.} violation_count(i)) * 100

Whereas n is the number of developers under investigation, rev_count (i) the number of
revisions created by developer i and violation_count (i) is the number of TDD violations
created by developer i.

Figure 3 displays the calculated conformance level along with the recorded effort
and progress measures for two example teams. The two teams presented here were
part of different development groups but both worked on the customer management
component of their respective CRM. Both teams showed a decline in conformance
towards the end of the sprints, the most extensive one happening at the end of the
last sprint, which also saw the highest effort and progress ratings for both teams. This
behaviour can be attributed to the examination process of the course. Since students
were judged equally on process conformance and project outcome, they were tempted
to “get things done” at the end of each sprint and provide tests for the new functionality,
afterwards.

The main difference between the two teams is the constancy in their work. Team
alpha kept the TDD conformance at a high level throughout the project and showed
only minor deviations in the effort they put into their work. Team beta on the other
hand neglected the principle in the beginning and received low effort and progress rat-
ings. After an intervention by the teaching team at the beginning of the second sprint,
they increased the effort and paid closer attention to complying with TDD. Another
interesting relation is the one between effort and progress, commonly referred to as
productivity. In the first sprint, effort exceeded progress ratings for team alpha. In fact,
the team noted that they needed to get accustomed to the development framework
and underestimated the necessary overhead. Within the second sprint their progress
ratings inclined without an incline in effort, which indicates that their productivity in-
creased during this period. For team beta it is apparent that changes in their progress
measures seemed to be coupled tightly to the effort they put into the project. This was

78 Fall Workshop 2012

3 Classroom Application

- w0 w
" M ; ~.
o g PR S L N
3 H 3
3 H 1
H o % i
H T3 H
§ \ < 3
HE . go
" 2
» s 8 »
» 2 ®
w . w0
‘ 2 3 8 9

.................

(a) Team alpha. (b) Team beta.

Figure 3: Comparison of TDD compliance level, reported effort, and reported progress
for two project teams. Vertical lines denote end of Scrum sprints

confirmed by the team, as they reportedly “liked the framework but simply did not find
the time to work on the project”. They reported the same lack of time at the end of the
third sprint.

3.4 Lessons Learned

In summary, the observed setting was insightful with regards to the possibilities that
virtual collaboration monitoring offers for project management purposes. The number
of digital collaboration artefacts that required manual review could be reduced and
allowed the tutors to provide immediate and focused feedback to the student teams.
On the downside, we observed that digital collaboration analysis is prone to observer
effects. If students know that the way they use groupware tools is analysed, it becomes
more likely that they try to adapt their behaviour to generate supposedly ideal traces
instead of focusing on doing what is best for the project.

Another point for improvement are the observed process metrics. They were mainly
of subjective nature and need to be enriched with objective ones [5], such as, for ex-
ample, exact measurements for development time and velocity of teams as a measure
for their relative progress. However, obtaining such information reliably outside experi-
mental setups is barely possible as the subjects under investigation have a motivation
to report falsified values, namely their final grades in our project and potential bonuses
and evaluations by superiors in industry settings. Hence, generalizable statements
about the expressiveness of process conformance indicators and their correlation with
process metrics should be obtained in specialised experiments that allow to verify the
reported effort and progress measures objectively.

3.5 Future Applications

Based on the lessons learned throughout our case studies, future efforts will concen-
trate on the evaluation of data from open-source projects, as provided by the SeCold
repository [6] or obtained through parsing open-source project platforms like github.
Furthermore, we will perform smaller experiments that allow for an isolated evalua-

Fall Workshop 2012 79

Applications of Virtual Collaboration Monitoring in Software Development Projects

tion of the correlations between presence of (non)conformance indicators for certain
software development principles and objectively recorded process metrics.

Also, we will focus on the analysis of not only the structural properties of the cap-
tured TCN but the attributes of the contained nodes. A co-supervised master’s the-
sis provided a first insight into possible applications of data mining techniques on the
stored graphs [4]. By applying the statistical model Latent Dirichlet Allocation (LDA) on
the captured TCN, we were, for example, able to determine which topics the project
teams have dealt with and which project members were mainly involved with certain
topics over which periods of time.

Building on these efforts, we want to investigate the application of different data
mining techniques to identify the “regular” working behaviour of developers. This in-
cludes, amongst others, the following properties: People that developers have fre-
quently collaborated with, frequently occurring subgraphs that reflect their usual work-
ing behaviour (e.g., regular ticket updates after check-ins), average properties of cre-
ated artefacts (e.g., average size of source code revisions, average email length, etc.),
and topics that developers have been involved with on a frequent basis. Based on this
data, we can detect deviations from the regular working behaviour and reason about
possible learning effects, potential problems within the project teams (e.g., unevenly
distributed workload between team members), or impacts of newly prescribed meth-
ods.

4 Industry Application

AnalyzeD [9], our prototype platform for virtual team collaboration analysis, is currently
deployed in an industry setting at SAP. The test project aims at identifying a general
framework for future applications with regards to technical and legal aspects.

On a technical level, data privacy and scalability are primary concerns. By repli-
cating a subset of the information originally stored in, for example, project emails, bug
tracking systems, or documentation tools, potential data leaks of the platform can re-
veal secret information to unauthorised third parties. Various approaches for solving
such issues exist and can be integrated into the platform but a complete evaluation
is beyond the scope of my work. The platform design accounts for an intra-company
deployment and application of analyzeD in various projects, simultaneously. The re-
spective graphs are stored independent from each other, hence, dedicated databases
for each team and a central directory that links to their addresses could provide a sim-
ple, yet effective, scale out strategy.

Legal aspects are pervasive in the application of the platform. On the one hand,
data privacy needs to be assured to comply with non-disclosure agreements. On the
other hand, the system — at least in Germany — must not enable the identification of
people involved in the projects as it could be used to, theoretically, “judge people’s per-
formance”. To avoid such issues in the test project, German users were automatically
filtered from the data collection process. As such filtering reduces the expressiveness
of the collected data, future work needs to include the creation of guidelines that allow
platform application even under such regulations.

80 Fall Workshop 2012

5 Summary and Outlook

As a first evaluation, the manager of the test project confirmed that the system is
a viable aid for his project management tasks. It, for example, helped him to detect
potential information loss due to some of his team members sharing viable project-
related information only via email instead of using the designated documentation sys-
tem. Analysis of the captured data and interviews with project members are currently
ongoing and will be finished by the end of 2012. Results will be summarised in a joint
paper with the project partners at SAP.

5 Summary and Outlook

This report presented extensions to the TCN implementation that allow to explicitly
include process metrics into the process of virtual team collaboration analysis. This
approach was used to analyse the virtual collaboration behaviour of student teams and
reason about the effects of process conformance on team progress. These evaluations
will be extended towards analysis of open-source projects in future work. Finally, we
presented insights gained within an industry application of our monitoring and analysis
system. Based on this work, next efforts will concentrate primarily on the evaluation
of the applicability of the platform as a project management tool. To this end, we will
perform an experiment that requires a chosen set of test subjects to perform different
project management tasks, such as detecting violations of the described principles or
finding experts for different project topics. Our concept will then be tested along with
other project management tools that offer comparable features and we will measure,
for example, the average time for violation detection or the number of found violations.

Teaching Assistance

e Organisation and teaching support — Global Team-Based Product Innovation and
Engineering 2011/12

e Assistance in corporate sponsor acquisition — Global Team-Based Product Inno-
vation and Engineering 2012/13

e Preparation of exercise and lecture — Softwaretechnik Il WS 2012/13

e Co-supervised master’s thesis Agile Methodologies for Large Enterprises - An
Analysis of Scaling Strategies by Markus Steiner

e Co-supervised master’s thesis Extracting Topics from Heterogeneous Digital Col-
laboration Artifacts of Software Engineering Teams by Ralf Gehrer

References

[1] Kent Beck. Test-Driven Development: By Example. The Addison-Wesley Signa-
ture Series. Addison-Wesley, 2003.

Fall Workshop 2012 81

References

[2] Nicolas Bettenburg, Meiyappan Nagappan, and Ahmed E. Hassan. Think locally,
act globally: Improving defect and effort prediction models. In MSR ’12: Pro-
ceedings of the 9th Working Conference on Mining Software Repositories, pages
60-69. IEEE, 2012.

[3] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile Software
Development. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[4] Ralf Gehrer. Extracting topics from heterogeneous digital collaboration artifacts
of software engineering teams. Master’s thesis, Hasso Plattner Institute for IT
Systems Engineering, 2012.

[5] Lorin Hochstein, Victor R. Basili, Marvin V. Zelkowitz, Jeffrey K. Hollingsworth, and
Jeff Carver. Combining self-reported and automatic data to improve programming
effort measurement. SIGSOFT Softw. Eng. Notes, 30:356—-365, September 2005.

[6] Iman Keivanloo, Christopher Forbes, Aseel Hmood, Mostafa Erfani, Christopher
Neal, George Peristerakis, and Juergen Rilling. A Linked Data platform for min-
ing software repositories. In 9th IEEE Working Conference on Mining Software
Repositories, MSR 2012, June 2-3, 2012, Zurich, Switzerland, pages 32-35,
2012.

[7] Thomas Kowark, Philipp Dobrigkeit, and Alexander Zeier. Towards a shared
repository for patterns in virtual team collaboration. In 5th International Confer-
ence on New Trends in Information Science and Service Science, 2011.

[8] Thomas Kowark, Jargen Muiller, Stephan Miller, and Alexander Zeier. An edu-
cational testbed for the computational analysis of collaboration in early stages of
software development processes. In Proceedings of the 44th Hawaii International
Conference on System Sciences (HICSS), January 2011.

[9] Thomas Kowark and Hasso Plattner. AnalyzeD: A Shared Tool for Analyzing Vir-
tual Team Collaboration in Classroom Software Engineering Projects. In The 2012
International Conference on Frontiers in Education: Computer Science and Com-
puter Engineering, July 2012.

[10] Thomas Kowark, Matthias Uflacker, and Alexander Zeier. Towards a shared plat-
form for virtual collaboration analysis. In The 2011 International Conference on
Software Engineering Research and Practice (SERP ’'11), 2011.

[11] Tim Menzies, Bora Caglayan, Ekrem Kocaguneli, Joe Krall, Fayola Peters, and
Burak Turhan. The promise repository of empirical software engineering data,
June 2012.

[12] Matthias Uflacker. Monitoring Virtual Team Collaboration: Methods, Applications,
and Experiences in Engineering Design. PhD thesis, Hasso Plattner Institute for
IT Systems Engineering, Potsdam, Germany, 2010.

82 Fall Workshop 2012

References

[13] Nico Zazworka, Victor R. Basili, and Forrest Shull. Tool supported detection and
judgment of nonconformance in process execution. In Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and Measure-
ment, ESEM 09, pages 312-323, Washington, DC, USA, 2009. IEEE Computer
Society.

[14] Nico Zazworka, Kai Stapel, Eric Knauss, Forrest Shull, Victor R. Basili, and Kurt
Schneider. Are developers complying with the process: an XP study. In Proceed-
ings of the 2010 ACM-IEEE International Symposium on Empirical Software En-
gineering and Measurement, ESEM ’10, pages 14:1—-14:10, New York, NY, USA,
2010. ACM.

Fall Workshop 2012 83

Muscle Propelled Force-feedback:
ultra-mobile haptic devices

Pedro Lopes

Human Computer Interaction Group, Prof. Patrick Baudisch
Hasso-Plattner-Institut
pedro.lopes@hpi.uni-potsdam.de

Unlike many other areas in computer science and HCI, force-feedback devices re-
sist miniaturization, because in order to build up force they require physical motors. We
propose mobile force-feedback devices based on actuating the user’s muscles using
electrical stimulation. Since this allows us to eliminate motors and reduce battery size,
our approach results in devices that are substantially smaller and lighter than traditional
motor based devices. We present a prototype device that we mount to the back of a
mobile phone. It actuates users’ forearm muscles via four electrodes, causing the mus-
cles to contract involuntarily, so that users tilt the device sideways. As users resist this
motion using their other arm, they perceive these counter forces as force-feedback. We
demonstrate the interaction at the example of an interactive videogame in which users
try to steer an airplane through winds rendered using force feedback. We evaluate our
approach in three experiments. In Study 1, we measured that the device delivers up
to 17.5N of force when applied to the palm flexor. In Study 2, participants correctly
identified force feedback direction with 97.7% accuracy eyes-free. Finally, in Study 3
participants reported their experiences playing the video game described above.

1 Introduction

Force-feedback has been used to enable eyes-free targeting [15], to increase task
realism [2], and to enhance immersion in video games [17]. For such applications,
force-feedback is preferred over vibrotactile, because it provides physical forces that
can counter the users’ movements, providing a strong haptic sensation [16]. Recent
research has started to create increasingly smaller force-feedback devices, such as
deformable devices (e.g., SqueezeBlock [3]), motor-based haptics based on pulleys
(e.g., FlexTensor [14]). What limits researchers’ miniaturization effort, though, is that it
involves physical actuators that are hard to scale down without losing force [16].

In this paper, we attempt to push this evolution forward with the ultimate goal of
bringing force feedback to mobile devices. In order to achieve this, we explore using
the user’s own muscle power as a replacement for motors. We actuate the user’s
muscles using electrical muscle stimulation (EMS), a technique first explored in the
60’s and 70’s [11] and more recently in Possessed Hand [13].

Fall Workshop 2012 85

Muscle Propelled Force-feedback: ultra-mobile haptic devices

Figure 1: We developed a mobile force feedback device that electrically stimulates the
user’s muscles, instead of using mechanical actuators.

2 Mobile force-feedback device

Figure 1 illustrates the use of our mobile force feedback prototype, in a mobile gaming
scenario. The device is mounted to the back of a mobile phone, and the player con-
nects it using 2 skin-electrodes to the palm flexor muscles of each of his forearms. As
shown in Figure 2, the game requires the user to steer an airplane through strong side
winds. Our prototype renders these winds by tilting the user’s arms sideways (Figure
2.a). It achieves this by stimulating muscle tissue in the user’s arm though the elec-
trodes, triggering an involuntary contraction. Since the airplane is controlled by turning
the device like a steering wheel, the tilting derails the airplane. To stay on track, players
counter the actuation using the force of their other arm (Figure 2.b). As we find in Study
3, players perceive this as force feedback.

ame's force-feedback player's counter-force

wind turbine
airplane

Figure 2: We demonstrate our prototype in a flight simulator game in which (a) the
user’s arm contracts as forces of side-winds drift the airplane, but rapidly (c) the user
counter-forces and steers the plane against the wind.

2.1 Device hardware

Figure 3 shows a close-up of the hardware design. The device measures 133mm
x 70mm x 20mm and weighs 163g. It is comprised of an arduino nano microcon-

86 Fall Workshop 2012

3 Benefits and Contribution

troller, which communicates via USB or Bluetooth to its host device, such as a mobile
phone, a battery-powered signal generator with medical compliant operational ampli-
fiers which outputs a maximum current of 50V/100mA over a 500 ohm load, and reed
relays. The device induces involuntary muscle contraction by generating a biphasic
wave (frequency: 25Hz, pulse with of 290us).

bluetooth
arduino nano

mobile phone
biphasic signal generator
voltage-controlled amplifiers

Figure 3: Hardware design specifications of the prototype.

3 Benefits and Contribution

Our main contribution is the concept of creating mobile force feedback using computer-
controlled muscle stimulation. Our approach achieves miniaturization by (1) eliminating
mechanical actuators, such as motors and (2) substantially reducing battery size, as it
is two orders of magnitude more energy efficient to actuate a muscle (which receives
its energy from the human body) than to drive a motor (we found muscles to require
less than 100 mA to contract, while motors can use up to several Amps). With three
simple user studies, we verify that our prototype creates sufficient force and that its
effect is indeed perceived as force-feedback.

Limitations: the on-skin electrodes used by our prototype limit miniaturization [13]
and deployment speed, in that users need to attach the device to their muscles before
use. In addition to miniaturizing the circuit boards, future prototypes may overcome
both of these limitations by using implanted intra-muscular electrodes [6].

4 Related Work

Force feedback is distinct from vibrotactile feedback in that it displaces the joints, with
counter-forces. Force feedback devices administer force to body joints mechanically,
by pulley systems [9], exoskeletons [14], and more recently deformable interfaces [3].

4.1 Motor-based Force-Feedback

An example of a pulley system is SPIDAR [9], which displaces the fingertip by pulling
using four motors. Exoskeletons such as the Utah Dextrous Hand [5] or FlexTensor [14]

Fall Workshop 2012 87

Muscle Propelled Force-feedback: ultra-mobile haptic devices

require external apparatus to be mounted on the user. Furthermore, non-rigid actuation
mechanisms include transmission of force by sound pressure [7] or air jets [12], even
though these have not been shown yet to produce enough force to displace human
joints.

4.2 Optimizing force-feedback for size and weight

Force-feedback devices that allow for a small form factor include deformable devices
such as MimicTile [10], a flexible actuator placed on the side of a mobile phone that can
dynamically regulate its stiffness using a shape memory alloy. SqueezeBlock [4] is a
programmable spring device that provides force-feedback while grasped. InGen [3] is a
self powered wireless rotary input device capable of force-feedback. Finally, Hemmert
et al's device changes shape by moving a weight around [5].

4.3 Electrical Muscle Stimulation (EMS)

Recently, Tamaki et al. used EMS to actuate human fingers [13]. The technique targets
situations where the user’s input must be mediated or assisted, such as while learning
to play a new instrument. With a similar approach, Kruijff et al. studied how hap-
tic feedback through EMS is perceived on the biceps while gaming. In their studies,
a human experimenter manually induces muscle contractions in participants playing
videogames on a desktop computer [8].

5 Experiments

To validate our design, we conducted three user studies.

5.1 Study 1: Measurement of Generated Force

To determine whether the approach would deliver the sufficient force, we evaluated the
force of the muscular output induced by our prototype.

5.1.1 Participants

We recruited 6 right-handed participants (all male), between 24 and 27 years old from
our institution. They had no prior experience with EMS. Participants received a small
compensation for their time.

5.1.2 Apparatus

As illustrated by Figure 4, the experimental apparatus actuated participant’s wrist via
disposable pre-gelled electrodes on the palm flexor muscles (flexor carpi radialis and
partially the flexor digitorium superficialis) and measured the resulting force using a
digital spring-scale.

88 Fall Workshop 2012

5 Experiments

First we applied a sequence of test patterns to get the participant acquainted with
EMS. Then, we calibrated an intensity range per participant: minimum intensity with
visible contraction up to maximum intensity within non-pain levels. These two values
were linearly interpolated in a range of six intensities, numbered 1 (lowest) to 6 (high-
est).

spring-scale

velcro strap

-
___electrodes

arm rest

Figure 4: Apparatus for Study 1.

5.1.3 Task & Experimental Design

During the test, each participant was subjected to randomly distributed stimulation pat-
terns that varied in intensity and duration: 6 intensities and 11 durations (two repetitions
of each). Resulting in a total of 792 force readings: 6 (intensities) x 11 (durations) x 2
(repetitions) x 6 (participants).

5.1.4 Results and Discussion

Figure 5 shows the average of the peak force measured during each of the stimulation
duration, across all users. As observed, force is directly related to the intensity level and
duration. The maximal force was reached with 1s of stimulation at all users’ highest
intensity level, with an average of 1785¢g (17.5N). Furthermore, the lower bound of
intensity seemed to normalize output force above 500ms stimulations. On the contrary,
all other levels (2 to 6) showed an increase of force. For short durations (50-200ms)
the variation of force is minimal, even amongst different intensities.

Finally, for all intensities levels above 2 and with stimulations longer than 400ms,
participants reached more than 306g (3N), which is on par with the Phantom device [1].
These results suggest that our prototype creates sufficient force for real actuation.

5.2 Study 2: Proprioceptive and Force-Feedback

In this study, we investigated to what extent users perceive the force-feedback sensa-
tions generated by the prototype.

Fall Workshop 2012 89

Muscle Propelled Force-feedback: ultra-mobile haptic devices

Generated Force (in grams)
1800

Intensity —
1400 Le\.;els

—

—3

1000——

—5

—5
600

o0 i /

—

50 100 200 300 400 500 600 700 800 900 1000
Stimulation Duration (in ms)

Figure 5: Average peak force (in grams) for palm flexion for different stimulation inten-
sities (levels) and durations (in ms).

5.2.1 Participants

We recruited 8 new right-handed participants (all male) between 24 and 29 years old,
from our institution. Participants received a small compensation for their time.

5.2.2 Apparatus

For this test the electrodes covered the palm flexor and extensor of one arm (palm
moving inwards or outwards). To prevent participants from seeing their hands, which
would bias the test outcome, we placed their hands under a tabletop, as shown in
Figure 6. We instrumented the palm with reflective markers. OptiTrack motion capture
system was used as a high-speed goniometer. For each participant we made sure that,
below any noticeable pain-level, we achieved a palm displacement of 30 degrees, and
we used that as the test intensity. Moreover, we logged the displacement of the joints
during stimulations to further confirm if the joint in fact moved.

Figure 6: Apparatus for Study 2.

5.2.3 Controlling for tactile feedback

In EMS participants perceive actuation through proprioceptive and tactile feedback [8].
The latter is excited because the electric current is felt by the skin receptors for high

90 Fall Workshop 2012

5 Experiments

stimulation levels. We minimized this effect by: lowering skin resistance with conduc-
tive gel and by lightly stimulating both muscles simultaneously below visible motion
threshold, therefore causing the tactile sensation in both.

5.2.4 Experimental Design

Each participant was subjected to 44 trials of randomly distributed direction and dura-
tion (2 directions x 11 durations x 2 repetitions), a total of 352 samples for the study.
Per trial, the participant entered on the keyboard the perceived direction (left or right).

5.2.5 Results and Discussion

Overall recognition rate of force-feedback direction was 97.73%, on average for all
users. In detail, for brief stimulation (50ms), the recognition rate was 87.5%, for 100ms
it was 90.63%, and 96.88% for 200ms. For all durations above 300ms, recognition rate
was 100%, which pinpoints the potential of the approach for real mobile applications.

5.3 Study 3: Mobile force-feedback gaming

Finally, we examined actual use of the prototype. Participants played the game shown
in Figure 1 including the force-feedback enhancements.

5.3.1 Participants

We recruited 10 participants (2 female) between 20 and 32 years old. Two of them had
participated in Study 2.

5.3.2 Apparatus

We deployed the game from Figure 2 on an HTC One X. To win the game, players
had to keep the airplane on screen while collecting white clouds and avoiding black
clouds. Staying on screen required players to resist the wind turbines that 4AlJpushed
the airplane off screendAl. Participants steered the airplane left and right by tilting the
device; and, touching the screen with the thumb allowed them to fly higher or lower.

5.3.3 Experimental Design

Participants played the videogame with and without force feedback for at least 5 min-
utes. Interface order was counterbalanced, i.e., half of the participants started with
force-feedback. In the end of each condition they filled a questionnaire.

Fall Workshop 2012 91

References

5.3.4 AQuestionnaire Results and Discussion

Participants rated the game as more enjoyable when playing with force-feedback (avg=4
of 5, sd=1.15), than without (avg=3.3 of 5, sd=0.95). While playing with muscle-
propelled force feedback, participants stated to easily perceive the direction of the
winds that derail the airplane in the game (avg=4 of 5, sd=1.63), confirming the results
of Study 2. On the contrary, in the absence of the haptic sensation, subjects stated that
wind direction and force was harder to perceive (avg= 2.7 of 5, sd=0.95). Also, partici-
pants rated the wind forces in the game as harder to counter when force-feedback was
active (avg=3.8 of 5, sd=1.03), when compared to no force feedback (avg= 2.5 of 5,
sd=0.85), which was expected after the force readings obtained in Study 1. After play-
ing both games, all subjects expressed to prefer force-feedback to no force-feedback.
Furthermore, all participants agreed that force-feedback sensations delivered by our
prototype contributed to a positive gaming experience (avg=4.7 of 5, sd=0.48). Finally,
we also registered several positive comments concerning sense of increased realism
and excitement when gaming with force-feedback.

6 Conclusion

In this paper, we presented a mobile force-feedback device based on EMS. We demon-
strated a prototype and illustrated its effect using a mobile gaming application. In three
user studies we find that the device (1) generates up to 17.5N of force, (2) is correctly
perceived 97.73% of the times by the users in eyes-free condition, and (3) contributes
to an enjoyable mobile gaming experience. We believe our research points out a new
direction of how force-feedback can effectively be miniaturized. We expect this to en-
able new application areas for mobile force-feedback in the future.

References

[1] Phantom senseable haptic device, http://www.sensable.com last accessed in
10/09/2012.

[2] Roland Arsenault and Colin Ware. Eye-hand co-ordination with force feedback. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
CHI 00, pages 408—414, New York, 2000. ACM.

[3] Akash Badshah, Sidhant Gupta, Gabe Cohn, Nicolas Villar, Steve Hodges, and
Shwetak N. Patel. Interactive generator: a self-powered haptic feedback device.
In Proceedings of the 2011 annual conference on Human factors in computing
systems, CHI '11, pages 2051-2054, New York, 2011. ACM.

[4] Sidhant Gupta, Tim Campbell, Jeffrey R. Hightower, and Shwetak N. Patel.
Squeezeblock: using virtual springs in mobile devices for eyes-free interaction.
In Proceedings of the 23nd annual ACM symposium on User interface software
and technology, UIST '10, pages 101—-104, New York, 2010. ACM.

92 Fall Workshop 2012

References

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

John Hollerbach and Stephen C. Jacobsen. Haptic interfaces for teleoperation and
virtual environments. In in Proc. of First Workshop on Simulation and Interaction
in Virtual Environments, lowa City, pages 13—15, 1995.

Christian Holz, Tovi Grossman, George Fitzmaurice, and Anne Agur. Implanted
user interfaces. In Proceedings of the 2012 ACM annual conference on Human
Factors in Computing Systems, CHI ’12, pages 503-512, New York, 2012. ACM.

Takayuki Iwamoto, Mari Tatezono, and Hiroyuki Shinoda. Non-contact method for
producing tactile sensation using airborne ultrasound. In Proceedings of the 6th
international conference on Haptics: Perception, Devices and Scenarios, Euro-
Haptics ‘08, pages 504-513, Berlin, Heidelberg, 2008. Springer.

Ernst Kruijff, Dieter Schmalstieg, and Steffi Beckhaus. Using neuromuscular elec-
trical stimulation for pseudo-haptic feedback. In Proceedings of the ACM sympo-
sium on Virtual reality software and technology, VRST ’06, pages 316-319, New
York, 2006. ACM.

Jun Murayama, Laroussi Bougrila, Yanlinluo Katsuhito Akahane, Shoichi
Hasegawa, Béat Hirsbrunner, and Makoto Sato. Spidar g&g: A two-handed haptic
interface for bimanual vr interaction. In Proceedings of EuroHaptics 2004, pages
138-146, 2004.

Yusuke Nakagawa, Akiya Kamimura, and Yoichiro Kawaguchi. Mimictile: a vari-
able stiffness deformable user interface for mobile devices. In Proceedings of the
2012 ACM annual conference on Human Factors in Computing Systems, CHI '12,
pages 745-748, New York, 2012. ACM.

Strojnik P, Kralj A, and Ursic . Programmed six-channel electrical stimulator for
complex stimulation of leg muscles during walking. [|EEE Trans Biomed Eng,
26(2):112-116, 02 1979.

Yuriko Suzuki, Minoru Kobayashi, and Satoshi Ishibashi. Design of force feedback
utilizing air pressure toward untethered human interface. In CHI '02 extended
abstracts on Human factors in computing systems, CHI EA 02, pages 808-809,
New York, 2002. ACM.

Emi Tamaki, Takashi Miyaki, and Jun Rekimoto. Possessedhand: techniques for
controlling human hands using electrical muscles stimuli. In Proceedings of the
2011 annual conference on Human factors in computing systems, CHI 11, pages
543-552, New York, 2011. ACM.

Dzmitry Tsetserukou. Flextorque, flextensor, and hapticeye: exoskeleton haptic
interfaces for augmented interaction. In Proceedings of the 2nd Augmented Hu-
man International Conference, AH 11, pages 33:1-33:2, New York, 2011. ACM.

Malte Weiss, Chat Wacharamanotham, Simon Voelker, and Jan Borchers. Fin-
gerflux: near-surface haptic feedback on tabletops. In Proceedings of the 24th
annual ACM symposium on User interface software and technology, UIST ’11,
pages 615-620, New York, 2011. ACM.

Fall Workshop 2012 93

References

[16] Alex Wright. The touchy subject of haptics. Commun. ACM, 54(1):20-22, January

2011.

[17] Lining Yao, Sayamindu Dasgupta, Nadia Cheng, Jason Spingarn-Koff, Ostap

Rudakevych, and Hiroshi Ishii. Rope revolution: tangible and gestural rope in-
terface for collaborative play. In Proceedings of the 8th International Conference
on Advances in Computer Entertainment Technology, ACE ’11, pages 11:1-11:8,
New York, 2011. ACM.

94

Fall Workshop 2012

Discovering SPARQL Query Templates for
Dynamic RDF Triple Prefetching

Johannes Lorey
Information Systems Group
Hasso Plattner Institute

johannes.lorey®@hpi.uni-potsdam.de

When issuing SPARQL queries against remote public endpoints, a user usually faces a
number of limitations, e.g., regarding latency and availability. Especially when implementing
a service relying on the information provided by the SPARQL endpoint, this can become a
challenge as the service's quality directly depends on these factors. Here, it would be beneficial
to detect similar requests and aggregate suitable information provided by the endpoint. Storing
this data locally helps to respond to subsequent requests in a timely manner. In this work, we
present an algorithm to detect similar queries and introduce the notion of query templates.
Additionally, we illustrate several ways to augment SPARQL queries to prefetch data needed
to answer subsequent queries. Lastly, we provide a brief evaluation of our approach based on
real-world query logs.

1 Introduction

Public SPARQL endpoints provide valuable resources for a multitude of information needs,
e.g., about drugs!, government spendings?, or cross-domain knowledge3. However, accessing
this data is cumbersome as the capabilities of these endpoints are usually rather moderate. As
most data is generated in a research context, the hardware resources available for hosting such
a public infrastructure are limited, e.g., data is not replicated for fast access from different
locations, query processing might take up to several seconds, or the endpoints suffer from
availability restrictions.

For services querying data from SPARQL endpoints, these limitations may present a serious
challenge. Processing retrieved data for future actions, such as integration or visualization, is
delayed by at least the latency required to retrieve the results. This will impede interactive
applications responding to dynamic user feedback, such as clicking on a point of interest on
a map to retrieve information about a city. While circumventing some of these problems,
downloading and integrating RDF data locally may also not be desirable (e.g., if there are
frequent updates in datasets) or feasible (e.g., if such datasets are not provided) either.

Hence, there is a clear need for retrieving results for sequences of SPARQL queries in a
more efficient way. In this work, we especially focus on detecting similar queries and sequences
of such queries. We will use this information to rewrite queries early in the sequence to retrieve

http://wwwé4.wiwiss.fu-berlin.de/drugbank/sparql
’http://govwild.hpi-web.de/sparql
3http://dbpedia.org/sparql

Fall Workshop 2012 95

Discovering SPARQL Query Templates for Dynamic RDF Triple Prefetching

(a subset of) the results of later queries. We can then store these results locally to reduce the
latency for subsequent queries by querying this local RDF store.

The rest of this work is organized as follows: In Sec. 2 we present some preliminaries
on SPARQL, the de facto query language for RDF data, and basic notations required for
our approach. After that, we introduce an algorithm for detecting query templates, i.e.,
SPARQL queries that non-trivially subsume other SPARQL queries, in Sec. 3. In Sec. 4,
we illustrate various rewriting strategies that can be applied to queries in a query session to
retrieve results that may be useful to answer subsequent queries in the same session. We
call this process query augmentation. To evaluate both contributions, i.e., template discovery
and query augmentation, we conducted a number of experiments and present some results in
Sec. 5. We conclude this work and comment on future work in Sec. 6.

2 SPARQL

SPARQL is the de facto standard query language for RDF triples. One central concept of a
SPARQL query is that of a triple pattern T'= (s,p,0) € (VUU) x (VUU) x (VUUUL) with
V being a set of variables, U being a set of URIs, and L being a set of literals. A SPARQL query
() contains a number of graph patterns Pp, P,... which are defined recursively: (i) A valid
triple pattern T is a graph pattern. (ii) If P, and P, are graph patterns, then P} AND P, P;
UNION P», and P, OPTIONAL P, are graph patterns [5]. Notice that curly braces surrounding a
graph pattern (i.e., { P}) are syntactically required for both P; and P, in a UNION statement,
only for P, in an OPTIONAL statement, and are optional elsewhere. However, to increase
readability, we will usually omit them in this work.

In terms of relational operations, the keyword AND represents an inner join of the two graph
patterns, UNION unsurprisingly denotes their union, and OPTIONAL indicates a left outer join
between P; and P». Whereas UNION and OPTIONAL are reserved keywords in actual SPARQL
queries to indicate the corresponding connection between two graph patterns, the AND keyword
is omitted. In [5], it is shown that there exists a notion of a normal form for SPARQL
queries based on the recursive graph pattern structure presented earlier and the precedence of
the operators connecting those graph patterns. Hence, for this work we assume a SPARQL
SELECT query can always be expressed as a composition of graph patterns, connected either
by UNION, AND, or OPTIONAL.

For this work, we define the three functions @UNIUN<P)1 @AND(P): and @QPTIONAL(P) as
follows (all n > 2):

Pi,.... P iff P:= P; UNION P, ... UNION P,
@UNION(P):{{ Lo Fay ! ? "

0, else.
{P}, iff P is a triple pattern
Omp(P)=<{P,...,P,}, iff P:=P AND P, ... AND P,
0, else.

{Pi,...,P,}, iff P:= P, OPTIONAL P, ... OPTIONAL P,

OoprronaL(P) =
0, else.

96 Fall Workshop 2012

3 Discovering Query Templates

We also define the function ©(P):

Ounton(P), if Ounton(P) # 0
O(P) = { Ooprronar(P), if Ogprronan(P) # 0
O (P), else.

We call |P| = |©(P)| the size of a graph pattern. Moreover, we call the graph pattern P
in a query) the query pattern Py of @ if for all graph patterns P; in @ (including P itself)
P & ©(F;). Note that every query has exactly one query pattern Fg.

In addition, we also introduce a keyword function (P):

UNION, iff 3P, € PQ Pe @UNIUN(Pl)
k(P) = { OPTIONAL, iff 3P, P> € Pg: P, P> € Ogprronar(P1) A P> OPTIONAL P
AND, else.

3 Discovering Query Templates

In real-world applications, a large number of queries processed by a SPARQL endpoint exhibit
similar structures and vary only in a certain number of resources. In this section, we present
query templates that can be used to cluster these similar SPARQL query structures. To identify
such query structures, we present a triple pattern similarity metric that is used for our graph
pattern matching algorithm. In contrast to [6], we do not rely on knowledge of the underlying
RDF graph for this.

3.1 Triple Pattern Similarity and Merging

We first define triple patterns that can be mapped to and merged with one another. To
establish a mapping between two triple patterns 77 = (s1,p1,01) and Th = (s2,p2,02), we try
to match the individual elements of 77 with the corresponding part of 75, i.e., we align x;
with x5 for z € {s,p,0}.

To calculate the distance of such mappings, we introduce the score A(x1,x2):

1 d
3" (o1,2) L ifzieVAzmeV
3 max(|r],[z2]) +1
A(xy,x9) = d(z1,22) .
7 f(rmneUAzcU)V(zir € LAz €L
maz(|z1],|ve]) +1’ if (21 2)V (21 Ty)
1, else.

Here, |x| is the string length of = and d(x1,22) — INg is a string distance metric with
d(x1,72) = 0< 1 = x2. In our work, we use the Levenshtein distance. Notice that we apply
the Levenshtein distance on the entire resource strings, i.e., including possible prefix definitions
for URIs or types for literals.

Fall Workshop 2012 97

Discovering SPARQL Query Templates for Dynamic RDF Triple Prefetching

To evaluate how easily two triple patterns can be merged, we define the triple pattern
distance score A(T7,T5) as the sum of the triple parts individual distance scores, i.e.,

A(T1,T2) = A(s1,52) + A(p1,p2) + A(o1,02)

We also allow the calculation of distance scores between two graph patterns Pp, P> as
follows:

A(Pl,Pg) _ {A(Tl,TQ), if @(Pl) = {Tl}/\@(PQ) = {TQ}
o0, else.

A(Py, P») notation will mainly serve as a shorthand notation for analyzing graph patterns
with size 1, i.e., graph patterns that constitute triple patterns.

Finally, we introduce the merge function m(Ty,T3) = T' that takes as input two triple
patterns 71, T and merges them into one T = (3,,6). It does so by simply replacing the
non-equal triple pattern elements between T = (s1,p1,01) and T = (s2,p2,02) with variables.
More formally, we first define 7(x1,22) on the triple pattern parts with x € {s,p,0}:

Xy, if A(xl,xg) =0
?var,, else.

7T(.T1,CL'2) = {

Here, 7var, refers to an arbitrary, uniquely named variable in the triple pattern. Thus,

m(T1,T2) = (7(s1,82),7(p1,p2),7(01,02))

In particular, this means that T = Ty iff A(Ty,T3) =0, i.e., no merging is necessary, if the
two triple patterns are identical. As with A, we use the shorthand notation w(Pj, P»), if
1P| =[P =1.

3.2 Graph Pattern Matching

Using the triple pattern distance notion, we can now derive matches between graph pattern.
We consider the task of finding these matches a variation of the stable marriage problem [4]
which we solve recursively using Algorithm 1. The algorithm takes as arguments two graph
patterns Pp, P>, a maximum distance threshold A, for mapping any two triple patterns, and
an existing mapping between triple patterns. This mapping is initially empty and is established
recursively by iterating over all graph patterns contained in P; and P». However, if no mapping
can be derived, the final result of the algorithm is empty.

Any non-empty mapping resulting from Algorithm 1 can be considered stable in the sense
that the included triple patterns have a minimal (local) distance score to their mapping partner
with respect to the query structure. There might be cases where the algorithm detects two
mappings 13,7} and Ty, T;, where A(T;,T;) > A(T;,T;) or A(T;,Tj) > A(Ty,Tj), but no
mapping between T; and T; or T}, and 7T} was discovered, even though the global distance
score for these mappings would be lower. This happens, when T; and 7} or T}, and T} reside
in different graph patterns that cannot be mapped to one another, e.g., because of different
number of triple patterns or different keywords. If for any evaluated graph pattern no match
could be determined, the overall return value of the algorithm is an empty set of mappings.
Conversely, any non-empty mapping result is complete (or perfect) and therefore maximal (the
size of non-empty mappings is determined by the number of triple patterns contained in the
graph pattern).

98 Fall Workshop 2012

3 Discovering Query Templates

Algorithm 1: GraphPatternMatching
Input : P, P> : Two graph patterns
Input : A, : Triple pattern distance threshold
Input : mappings : Current triple pattern mappings
Output: mappings : Triple pattern mappings between P, P,

1 51 — @(Pl)

2 SQ — @(PQ)

3 if k(P)) # Kk(P2) V|S1| # |S2| then

4 | return{

5 while S; # () do

6 P} < S1.pollFirst()

7 foundMapping < false

8 | foreach P} €S, do

9 if |Pj|=1A|P{| =1 then

10 Pj < mappings.get(Py)

11 if P = NIL then

12 if A(P},PJ)> Apae then

13 L continue

14 mappings.put(Ps, P})

15 foundMapping < true

16 break

17 else

18 if A(P},PJ) < A(Pf,PJ) then
19 mappings.put(Py, P})

20 Si.add(Py)

21 foundMapping < true

22 break

23 else

24 oldM appings <— mappings

25 GraphPatternMatching(Py, Py, mappings)
26 if oldM appings # mappings then
27 L foundMapping < true

28 if = foundMapping then

29 L return ()

30 return mappings

3.3 Query Templates and Clusters

Using the output of Algorithm 1, we can now discover query templates. The idea of query
templates builds on the findings discussed in [7], where the authors mine SPARQL query log

Fall Workshop 2012 99

Discovering SPARQL Query Templates for Dynamic RDF Triple Prefetching

files to determine the behavior of agents issuing the respective query. We extend this approach
by establishing a formal definition of what constitutes a query template and how to find it. In
contrast to previous work, we also show a concrete application of query templates in the next
section.

We use a maximum distance score of 1, i.e., two triple patterns may only differ in either their
(non-variable) subject, predicate, or object. To determine a query template Q we evaluate the
mappings generated by GraphPatternMapping(Fy,, Pg,,1,0) for two SPARQL queries Q1, Q2
with query graph patterns Py, , P, respectively. If the output of Algorithm 1 is empty or
Q1 = Q2 (i.e., all triple pattern mappings (11,7}) € map are trivial), no query template can
be derived. Otherwise, we initialize the query template Q with the query (1 and replace all
triple patterns 77 in Q with the merged triple pattern T that resulted from 7(T1,T>) where
(T1,T2) € map.

All queries sharing a query template form a query cluster. Queries in a cluster have the same
basic structure and differ in at least one triple pattern by a maximum of A,,,, non-variable
triple pattern parts. We assume that for most queries in such a cluster a single resource or
literal is replaced throughout all triple patterns by a machine agent as indicated by the findings
in [7]. Note that query clusters may be overlapping.

4 SPARQL Query Augmentation

The core idea of our work is to rewrite SPARQL queries in such a way that the result set of the
new query contains at least the same bindings as the result set of the old query. Ideally, results
retrieved in addition to those of the original query can be materialized in a local triple cache
and used to speed up future query evaluation by providing (a subset of) the results retrieved
by subsequent queries. In this section, we introduce the concept of query augmentation®, i.e.,
the rewriting of queries in the aforementioned way.

4.1 Augmentation Constraints

We present four different augmentation methods:
1. Query Broadening, i.e., the generalization of a query based on its query template.
2. Random Triple Removal, i.e., the removal of an arbitrary triple pattern.
3. Selective Triple Removal, i.e., the removal of the most selective triple pattern.

4. Language Substitution, i.e., removing filter and resource language restrictions.

4.2 Query Broadening

For query broadening, we simply issue the query template against the SPARQL endpoint
instead of individual queries. Obviously, this requires that a query template has already been
discovered, and typically this method results in a larger result set compared to the one for

#We use the term augmentation in the sense of semantic enhancement. Some of the augmentation types
introduced here actually reduce the query length instead of augmenting it.

100 Fall Workshop 2012

4 SPARQL Query Augmentation

the original query. If another query was found previously and we were able to establish the
query template, this other query potentially generated a result set, hence the result set of the
discovered query template includes at least the results of the two queries sharing this query
template.

Broadening a query will benefit any subsequent queries in a session that share a template
with this query. This is usually the case when a query session contains a large amount of
queries from machine agents, e.g., a service that retrieves information based on interactions
with a user interface. Such a service typically issues queries using query blueprints and modifies
them based on these interactions. For example, in our evaluation we discovered that a many
queries from a specific source retrieved longitude and latitude information about cities.

4.3 Random Triple Removal

Removing random triples is a somewhat naive, yet surprisingly successful augmentation meth-
ods. As the name indicates, we here randomly remove a triple pattern from a query pattern.
The only requirement for this removal is that the triple pattern does not contain any projection
variable that only occurs in this triple pattern. If we were to remove the only triple pattern
containing a projection variable, the returned result set would not include the entire data the
user queried for. In all other cases, removing a triple pattern will simply remove a constraint
for one (or more) variables, which in turn will again result in a potentially larger result set.

In a somewhat hypothetical case, a query (pattern) might contain a triple pattern comprised
only of non-variable subject, predicate, and object. While this is legitimate in a SPARQL query,
the usage of such a construct would offer little benefit: If the triple pattern does not match
in the RDF graph, the result set for the query (pattern) is empty, else the result set is equal
to the query (pattern) without the triple pattern in question. Hence, when considering triple
patterns to remove, we disregard any triple patterns containing no variable.

Removing random triples in a query might benefit the corresponding result set, if the restric-
tions contained in the query are too strict. This might be caused by a lack of data in the RDF
graph the query is issued against. Here, even though a machine or human agent might have
reason to believe that the triple pattern is part of the RDF graph, it cannot be matched. The
reasons for this include spelling errors in the query or RDF data as well as ontology misusage and
ontology evolution. For example, in previous work we discovered that the DBpedia ontology has
a number of redundant properties (such as http://dbpedia.org/ontology/Person/weight
and http://dbpedia.org/ontology/weight). Additionally, we found that the namespace
of several properties had been adjusted over time (e.g., from http://dbpedia.org/property/
to http://dbpedia.org/ontology/) [1].

4.4 Selective Triple Removal

This augmentation type can be considered a variation of the random triple removal introduced
above. Instead of removing an arbitrary triple pattern, we identify the most selective triple
pattern according to the heuristic presented in [8]. The basic notion here is that subjects
are more selective than objects and objects are more selective than predicates. Using this
heuristic, we calculate scores for all triple patterns based on whether the subject, predicate, or
object is either a variable or not. A more sophisticated approach could incorporate ontology
information and available metadata (e.g., provided by the Vocabulary of Interlinked Data and

Fall Workshop 2012 101

Discovering SPARQL Query Templates for Dynamic RDF Triple Prefetching

determined by our approach presented in [3]). However, this data might not be available in
all cases.

Again, the same restrictions discussed for the random triple removal apply. We disregard
any triple patterns containing no variables as they do not provide helpful selectivity information.
Additionally, we do not remove any triple patterns that contain a projection variable which is
used in no other triple pattern as doing so would reduce the amount of information returned
to the user.

4.5 Language Substitution

There are essentially two methods to query for language-specific results in SPARQL: The user
can either use a filter condition on a variable using the langMatches and lang keywords (e.g.,
FILTER langMatches(lang(7abstract), "fr")) or indicate the language of a literal in
a triple pattern (e.g., 7city rdfs:label "Berlino"@it). In both cases, the language tags
used are defined by the ISO 639 standard [2]. While in some large mixed-language knowledge
bases such as DBpedia these language tags are provided explicitly, usually they are omitted
when generating RDF data. Hence, when applying filter conditions using those language
tags the retrieved results are empty. Moreover, the vast amount of language-specific facts is
typically available in English, thus using any other language tag might severely reduce query
results.

Thus, when discovering language tags or filter conditions in a query, there are two viable
augmentation solutions. First, all language-specific restrictions may be removed, allowing to
retrieve information provided without language annotation. Second, the language tags may be
changed to English. While this second option might help to retrieve more results, it is prone
to alter the semantics of a query. Consider the example used earlier: When changing the
language tag in the triple pattern ?city rdfs:label "Berlino"@it to “@en", the query
will not return the same (or any) results.

5 Evaluation

We analyzed the DBpedia 3.6 query log files contained in the USEWOD2012 Dataset® in the
evaluation of our augmentation approach. We chose these particular log files for three reasons:

e The query intention is to some extent comprehensible to non-domain experts.

e \We were able to locally set up a SPARQL endpoint containing the same data as the one
the queries were originally issued against.

e All queries are assigned a source (hashed IP address) and timestamp (hourly granularity),
allowing us to to identify query sessions.

To illustrate the last point, an excerpt of the query log file 2011-01-24.log is shown in
Listing 1. Each line starts with the hashed IP address of the issuing source followed by the
timestamp and the actual query. As Listing 1 indicates the level of granularity of the query
log is hours. For our experiments, we consider all queries from one user within one hour to

Shttp://data.semanticweb.org/usewod/2012/challenge.html

102 Fall Workshop 2012

5 Evaluation

constitute a query session. For the remainder of this section, we present exemplary results for
the query log file 2011-01-24.log, which are similar for all files contained in the dataset.

237fbf63e8449clade56eb7d208ce219 — [24/Jan /2011 01:00:00 +0100] "/sparql/?query..."
f452f4195b4d2046c77ad98496c1b127 — [24/Jan /2011 01:00:00 +0100] "/sparql/?query..."
9b1d83195dd251275c55c12ac2efad43d — [24/Jan /2011 02:00:00 +0100] "/sparql/?query..."
f452f4195b4d2046c77ad98496c1b127 — [24/Jan /2011 02:00:00 +0100] "/sparql/?query..."

B WN

Listing 1. Excerpt from query log file 2011-01-24.log.

5.1 Query Session Analysis

For our first evaluation, we analyze variable-length sequences of queries within a query session
and correlate the individual queries in such a sequence to the clusters they belong to. Here, we
consider sequences of length 1, i.e., a single query within a query session, length 2, i.e., two
successive queries in a session, and length n where n corresponds to the entire query session
length.

In Fig. 1(a), we illustrate the number of unique query sequences of length 1 and 2. As
sequences of length 2 represent combinations of sequences of length 1, there are obviously
more query sequences of length 2 (280 sequences) than of length 1 (89 sequences), but still far
less than potential combinations of sequences of length 1 (89 x 89 = 7921 sequences). Hence,
we only observed a limited number of possible query sequence combinations. Additionally, we
evaluated if the two queries in sequences of length 2 belong to the same or different clusters.
We discovered that for sequences of length 2 occurring most often, both queries are from the
same query cluster.

Figure 1(b) illustrates how long query sessions were compared to the frequency of the
sequence they comprised. A large number (around 79.68%) of session sequences are unique,
i.e., they were only observable once in the log. Additionally, a majority of query sessions (around
54.67%) have a length of 10 to 100 queries, whereas only about 23.97% have a length of over
100 queries, and approx. 21.34% are less than 10 queries long. While almost half the query
sequences contain queries from only one cluster (about 48.53%), these sequences tend to be
longer than those where the queries stem from multiple query clusters.

We also evaluated the conditional probability of sequences of length 2 for all query clusters
discovered in the log. The results are presented in Fig. 2. Here, both query axes (); and

10,000

1,000,000

+ Sequence length 1

1,000 Sequence

100,000

i
'}
> < ; queries
§ i En i from one
:-; 10,000 5 Sequence length 2, E 100 1 cluster
£ 1000 /% queries from one §
] ’ s cluster 3 s Sequence
b 1Y g 1 queries
2 100 4+ Sequence length 2, 0 = from
a queries from multiple S N multiple
0 N clusters = clusters
* p—
1 1
0 100 200 300 012 3 456 7 8 9101112131415 16
Sequence Sequence Frequency
(a) Frequency of query sequences with length 1 and (b) Frequency of query session sequences correlated
length 2. with query sessions lengths.

Figure 1: Query sequence lengths and corresponding frequencies.

Fall Workshop 2012 103

Discovering SPARQL Query Templates for Dynamic RDF Triple Prefetching

(Qi+1 correspond to the query clusters, a single tick mark on each axis represents one cluster.
Both axes contain the same query cluster references and are sorted in descending cluster size
starting at the origin, where the first ten query clusters account for over 98% of all queries
discovered in the log. The values illustrate the probability of observing a query from a certain
cluster given the cluster of the previous query. A high value indicates that queries from two
query clusters are likely to occur in sequence.

| N | 1
. 0.8
- | 06
in am o
s A
@) Oi
[| - [| \Q/_
. _ 0.4
- .
. 0.2
[| . - n
- SNl I
Q;

Figure 2: Conditional probabilities for sequences of length 2 for all query templates.

As can be observed in Fig. 2, the matrix of all conditional probabilities is sparsely populated,
i.e., for a query belonging to any given query cluster discovered in the log, the subsequent
query usually belongs to one of a limited number of clusters. Moreover, especially queries of
the first nine query clusters, which in total account for nearly 97% of all queries, are most likely
to be followed by queries from the same cluster (the conditional probability for this is 57.22%
or more for all of them). Overall, the same applies to many queries analyzed as illustrated
by the high correlation on the diagonal in Fig. 2. Similar results were presented in [7], where
the author discusses that a large portion of real-world SPARQL queries are issued by machine
agents and follow certain “blueprint” structures. Typically, between two subsequent queries
issued by such an agent there are only small variations (e.g., in one resource or literal).

These findings have direct implications for our query augmentation approach. One im-
portant discovery is that many query sequences contain queries from the same cluster, i.e.,
queries that have the same basic structure, but differing in a limited number of triple patterns.
Intuitively, this especially validates our query broadening augmentation notion. Instead of is-
suing n queries gathering only one result set at at time, we could send just one query, receive
the combined result set, and thus circumvent the latency of n — 1 individual queries.

104 Fall Workshop 2012

6 Summary and Outlook

Method Sequences | Retrieved Triples
Query Broadening 17,885 33,446
Random Triple Removal 3,970 4,549
Selective Triple Removal 390 780
Language Substitution 8,258 15,402
Baseline 5,155 10,540
None 40,105 0

Table 1: Query augmentation evaluated on 75,763 query sequences of length 2.

5.2 Query Augmentation Analysis

Lastly, we illustrate some results of our augmentation methods. For this, we analyzed about
75,000 query sequences (Q;,(Q);4+1 of length 2 and evaluated how one of our augmentation
method for @); results in retrieving more results for ();11 than the baseline approach. The
results are presented in Tab. 1. Here, the second column indicates in how many cases the
corresponding method retrieved the most results. For a large amount of the analyzed queries
Q; (around 52.9%), neither the original query nor the augmented queries could retrieve any
results. This might be either because the DBpedia SPARQL endpoint we set up did not contain
the same data as the endpoint the original queries were issued against or simply because there
are no valid results for these queries in the DBpedia 3.6 dataset.

As is illustrated in Tab. 1, the best augmentation method is query broadening. For around
23.6% of all query sequences, we were able to retrieve more results by using this augmentation
than the baseline approach (6.8%). The large amount of query sequences of length 2 for
which both queries originate from the same query cluster benefit greatly from the broadening
approach. Clearly, using one generic query to retrieve results for a number of more specific
queries eliminates the need for issuing these queries.

For the triple removal methods, the random method seems more successful than the se-
lective approach. However, in some cases both strategies result in the same augmented query
(i.e., when the randomly removed triple pattern is the most selective one). In our evaluation,
we only counted this towards the random removal approach, thus the overall score for the
selective triple removal method might be higher in practice. Still, both methods are inferior to
the language substitution approach, which accounts for around 10.9% of all query sequences.
For the latter method, we substituted all language tags to English. Clearly, this approach
benefits from the fact that the DBpedia contains a large amount of English-tagged literals
compared to the other language versions. However, as illustrated in Sec. 4.5, the results might
not be as useful to the query issuing agent.

6 Summary and Outlook

To support the consumption of Linked Data, there is a definite need to enhance the accessibility
of these resources. As typically RDF data is queried using SPARQL, optimizing these requests
can potentially increase the acceptance of service developers to take advantage of Linked Data
as results may be provided faster and more reliably. In this work, we presented and evaluated
two contributions for optimized access of SPARQL endpoints: Discovering query templates,

Fall Workshop 2012 105

References

i.e., detecting similar SPARQL queries, and query augmentation, i.e., rewriting queries to
retrieve more results fitting for subsequent requests.

In future work, we plan on using the evaluation results presented in Sec. 5 to train a classifier
to augment queries once they are issued by the agent. This will enable us to gradually enrich
a local cache of RDF triples that can then be used to provide results for subsequent queries.
For managing this cache, we will also focus on how query results from one agent can be used
for other users and how cache results are invalidated. Additionally, we plan on implementing
more augmentation methods better suited for the query sequences we found in our evaluation.
For this, we want to analyze how human and machine agent requests differ, and how this
knowledge can be used to find proper augmentation methods.

References

[1] Ziawasch Abedjan, Johannes Lorey, and Felix Naumann. Reconciling ontologies and the
web of data. In Proceedings of the International Conference on Information and Knowledge
Management (CIKM), Maui, HI, USA, October 2012.

[2] Harald Alvestrand. RFC 3066 - tags for the identification of languages. Technical report,
IETF, 2001.

[3] Christoph Béhm, Johannes Lorey, and Felix Naumann. Creating voiD descriptions for
web-scale data. Journal of Web Semantics, 9(3):339-345, 2011.

[4] David Gale and Lloyd Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9-15, 1962.

[5] Claudio Gutierrez Jorge Pérez, Marcelo Arenas. Semantics and complexity of SPARQL.
ACM Transactions on Database Systems (TODS), 34(3):16:1-16:45, September 2009.

[6] Jens Lehmann and Lorenz Bithmann. AutoSPARQL: let users query your knowledge base.
In Proceedings of the Extended Semantic Web Conference (ESWC), pages 63-79, Crete,
Greece, 2011.

[7] Aravindan Raghuveer. Characterizing machine agent behavior through SPARQL query
mining. In Proceedings of the International Workshop on Usage Analysis and the Web of
Data (USEWOD), Lyon, France, April 2012.

[8] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and Dave
Reynolds. SPARQL basic graph pattern optimization using selectivity estimation. In Pro-
ceedings of the International World Wide Web Conference (WWW), pages 595-604, New
York, NY, USA, April 2008. ACM.

106 Fall Workshop 2012

The Role of Objects
In Process Model Abstraction

Andreas Meyer

Business Process Technology Group
Hasso Plattner Institute
andreas.meyer@hpi.uni-potsdam.de

This report outlines my phd research project targeting the field of process model ab-
straction. While currently existing techniques allow the abstraction of control flow in
various kinds, e.g., semantically or structurally, objects are not considered yet in the
process of process model abstraction. Therefore, we will provide new means for pro-
cess model abstraction involving object abstraction — as extension to existing control
flow abstractions to enrich these techniques as well as as standalone approach without
affecting control flow. However, the process model to be abstracted needs to be cor-
rect to provide meaningful and useful abstraction results. Again, for control flow, many
correction criteria and checking methods do exist, e.g., various soundness checks and
the field of process compliance, but object specific correctness is supported rarely. We
will introduce the notion of weak conformance, which extends the existing conformance
notion with means to handle not fully specified process models with respect to the given
object life cycle as for instance abstracted process models. Thereby, object life cycles
determine the actions allowed to be performed by an activity on the corresponding ob-
ject based on the current state of the object. Finally, the proposed techniques for object
abstraction and object correctness will be evaluated in a user study, for which process
model collections are required, which provide process models with explicit object mod-
eling. Unfortunately, such collections are very rare. Therefore, we will introduce an
approach to derive object information from activity and event labels and to transform
the given process model with no or incomplete object specification into one with a more
complete explicit object specification.

1 Introduction

Business process management as “a systematic, structured approach to analyze, im-
prove, control, and manage processes with the aim of improving the quality of products
and services” [5] is an important approach to manage work in organizations, with pro-
cess models being the key artifacts [20]. Process modeling usually comprises two as-
pects: Control flow and object flow. Control flow defines possible execution sequences
of activities, whereas object flow describes the exchange of information between the
activities by writing to and reading from these objects. An object can be formalized as

Fall Workshop 2012 107

The Role of Objects in Process Model Abstraction

set of object states and transitions between them, i.e., as labeled transition system,
which is usually referred to as object life cycle. An object life cycle can be used to iden-
tify the current object state of the object and the set of reachable object states from
the current one [3]. Additionally, objects have dependencies amongst each other, e.g.,
is-a and part-of relationships. These can be represented by using a class diagram —
an object model.

The work managed by business process management is interesting for many dif-
ferent stakeholders of the organization, e.g., the board, the middle management, the
clerk, or the IT staff, who is implementing the business processes to support the clerks
with IT infrastructure while they execute their processes. Each of these groups has dif-
ferent requirements with respect to the information to be displayed in the corresponding
process model, usually provided by the use of process model views [2,19]. One method
to create such views is process model abstraction [17,18] as it allows the presentation
of the very same business process in different views to various stakeholders by avoid-
ing inconsistencies through several independent models; each view is adapted to the
specific needs of the corresponding stakeholder by leaving out, aggregating, and/ or
refining elements of the process model [6]. Thereby, existing techniques only con-
sider control flow aspects for abstraction although objects are the driving force for pro-
cess execution and important for process controlling and understanding as mentioned
above. Therefore, we add object support to process model abstraction by extending
the existing techniques relying on fragment-based control flow abstraction, e.g., [16].
We assume structurally sound process models and an explicitly defined object model.
Object abstraction decisions are based on occurrences of objects in the process model
and their relations in the object model as follows. Specifically, control flow and object
behavior correspond to each other such that we provide a rule set, which allows object
abstraction closely related to control flow abstraction. The utilized existing fragment-
based control flow abstraction technique identifies the elements of the process models
affected for a single abstraction step and based on this information, the objects get
deleted, composed, or are preserved as is.

However, object abstraction requires correct object specifications in the source pro-
cess model to be able to provide useful abstraction results with correctness referring to,
for instance, safe execution of process models; i.e. the execution shall terminate prop-
erly. The execution semantics of process models are often described by Petri nets [14],
which describe which activities can be executed based on activity enablement. In or-
der to achieve safe execution, it must be ensured that every time an activity tries to
access an object, the object is in a certain expected object state or is able to reach
that expected object state from the current one via, for instance, implicitly or externally
initiated object state transitions following the definitions of the corresponding object life
cycle.

While there exists a large variety of correctness notions targeting control flow as-
pects of process models, only few exist to check whether objects are correctly used.
The existing notions as, for instance, the conformance notion from [8], require fully
specified process models such that only finalized process models on the lowest level
of abstraction, the implementation level, can be checked. The conformance notion
from [8] evaluates whether all object state transitions occurring in the process model
can be mapped to a object state transition of the corresponding object life cycle. How-

108 Fall Workshop 2012

2 Execution Semantics

ever process model creation is an iterative process and process models may exist on
different levels of abstractions — or are intentionally created that way to cater for the
specific needs of a stakeholder. Being able to check also these process models allows
the identification of errors in early process development stages and in underspecified
process models as well as the post-check whether object abstraction preserved the
property of conformance. We introduce the notion of weak conformance between a
process model and the object life cycles of the objects utilized in the process to ensure
this correctness criteria for fully as well as underspecified process models.

For evaluation purposes, example sets of process models need to have attached
object information. Unfortunately, the freely available process collections mainly lack
such process models. Therefore, we provide means to derive information about object
utilization from activity and event labels such that the resulting process model gets an-
notated with this object information. The derivation bases on findings from [10] as the
authors state that each activity label can be decomposed in up to three components:
An action, a object an action is performed upon, and an fragment providing further
details (e.g., locations, resources or regulations). However, completeness cannot be
guaranteed by only deriving object information from labels as, for instance, possible
implicit dependencies are not comprised in all cases. Nevertheless, the approach pro-
vides a process model more complete than the source process model and therefore,
allows or increases usefulness of a process model for evaluation application.

The remainder of this report is as follows. Section 2 describes the execution seman-
tics of process models with focusing on objects dependencies. Afterwards, Sections 3
to 5 summarize the current state of three main contributions the phd research project
will deliver before we conclude this report. First, we sketch the approach of enriching
process models with explicit objects from labels followed by the notion of weak con-
formance and proposals of how to apply the notion. Finally, we introduce one object
abstraction technique as extension to a subclass of the existing control flow abstraction
techniques in Section 5.

2 Execution Semantics

This section introduces the semantics of process models presented by Petri nets. Each
process model aligning with the definitions from [11] and [13] can be transformed into
a Petri net by a set of rules. Thereby, we apply commonly used and accepted rules for
control flow transformation, e.g., activities are transformed to transitions, they are la-
beled with the corresponding activity names, e.g., check order, and they are connected
along there execution paths by edges via places to ensure the bipartite property. Addi-
tionally, we add further nop transitions — transitions not performing any work —which we
will use for object and control flow synchronization as explained blow. Object access
is usually considered as passive part of a process model and therefore represented
by places in Petri nets (compare for instance [1]) — if at all. However, the process of
reading and writing objects to respectively from, for instance, a database is active work.
Objects to be stored must be prepared to meet the requirements of the corresponding
object store as the data schema might be different to the one utilized in the process
model. Similarly, objects to be read must also be preprocessed. Additionally, the ac-

Fall Workshop 2012 109

The Role of Objects in Process Model Abstraction

f >0

Order.
warehoused

O
Order.
confirmed %

Check stock

Product.
notInStock

Product.
inStock

)
44

Figure 1: Semantics of process models presented by Petri net excerpt

tual object storage and retrieval comprise several atomic tasks like consistency checks
and object access initiation including authentication. Persisting the object processed
during process execution is necessary to allow, amongst others, fallback strategies in
emergency cases. Therefore, we decided to represent objects as transitions as well in
the resulting Petri net.

For space reasons, we omit the complete rule set but provide an overview about
the transformation result. Assuming an order and delivery process, one of the activ-
ities undertaken during process execution might be check stock. The next execution
step within the process is based on the outcome of the current activity one out of two
alternatives. This activity requires the object order in object state confirmed as input
requirements, i.e., as precondition to allow the activity to get executed. Executing this
activity results in an object Product either in object state inStock or notinStock to indi-
cate whether the ordered items are available or not. Additionally, the order object get
transitioned into object state warehoused. Finally, it is also to be mentioned that not
two activities access an object simultaneously as long as on of them is going to update
the object for avoiding lost update issues (transaction property).

Figure 1 shows the Petri net excerpt describing the execution semantics. Thereby,
the large places with labels inside are used as semaphores and their usage ensure the
mentioned transaction property. The shaded transitions are the nop ones mentioned
above for object and control flow synchronization. The dotted elements are used to
define xor-split semantics deterministically based on object information; take the upper
path, if the object state is notinStock, and take the lower path, if the object state is
inStock. The remaining blank transitions and places describe the control and object
flow of the process model. As described above, transition (or activity in the process
model) Check stock can only fire (be executed), if the control flow reaches the places
just before the transition and if object Order can be read in object state confirmed, i.e.,

110 Fall Workshop 2012

3 Extracting Objects and Object States

earlier stages of the process must have provided the object in that object state, and if
the object Product is currently not utilized by another transition, i.e., the corresponding
semaphore place is marked. Completing transition Check stock results in two actions
besides passing on the control flow. First, object Order is transitioned into object state
warehoused and the object Product is transitioned either in object state inStock or
object state notinStock depending on the execution of the corresponding business
process activity. Second, the semaphore places for both data objects get marked again
to signal data access completion. As the reader can see within this example, the nop
transition before the activity in question is used to get all necessary objects in the
required object states (read) while the nop transition after the activity is used to provide
the updated objects in their new object states to the process context (write).

3 Extracting Objects and Object States

Usually, information about objects is hidden in activity labels such that process models
covering control flow only can be enriched with these implicit information to provide
insights about object usage. [10] describes that each activity label can be decomposed
in up to three components: An action, an object an action is performed upon, and
a fragment providing further details (e.g., locations, resources or regulations). For
instance, the activity labels order material from supplier and create order from template
encode the information, that objects material and order respectively are processed
by the corresponding activity. The actions performed are order and create while the
additional fragments provide information which additional resource is involved in the
order action and that regulation stating a specific template is to be used has to be
fulfilled. Following, we aim to enrich process models with information about the utilized
objects in general and about the objct states of these objects specifically for each
association between an object and and activity.

The algorithm sketched below can be generally applied to most process models
from various notations as it focuses on core business process aspects as activities,
gateways, and control flow edges as input for object information derivation. The only
requirement is, that the notation of choice is capable of modeling objects, which ba-
sically all current notations allow [12], such that we can create the enriched process
model within that notation. However, we also provide the opportunity to input process
models in a notation not capable of modeling objects. But in these cases, the process
model needs to be transformed in a canonical format — we use jbpt, a Java-based
library containing techniques for managing and analyzing business processes. See
http://code.google.com/p/jbpt/ for details. The output will be a jopt process
model with explicit objects attached. Moreover, this algorithm can be easily adapted to
be specifically tailored for a chosen notation. Thereby, additions are possible to benefit
from all information a notation of choice can provide to increase the derivation result
quality. We will provide (but omit here for space reasons) adaptations for the Business
Process Model and Notation (BPMN) [15], Event-driven Process Chains (EPC) [7],
and extended Event-driven Process Chains (eEPC), developed by ARIS and extend-
ing EPCs, where the latter two extend the algorithm to incorporate information provided
by events preceding and succeeding the activities.

Fall Workshop 2012 111

The Role of Objects in Process Model Abstraction

The basic algorithm comprises four steps to enrich the given process model. First,
a preprocessing is applied to ensure that all labels match the so-called verb-object-
style, where a verb is followed by a noun, which, in turn, may be followed by additional
information as in the examples above. Using the algorithm proposed in [9], we receive
the desired labeling style. Next, all activity labels of the process model get analyzed
such that the noun is considered as object and the verb is considered as indicator for
the state of that object after activity execution. The final two steps add the objects to the
activities. The objects named in the label will get output objects to the corresponding
activity. All objects being output of a directly preceding activity will get input objects to
the corresponding activity. Therewith, the enriched process model is provided.

However, there are many opportunities to fine tune this approach. For instance, the
resource assignments and object access rights can be taken into account such that
only objects, which have been executed by a certain resource (role) get input object of
an activity. Additionally, the access rights might also limit the number of objects being
input to an activity as only the ones, which the resource executing the according activity
is allowed to access, may get input objects.

4 Notion of Weak Conformance

Given a process scenario composed of a process model, a set of object life cycles
utilized within this scenario, and a set of synchronization edges describing the de-
pendencies between the object states of the different objects, we say that the process
scenario satisfies weak conformance, if the process model satisfies weak conformance
with respect to each of its objects. Weak object conformance is satisfied, if for each
two directly succeeding states of an object in a process model there exists an execu-
tion sequence from the first to the second object state in the corresponding object life
cycle and if the dependencies specified by synchronization edges with a target state
matching the second object state of the two succeeding ones hold such that all depen-
dency conjunctions and disjunctions are fulfilled. Two object states are succeeding in
the process model, if either (i) they are accessed by the same activity with one being
part of an input and one being part of an output object flow edge or (ii) there exists an
execution sequence in the process model in which two different activities access the
same object in two object states with no further access to this object in-between.
Computation of weak conformance can be performed using various techniques, as
for instance the following ones. First, paths in the process model and the corresponding
object life cycles may be analyzed and evaluated with respect to reachability of object
states to decide about weak conformance. Second, the concept of soundness checking
can be utilized. Therefore, the process model and the object life cycles are transformed
into Petri nets and integrated into a single Petri net to be checked for soundness. Third,
model checking can be used by checking computational tree logic formulas, derived
from the object life cycles, against a Kripke structure derived from the process model.
The first faces the issue of high complexity with respect to the synchronization edges.
However, we will propose an algorithm, which allows to compute weak conformance
via path analysis, if no synchronization edges are specified in a process scenario. The
Petri net approach deals with very large and complex Petri nets, but thanks to ex-

112 Fall Workshop 2012

5 Object Abstraction

isting services, e.g., LOLA (see http://service-technology.org/tools/lola
for details), they can be handled automatically and no human needs to interact with
these very complex Petri nets. However, there exist cases, when decidability relies on
relaxed soundness but determination of accepting traces is complex. Model checking
is also an expensive task but provides a result without compromises. The number of
CTL formulas is exponential to the number of object states in the object life cycle as
for each possible implicit, external and in-process object state transition, one formula
must be derived and put into the correct combination with the others. This can be done
completely automatically based on a set of rules. For three object states in sequence,
formulas must be derived to cover the facts that we stay in the first forever, move to th
second, move directly to the third, stay forever in the second, move from the second to
the third, and stay in the third forever. Additionally, rules for the synchronization edges
must be derived and incorporated in the model checking procedure. The increase of
complexity is linear to the number of rules specified.

5 Object Abstraction

There exist two alternatives with respect to the relation between control flow and ob-
jects: Object abstraction follows control flow abstraction and object abstraction as stan-
dalone approach independently from control flow. In this report, we focus on the first
option, i.e., we extend existing process model abstraction techniques with the capabil-
ity to abstract objects as well. The only requirement, a technique must fulfill, is that it
utilizes fragment-based control flow abstraction. Thereby, the complete process model
gets fully partitioned into a set of process fragments with each only allowed to share
entry or exit nodes with an other fragment. During the abstraction process, a selected
fragment is abstracted to a single activity. We basically do not restrict the type of pro-
cess model, which can be abstracted using the object abstraction extension, but as we
require correct process models (see above), a process model to be abstracted must
be structural sound, i.e., it has exactly one source and final node and each activity
is on a path from the source to the final node. Additionally, also the notion of weak
conformance must hold such that also the object part of the process model correct.
Finally, a data model must be explicitly specified, which determines the relations and
dependencies between the single objects utilized in the business process. The data
model is a UML class diagram restricted generalization, aggregation, composition, and
association relations; for further details, see [13].

The object abstraction is realized with a rule set consisting of six rules from three
areas, which are applied iteratively. One deals with process quality and ensures that
the granularity level between the activities and the objects is preserved in each ab-
straction step as well as that the all objects utilized on one abstraction level are on the
same abstraction level, i.e., there exist no parent-child relations between any two uti-
lized objects. Second, object combination aims to combine several objects into a single
one. The third field, object preservation, deals with the decision whether an object is
kept or removed within an process model abstraction iteration. A summary of all rule
is provided in Table 1. More details about object abstraction including the complete
formal specifications of the mentioned rule set can be found in [13].

Fall Workshop 2012 113

The Role of Objects in Process Model Abstraction

1 Process Quality

Abstraction Consistency All representations of an object must be equally ab-
stracted, if at least one of the representations gets ab-
stracted. Therefore, this rule ensures abstraction con-
sistency by enforcing identical object abstraction for all
representations of one object.

Preserving Granularity =~ Assuming an alignment between object and control flow

Alignment representations of a process model exists before ab-
straction, it must exist afterwards as well. The alignment
is achieved by avoiding abstraction of objects being as-
sociated to activities, which have not been selected for
control flow abstraction (except above rule requires it).

2 Object Combination

Object Combination This rule reduces the number of objects in the process
model by combining them, if several objects being part
of one fragment, which get abstracted, do have common
ancestor nodes in the data model. These objects will
be combined to the common ancestor node first found
while traversing through the data model from the utilized
objects.

3 Object Preservation

Lower Bound of Objects After data abstraction, an activity might not be associ-
ated to objects any more. But, objects are important in
the context of process management. Therefore, this rule
introduces a configurable number stating the minimum
associations to exist after object abstraction.

Reoccurring Object An object utilized in the fragment, which gets abstracted,
and associated to at least one more activity, not part of
this fragment, will be preserved as it is considered impor-
tant for a larger part of the process (it is not used locally
only in that fragment). Otherwise it is marked for removal.

Full Object Activity Objects only utilized in a process fragment and nowhere

Association else can still be of importance for the complete process
model, if they are input or output to this process fragment.
Therefore, all objects being input or output process frag-
ment, which get abstracted, are preserved. All others get
removed.

Table 1: Object abstraction rules overview

114 Fall Workshop 2012

6 Conclusion

6 Conclusion

This report outlines the phd research project about the role of objects in process model
abstraction and introduces the main contributions briefly. First, there will be a mapping
of process models to Petri nets to explicitly and formally describe the execution seman-
tics. This mapping also ensures the transaction property for object access allow true
parallelism between various activities. Second, process models can be enriched with
explicit information about object utilization. The proposed algorithm works for general
process models and can easily be adapted to align with most existing process model
notations as shown for BPMN and EPC. Further, the correctness ob object utilization
during process execution can be checked via the notion of weak conformance, which
also supports underspecified process models. Fourth, this research allows to extend
existing process model abstraction techniques with means to abstract objects as well.
These objects will be abstracted along with the control flow and remain aligned with
the control flow for each abstraction step.

Publications 2012

Workshop paper: Conformance of Process Models with respect to Data Objects [11]
and A Platform for Research on Process Model Collections [4]

Conference paper: Data Support in Process Model Abstraction [13]

Teaching Summer Term 2012

Master project on Analysis of Complex Process Model Repositories
Bachelor project on Billing Process as a Service
Master seminar on Process Repositories topic supervision

References

[1] A. Awad. A Compliance Management Framework for Business Process Models.
PhD thesis, Hasso Plattner Institute, 2011.

[2] R. Bobrik, M. Reichert, and T. Bauer. View-Based Process Visualization. In Busi-
ness Process Management, pages 88—-95. Springer, 2007.

[38] G. Booch. Object-Oriented Analysis and Design with Applications (3rd Edition).
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[4] R.H. Eid-Sabbagh, M. Kunze, A. Meyer, and M. Weske. A Platform for Research
on Process Model Collections. In BPMN, pages 8—22. Springer, 2012.

Fall Workshop 2012 115

References

[5] D.J. Elzinga, T. Horak, C.Y. Lee, and C. Bruner. Business process manage-
ment: survey and methodology. IEEE Transactions on Engineering Management,
42(2):119-128, 1995.

[6] R. Eshuis and P. Grefen. Constructing Customized Process Views. Data & Knowl-
edge Engineering, 64(2):419-438, 2008.

[7] G. Keller, M. Nittgens, and A. Scheer. Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report Heft 89,
Institut fir Wirtschaftsinformatik, University of Saarland, 1992.

[8] J. Kuster, K. Ryndina, and H. Gall. Generation of Business Process Models for
Object Life Cycle Compliance. In BPM, pages 165—181. Springer, 2007.

[9] H. Leopold, S. Smirnov, and J. Mendling. On the Refactoring of Activity Labels in
Business Process Models. Information Systems, 37(5):443—-459, 2012.

[10] J. Mendling, H.A. Reijers, and J. Recker. Activity Labeling in Process Modeling:
Empirical Insights and Recommendations. Inf. Systems, 35(4):467-482, 2010.

[11] A. Meyer, A. Polyvyanyy, and M. Weske. Weak Conformance of Process Models
with respect to Data Objects. In ZEUS, pages 74-80, 2012.

[12] A. Meyer, S. Smirnov, and M. Weske. Data in Business Processes. EMISA Forum,
31(3):5-31, 2011.

[13] A Meyer and M Weske. Data Support in Process Model Abstraction. In Conceptual
Modeling, pages 292-306. Springer, 2012.

[14] T. Murata. Petri nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541-580, 1989.

[15] OMG. Business Process Model and Notation (BPMN), Version 2.0, January 2011.
http://www.omg.org/spec/BPMN/2.0/ accessed August 5, 2013.

[16] A. Polyvyanyy, S. Smirnov, and M. Weske. The Triconnected Abstraction of Pro-
cess Models. In Business Process Management, pages 229—-244. Springer, 2009.

[17] A. Polyvyanyy, S. Smirnov, and M. Weske. Business Process Model Abstraction.
In Handbook on BPM 1, pages 149—-166. Springer, 2010.

[18] S. Smirnov. Business Process Model Abstraction. PhD thesis, Hasso Plattner
Institute, 2012.

[19] A. Streit, B. Pham, and R. Brown. Visualization support for managing large busi-
ness process specifications. In BPM, pages 205-219. Springer, 2005.

[20] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Second Edition. Springer, 2012.

116 Fall Workshop 2012

Comprehensible 3D Maps and Building
Panoramas

Sebastian Pasewaldt

Computer Graphics Systems Group
Hasso-Plattner-Institut
sebastian.pasewaldt@hpi.uni-potsdam.de

3D geovirtual environments (3D GeoVEs), such as 3D virtual city and landscape
models, have become established tools to communicate geoinformation to experts and
non-experts of different application domains. In contrast to 2D geovisualization tools
(e.g., topographic and thematic maps) 3D GeoVEs primarily depict geoinformation uti-
lizing a perspective view. A perspective view on geodata yields a number of advantages
(e.g., immersion and improved spatial cognition due to depth cues) but also introduces
numerous disadvantages, such as occlusion and perspective distortion. The advan-
tages as well as the disadvantages of 3D geovisualization have been considered by
cartographers and landscape artist and resulted in a different form of communication
geoinformation: 3D panoramic maps.

Panoramic maps seamlessly combine multiple perspectives views in one image,
providing additional information by revealing occluded geoobjects, or emphasizing rel-
evant information (e.g., landmarks). The additional information supports a user at
navigation and orientation tasks. This work presents two novel concepts and proto-
typical implementations that utilize MPVs for an effective visualization of 3D GeoVEs:
Comprehensible 3D maps and building panoramas. Further, MPVs are classified with
respect to their cartographic scale and conceptual integration. Finally, potentials and
challenges of multi-perspective 3D GeoVEs are discussed.

1 Introduction

Geovisualization is a broad visualization discipline that utilizes images or image se-
quences to effectively communicate geodata (spatial data with a reference to the earth)
to a user. Although 2D digital maps are still an established tool to communicate geo-
data, 3D GeoVEs have advanced in application domains like geoanalysis, disaster
management and navigation systems. In contrast to 2D geovisualization tools, which
encode the third dimension in an additional (visual) attribute, 3D GeoVEs offer a more
natural access to geodata. This is further supported by utilizing a perspective view,
which facilitates the human’s 3D visual perception. A perspective view yields a num-
ber of advantages for the communication of geodata, such as immersion into- and an
intuitive communication of 3D geodata, but also introduces disadvantages, such as
occlusion, perspective distortion and multiple cartographic scales.

Fall Workshop 2012 117

Comprehensible 3D Maps and Building Panoramas

To cope with the disadvantages while still benefiting from the advantages, cartogra-
phers and landscape artists developed 3D panoramic maps. Panoramic maps seam-
lessly combine multiple perspectives views in one image, providing additional informa-
tion by revealing occluded geoobjects, reducing the number of cartographic scales, or
emphasizing relevant information. The concept of multi-perspective views (MPVs) has
been revisited and adapted to 3D GeoVEs for focus+context visualization [2] of geo-
data with a large cartographic scale, such as 3D virtual city and landscape models, or
virtual globes. For example Lorenz et al. (2008) and Mdéser et al. (2008) presented
bended maps, which generates panoramic map-like visualization. The foreground (fo-
cus region) depicts a detailed 3D virtual city model, whereas the bended background
(context region) contains an abstracted visual representation. The seamless combina-
tion of focus and context regions within one viewport is well suited for navigation tasks,
because the detailed information eases navigation in the local neighborhood, while the
context supports locating one’s position in relation to landmarks.

. Overview
Context (Overview) (Viewport 2)
— " Transition Zone = ™ —_ Detail
(Viewport 1)

Figure 1: A focus+context visualization (left) seamlessly combines detail and context
information within one viewport. In contrast, a overview+detail visualization physically
separates detail and overview information, utilizing two viewports.

Another promising approach of utilizing MPVs in 3D GeoVEs are building panora-
mas. Building panoramas combine multiple perspective views of a building or a building
block in one image (Section 3). Building panoramas visualize geodata of a small car-
tographic scale and utilize the concept of overview+detail visualization [24]. In contrast
to focus+context, overview+detail presents the detail and the overview information in
separated, but linked viewports (Figure 1). It enables the simultaneous exploration
of building details in the context of the whole building, which would be occluded in a
perspective 3D view.

Based on two prototypical applications, benefits and drawbacks of multi-perspective
visualization for 3D GeoVEs are described. Section 2 briefly discusses drawbacks of
current digital 3D maps and summarizes design guidelines that improve the compre-
hension of 3D maps. Further, it discusses to what extend MPVs are suited to imple-
ment these guidelines. The concept of building panoramas as well as applications
examples are presented in Section 3. Section 4 summarizes the potentials of MPVs
for 3DGeoVEs and gives a brief outlook.

118 Fall Workshop 2012

2 Comprehensible 3D Maps

2 Comprehensible 3D Maps

For centuries, maps have been essential resources for humankind to aid orientation,
navigation, exploration, and analysis tasks. With the digital revolution in the last quarter
of the 20th century, 2D digital maps started to foster an interactive communication of
geoinformation, allowing, for the first time, to customize map contents to tasks and con-
texts based on a service-oriented architecture (SOA) [3]. Recent advancements in the
acquisition, provision, and visualization of 3D geodata, such as virtual 3D city and land-
scape models, yield new possibilities for 3D mapping services. Today these services
represent key components to a growing number of applications, like navigation, educa-
tion, or disaster management. In particular mapping services based on 3D geovirtual
environments (3D GeoVEs), such as Google Earth™ or the OGC’s Web View Ser-
vice (WVS) [7], provide users various information overlays to customize visualization
to tasks and contexts, such as as thematic or topographic maps. The customizations
often focus on embedding 2D overlays for points-(or areas-)-of-interest, for instance
to highlight public transport networks, traffic information and landmarks, or to modify
the map presentation (e.g., photorealistic or non-photorealistic). A photorealistic pre-
sentation tries to visualize geoobjects as realistic as possible, which eases the mental
mapping between the visualization and the reality. By contrast, a non-photorealistic
presentation abstracts from reality and provides the prerequisites to simplify and filter
detailed elements as well as to clearly encode displayed information of complex geo-
data [4]. A specialized class of 3D GeoVEs is the digital 3D map (D3DM), which is
based on a generalized data model and utilizes a symbolized (abstracted) visualization
of 3D geoobijects.

In contrast to traditional 2D maps, D3DMs utilize a central perspective view, which
is similar to the humans 3D visual perception, offering a natural access to geoinforma-
tion [10] and immersion [16] into the geodata, and thus increasing a user’s effective-
ness on spatial tasks [26]. During the last decade cartographers discussed and estab-
lished guidelines to further increase the effectiveness and expressiveness of D3DMs
(for example [6,9,20]). However, current products, systems, and applications providing
D3DMs are still faced by a number of drawbacks that impact the comprehension of 3D
map contents:

(D1) Occlusion. Due to overlapping of 3D geometric representations, occluded map
content cannot be perceived in a perspective view.

(D2) Visual clutter. Because of perspective distortion, the size of distant map objects
decreases. As a result, they are no longer recognized as single objects and are per-
ceived as "visual noise" (e.g., because they occupy only one pixel).

(D3) Insufficient use of screen-space. In perspective views at pedestrian level, a
large amount of the screen-space is occupied by the horizon or visual clutter. In this
area no information can be communicated.

(D4) Unlimited number of cartographic scales. Due to perspective distortion, a 3D
digital map includes an unlimited number of map scales. This complicates the estima-
tion and comparison of spatial relationships.

Fall Workshop 2012 119

Comprehensible 3D Maps and Building Panoramas

d -~

| | ’\ N

r
[1

111

nad

[1)
s
i)

w
Mﬂ (e

g

Figure 2: Digital 3D map of the virtual city model of Chemnitz showing a route: A view-
dependent, multi-perspective view is utilized to increase the screen-space utilization by
bending the background upwards. A cartograhpy-oriented stylization is applied off the
route to lower visual complexity.

Previous work showed how view-dependent MPVs [18] and cartography-oriented vi-
sualization (COV) [25] can be used to partially overcome the drawbacks D1-D4. MPVs,
on the one hand, enable the seamless combination of different 3D perspectives in a sin-
gle view and thus feature less occlusion, a reduced number of cartographic scales, and
an increased utilization of screen space. COV, on the other hand, facilitates guidance of
a viewer’s gaze to important or prioritized information, thus providing saliency-guided
visualization. Both techniques adapt visualization to different contexts and contents
with respect to user interaction or dynamically changing thematic information, but have
not been applied concurrently in a single system.

In the following a prototype that combines MPVs with COV for comprehensible
D3DMs (Figure 2) is discussed. For this purpose, cartographic design principles are
identified that aim to increase the expressiveness and effectiveness of D3DMs. Ac-
cording to this classification, a prototypical implementation demonstrates the bene-
fits of multi-perspective and non-photorealistic rendering techniques for the compre-
hension of D3DMs. In particular, the prototype enables (1) a seamless combination
of cartography-oriented and photorealistic graphic styles while (2) increasing screen-
space utilization and (3) simultaneously directing a viewer’s gaze to important or prior-
itized information.

120 Fall Workshop 2012

2 Comprehensible 3D Maps

2.1 Design Principles

The International Cartographic Association (ICA) defines a map as "a symbolized im-
age of geographical reality, representing selected features or characteristics, resulting
from the creative effort of its author's execution of choices, and is designed for use
when spatial relationships are of primary relevance" [8]. According to this definition,
a perspective view in a 3DGeoVE is not a D3DM per se. Haberling et al. suggest
that the term 3D map is applicable to 3DGeoVEs if the virtual environment is based
on a generalized data model and utilizes a symbolized visualization of classified map
objects [6] (e.g., by using the class model of CityGML [13]).

The aim of a map is to successfully communicate geoinformation between a car-
tographer (the map producer) and a user (the map consumer). Geoinformation are
encoded using a semiotic model and transferred by the map. For a successful com-
munication, the map consumer must understand the semiotic model to decode the
information. Further, a map should satisfy the needs of the map consumer to improve
the communication process: the map should be readable, comprehensible, and visu-
alized in a way that the information can be memorized easily, and that not only rational
but also emotional aspects [12] are addressed. According to Broderson the geocom-
munication process is successful if the map producer and the map consumer "agree"
on aspects of location or space [1]. In order to achieve this agreement, cartographers
developed different high-level design guidelines for D8DMs that are summarized in the
following:

(A1) Decrease of visual complexity by classification, symbolization and ab-
straction.
Haberling et al. define the following three design steps [6] for D3DMs: (1) modeling,
(2) symbolization and (3) visualization. For each design step the map producer can
choose between different design aspects to configure the map to fit a user’s needs
and ease the communication process (Table 1). Modeling includes aspects of filtering
raw geodata and mapping these to a 3D geometric representation of map objects suit-
able for rendering. The visual appearance of the 3D-geoobject (e.g., color, texture and
degree-of-abstraction) are configured during symbolization. The visualization step de-
fines the mapping of a 3D geometric representation to the presentation medium and is
controlled by parameterizing the virtual camera (e.g., the field-of-view, and projection),
as well as using scene specific parameters (e.g., lighting, shading, and atmospheric
rendering effects). Based on this classification, Haberling et al. performed a user
study to identify atomic design guidelines that assist the map producer to reduce visual
complexity and improve comprehension.

(A2) Decrease of occlusion and visual clutter.

Although Haberling et al. proposed different design variables for parametrizing the
projection of the virtual camera (e.g., orthographic and cylindric projection), the per-
spective projection is the most applied projection for digital D8DMs, mainly because it
facilitates the human visual system and thus produces a familiar visualization. Accord-
ing to Jobst and Déllner (2008) the perspective view comprises a number of drawbacks,
such as occlusion of map-objects and visual clutter due to perspective distortion in the
distant parts of the D3DM, which reduces the effectiveness of geocommunication.

Fall Workshop 2012 121

Comprehensible 3D Maps and Building Panoramas

Table 1: Excerpt of design steps, aspects and variables proposed by [6].

Design Steps | Design Aspects | Design Variables
Modeling Models of map objects | Model geometry
Semantic attributes
Position
Symbolization | Graphic appearance Shape
Size
Color
Textures Pattern

Pattern repetition rate
Pattern orientation
Animations Size alteration

Size alteration
Texture alteration

Visualization | Perspective Parallel projection
Perspective projection
Camera settings Viewing inclination

To reduce occlusion, Haberling et al. suggest a viewing inclination of 45° [6] and
generalization to minimize visual clutter. An alternative approach is used in panoramic
maps. The landscape artists combine multiple perspectives in one image and distort
(e.g., enlarge) map-objects [19].

(A3) Increase of user involvement.

The design process of maps can be described as a feedback loop between the map
producer and the map consumer [21] where the map producer designs the map ac-
cording to the consumer’s feedback. Reichenbacher demands "the ability of flexible
systems to be changed by a user or the system in order to meet specific require-
ments" [22]. An optimal map should "present as much information as needed (by a
user) and as little as required" [23]. Service-based D3DMs fulfill this requirement, be-
cause an user’s feedback is directly transformed into a new version of a map. This
direct feedback-loop changes the strict separation between the role of the map pro-
ducer and map consumer [11]. The consumer itself becomes the map producer. In-
stead of exposing all map design parameters, which possibly overwhelm a user, the
D3DM should interactively react on a user’s context. For example the map provides
an overview while a user follows a navigation route. When a user is faced to make
decisions, e.g, which road to travel at a cross road, the map focuses on the cross road,
assisting with detail information.

(A4) Increase of screen-space utilization.

The map is presented using an information carrier, such as paper or digital displays.
The size and resolution of the information carrier for D8DMs can vary between 3.5” with
330ppi (pixel per inch) for mobile devices up to 60” with 37ppi for monitors. The size
and resolution in combination with the capabilities of the human’s visual system defines
the minimum size boundary of a map element. If the map element falls below this
boundary, it becomes indistinguishable from its surroundings and, as a consequence,

122 Fall Workshop 2012

2 Comprehensible 3D Maps

the corresponding pixels cannot be efficiently used for communicating geoinformation.
In order to prevent these "dead values" [10] a D3DM must be device aware.

To summarize, D3DMs need to be designed in a way that reflects the context
and task of a map consumer to highlight prioritized or important information, i.e.,
using device-aware visual abstraction and symbolization that features less occlusion
and utilizes screen-space efficiently. One possibility to achieve this, is to combine
cartography-oriented visualization and multi-perspective views in a system approach.
The following paragraph discusses how MPVs are utilized to implement design aspects
A2-4. Since a detailed discussion of COV is not in the scope of this paper, the author
refers to Semmo et al. (2012) for more details.

2.2 Multi-Perspective Views

Multi-perspective views are applied in panorama and landscape visualization, such as
the panoramic maps of H.C. Berann [19]. Berann utilizes a progressive perspective,
where a steep viewing angle in the foreground is progressivly interpolated to a flat
viewing angle in the background. The foreground depicts an orthographic view on the
environment showing the current position of a user whereas the perspective view of
the horizon in the background assists a user to determine the viewing direction. By
contrast, the degressive perspective applies a flat viewing angle in the foreground and
a steep angle in the background. This leads to the impression that the virtual envi-
ronment is bended towards the user, providing detailed information in the foreground
combined with context information in the background (Figure 3).

m_
g—-mlu_nm? e,

Figure 3: Comparison of two degressive MPV configurations that feature three viewport
zones connected by transition zones (marked blue). Due to the minimized transition
zones of the left configuration, the number of map scales are reduced. This eases
object comparison in each zone [10].

Different real-time capable visualization techniques exist that are able to generate
progressive, degressive as well as hybrid perspectives ([14,17,18]). The following
concept and considerations are based on the view-dependent multi-perspective views
of Pasewaldt et al. (2011). One key aspect of this approach is that one configuration
of a MPV, a so called preset (P), is associated with an distinct viewing angle ¢. The
map producer can define multiple presets with different viewing angles. During map
usage these presets are interpolated based on the current viewing angle. Thus, it is

Fall Workshop 2012 123

Comprehensible 3D Maps and Building Panoramas

possible to utilize a degressive perspective for a flat viewing angle of the virtual cam-
era and a progressive perspective for a steep viewing angle without having additional
configurations during map utilization.

A preset is defined as P = (C(¢),9,s,e) with C(¢) being a parametric curve that is
defined by a number of control points B;. C(¢) is used to control the shape of the MPV
(e.g., progressive or degressive shape). The scalars s and e define the start and end
of the MPV with reference to a viewer’s position.

Although the flexibility of the parametric curve can produce an arbitrary number of
MPYV configurations, especially the degressive and progressive perspective has been in
the focus of cartographers. For example, Jobst and Déllner discussed to what extend
MPV can increase the perception of 3D spatial relations by reducing occlusion and
increasing screen-space utilization [10]. In their work they suggested a configuration
that subdivides the view into distinct viewport zones, i.e., zones that are viewed with a
distinct viewing angle (Figure 3). Since the number of cartographic scales are reduced
in each zone, the comparison of map objects in each zone is eased. To further reduce
the number of cartographic scales and enlarge the area of each viewport zone, the
transition between two viewport zones is minimized.

Bending the D3DM towards a user replaces the horizon of a 3D perspective view
by parts of the 3DGeoVE. This increases the screen space utilization (A4). The combi-
nation of different viewport zones can reduce occlusion (A2) and the number of carto-
graphic scales. Further, perspective distortion, thus visual clutter is reduced (Figure 4).
The presented concept enables the map producer to specify different MPV configura-
tion that are interpolated based on a scalar ¢. In the example, the viewing angle of the
virtual camera is mapped on ¢, but it is also reasonable to encode and map a user’s
context information (A3). MPVs are only one tool in the tool shelf of map producers
for the production of comprehensible D3DMs. It can emphasize and complement the
impact of existing visualization techniques, such as COV [25], for the expressive and
effective communication of geoinformation.

Figure 4: Exemplary perspective view of a virtual 3D city model (left) in comparison to a
multi-perspective view (right) that is combined with cartography-oriented visualization
(i.e., colorization, edge enhancement, labeling, waterlining, symbolization, landmark
abstraction, and transformation)

124 Fall Workshop 2012

3 Building Panoramas

3 Building Panoramas

Buildings models are dominant elements of a 3D virtual city models. They can be uti-
lized as landmarks during navigation tasks and are in the focus of geo-analysis task
such as solar-potential analysis. Due to the three-dimensional structure of a 3D virtual
building model (3DBM) and the perspective view, a building model visualization has
similar drawbacks as D3DMs (Section 2 D1-D4). For example, it is impossible to simul-
taneously explore or compare all building fagades of one building because of occlusion
(D1) and perspective distortion (D4). Although a photorealistic perspective 3D visu-
alization depicts the 3DBM as a human would perceive it in reality, certain use-cases
(e.g., architectural modeling or exploration of analysis results), demands alternative vi-
sualization with different requirements:

(R1) Overview of building facades. The texture and geometry of building fagcades
define the characteristic and unique look of a building and occupy the majority of a
building’s surface. An overview of all building fagades in one image enables their si-
multaneous exploration and eases analysis of building facades.

(R2) Preserved topology. The topology of the building facades in the overview must
be preserved in order to ease the mental mapping to the 3D representation of the build-
ing model.

(R3) Minimized Distortion. A perspective view introduces distortion that complicates
the estimation of spatial relations. For tasks such as measurement or building model
refinement, the visualization of each fagade should contain as less distortion as possi-
ble.

>0

- ~
-

qi00 -7
e~
>

Interaction

-

_-
Building Model (- v
u +| Filtering / Preprocessing |—>| Mapping
N R 4 <

<
~
~
~
Primary Model

Visualization Pipeline

<A N Building

Rendering I— .Parwrarm’:l'

/
\
\

A

Figure 5: The conventional visualization pipeline is extended for building panorama im-
age synthesis: Based on the geometric representation of the building model, a camera
model description is generated in the preprocessing stage. The description is utilized
in the rendering stage to generate the building panorama.

Fall Workshop 2012 125

Comprehensible 3D Maps and Building Panoramas

A multi-perspective view of the building model is a visualization that fulfills these
requirement and further cope with occlusion. It aligns an orthographic view of each
facades side-by-side and generates a 2D panoramic image of the building model. Pre-
vious work has shown how single orthographic views of building facades are utilized
to communicate architectural design decisions or for an image-based refinement of
building geometry [27]. Beside several advantages (Section 3.2), one drawback of the
2D panoramic image is that depth perception is decreased and thus the 3D structure
of the building model can hardly be communicated. Thus, the panoramic image can-
not be used as a substitute for the detailed perspective 3D visualization, but as an
complementary overview in a overview+detail visualization [24].

3.1 Image Synthesis

The image synthesis of the building panorama is based on the visualization pipeline
(Figure 5) and is subdivided into a filtering/preprocessing, mapping, and rendering
stage. The user can modify every stage in order to customize the resulting building
panorama. In the following building-panorama-specific extensions to the visualization
pipeline are described in detalil.

i i
-
CI
I
Do e

Figure 6: Different visual representations of a building panorama: A - An abstracted
visualization. Compared to the conventional visualization (C), fine structures are em-
phasized using edge enhancement and semantic-based colorization. The vertex (B)
and normal image (D) are utilized to link the panorama view with the 3D perspective
view.

126 Fall Workshop 2012

3 Building Panoramas

Preprocessing In the preprocessing stage the raw data (e.g., a City-GML [13]) de-
scription of the building model, is filtered and converted to a topology-preserving data
structure (e.g., Half-Edge data structure) that is the input for a panorama-specific ge-
ometry analysis algorithm and the mapping stage. The algorithm determines a ordered
list of building fagades F = {F},...,F,}; n € N. For each F; € F, a camera description C;
is generated that exactly matches the camera view-frustum with the width of F;. The
height of the frustum equals the highest fagcade. The set of camera descriptions C is
utilized during rendering to generate the building panorama. The user can configure
the preprocessing stage to generate a panorama image containing a subset of F.

Mapping In the mapping stage, the filtered and preprocessed building model is
mapped to geometric primitives. Further, the visual appearance of the building model
(e.g., color or texture) can be configured. If semantic information is available, it can be
utilized for a semantic-based rendering such as fagade abstraction [15], which gener-
ates a non-photorealistic visualization. The output of the mapping stage is a computer
graphic representation of the 3DBM (computer graphic model).

Rendering In the rendering stage the computer graphic model is utilized for the
image synthesis of the 3D perspective view as well as for the synthesis of the 2D
panorama image. For each C;, a rendering pass is performed, which generates an
image of the F; as part of the final panorama image. In addition to the color image,
a vertex and a normal image are generated, which are utilized to link the 2D and 3D
view (Figure 6). Since F is a list of order-preserving facades, the final panorama image
fulfills R2. Instead of a perspective, a parallel projection is utilized, which eliminates
perspective distortion (R3).

3.2 Application Examples

The 3D perspective view and 2D panorama image are utilized in a overview+detail vi-
sualization, i.e., the two images are organized in two separate viewports [24] (Figure
7). Between these viewports a bidirectional link is established that updates or synchro-
nizes the viewports. Based on the application example, either the 3D perspective view
or the 2D panorama image serves as overview. In the following, advantages as well as
disadvantages are discussed using three applications examples.

Geometry Refinement Geometry refinement denotes operations that increase the
complexity of a geometric representations. Xiao et al. (20008) utilize an orthographic
image of a textured block building model to fully-automatic add openings (e.g., windows
and doors), or exterior installation (e.g., stairs or rain pipes). The image is decomposed
into distinct subsections ((e.g., one section per opening) using computer vision algo-
rithms. If depth information is available (e.g., based on a 3D point cloud) these subsec-
tions are automatically extruded. Wanner et al. (2012) evaluate interaction metaphors
that can assist the user in altering the sub section and thus configure the refinement
process. The overview+detail visualization is well suited for an user-controlled geome-
try refinement, since refinement operations can be performed on the panoramic image
(the detail view). Direct feedback on user actions is provided in the 3D perspective

Fall Workshop 2012 127

Comprehensible 3D Maps and Building Panoramas

[

iE @R ﬁ@ﬁﬂﬁw

o=

=

BjE &

u
i 8B B BEEONM |
§ i 0E 85§ n
i | ﬂ

=

Figure 7: Screenshot of the prototype. The prototype consists of two separated view-
ports: The 2D building panorama (top) and the 3D perspective view (bottom). Based
on the use-case, the 2D building panorama serves as detail or overview visualization
for the 3D perspective view.

view (the overview). Further, the automatic panorama generation combined with semi-
automatic geometry refinement techniques seems to be a promising approach for the
refinement of 3D virtual city models.

Evaluation of Geoanalysis Results Geoanalysis denotes analysis operations that
are performed on geodata, such as 3D virtual city models [5]. Popular examples are
solar-potential or noise-pollution analysis. The results of the analysis are presented
directly using the 3D virtual city model. To explore the results, the user has to control
the virtual camera towards the object-of-interest using a 2D input device, which can be
a cumbersome task. Building panorama can be a promising approach to reduce the
exploration overhead, since interaction must only be performed in 2D. Due to R17, the
building panorama enables the inspection of a single building fagade in the context of
the complete building, which is impossible in a 3D perspective view. In this application
example the building panorama can act as detail, as well as overview visualization.

128 Fall Workshop 2012

4 Summary & Outlook

Comparison of Architectural Designs In the design process of a building, different
variants are developed and discussed with multiple participants. These discussions are
mainly based on architectural sketches, or the 3DBM. On the one hand, architectural
sketches are well suited for a discussion, because they depict many relevant details
and can be printed on paper, but on the other hand too many details and missing depth
cues complicate discussion with non-experts. Further, sketches only depict the 3DBM
from one distinct view, which complicates the generation of a mental map. In contrast,
a 3D visualization offers a more realistic experience, even for non-experts but requires
IT infrastructure to be utilized. A building panorama can bridge the gap between the 2D
architectural sketches and the virtual 3D building model. The discussion can be based
on a printed version of the panoramic image by using a overview+detail visualization.
Due to the flexibility of the rendering pipeline, a photorealistic as well as an architecture-
oriented stylization can be generated.

4 Summary & Outlook

A multi-perspective view is an expressive and effective approach to communicate 3D
geoinformation. The seamless combination of multiple perspectives views in one im-
age reduces occlusion and enables new insights into geodata. Applied to digital 3D
maps using focus+context visualization techniques, it increases screen-space utiliza-
tion and reduces visual clutter. Compared to traditional perspective views, more pixels
are used to communicate geoinformation, thus increasing the efficiency. Further, the
seamless combination of focus and context regions reduces context switches, which
lowers a user‘s mental load. As a result, the user can focus on the task. Drawbacks of
multi-perspective maps are the unnatural view and the computational complexity. A first
preliminary user study pointed out that users prefers MPV 3D maps over traditional 3D
maps [18] for navigation task, but whether the efficiency is increased must be proved
in future studies.

The application of MPVs as part of an overview+detail visualization of a small car-
tographic scale, such as buildings and building blocks, seems a promising approach to
simplify user interaction and thus reduce a user’s burden on tasks, such as geometry
refinement. The presentation of detailed information, while maintaining an overview of
the complete data set, may ease visual analysis tasks and helps a user to gain new
insights. A drawback of the overview+detail approach is context switches because of
the two separate views. A user study will show whether the benefits outweigh the
drawbacks.

Beside an evaluation of the presented approaches, future research will focus on
the integration of comprehensible digital 3D maps in a service-oriented architecture.
Therefore, different engineering challenges, e.g., the flexible combination of different
shader programs, or a simple but versatile service interface, as well as conceptual chal-
lenges have to be addressed. The building panoramas are in a very early but promising
prototypical stage with open research questions concerning the image synthesis and
stylization.

Fall Workshop 2012 129

References

References

[1] Lars Brodersen. Paradigm shift from cartography to geo-communication. In XX/l
International Cartographic Conference. ICA, 2007.

[2] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A review of
overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv.,
41(1):2:1-2:31, 2009.

[3] Jeff de la Beaujardiere. OpenGIS Web Map Server Implementation Specification,
Version 1.3.0. OpenGIS Implementation Specification, 2006.

[4] Jurgen Déllner and Jan Eric Kyprianidis. Approaches to Image Abstraction for
Photorealistic Depictions of Virtual 3D Models. In Cartography in Central and
Eastern Europe, pages 263—-277, 2010.

[5] Juri Engel and Jlirgen Déllner. Approaches towards visual 3d analysis for digi-
tal landscapes and its applications. Digital Landscape Architecture Proceedings
2009, pages 33—41, 2009.

[6] Christian H&berling, Hansruedi Bér, and Lorenz Hurni. Proposed Cartographic
Design Principles for 3D Maps: A Contribution to an Extended Cartographic The-
ory. Cartographica: The International Journal for Geographic Information and
Geovisualization, 43(3):175—-188, 2008.

[7] Benjamin Hagedorn. OGC Web View Service. OGC Discussion Paper, February
2010.

[8] ICA. International Cartographic Association, Organisation and activities 1999 —
2003. Netherlands. Cartographic Society., 2000.

[9] Markus Jobst. Uberlegungen fiir perzeptive Gréssen in multimedialen 3D Karten.
Kartographische Schriften, 10:117—126, 2006.

[10] Markus Jobst and Jirgen Déllner. Better Perception of 3D-Spatial Relations by
Viewport Variations. In Proceedings of the 10th International Conference on Vi-
sual Information Systems, VISUAL ‘08, pages 7—18, 2008.

[11] Markus Jobst and Jirgen Déliner. Neo-Cartographic Influence on Map Communi-
cation in LBS. In Location Based Services and TeleCartography I, From Sensor
Fusion to Context Models, pages 207—-219, 2008.

[12] A Kolacny. Cartographic Information—a Fundamental Concept and Term in Mod-
ern Cartography. Cartographic Journal, 6:47—49, 1969.

[13] Thomas H. Kolbe. Representing and exchanging 3d city models with citygml. In
Proceedings of the 3rd International Workshop on 3D Geo-Information, Lecture
Notes in Geoinformation & Cartography, page 20, Seoul, Korea, 2009. Springer.

130 Fall Workshop 2012

References

[14] Haik Lorenz, Matthias Trapp, Jurgen Déllner, and Markus Jobst. Interactive Multi-
Perspective Views of Virtual 3D Landscape and City Models. In Proc. AGILE
Conference, pages 301-321, 2008.

[15] Aniruddha Loya, Neeharika Adabala, Amitav Das, and Pragyan Mishra. A prac-
tical approach to image-guided building facade abstraction. Computer Graphics
International, 2008.

[16] Alan M. MacEachren, Robert Edsall, Daniel Haug, Ryan Baxter, George Otto,
Raymon Masters, Sven Fuhrmann, and Liujian Qian. Virtual environments for ge-
ographic visualization: potential and challenges. In Proceedings of the 1999 work-
shop on new paradigms in information visualization and manipulation (NPIVM),
pages 35—40. ACM, 1999.

[17] Sebastian Mdéser, Patrick Degener, Roland Wahl, and Reinhard Klein. Context
Aware Terrain Visualization for Wayfinding and Navigation. Computer Graphics
Forum, 27(7):1853-1860, 2008.

[18] Sebastian Pasewaldt, Matthias Trapp, and Jurgen Déliner. Multiscale Visualization
of 3D Geovirtual Environments Using View-Dependent Multi-Perspective Views.
Journal of WSCG, 19(3):111-118, 2011.

[19] Tom Patterson. A View From on High: Heinrich Berann’s Panoramas and Land-
scape Visualization Techniques For the US National Park Service. In Cartographic
Perspectives, number 36, pages 38-65. NACIS, 2000.

[20] Dave Pegg. Design Issues with 3D Maps and the Need for 3D Cartographic De-
sign Principles, 2012.

[21] Michael P. Peterson. Interactive and animated cartography. Prentice Hall, 2005.

[22] Tumasch Reichenbacher. Adaptation in mobile and ubiquitous cartography. In
Multimedia Cartography, chapter 27, pages 383—-397. Springer, 2007.

[23] Tumasch Reichenbacher. The concept of relevance in mobile maps. In Location
Based Services and TeleCartography, pages 231-246. Springer, 2007.

[24] Jonathan C. Roberts. State of the art: Coordinated & multiple views in exploratory
visualization. In Proceedings of the Fifth International Conference on Coordinated
and Multiple Views in Exploratory Visualization, CMV ‘07, pages 61-71, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[25] Amir Semmo, Matthias Trapp, Jan Eric Kyprianidis, and Jirgen Déllner. Interac-
tive Visualization of Generalized Virtual 3D City Models using Level-of-Abstraction
Transitions. Computer Graphics Forum, 31(3):885-894, 2012. Proceedings Eu-
roVis 2012.

[26] Desney S. Tan, Darren Gergle, Peter G. Scupelli, and Randy Pausch. Physically
large displays improve path integration in 3D virtual navigation tasks. In Proc.
ACM CHI, pages 439-446, 2004.

Fall Workshop 2012 131

References

[27] Jianxiong Xiao, Tian Fang, Ping Tan, Peng Zhao, Eyal Ofek, and Long Quan.
Image-based facade modeling. ACM Trans. Graph., 27(5):161:1—-161:10, Decem-
ber 2008.

132 Fall Workshop 2012

Demonstrating Test-driven Fault
Navigation

Michael Perscheid

Software Architecture Group
Hasso-Plattner-Institut
michael.perscheid@hpi.uni-potsdam.de

In this paper, we present a demonstration of our test-driven fault navigation ap-
proach. This interconnected guide for debugging reproducible failures analyzes failure-
reproducing test cases and supports developers in following infection chains back to
root causes. With the help of a motivating error from the Seaside Web framework, we
show how to reveal suspicious system parts, identify experienced developers for help,
and debug erroneous behavior and state in the execution history.

1 Introduction

The correction of ubiquitous software failures can cost a lot of money [19] because their
debugging is often a time-consuming development activity [3,7]. During debugging,
developers largely attempt to understand what causes failures: Starting with a test
case, which reproduces the observable failure, they have to follow failure causes on the
infection chain back to the root cause (defect) [22]. This idealized procedure requires
deep knowledge of the system and its behavior because failures and defects can be far
apart [8]. Unfortunately, common debugging tools are inappropriate to systematically
investigate such infection chains in detail [9]. Thus, developers have to primarily rely on
their intuition and the localization of failure causes takes up a lot of time [10]. To prevent
debugging by trial and error, experienced developers apply the scientific method and its
systematic hypothesis-testing [10,22]. However, even when using the scientific method
the search for failure causes can still be a laborious task. First, missing expertise about
the system makes it hard to understand incorrect behavior and to create reasonable
hypotheses [11]. Second, contemporary debugging approaches still provide little or
no support for the scientific method. For these reasons, we summarize our research
question as follows:

How can we effectively support developers in creating, evaluating, and re-
fining failure cause hypotheses so that we reduce debugging costs with
respect to time and effort?

In this paper, we present a demonstration of our test-driven fault navigation that
guides the debugging of reproducible failures [13, 14,20]. Based on the analysis of
passing and failing test cases, we reveal anomalies and integrate them into a breadth

Fall Workshop 2012 133

Demonstrating Test-driven Fault Navigation

first search that leads developers to defects. This systematic search consists of four
specific navigation techniques that together support the creation, evaluation, and re-
finement of failure cause hypotheses for the scientific method. First, structure nav-
igation [14] localizes suspicious system parts and restricts the initial search space.
Second, team navigation [14] recommends experienced developers for helping with
failures even if defects are still unknown. Third, behavior navigation [14,15] allows de-
velopers to follow emphasized infection chains of failing test cases backwards. Fourth,
state navigation [5, 6] identifies corrupted state and reveals parts of the infection chain
automatically. We implement test-driven fault navigation in our Path tools frame-
work [12,14,15, 20] for the Squeak/Smalltalk development environment and limit its
computation costs with the help of our incremental dynamic analysis [5,12,15]. This
lightweight dynamic analysis ensures a feeling of immediacy when debugging with our
tools by splitting the run-time overhead over multiple test runs depending on develop-
ers’ needs. Hence, our test-driven fault navigation in combination with our incremental
dynamic analysis answers important questions in a short time: where to start debug-
ging, who understands failure causes best, what happened before failures, and which
program entities are in question.

The remainder of this paper is organized as follows: Section 2 explains the moti-
vating example for demonstrating our approach. Section 3 briefly introduces our test-
driven fault navigation. Section 4 demonstrates our approach and how it supports
debugging of the motivating example. Section 5 concludes and presents next steps.

2 Motivating Example: Typing Error in Seaside

We introduce a motivating example error taken from the Seaside Web framework [2,16]
that serves as a basis for demonstrating our test-driven fault navigation approach in the
following sections.

Seaside’ is an open source Web framework implemented in Smalltalk [4]. The
framework provides a uniform, pure object-oriented view of Web applications and com-
bines a component-based with a continuation-based approach [17]. With this, every
component has its own control flow which leads to high reusability, maintainability and
a high level of abstraction. Additionally, it is written in Smalltalk that allows developers
to debug and update applications on the fly. It provides a layer over HTTP and HTML
that let you build highly interactive Web applications that come very close to the imple-
mentation of real desktop applications. Finally, Seaside consists of about 650 classes,
5,500 methods and a large test suite with more than 700 test cases.

We have inserted a defect into Seaside’s Web server and its request/response pro-
cessing logic (WABuf feredResponse class, writeHeadersOn: method). Figure 1
illustrates the typing error inside the header creation of buffered responses. Once a
client opens a Seaside Web application, its Web browser sends a request to the cor-
responding Web server. This request is then processed by the framework leading to
a corresponding response to the browser. Depending on the Web application, this re-
sponse is either a streamed or buffed response object. While the first transfers the

Twww.seaside.st

134 Fall Workshop 2012

3 Anomalous Guide to Localize Causes in Failing Test Cases

{Browser) Response Web Server

R

[|
StreamedResponse Buﬁeredﬁesponse

Typo in write header
“Content-Lenght”

Figure 1: An inconspicuous typo in writing buffered response headers leads to faulty
results of several client requests.

message body as a stream, the latter buffers and sends the response as a whole. Dur-
ing the creation of buffered responses, there is a typo in writing the header. The typo in
“Content-Lenght” is inconspicuous but leads to invalid results in browser requests that
demand buffered responses. Streamed responses are not influenced and still work
correctly. Although the typo is simple to characterize, observing it can be laborious.
First, some clients hide the failure since they are able to handle corrupted header infor-
mation. Second, as the response header is built by concatenating strings, the compiler
does not report an error. Third, by reading source code like a text, developers tend to
overlook such small typos [18].

3 Anomalous Guide to Localize Causes in Failing Test
Cases

Based on test cases that reproduce the observable failure [20], we introduce a novel
systematic top-down debugging process with corresponding tools called test-driven
fault navigation. It does not only support the scientific method with a breadth-first
search [21] but also integrates hidden test knowledge for guiding developers to failure
causes. Starting with a failure-reproducing test case as entry point, we reveal suspi-
cious system parts, identify experienced developers for help, and navigate developers
along the infection chain step by step. In doing so, anomalies highlight corrupted be-
havior and state and so assist developers in their systematically hypothesis-testing.
Figure 2 summarizes our complete test-driven fault navigation process and its primary
activities:

Reproducing failure: As a precondition for all following activities, developers have to
reproduce the observable failure in the form of at least one test case. Besides
the beneficial verification of resolved failures, we require tests above all as entry
points for analyzing erroneous behavior. For this activity, we have chosen unit
test frameworks because of their importance in current development projects.
Our approach is neither limited to unit testing nor does it require minimal test
cases as proposed by some guidelines [1].

Fall Workshop 2012 135

Demonstrating Test-driven Fault Navigation

How Infection Chains
Come to Be?

Debugging
Erroneous Test

What Happened
before Failures?

Identifying
Corrupted State in

() ()
Reproducing Where to Start Localizing Recommending
Failure Debugging? Suspicious Experienced
—I System Parts Developers
— Who Understands ‘
v/ = Failure Causes Best? Micha 60%
— P 100%100%100%
rovert [l] a0%
i ' V 100% 50%
Malte 10%
% 100% ;]
- Q
2

— e = = -

Cases Backnards /\ the Infection Chain _
14 T <4-----
U \/ P Support Debugging with the
| BN

Help of Contact Person
Which Program Entities R i 1
Are Infected?

Figure 2: Our test-driven fault navigation debugging process guides developers with
interconnected advice to reproducible failure causes in structure, team, behavior, and
state of the system under observation.

Localizing suspicious system parts (Structure navigation) Having at least one

failing test, developers can compare its execution with other test cases and iden-
tify structural problem areas that help in creating initial hypotheses. By analyzing
failed and passed test behavior, possible failure causes are automatically local-
ized within a few suspicious methods so that the necessary search space is sig-
nificantly reduced. We have developed an extended test runner called PathMap
that supports spectrum-based fault localization within the system structure. It
provides a scalable tree map visualization and a low overhead analysis frame-
work that computes anomalies at methods and refines results at statements on
demand.

Recommending experienced developers (Team navigation) Some failures require

knowledge of experts to help developers in creating proper hypotheses. By com-
bining localized problem areas with source code management information, we
provide a novel developer ranking metric that identifies the most qualified experts
for fixing a failure even if the defect is still unknown. Developers having changed
the most suspicious methods are more likely to be experts than authors of non-
infected system parts. We have integrated our metric within PathMap providing
navigation to suitable team members.

136

Fall Workshop 2012

4 Example: Debugging Seaside’s Typo

Debugging erroneous test cases backwards (Behavior navigation) For refining
their understanding of erroneous behavior, developers experiment with the
execution and state history of a failing test case. To follow the infection chain
back to the defect, they choose a proper entry point such as the failing test or
one of its suspicious methods and start PathFinder our lightweight back in time
debugger. If anomalies are available, we classify the executed trace and so allow
developers to create proper hypotheses that assist the behavioral navigation to
defects.

Identifying corrupted state in the infection chain (State navigation) Besides the
classification of executed behavior with spectrum-based anomalies, we also high-
light parts of the infection chain with the help of state anomalies. We derive state
properties from the hidden knowledge of passing test cases, create generalized
contracts, and compare them with failing tests. Such dynamic invariants reveal
state anomalies by directly violating contracts on the executed infection chain and
so assist developers in creating and refining hypotheses. For this state naviga-
tion, our PathMap automatically harvests objects and creates contracts while our
PathFinder integrates the violations into the execution history.

Besides our systematic top down process for debugging reproducible failures, the
combination of testing and anomalies also provides the foundation for interconnected
navigation with a high degree of automation. All four navigation activities and their
anomalous results are affiliated with each other and so allow developers to explore
failure causes from combined perspectives. An integration supports developers in an-
swering more difficult questions and allows other debugging tasks to benefit even from
anomalies. Linked views between suspicious source code entities, erroneous behav-
ior, and corrupted state help not only to localize causes more efficiently but also to
identify the most qualified developers for understanding the current failure. Our Path
tools support these points of view in a practical and scalable manner with the help of
our incremental dynamic analysis. With a few user interactions, we split the expen-
sive costs of dynamic analysis over multiple test runs and varying granularity levels so
that we can provide both short response times and suitable results. Thus, developers
are able to answer with less effort where to start debugging; who understands failure
causes best; what happened before failures; and which program entities are infected.

4 Example: Debugging Seaside’s Typo

With respect to our debugging process, we demonstrate each navigation step with
the help of Seaside’s typing error in more detail. Therefore, we start with the imple-
mentation of a failing test case that reproduce the observable failure. In the case of
our example, developers have to implement a simple server request waiting for a cor-
rupted response that cannot be parsed correctly. After that, they are able to apply our
approach and its specific navigations as follows:

Fall Workshop 2012 137

Demonstrating Test-driven Fault Navigation

| Seaside-Core-HTTP |
A=

no category i — |
writeContentOn:

T

LELL|
EEE

L

i
|
=

CLOLLE O EELLL L b EEEECey) LD LT TECE LT

I

O O I | |
T
Y

|
=== | |-
|
|

Lk

LEEL
LEE

| waBufferedResponse
|
|

e

T

LLLLLL

LT

=

| | | L L L L L |
[[[[
[[[]
_lm

EEEEE

=L
el

LT[l P

== L]

—

T i mamammam mwwaaaa A|

IEEEE I

7]
|

Figure 3: PathMap: In our Seaside example, our structure navigation restricts the
search space to a few very suspicious methods in buffered responses.

4.1 Structure Navigation: Localizing Suspicious Response Ob-
jects

In our motivating typing error, we localize several anomalies within Seaside’s response
methods. Figure 3 presents the tree map visualization of Seaside with test classes
on the left side and application classes on the right side (1). After running Sea-
side’s response test suite with the result of 53 passed and 9 failed tests, our struc-
ture navigation colorizes the suspiciousness scores of methods and reveals anoma-
lous areas of the system. For example, the interactively explorable yellow box (2)
illustrates that all nine failing tests are part of the buffered test suite. In contrast, the
green box below includes the passed streaming tests. The more important informa-
tion for localizing failure causes is visualized at the upper right corner (3). There
are three red and three orange methods providing confidence that the failure is in-
cluded in the wABuf feredResponse class. To that effect, the search space is re-
duced to six methods. However, a detailed investigation of the writeContentOn:
and content method shows that they shares the same characteristics as our failure
cause in writeHeadersOn:. At this point, it is not clear from a static point of view
how these suspicious methods are related to each other. Developers need further help
in order to understand how the failure comes to be.

138 Fall Workshop 2012

4 Example: Debugging Seaside’s Typo

[WABufferedResponge

g A 68 % 13.6 17.3 15.2
= Sum up authors of > B 26 % 5.8 6.1 5.9
= suspicious methods
i = c 4% 1.0 0.7 0.8
1= / D 1% 0.3 0.2 0.2
C 2 Developer ranking
A

Spectrum-based
anomalies by our
structure navigation

Figure 4: PathMap: Our developer ranking points out (anonymized) experts. Based on
authors of spectrum-based anomalies, we create a ranked list of possible experts that
understand failure causes best.

4.2 Team Navigation: Finding Experienced Seaside Developers
for Help

With respect to our typing error, we reduce the number of potential contact persons to
4 out of 24 Seaside developers, whereby the author of the failure-inducing method is
marked as particularly important. The table in Figure 4 summarizes the (interim) results
of our developer ranking metric and suggests Developer A? for fixing the defect by a
wide margin. Compared to a coverage-based metric, which simply sums up covered
methods of failing tests per developer, our results are more precise with respect to
debugging. A’s lead is shrinking (only 55 %), C (24 %) changes the place with B (19 %),
and the list is extended with a fifth developer (1 %). It should be noted that our team
navigation does not blame developers. We expect that the individual skills of experts
help in comprehending and fixing failure causes more easily and thus might reduce the
overall costs of debugging.

4.3 Behavior Navigation: Understanding How the Failure Comes
to Be

In our Seaside example, we highlight the erroneous execution history of creat-
ing buffered responses and support developers in understanding how suspicious
methods belong together. Following Figure 5, developers focus on the failing
testIsCommitted behavior and follow the shortest infection chain from the observ-
able failure back to its root cause. They begin with the search for executed methods
with a failure cause probability larger than 90 %. The trace includes and highlights four
methods matching this query. Since the writeContentOn: method (1) has been ex-
ecuted shortly before the failure occurred, it should be favored for exploring corrupted

2Developers’ names have been anonymized.

Fall Workshop 2012 139

Demonstrating Test-driven Fault Navigation

vanEry Point i ('3‘\ Legend
G|testisCommitted % '
il super testlsCommitted. €1 Open static source code browser
o self deny: self response isCommitted 4 Govered statements f curent nods
I ’ ¥ Localize faults at statement-level
= # Halt debugger at current node
E ® Expand complete sub tree
= aStream Explore method argument
= - self = Explore receiver (beforefafter method execution)
+ WABufferedResponseTest(WAResponseTest)=>testisCon| return Explore return object

I {56%} WABufferedResponseTest>>response
WaABufferedResponse(WAResponse)==isCommitted
I {56%]} WABufferedResponseTest>>response
3 {35%} WABufferedResponse(WAResponse)>>contentType:
I {56%} WABufferedResponseTest>>response
WaBufferedResponse(WAResponse)==isCommitted
I {56%} WABufferedResponseTest>>response
B {37%} WABufferedResponse(WAResponse)>>nextPutall:
{67%} WABufferedResponseTest(WAResponseTest)>=assertLines: | IIIEIGGEGGGGGNGNGNENNNNNNN
+ | {67%} WABufferedResponseTest(WAResponseTest)>>lines
+ [ll{100%} WABufferedResponseTest=>contents
I {56%} WABufferedResponseTest>>response
w | {62%} WABufferedResponse(WAResponse)==writeOn:
[{62%} WABufferedResponse(WAResponse)>>writeStatusOn:
@ v [{100%} WABufferedResponse>>writeHeadersOn:
b {47%} WhABufferedResponse(WAResponse)>=headerAtput:
{62%} WABufferedResponse(WAResponse)>>writeHeadersOn:
{62%} WABufferedResponse(WAResponse)>>writeCookiesOn:

~ &l writeContentOn: aStream 5% & ¥ @ m[before: WABufferedR [X]
aStream nextPutAll: self contents A|aStream | v headers:a WAHeacs

o self 'Content-Type': 't|&
b
@ cookies: an Ordere
status: 200
message: '"0K'
contentsStream: a I'Y
h ! 4 >

-

-

{100%} WABufferedResponse>=>contents

Figure 5: PathFinder: The classified execution history of our Seaside typing error.

state and behavior first®. A detailed inspection of the receiver object reveals that the
typo already exists before executing this method. Following the infection chain back-
wards, more than three methods can be neglected before the next suspicious method
is found (2). Considering writeHeadersOn: in the same way manifests the failure
cause. If necessary, developers are able to refine fault localization at the statement-
level analogous to our structure navigation and see that only the first line of the test
case is always executed, thus triggering the fault (3).

4.4 State Navigation: Come Closer to the Typing Error

In our Seaside typing error, our state navigation is able to reveal two anomalies close by
the root cause. First, we run all passing tests from the still working streamed responses
and collect type and value ranges of their applied objects. Among others we check all
string objects if they are spelled correctly or not. Second, we derive common invariants
from the concrete objects and create corresponding contracts. Thus, we propagate the
implicit assertions of the response tests to each covered method and automatically
generate assertions for pre-/post-conditions and invariants of the corresponding class.
Each assertion summarizes common object properties such as types, value ranges of
numbers, and permissions of undefined objects. Third, we execute the same failing
test case as in our behavior navigation but now with enabled contracts. As soon as a

3The simple accessor method contents can be neglected at this point.

140 Fall Workshop 2012

5 Summary and Next Steps

= | {67%} WABufferedResponseTest(WAResponseTest)>>assertlLines:
« | {67%} WABufferedResponseTest(WAResponseTest)>>lines
- [{100%} WABufferedResponseTest>>contents

Legend

b {55%} WABuUfferedResponseTest>>response “% Open static source code browser
- | {62%} WABufferedResponselWAResponse)=>writeOn: & Covered statements at current node
¥ {62%} WABuUfferedResponse(WAResponse)=>writeStatusOn: # Localize faults at statement-level
; - @ Halt debugger at current nade
- - A
1 \'writeHeadersOn: aStream & Expand complste SUb e

2 self
3 aStream Explore method argument

- self B Explore receiver (before/after method execution)
return Explore return object

headerat: ‘Content-Lenght'
put: contentsStream size.
super writeHeadersOn: aStream

bl

46%} WABufferedResponse(WAResponse)>>headerAtput:
ABufferedResponse(WAResponse)>=>headers

=

® | |privateAt: aKey put: aValue a[% © % O e ®[aKey: ByteString (Content-Lenghti[X
% Pre: Spelling violation == Content-Lenght | akey : gi %L A
i 1. ~ super privateAt: akey put: aValue aValue :
5 pere ye 5 self p | i? %E
= p-11:%n
return

9 b-12: b
E 13 §h
= B-14: 6t

g h/ o)\ b

{45%} WAHeaderFields==checkVvalue: L2-J

{62%} WABufferedResponselWAResponse)>>writeHeadersOn:
{62%} WABufferedResponse(WAResponse)>>writeCookiesOn:
»- [l {100%} WABufferedResponse=>>writeContentOn:

Figure 6: PathFinder: State anomalies highlight the typing error and reveal the infection
chain in the near of the defect.

contract is violated, we mark the corresponding exception in the execution history and
so reveal for our test IsCommitted two state anomalies that are close by the defect.

Figure 6 summarizes the result of our state navigation. We mark method calls trig-
gering a violation with small purple exclamation marks (1). Developers can further
inspect these violations and see that a precondition fails. There is a spelling violation
in the first argument of this method—all streamed responses used correctly spelled
identifier keys for their header information. The corrupted state is opened for further ex-
ploration on the right (2). As our typo in “content-lenght” is automatically revealed, our
state navigation gives developers helpful advice about the real failure cause. Another
spelling violation is close by and developers can easily follow the infection chain back
(3). Finally, the next very suspicious spectrum-based anomaly at writeHeadersOn:
highlights the last step to the root cause. Following both state and spectrum-based
anomalies directly guides developers to the defect of our Seaside typing error and also
allows them to understand what causes the failure.

5 Summary and Next Steps

In this paper, we presented a demonstration of our test-driven fault navigation by de-
bugging a small example. Starting with the structure navigation, we restrict the initial
search space and lower speculations about failure causes. Based on this information,
we are able to recommend experienced developers that can further help with debug-
ging this failure. After that, developers apply our behavior and state navigation and
follow the highlighted infection chain back to its root cause.

Fall Workshop 2012 141

References

Future work deals with finishing the dissertation. So far, there is a first complete
draft including 180 pages in total with 135 pages of content. We plan to submit the
thesis at the end of this year.

References

[1] K. Beck. Test-driven Development: By Example. Addison-Wesley Professional,
1st edition, 20083.

[2] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A Flexible Environment for
Building Dynamic Web Applications. IEEE Software, 24(5):56—63, 2007.

[8] M. Eisenstadt. My Hairiest Bug War Stories. Communications of the ACM,
40(4):30-37, 1997.

[4] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1st edition, 1983.

[5] M. Haupt, M. Perscheid, and R. Hirschfeld. Type Harvesting A Practical Approach
to Obtaining Typing Information in Dynamic Programming Languages. In Proceed-
ings of the Symposium on Applied Computing, SAC, pages 1282—-1289. ACM,
2011.

[6] R. Hirschfeld, M. Perscheid, C. Schubert, and M. Appeltauer. Dynamic Contract
Layers. In Proceedings of the Symposium on Applied Computing, SAC, pages
2169-2175. ACM, 2010.

[7] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have Things Changed Now?:
An Empirical Study of Bug Characteristics in Modern Open Source Software. In
Proceedings of the Workshop on Architectural and System Support for Improving
Software Dependability, ASID, pages 25-33. ACM, 2006.

[8] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan. Scalable Statistical Bug
Isolation. In Proceedings of the Conference on Programming Language Design
and Implementation, PLDI, pages 15-26. ACM, 2005.

[9] H. Lieberman and C. Fry. Will Software Ever Work? Communications of the ACM,
44(3):122—124, 2001.

[10] R. Metzger. Debugging by Thinking - A Multidisciplinary approach. Elsevier Digital
Press, 1st edition, 2003.

[11] N. Palix, J. Lawall, G. Thomas, and G. Muller. How Often Do Experts Make
Mistakes? In Proceedings of the Workshop on Aspects, Components, and Pat-
terns for Infrastructure Software, ACP41S, pages 9—15. Technical report 2010-33
Hasso-Plattner-Institut, University of Potsdam, 2010.

142 Fall Workshop 2012

References

[12] M. Perscheid, D. Cassou, and R. Hirschfeld. Test Quality Feedback - Improving
Effectivity and Efficiency of Unit Testing. In Proceedings of the Conference on
Creating, Connecting and Collaborating through Computing, C5, pages 60-67.
IEEE, 2012.

[13] M. Perscheid, M. Haupt, R. Hirschfeld, and H. Masuhara. Test-driven Fault Navi-
gation for Debugging Reproducible Failures. In Proceedings of the Japan Society
for Software Science and Technology Annual Conference, JSSST, pages 1-17.
J-STAGE, 2011.

[14] M. Perscheid, M. Haupt, R. Hirschfeld, and H. Masuhara. Test-driven Fault Nav-
igation for Debugging Reproducible Failures. Journal of the Japan Society for
Software Science and Technology on Computer Software, 29(3):188-211, 2012.

[15] M. Perscheid, B. Steinert, R. Hirschfeld, F. Geller, and M. Haupt. Immediacy
through Interactivity: Online Analysis of Run-time Behavior. In Proceedings of the
Working Conference on Reverse Engineering, WCRE, pages 77-86. IEEE, 2010.

[16] M. Perscheid, D. Tibbe, M. Beck, S. Berger, P. Osburg, J. Eastman, M. Haupt, and
R. Hirschfeld. An Introduction to Seaside. Software Architecture Group (Hasso-
Plattner-Institut), 1st edition, 2008.

[17] C. Queinnec. The Influence of Browsers on Evaluators or, Continuations to Pro-
gram Web Servers. In Proceedings of the International Conference on Functional
Programming, ICFP, pages 23-33. ACM, 2000.

[18] G. Rawlinson. The Significance of Letter Position in Word Recognition. PhD
thesis, University of Nottingham, 1976.

[19] RTI. The Economic Impacts of Inadequate Infrastructure for Software Testing.
Technical report, National Institute of Standards and Technology, 2002.

[20] B. Steinert, M. Perscheid, M. Beck, J. Lincke, and R. Hirschfeld. Debugging into
Examples: Leveraging Tests for Program Comprehension. In Proceedings of the
International Conference on Testing of Communicating Systems, TestCom, pages
235-240. Springer, 2009.

[21] I. Vessey. Expertise in Debugging Computer Programs: A Process Analysis. In-
ternational Journal of Man-Machine Studies, 23(5):459—494, 1985.

[22] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-
mann, 2nd edition, 2009.

Fall Workshop 2012 143

Migrating Traditional Web Applications
into Multi-Tenant SaaS

Eyad Saleh

Internet Technologies and Systems - Prof. Dr. Christoph Meinel
Hasso-Plattner-Institut
eyad.saleh@hpi.uni-potsdam.de

Software-as-a-Service (SaaS) is emerging as a new model of delivering a software,
where users utilize software over the internet as a hosted service rather than an in-
stallable product. Multi-tenancy is the principle of running a single instance of the soft-
ware on a server to serve multiple companies (tenants). Large number of applications
have been built into non-SaaS mode, re-engineering such applications from scratch
into SaaS requires tremendous efforts in terms of cost, manpower, and time. Thus,
Migrating existing applications into SaaS mode becomes a requirement. In my first
technical report [25], | introduced several challenges in SaaS and multi-tenancy, one
of those challenges is software migration into SaaS. In this report, | highlight this chal-
lenge, discuss the related work and existing approaches, then | introduce my proposed
approach.

1 Introduction: Multi-tenancy Evolution

History has shown that advances in technology and computing changes the way soft-
ware are designed, developed, and delivered to the end users. These advances yield to
the invention of personal computers (PCs) and graphical user interfaces (GUIs), which
in turn adopted the client/server architecture over the old big, super, and expensive
mainframes. Currently, fibers and fast internet connections, Service-Oriented Architec-
tures (SOAs), and the high-cost of managing and maintaining on-premises dedicated
applications raised the flag for a new movement in the software industry, and the result
was the introducing of a new delivery model called Software-as-a-Service (SaaS) [1].

SaaS provides major advantages to both service providers as well as consumers.
Service providers can provision a single set of hardware to host their applications and
manage thousands of clients (tenants). As an alternative, they can easily install and
maintain their software using any laaS provider. As for consumers, they can use the
application anywhere and any time, they are relieved from maintaining and upgrading
the software (on-premises scenario), and benefit from cost reduction by following the
pay-as-you-go model [2].

Multi-tenancy is a requirement for a SaaS vendor to be successful (Marc Benioff,
CEO, Salesforce) [3]. Multi-tenancy is the core of SaaS; it is the ability to use a single-
instance of the application hosted by a provider to serve multiple clients (tenants).

Software applications have been built for decades into non-SaaS mode, reengineer-
ing or re-designing such applications from scratch requires tremendous efforts in terms

Fall Workshop 2012 145

Migrating Traditional Web Applications into Multi-Tenant SaaS

of cost, manpower, and time. Therefore, researchers have been proposing several ap-
proaches to migrate such applications into SaaS mode.

While migrating non-SaaS applications into SaaS mode, certain issues need to
be considered, such as database architecture, security isolation, Ul customizations,
data-model extensions, business logic configuration, and workflow management. In
this report, | propose an approach to facilitate the migration process with the focus on
business logic configuration and workflow customization.

After this introduction, Section 2 discusses the related work and Section 3 outlines
our proposed approach. In Section 4, we describe the use case followed by the imple-
mentation. Finally, we close with future work in Section 5.

2 Related Work

Migrating legacy applications to the cloud has received considerable attention recently
as SaaS is becoming more popular. Existing approaches [4,5,7,10-12] typically focus
on Ul customization and basic database modifications. The goal of such approaches
is rather the ability to convert a legacy application into SaaS; they didn’t consider to
which level the migrated application will cope with changing business and users’ re-
quirements. For example, Cai et al. [4] and Nitu [10] concentrate on the look-and-feel
and some basic configuration options; critical points such as business logic, workflow
customization and data-model extension are not considered. An interesting approach
for migrating traditional web applications into SaaS automatically without changing the
source code is propose by Song et al. [5]. They adopt several technologies to ac-
complish this goal: (1) page template to fulfill configurability, (2) memory in thread to
maintain tenant-info, and (3) JDBC proxy to adopt the modified database. Practically,
migrating an application from non-SaaS mode into SaaS without having or changing
the source code is very hard to achieve. Another transparent approach is introduced
by Cai et al. [6], they focus on intercepting web requests and deriving tenant context,
then carry this context with a thread in the web container. Additionally, they categorise
several isolation points to achieve multi-tenancy.

Experienced reports are also reported in the literature, one example is Bezemer et
al. [7], they report on a use case of converting an industrial, single-tenant application
(CRM) for a company called Exact? into a multi-tenant one. They propose a pattern
to migrate the application taking into account hardware sharing, high degree of config-
urability, and shared database instance. Another example is Chauhan et al. [8], they
report on their efforts in migrating Hackystat [9], an open-source legacy application to
the cloud.

Back-end customization was the focus of Muller et al. [11], they identify different
categories of customization, such as desktop integration and Ul customization. Addi-
tionally, they identify two cornerstones for a customizable, multi-tenant aware infras-
tructure, namely, dynamic instance composition and abstraction from the persistency
layer.

Zhttp://www.exact.com

146 Fall Workshop 2012

3 Our Proposed Approach

Regarding performance and availability, several approaches tackle this challenge
[21,22]. Service Performance Isolation Infrastructure (SPIN) [22] aims at achieving
efficient isolation and better resource sharing at the same time. SPIN detects insta-
ble states, identifies aggressive tenants (mainly based on abnormal resource usage),
and removes bad impacts on other tenants. The main limitation of this approach is
the manual identification and removal of the aggresive tenants, which is not applicable
in large-scale SaaS environments. While Guo et al. [21] introduce a hybrid isolation
between tenants. This isolation is accomplished in two steps. First, it categorizes the
tenants into groups based on their SLA and behavior during run-time. Second, it ap-
plies one or more of the following isolation techniques: by tenant resource reservation,
by tenant resource admission control, or tenant-oriented resource partition. Although
this approach can achieve a degree of isolation between tenants, it decreases the level
of resource sharing, because dynamic sharing between tenants is not possible.

From security perspective, security and data privacy on the SaaS level needs to
be carefully considered, because the information about companies (tenants) is stored
outside their control; therefore, they need to make sure that all required mechanisms
to secure their data are in place. Current approaches, such as Lin et al. [23] propose a
data protection framework consists of mainly three components, policy ranking, policy
integration, and policy enforcement. Policy ranking aims to match the service provider
who provides privacy policies similar to the client requirements. The integration mod-
ule takes the requirements from the previous module as input, and generates privacy
policies that satisfy involved parties. Finally, the enforcement module is responsible for
ensuring that the policies are correctly applied in the environment. Another approach
is proposed by Shen et al. [24], that achieve data privacy protection based on privacy
constraints. They propose three kinds of privacy constraints to support multi-tenancy:
(1) Attribute Privacy Constraint, (2) Value Privacy Constraint, and (3) Dependency Pri-
vacy Constraint. Additionally, a hybrid fragmentation algorithm is introduced.

3 Our Proposed Approach

In this report, we propose an approach for migrating traditional web applications into
SaaS mode as shown in Figure 1. The proposed approach facilitate the migration pro-
cess to produce a multi-tenant version of the application. The core component of our
approach is the configuration and customization layer, by which, the Ul components,
such as logos and colors, the business logic, and workflow configuration data for the
current tenant are restored and passed to the application server. The DB configura-
tion data will be passed to the DB server for query transformation as well. Further,
the application server receives the above specified data from the upper layer and pass
it to the run-time customization engine, which integrates all components and lunches
the application instance. Furthermore, a log service is used to record the application
actions and store them in text files. Finally, a dedicated monitoring service is used to
monitor the performance and status of the application, and detects any faults or bad
resource usage. Next, we describe our approach in details.

Fall Workshop 2012 147

Migrating Traditional Web Applications into Multi-Tenant SaaS

<
@« a @
T T2 n
v
~
Authentication Module 3 E Credentials
DB
J
L r -
Configuration 3‘-22“_': _. ’_ i (‘
and 8 — =
Customization y =) =
Layer Ul Customization Workflow Customization Businesslogic pp configuratio
A\Configuration |

= — |

Run-Time

A7
- Customization M \%
Back-End Layer ‘ Engine
Languag

Monitoring pack Database Instances

Application Server

Figure 1: The Architecture of our Proposed Approach

3.1 The Back-End Layer
The main components of this layer are:

A) Monitoring means getting feedback from the usage of the current software, which
leads to enhance and improve the current version of the software. This service
monitors the performance of the software, for example, which queries respond
slowly, what are the most heavily-used components of the application, which ten-
ant is overusing the resources, etc. This collective data will enable the vendor to
enhance (upgrade) the software and better isolate tenants to improve the perfor-
mance.

B) Log files are important to several applications, and more importantly to the multi-
tenant ones. They can be used for many reasons, such as monitoring the per-
formance of the application, figuring out processing bottlenecks, discovering soft-
ware bugs in the early stages of the release and fix them immediately. Thus,
we can use data extracted from those files to improve the performance of the
application.

C) A multi-tenant application is used by several tenants, and they might be from
different domains or having specific language requirements. Therefore, a lan-
guage pack is an additional component the tenant can use to personalize the

148 Fall Workshop 2012

3 Our Proposed Approach

3.2
A)

B)

language settings. This component is responsible for managing language files,
and providing the settings that correspond to the tenant preferences to the run-
time customization engine. Several languages could be defined in the language
pack such as English, Arabic, German, Chinese, etc.

The Configuration and Customization Layer

User Interface Customization: Ul customization means changing the look-and-
feel of the application to be tenant-specific. This includes general layout, logos,
buttons, colors, and locale settings. To utilize this customization, we propose the
usage of Microsoft's ASP.NET master page concept [16].

ASP.NET master page allows the developer to create a consistent look for all
pages (group of pages) in the application; one or more master pages could be
created for each tenant and used in the application. The master page provides
a shared layout and functionality for the pages of the application, when users
request any page, ASP.NET engine merges the master page that contains the
layout with the requested content-page, and sends the merged page to the user
as shown in Figure 2.

Qﬂaster file “A.master"” HEG ntent file “A.aspx"”

=% @ Master %= =% @ Page MasterPageFile=
"A.master” %>
<asp.contentplacehalder

runat=server id="Main® <asp:Content rumat=serwver

-
QIIDntentP'lau:eHalderId="r-'Iain' kS
Content here</asp:Content>
<asp:contentplaceholder
runat=server id="Footer" /> %casp:{gntent runat=server
ContentPlaceHolderId="Footer" =
| Content here</asp:Content>

Resulting
Page

ET L

Figure 2: ASP.NET Master Page [16]

Application developers can define a master page for each tenant by applying
the master page technique, which contains the required layout, color, buttons,
and other design components. Moreover, several master pages could be defined
for each tenant. Therefore, tenants will have the chance to get benefit of using
dynamic look-and-feel.

Workflow Customization: The workflow of the application might vary from one
tenant to another, for instance, a recruitment agency (Tenant A) might wait until

Fall Workshop 2012 149

Migrating Traditional Web Applications into Multi-Tenant SaaS

Tenant A

TenantB

C)

they receive a request for a specific vacancy (from a company looking for employ-
ees), then start looking for applicants, while another agency (Tenant B) would
collect applications, interview applicants, and then short-list them according to
their potential, and have them ready for any vacancies from companies looking
for employees (Figure 3). Therefore, we consider that customizing the workflow
of the multi-tenant software is important. In order to achieve this customization,
two steps are required. First, identify the components of the software that need
to be customized, second, change the design of these components to be loosely-
coupled, thus they can be easily replaced by other versions and integrated with
other components, and therefore, each tenant can have his own version of the
same component.

Worth to mention that changing the design of the entire application into loosely-
coupled components is a difficult task, on the other hand, customizing the com-
plete workflow of the application may not be necessary since the majority of the
application components are normally common among all tenants. Therefore, our
approach, as mentioned earlier, is to identify the components of the software that
need to be customized first, then proceed with the customization process.

Vacancy I Collect Applications Interview

. Request Received Applications Review Candidates Assesment
Collect . Applications Interview Vacancy

. Applications Review Candidates Assesment Request Received

Figure 3: Different Workflow for two recruitment agencies

Business Logic Configuration: In software engineering, multi-tier architecture
enables developers to divide the application into different tiers to maximize ap-
plication’s re-usability and flexibility. One of the most common implementations
of multi-tier is the three-tier architecture, which divides the application into three-
tiers, namely, the presentation layer (PL), the business logic layer (BLL), and the
data access layer (DAL).

Business rules are part of the business logic layer (BLL), and these rules vary
from one organization to another. For instance, in a travel agency, if a reseller or
a client exceeds his credit limit, all his upcoming purchases are rejected, while
another agency may apply a different rule that state if the reseller exceeds his
credit limit for three weeks without any payment, he is blacklisted.

In order to achieve and maximize multi-tenancy, we propose that these business
rules need to be tenant-specific; the tenant should have the ability to design,
apply, and re-configure his own rules at run-time. Therefore, a tool that offers this
feature is needed as a part of the proposed approach.

150

Fall Workshop 2012

4 Use Case and Implementation

D) Database Configuration: Database design is considered as one of the most
critical issues in multi-tenant SaaS because multiple tenants are mapped into one
physical database. Therefore, a robust database architecture must be modeled
and implemented.

Consolidating multiple tenants into one database requires changes to the design
of the tables and the queries as well, thus, a query transformation is required. For
instance, in a traditional hospital management system, a simple query to fetch a
patient record would be "select * from patient where SSN=1234", while in a multi-
tenant system, this will not work, since the "patient" table would have information
for many tenants (i.e., hospitals). Therefore, the query should be changed to
something similar to "select * from patient where tenant_id=12 and SSN=1234",
in this case, the patient record that belongs to the tenant 12 (i.e., hospital 12) is
retrieved. Based on that, the rules for query transformation should be stored in
the database configuration files and restored by the transformation engine.

4 Use Case and Implementation

In Jan 2011, Forrester Research published a report with the title "Which Software Mar-
kets Will SaaS Disrupt?" [18], one of the conclusions was that Human Resource Man-
agement Software (HRMS) is a good candidate for SaaS. Thus, we decided to select
an HRMS as our use case. Orange Human Resource Management (OrangeHRM)
is the world’s most popular open source HRM application with more than one million
users globally and more than 600,000 downloads [17]. OrangeHRM released under the
GNU General Public License and targets small and medium enterprises. The system
functionality includes employee information management, absence and leave manage-
ment, recruitment management, performance evaluation, etc. From technical point of
view, OrangeHRM is implemented using PHP and MySQL, and its relational data model
contains about 115 tables. The implementation of our approach is described below.

The main components of our implementation can be classified as follows:

A) Tenant Subscription: A dedicated module is responsible of handling tenants
subscription. The tenant fills the required information in a simple form and re-
ceives access to the system within 10 minutes.

B) Authentication Module: Two additional tables are created, to store tenant’s in-
formation and credentials. The first table stores general information about each
tenant, while the second table stores the usernames and passwords for all ten-
ant’s users.

C) Ul Customization: Ul Customization is achieved by separating the code from
the view layer, then allowing the tenants to customize the view layer to match
their needs. OrangeHRM follows the three-tiers architecture we proposed in our
architecture, therefore, in order to accomplish Ul customization, we will develop
a tool to allow tenants to configure the Presentation Layer (PL) according to their

Fall Workshop 2012 151

Migrating Traditional Web Applications into Multi-Tenant SaaS

D)

E)

F)

G)

needs. thus, the tenant is able to change the look-and-feel of the system, such
as general layout, colors, images, font-type, menu design, etc.

Business Logic Configuration: As mentioned earlier, OrangeHRM is built on
top of Symfony, and Symfony was developed using standard OO techniques, and
therefore, all the business logic is encapsulated in classes. As a result, customiz-
ing the business logic means having different classes for different tenants.

First, for each unit of business logic, a base class is created which contains the
common business logic shared by all tenants. Second, a second class is cre-
ated for every tenant which inherits from the base class, thus all data members
and member functions are available for this child class. A dedicated tool will be
developed to allow the tenant to customize the code of the child class, it will be
similar in concept to the query builder in known DBMSs such as Oracle or SQL
Server. The tenant will be able to define new variables, insert different program-
ming statements such as if-else or loops, use HTTP objects, such as Request
and Response, etc. It is worth mentioning that the tenant will not be able to write
any single line of code manually, simply for validation purposes. It will be very
complex to validate code entered by tenants manually.

Database Configuration: Several schema-mapping techniques are available for
multi-tenancy and SaaS in general [13,15,20]. In terms of schema management
and DDL, these techniques can be classified in two types, first, the database
owns the schema, such as private tables, extension tables, and sparse columns
(in Microsoft SQL Server), second, the application owns the schema, such as
XML and pivot tables.

We decided to select the second option where the application owns the schema
based on our assumption that the application needs to be customized as much as
possible, especially in terms business logic. The XML technique is ideal for our
work because it allows us to dynamically (i.e., on the fly) customize the database
by attaching an XML document to every table we feel appropriate. In this XML
document, we can define custom fields belong to some tenants over the others.

Tenant Termination: This module has four different cases where the tenant ac-
count can be terminated: (1) the duration of the subscription period has ended,
and the tenant is not intended to renew, (2) the tenant decides to voluntarily termi-
nate his subscription, (3) the vendor detects bad behaviour from the tenant during
service monitoring, such as bad resources usage, and (4) automatic termination
of tenant account without notification, and this option might be available in some
cases. However, this should be mentioned in the availability SLA and terms of
use policies.

Tenant Management: In this module, the vendor is able to list all the tenants,
view their details, such as subscription date, expiry date, etc. Also the vendor
is able to view the specific customizations done by each tenant. Moreover, the
vendor can monitor the performance of the tenants and check their resources
usage. contact with tenants is also done using this module.

152

Fall Workshop 2012

5 Summary and Future Work

5

Summary and Future Work

In this report, we explored the challenge of migrating existing web applications into
SaaS. We discussed the related work and introduced our approach to handle such a
challenge. We propose a new approach to facilitate the migration process. Primarily,
we explored the configuration and customization of the application from several layers,
such as Ul, business logic, workflow, and database design. The future work will focus
on applying our approach on OrangeHRM, and conduct several experiments to validate
the proposed approach. Additionally, we will conduct a survey to understand the users’
experience and to highlight key requirements from their perspective.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

T. McKinnon: The Force.com Multitenant Architecture: Understanding the De-
sign of Salesforce.com’s Internet Application Development Platform, White Paper,
USA, 2008.

M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, and M. Zaharia: Above the Clouds: A Berkeley View of
Cloud Computing. Technical Report, University of California, Berkeley, USA, 2009.

D. Woods: Salesforce.com Secret Sauce, Forbes, January 2009. [On-
line]. Available: http://www.forbes.com/2009/01/12/cio-salesforce-multitenancy-
tech-cio-cx_dw_0113salesforce.html [retrieved: 10, 2012]

H. Cai, K. Zhang, M. J. Zhou, W. G., J. J. Cai, and X. Mao: An End-to-End Method-
ology and Toolkit for Fine Granularity SaaS-ization. In IEEE International Confer-
ence on Cloud Computing, Bangalore, India, 2009.

J. Song, F. Han, Z. Yan, G. Liu, and Z. Zhu: A SaaSify Tool for Converting Tra-
ditional Web-Based Applications to SaaS Application. In IEEE 4th Int. Conf. on
Cloud Computing, Washington, DC, USA, 2011.

H. Cai, N. Wang, and M. Zhou: A Transparent approach of enabling SaaS multi-
tenancy in the cloud. In IEEE 6th World Congress on Services, Miami, Florida,
USA, 2010.

C. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, A. Hart: Enabling multi-
tenancy: An industrial experience report. In the 26th IEEE International Confer-
ence on Software Maintenance, Timisoara, Romania, 2010.

M. Chauhan and M. Babar: Migrating service-oriented system to cloud computing:
An experience report. In IEEE 4th Int. Conf. on Cloud Computing, Washington DC,
USA, 2011.

Hackystat website. [Online]. Available: http://code.google.com/p/hackystat [re-
trieved: 10, 2012]

Fall Workshop 2012 153

References

[10] Nitu: Configurability in SaaS (software as a service) applications. In the 2nd India
Software Engineering Conference, Pune, India, 2009.

[11] J. Muller, J. Kriiger, S. Enderlein, M. Helmich, and A. Zeier: Customizing Enter-
prise Software as a Service Applications: Back-end Extension in a multi-tenancy
Environment. In the 11th International Conference on Enterprise Information Sys-
tems, Milan, Italy, 2009.

[12] D. Yu, J. Wang, B. Hu, J. Liu, and L. Zhang: A Practical architecture of cloudifica-
tion of legacy applications. In IEEE 7th World Congress on Services, Washington
DC, USA, 2011.

[13] F. Chong, C. Gianpaolo, and R. Wolter: Multi-Tenant Data Architecture, Microsoft
Corporation, http://www.msdn2.microsoft.com, 2006.

[14] W. Tsai, Q. Shao, Y. Huang, X. Bai: Towards a scalable and robust multi-tenancy
Saa$S. In the Second Asia-Pacific Symposium on Internetware, Suzhou, China,
2010.

[15] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger: Multi-Tenant
Databases for Software as a Service: Schema-Mapping Techniques. In the 2008
ACM SIGMOD international conference on Management of data, Vancouver,
Canada, 2008.

[16] ASPNET Master Page on Microsoft.com. [Online]. Available:
http://msdn.microsoft.com/en-us/library/wtxbf3hh.aspx [retrieved: 10, 2012]

[17] OrangeHRM Website. [Online]. Available: http://www.orangehrm.com [retrieved:
10, 2012]

[18] A. Bartels, L. Herbert, C. Mines, and Sarah Musto: Forrester Re-
search. [Online]. Available: http://www.forrester.com/Which+Software+
Markets+Will+SaaS+Disrupt/fulltext/-/E-RES57405 [retrieved: 10, 2012]

[19] Symfony Website. [Online]. Available: http://www.symfony-project.org/ [retrieved:
10, 2012]

[20] S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold: A Comparison of Flexible
Schemas for Software as a Service. SIGMOD Conference (SIGMOD 2009), Prov-
idence, Rhode Island, USA, 2009.

[21] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao: A framework for native
multi-tenancy application development and management. In The 9th IEEE Int.
Conf. on E-Commerce Technology and The 4th IEEE Int. Conf. on Enterprise
Computing, E-Commerce and E-Services, Tokyo, Japan, 2007.

[22] X. H. Li, T. C. Liu, Y. Li, and Y. Chen: SPIN: Service Performance Isolation In-
frastructure in Multi-tenancy Environment. In the 6th International Conference on
Service-Oriented Computing, Sydney, Australia, 2008.

154 Fall Workshop 2012

References

[23] Dan Lin and Anna Squicciarini: Data protection models for service provisioning in
the cloud. In the 15th ACM symposium on Access control models and technolo-
gies, Pittsburgh, Pennsylvania, USA, 2010.

[24] Y. Shen, W. Cui, Q. Li, Y. Shi: Hybrid Fragmentation to Preserve Data Privacy for
SaasS. In the 2011 Eighth Web Information Systems and Applications Conference,
Chonggqing, China, 2011.

[25] Eyad Saleh. “Multi-tenans SaaS: Challenges and Approaches". Technical report,
Hasso-Plattner-Institut, Potsdam, Germany, April 2012.

Fall Workshop 2012 155

Challenges in the Visualization of Large
Multi-Dimensional Hierarchies

Sebastian Schmechel
Computer Graphics Systems Group

Hasso-Plattner-Institute
sebastian.schmechel@hpi.uni-potsdam.de

The visualization of hierarchically ordered data has an important role in the research
field of information visualization. In extension to the parent-child-relationship between
nodes in such hierarchy, the encoding of additional attributes and their evolution over
time results in a major challenge in this research area. To handle challenges like large
data visualization, the stability of layout algorithms, to support user’s pattern recog-
nition and through it the memorability of visualization parts, and the interaction and
configuration depending on users’ needs, new rendering, interaction and visualization
techniques are needed. This report presents the main challenges of multidimensional
hierarchy visualization and discusses special issues like constrained hierarchies as well
as time-dependent changes and their consequences.

1 Introduction

The visualization of hierarchicall ordered data has an important role in the research
field of information visualization. Its primary goal, supporting a user to achieve a fast
visual extraction of the underlying data-structure, is enabled either explicit, through
node-link diagrams, implicit, through recursive partitioning of a given root-space, or in
a hybrid way [10]. The commonality of these three ways is the creation of geomet-
rical representations of a hierarchy’s nodes — the visualization artifacts. In general,
the hierarchically ordered nodes, represented by those artifacts, contain additional in-
formation dimensions. Using various visual variables, e.g., size, color or position (a
detailed overview can be found in [2]), as a basis for the visualization artifacts the pos-
sibility to encode these additional dimensions is given.

For example, a file-system visualized by a simple Treemap algorithm (Slice’n Dice
Treemap [11]) containing folders and files (shortcuts are not included due to the de-
struction of the basic tree structure), represents the hierarchical data with files as leafs
and folders, that can recursively contain folders and files, as nodes. In addition to
the hierarchical parent-child relationship information of files and directories meta in-
formation for both types about the label, creator or editing authors and permission
details are attached, as well as specific information for leaf nodes (files), e.g., size or
type-specifier. The aforementioned Slice’n Dice Treemap algorithm partitions a given

Fall Workshop 2012 157

Challenges in the Visualization of Large Multi-Dimensional Hierarchies

(a) Slice 'n dice Treemap [11] (o) Cone-Tree [8]

Figure 1: Two layout approaches for hierarchy visualization

rectangular bounding area, representing the root node of the hierarchy, into smaller
partitions — the roots’ children — with respect to their percentage size of its parent.
The bounding rectangle is split alternating in either horizontal or vertical way depending
on their depth-level in the hierarchy. This results in a classical 2D-Treemap, encoding
the depth-level of nodes and their size attribute.

Several other layout algorithms exists, all with their specific advantages and disad-
vantages. One aspect to focus is the stability and readability of these algorithms. More
over to visualize multidimensional hierarchically ordered data additional mappings are
needed and common problems of large data-set and hierarchies with additional con-
straints have to be discussed.

2 Challenges

This section summarizes and discusses the existing challenges of large multidimen-
sional hierarchy visualization in more detail and gives an idea of how to create a multi-
dimensional hierarchy visualization.

2.1 Layout Algorithms

The described Slice’n Dice algorithm is just one example to create an initial layout that
visualizes the parent-child relationships and weights of the hierarchy nodes. Various
other layout algorithms and approaches exist, e.g., PieTree [3], Fractal Tree [7] or Sun-
burst [12]. Schulz et al. [10] describe the design space of hierarchy visualization by
three main aspecits:

e Dimensionality (2D / 3D / hybrid)

158 Fall Workshop 2012

2 CHALLENGES

(a) Software System Files at Revision x (b) Software System Files at Revision x+n

Figure 2: Visual effect of time-dependent changes in the underlying data attributes

e Edge Representation (explicit / implicit / hybrid)
e Node Alignment (radial / axis-parallel / free)

For Example: The aforementioned Slice’n Dice algorithm of Johnson and Shneiderman
is a 2D (dimensionality), axis-parallel (node alignment) layout with an implicit edge rep-
resentation (Figure 1(a)), whereas the Cone-Tree [8] of Robertson et al. is a 3D, radial
layout, which visualizes its edges explicitly (Figure 1(b)).

This huge variation of algorithms that are used to create an initial layout brings up
the question of comparability with respect to the users needs. For it, there are two
main properties of layout algorithms:

2.1.1 Readability

The readability describes the cognitive effort of a user to create a mental model of
the underlying hierarchical relationship and their attributes. It involves the ability to
compare items’ attributes with each other. The aforementioned Slice’n Dice algorithm
for example, has a bad readability for item size comparison because of its alternating
change of the slice-axis in horizontal and vertical way. In it, it is possible to create items
with equal area size but totally different aspect ratios.

2.1.2 Stability

The degree of stability of a layout algorithm is determined by its visual change due to
changes in the hierarchy and the nodes’ attributes. If small changes in the hierarchy,
e.g., adding or removing a node, have a large effect on the visual appearance of the
resulting visualization one speaks off instable layouts. This property gets important in

Fall Workshop 2012 159

Challenges in the Visualization of Large Multi-Dimensional Hierarchies

Root st 10000 \ (\ [\ [\
[~ 1 —! f—

Figure 3: Slice’'n Dice Treemap with additional encoding (file/directory size mapped to
bounding area, file-type to color and number of editors to height)

case of visualizing evolutions of hierarchies instead of just looking at snapshots at a
single time (Figure 2).

2.2 Additional Attribute Encoding

To encode additional attributes in the previous example other dimensions of the visual
artifacts’ design space are used. The number of a nodes’ authors can be mapped to
the node height. Furthermore color can be used to show the depth level of directory
artifacts and the type of files (see Figure 3). Besides the dimensions of hierarchical
nodes’ attributes, which makes it possible to show snapshots at a specific time, the
dynamic changes over time form another important dimension. One important require-
ment to create a visualization that shows the evolution of hierarchies and their attributes
is the aforementioned layout-stability. Another attribute dimension, which will not be
discussed, is the connection between leaf-nodes, visualized for example in Holten’s
BundleView [5].

2.3 Large Hierarchical Data-Sets

Another big advantage in hierarchical data visualization is the size of the datasets.
Going back to the directory example, hierarchies with more than 100k items are quite
common. The visualization of those huge datasets affects two main aspects. First,
an effective representation of the given data (hierarchy and attributes) is needed to
make sure the needed memory stays minimal. Second, computer graphics solutions for
complex geometry rendering is needed due to the additional mappings. Through these
facts techniques like level-of-detail, server-side rendering and hardware rendering have
to be focussed. Examples for such datasets are SAP-Software systems structure as
well as file-systems, the icd-code base and the tree of life.

160 Fall Workshop 2012

4 APPROACHES

2.4 Constraints in Hierarchies

The last aspect to focus on are hierarchies that are constrained in a several way. Going
back to the SAP-Software System example, the given hierarchy is represented by the
structure packages as group nodes and development objects as leaf nodes. Besides
that, there are 2 other hierarchies that work as constraints and should be able to be
displayed in a visualization — the maintenance component hierarchy and the appli-
cation component hierarchy. They are logical hierarchical representations created by
grouping elements of the structure package hierarchy, which can originate from dif-
ferent levels and parents. These constraints, that do not effect the structure package
hierarchy itself but the positioning of their nodes require an extra handling.

3 Related Work

Schulz et al. give a good overview about hierarchical visualization [9]. The huge vari-
ety of visualization listed there shows two things. The visualization techniques do not
differ a lot for the last decade and there are still no visualizations that handle all of the
aforementioned challenges. One of the main problems is that visualizations are often
too static to bring a solution for these complex problems. For it, the use of hybrid ap-
proaches is a good entry point.

Steinbriickner and Lewerentz introduced a metaphor-based method to create a stable
hierarchy visualization with additional informations about the hierarchies evolution [13].
A road network created by using a fractal algorithm is created that represents the hi-
erarchy nodes. Leafs are mapped onto building located on the side of their road (par-
ent node). The elevation buildings standing on represents a node’s age in the graph.
Nodes that are removed or moved in the hierarchy are painted with a low alpha value
while the rest of the items has color mapping.

Balzer and Deussen present another approach to create hierarchy visualization with
a higher stability — Voronoi treemaps [1]. They use Voronoi diagrams as bases for
the recursive layout algorithm. A random point set, representing the nodes children, is
initally used to create a Voronoi diagram. After that the centroid of the created cells are
calculated and used as new sites. The Voronoi diagram is iteratively calculated until
a threshold of movement for these new calculate centroid sites is reached. Several
other publications improve the calculation time by using either hardware accelaration,
parallel processing or totally different algorithms like [14], [4]or [6].

4 Approaches

To create visualizations with higher layout stability the use of Voronoi diagrams or their
generalization — power diagram — is a well proved way. However no 3D visualizations
based on Voronoi diagrams are published yet. One of the main problems in existing

Fall Workshop 2012 161

Challenges in the Visualization of Large Multi-Dimensional Hierarchies

approaches is the start with a random point set as basis for the layout and through it
the need for an iterative calculation of it until a defined stability threshold is reached.
By using an algorithm that creates a unique pointset to a given polygon this will be not
needed anymore.

For the visualization of constrained hierarchies only explicit edge representations are
useful. The use of implicit edge representation would result in recursive partitioning of
a given parent space. Through it, the rearrangement of nodes from different parents as
group become impossible without destroying the readability of the basic hierarchy. To
handle this, a layout algorithm, similar to the one Steinbriickner and Lewerentz used,
but with configurable curves as group nodes is one possible solution. Users then can
get an idea of the hierarchy by viewing the structural road network and deform the visu-
alized roads to make the relations or constraints clear by creating regional groups. An-
other more automatically way to create the regional groups is to use a force metaphor,
similar to the dust and magnet visualization technique for multi-variate data [15]. The
computation of the constraint regions can then be done by mapping a gravity force
value onto the distance of a node to a specified region.

The challenge of rendering high complex 3d scenes with simple items, e.g., boxes in
Treemaps, polygons in Voronoi-Treemaps, can be solved by an approach we submitted
at the GRAPP conference. For it, we use a geometry shader, that handles the creation
of simple shapes (triangle strips), with its desired shape attributes as input values (size
/ height). This approach also comes with another advantage, the representation of the
complex scenes can be simplified to point plus attribute representations to decrease
the needed memory and through it makes it possible to visualize millions of items.

5 Next Steps

As next steps I'm planning to prototypical implement the aforementioned aspects with
primary focus on stable layouting, constraints in hierarchies and configurability of lay-
outs. After that | want to focus more on interaction topics in 2.5D or 3D Voronoi
treemaps like rearrangement of nodes and testing focus and content techniques in
it. Furthermore the use of other visual variables like shape or texture has not been
focused on yet.

6 Further Activities

In the last semester | co-organized the seminar for software visualization and analy-
sis. There | supervised a student working on an image-based approach for Treemap-
comparison to identify and visualize changes in multiple Treemap layouts generated
from snapshots of a hierarchy at different evolution steps. More over | was teaching as-
sistant in the “Visualization” lecture. Furthermore I'm taking part of the SAP Innovation
Center / HPI Cooperation for Software Visualization. The main goal in it, is to create

162 Fall Workshop 2012

REFERENCES

Figure 4: Visualization of SAP Development Object Relationships

visualizations that help SAP-IC identify structural and performance problems with SAP-
related data (see Figure 4). At least | co-submitted a paper showing a new technique
for a faster 3D-Treemap rendering technique at the GRAPP conference.

References

[1] Michael Balzer and Oliver Deussen. Voronoi treemaps. In Proceedings of the
Proceedings of the 2005 IEEE Symposium on Information Visualization, INFOVIS
'05. IEEE Computer Society, 2005.

[2] J. Bertin and M. Barbut. Sémiologie graphique: les diagrammes, les réseaux, les
cartes. Mouton Paris, 1967.

[3] A. Dix, R. Beale, A. Wood, et al. Architectures to make simple visualisations using
simple systems. In AVI: Proceedings of the working conference on Advanced
visual interfaces, volume 2000, pages 51-60, 2000.

[4] D. Gotz. Dynamic voronoi treemaps: A visualization technique for time-varying
hierarchical data. Technical report, Technical Report RC25132, IBM, 2011.

[5] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hi-
erarchical data. Visualization and Computer Graphics, IEEE Transactions on,
12(5):741-748, 2006.

[6] A. Nocaj and U. Brandes. Computing voronoi treemaps: Faster, simpler, and
resolution-independent. In Computer Graphics Forum, volume 31, pages 855—
864. Wiley Online Library, 2012.

Fall Workshop 2012 163

Challenges in the Visualization of Large Multi-Dimensional Hierarchies

[7] T.J. Ong, J.J. Leggett, and U. Yun. Visualizing hierarchies and collection struc-
tures with fractal trees. In Computer Science, 2005. ENC 2005. Sixth Mexican
International Conference on, pages 31—40. IEEE, 2005.

[8] G.G. Robertson, J.D. Mackinlay, and S.K. Card. Cone trees: animated 3d visu-
alizations of hierarchical information. In Proceedings of the SIGCHI conference
on Human factors in computing systems: Reaching through technology, pages
189-194. ACM, 1991.

[9] H.J. Schulz. Treevis. net: A tree visualization reference. Computer Graphics and
Applications, IEEE, 31(6):11-15, 2011.

[10] H.J. Schulz, S. Hadlak, and H. Schumann. The design space of implicit hierarchy
visualization: A survey. Visualization and Computer Graphics, IEEE Transactions
on, 17(4):393-411, 2011.

[11] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach.
ACM Transactions on graphics (TOG), 11(1):92-99, 1992.

[12] J. Stasko and E. Zhang. Focus+ context display and navigation techniques for en-
hancing radial, space-filling hierarchy visualizations. In Information Visualization,
2000. InfoVis 2000. IEEE Symposium on, pages 57—65. IEEE, 2000.

[13] F. Steinbriickner and C. Lewerentz. Representing development history in software
cities. In Proceedings of the 5th international symposium on Software visualiza-
tion, pages 193—-202. ACM, 2010.

[14] A. Sud, D. Fisher, and H.P. Lee. Fast dynamic voronoi treemaps. In Voronoi
Diagrams in Science and Engineering (ISVD), 2010 International Symposium on,
pages 85-94. IEEE, 2010.

[15] J.S.Yi, R. Melton, J. Stasko, and J.A. Jacko. Dust & magnet: multivariate informa-
tion visualization using a magnet metaphor. Information Visualization, 4(4):239—
256, 2005.

164 Fall Workshop 2012

Memory Management in a Many-Core
Distributed Hypervisor

Jan-Arne Sobania

Operating Systems and Middleware
Hasso-Plattner-Institut
jan-arne.sobania@hpi.uni-potsdam.de

Computer architecture for mainstream desktop and server machines is changing.
What began with single-core machines and is mostly multi-core today will be many-
core in the future — much more processor cores, and consequentially overall different
system architecture and interconnect. This provides challenges for designers and en-
gineers to provide backwards compatibility for existing software on modern machines:
hardware may no longer provide features, like cache coherency, programmers have
been accustomed to and software relies on. This report proposes a solution in form of
virtualization layer, consisting of distributed hypervisors, to provide those features the
real machines lack, thus allowing coexistence of old and new applications on modern
platforms.

1 Introduction

Due to advancements in processor manufacturing processes over the last years, the
classic architecture of “mainstream” computers — especially, those based on the Intel
32-bit architecture and its descendants —is changing. What first started with the single-
processor 8086 as the IBM PC is now one of the most successful architectures in the
market, ranging from small laptops to mid- and high-end servers. All these systems
are multi-core machines today, following the well-known shared-memory symmetric
multi-processing (SMP) model.

However, SMP has its drawbacks. With an increasing number of cores, inter-core
communication overhead increases as well. If each core needs to communicate with
each other, for example to maintain cache coherency (a necessary prerequisite for
SMP operation), it places a natural limit on how many cores can be integrated. Even
though these limits can be increased by using well-known techniques from cluster ma-
chines [12] — like directory nodes to restrict the set of cores that need to receive cache-
related messages — this merely delays the problem. Therefore, researchers are striving
for other architectures to build future many-core chips; processors with far higher num-
bers of cores than today’s, and a potentially very different system and interconnect
architecture.

An example of a potential prototype for such an architecture is the Intel Single-
chip Cloud Computer (SCC) [5], a 48-core research processor developed at Intel Labs
Braunschweig, Germany. Even though individual cores still use the well-known x86 in-
struction set and can execute a standard operating system like Linux, the chip does not

Fall Workshop 2012 165

Memory Management in a Many-Core Distributed Hypervisor

support an SMP OS (like a single standard Linux kernel instance running concurrently
on more than one core) due to missing cache coherency.

A different architecture also poses different problems, though: there is much ex-
isting software for x86-based systems, and new architectures would need to be able
to execute it to be successful in the market. If the hardware does not offer features
required by old applications, these would need to be added in software. We propose
to use virtualization to transparently add such features to the platform.

The report is organized as follows: section 2 presents a model of the potential
future many-core processor we want to virtualize. Section 3 discussed how basic SMP
emulation via a hypervisor can be achieved. Section 4 details memory management
necessary for such a hypervisor. Section 5 discusses related work, and section 6
concludes the report.

2 System Model

Before we can go into details on the architecture of a hypervisor for upcoming many-
core architectures, it is necessary to describe its underlying system first. Our model for
new many-core architectures is based on the following principles:

1. All processors are identical in computation capabilities. That is, they support the
same instruction set and the same set of features in the processor architecture
(e.g., pipeline stages, caches, model-specific registers and so on).

2. Processors are grouped into multi-core islands. A single multi-core islands re-
sembles a traditional symmetric multi-processing (SMP) chip with all required
internal communication, like for cache coherency and inter-processor interrupts.

3. All islands form nodes on an on-chip network, over which all external communi-
cation is carried out. The network is formed of message routers. We model all
links as having infinite bandwidth and no congestion. Messages use fixed routes
only, and router latency is finite and constant.

4. Multi-core islands do not communicate with each other, unless explicitly requested
by software running on them. Specifically, if processors from different islands ex-
change messages, other islands that happen to be connected to network routers
on that path do not take note of the other communication, and are not affected by
it in any way.

5. A restricted form of backwards compatibility is designed into the system. If the
network and routers are configured appropriately, arbitrary software (including an
operating system kernel) running on the new machine behaves as it did on the
predecessors, as long as it runs on only a single multi-core island. The only
notable difference could be timing of memory accesses, because these could
target memory connected to different message routers.

166 Fall Workshop 2012

2 System Model

6. All processors can access all memory, but not necessarily at the same time; the
processor’s physical address space is smaller than the one for the many-core. In-
stead, we assume an additional component (topologically between the processor
and the on-chip network) to translate addresses, in addition to and independent
of the regular address translation performed by the processors themselves.

Essentially, the new many-core could be build by taking an existing multi-core pro-
cessor design and connecting its external (e.g., front-side-bus) interface to a protocol
converter for generating and receiving packets suitable for the on-chip network. The
protocol converter would also be responsible for performing secondary address transla-
tion; the target address for memory-access packets (for example, the network address
of the message router the memory controller is connected to) could be taken from the
same set of configuration registers.

In the list of principles above, we only mentioned that computation capabilities are
assumed to be identical for all processors, but we did not make any restriction in re-
gards to I/O devices. This is intentional; we explicitly allow for different nodes to be
connected to different devices. For example, some nodes may contain more proces-
sors cores, but not connect to any devices at all in our model, whereas others contain
fewer processor cores but special I/0 devices like graphics cards or other accelerators.

An example for a many-core of this architecture is depicted at a very high-level in
figure 1.

Regular Specialized
Node Computation Node

Accelerator

1/0 Device

Regular

Node /0 Node

%0-%0 %%

Figure 1: High-Level System Overview

This system consists of four islands of two different types: two “big” 4-way SMP
islands without I/O devices on the left-hand side, and two “small” single-processor
islands with I/O devices on the right-hand side, one with an accelerator device and
one with a hard disk. For the following sections, we concentrate only on the processors
in the system, on both kinds of islands; mentioned I/O devices as well as the monitors
and consoles on the far left side are future work.

Fall Workshop 2012 167

Memory Management in a Many-Core Distributed Hypervisor

3 SMP-Emulation via Virtualization

When faced with a many-core system as discussed above, the question of how to write
corresponding software arises. One possibility would be to treat the many-core as
a collection of independent processors (i.e., a “cluster-on-a-chip”) and use established
programming techniques for such an environment; for example, sockets (over emulated
on-chip Ethernet links) or the Message Passing Interface (possibly over an optimized
processor-specific communication mechanism).

However, cluster programming has a set of drawbacks, especially for the area of
“mainstream computing” — PCs or compatible systems based on the Intel 32-bit ar-
chitecture (known as IA32) and its extension to 64-bit. These architectures dominate
the desktop as well as the entry- to mid-level server markets, support a large base
of existing programs and developers, and have a long-standing tradition of backwards
compatibility. “Traditional” x86-based systems all follow the symmetric multi-processing
(SMP) model with shared memory, which programmers for these platforms have also
been accustomed to, but unfortunately there is no straight-forward way of porting pro-
grams between the two models. Therefore, a future many-core which does not support
the SMP model would be likely to fail in this market, as bringing existing programs to
the new architecture would require a complete rewrite; given the huge amount of time
and money that went into the development of the old programs, this does not seem to
be an option for most developers.

As a solution to this dilemma, we use a virtualization layer on the new many-core
to emulate a traditional SMP system. This way, the new system can not only execute
applications written for the old architecture — which would also be possible by using a
single-system image (SSI) operating system known from traditional cluster computing
— but an entire SMP operating system as well. This also allows for applications that
have dependencies on operating system implementation details to make use of the
new architecture, something which may not be easily possible by just re-implementing
operating system functions.

For virtualization, one can distinguish two broad architectures: the control program
(or virtual machine monitor (VMM), as itis commonly called today) can either run as the
lowest-level system software, directly on the hardware (“bare-metal” or Type 1 VMM),
or as a regular application on top of an underlying operating system (“hosted VMM”
or Type 2 VMM). We chose the hosted approach for our system, which we named
“RockyVisor”. The resulting architecture is depicted in figure 2. The term “hypervisor”
is used as a synonym for “virtual machine monitor” in this work.

All processors (or, more general: multi-core islands) run within their own private
memory space — therefore resembling our model of a future many-core system above
— and run a base operating system called the Level 1 Operating System (LV1). Within
LV1, the hypervisor container runs as a regular application (Type 2 VMM). The set of
hypervisor processes then provide a virtual machine, with virtual CPUs running inside
a shared memory block and executing the guest operating system, which we call the
Level 2 Operating System (LV2). LV2 is a regular SMP OS like Linux that can then run
arbitrary SMP applications.

168 Fall Workshop 2012

3 SMP-Emulation via Virtualization

LV2 Operating System

VCPU VCPU VCPU VCPU

Virtualized Physical Memory

Hypervisor — Hypervisor |— Hypervisor |—-e+-—] Hypervisor
LV1 OS LV1 OS LV1 OS LV1 OS
CPU CPU CPU CPU
Memory Memory Memory Memory

Figure 2: RockyVisor with Guest OS

This layering allows LV1 to manage resources (like memory) assigned to the SMP
VM just like it does for any other application as well. In addition, memory can also be
shared between the container process and other processes; this allows us to move
any necessary bookkeeping or 1/0O emulation into another process. If a single LV1
instance runs on an SMP island, I/O can therefore run concurrently to the guest, with
all necessary communication happening via shared memory. For single-core islands,
the I/O processes would either compete with the container for CPU resources, or we
could partition the many-core into hypervisor islands (for running the guest’s virtual
processors) and I/O islands (for I/O emulation processes that never execute any guest
code).

In our architecture, the hypervisor container processes are responsible for emulat-
ing any SMP features the guest needs. If the underlying many-core supports some
features directly, they may simply be passed through (e.g., direct device access if the
router network can be configured accordingly). Other features that may not be present
on the physical hardware itself must be emulated in the hypervisor processes (like
shared-memory obeying a consistency model the guest can run under). This requires
the hypervisors to be able to communicate to each other, but as they are applications
on top of LV1, they can use the corresponding LV1 capabilities.

Even though LV1 is used as the host for the hypervisors, it is not restricted to this
role. For example, if an application shall be run on the many-core that does not need
SMP emulation — like an application specifically written for the system, or more general,
for cluster environments — it can run on top of LV1 directly. Therefore, by introducing the
hypervisors, the many-core system would not be restricted to running old-style SMP
applications; it rather allows for them to coexist with new applications, so both users
and programmers can choose for the task at hand which application or programming
model provides the better fit.

For SMP simulation, the hypervisor processes are primarily responsible for three
tasks:

Fall Workshop 2012 169

Memory Management in a Many-Core Distributed Hypervisor

e CPU core virtualization, for running guest code inside the virtual machine. This
can be implemented like processor virtualization on traditional systems; e.g., via
trap-and-emulate (if the cores support it), binary translation, or para-virtualization.

e SMP interconnect simulation, so the virtual CPUs effectively appear as in a nor-
mal SMP system. Since the many-core does not support all necessary features
directly, the hypervisors must intervene and emulate them. For this, certain hard-
ware features (like, for example second-level address translation like Intel's En-
hanced Page Tables (EPT) [6,7], or AMD’s Nested Page Tables [1]) can also be
used to reduce runtime overhead.

e Device I/O redirection. In the most simple model, the many-core’s network can
be configured such that devices are accessible from all cores, and the virtual ma-
chine can access them directly. If this is not possible (because, for example, a de-
vice’s DMA operations would interfere with the memory management performed
by the hypervisors), I/O can be intercepted by the hypervisors and redirected to
an appropriate emulation process on one of the participating LV1 instances.

For the current report, we concentrate on memory management. This mainly re-
lates to the first (page table manipulation, which interacts with MMU virtualization) and
second category (for the memory consistency model).

4 Memory Management in the Hypervisor

4.1 Memory Consistency Model

The memory consistency model of an x86-SMP is not formally defined in the proces-
sor manual [6, 7]. Instead, it is described in informal prose, as the result of several
interacting settings and mechanisms from the processor core and support hardware
— like memory caching attributes, cache organization, write-combining buffers, instruc-
tion reordering and so on. Owens et al. have interpreted the descriptions from the
manuals and constructed a formal model, which was later refined by the same authors
to better match the behavior of real processors [11]. However, we did not base the
memory consistency model implemented by our hypervisor on their work; we use the
natural consistency of the underlying hardware instead, where possible, and simple
sequential consistency [9] otherwise, for reasons outlined below.

By construction of our many-core, each multi-core island already fulfills a memory
consistency model considered “correct” for the guest operating system; this is guar-
anteed by the backwards compatibility property mentioned above. Therefore, when
running multiple hypervisor processes on one multi-core island, each of them provid-
ing one virtual processor to the guest, and each virtual processor having mapped a
particular page, the guest also behaves correctly: the hypervisors are not involved
in any memory access after page tables have been set up, and the processors just
perform regular memory accesses under their “native” consistency model. For these
cases, a formal treatment is not necessary.

170 Fall Workshop 2012

4 Memory Management in the Hypervisor

4.2 Coherency Simulation

Now consider interacting multi-core islands. Because, by construction, they only com-
municate if explicitly requested by software, it is an error to map the same page of
system memory to both islands. All local caches on the islands will work as usual, but
due to missing coordination (or cache coherency), cache lines may become stale if any
island is allowed to perform writes. Even worse, if more than one island is allowed to
write, conflicting modified cache lines can be produced, and the eventually-occurring
write-backs can lead to data loss.

To solve these issues, our system simulates coherency in software, by coordinat-
ing changes to page tables. This is comparable to distributed shared-memory (DSM)
known from cluster computing, but with an important difference: we do not need to send
page contents over the interconnect ourselves, as each island’s memory interface and
protocol converter will generate corresponding packets automatically. We only need to
concentrate on coordinating content of page tables.

Shared memory support is based on two principles: a state vector for each shared
(physical page) in shared memory, and a remote page-table invalidation mechanism.
The state vector denotes, for each participating islands, which accesses are allowed
to the page without inducing the possibility of stale cache entries. If an island requires
another access that it has not been granted, it requests the owner(s) of the page to in-
validate their own page tables and potential local copies in their caches; the requesting
island is only to allowed to map the page once it receives confirmation that all other
conflicting mappings have been removed. Figure 3 shows the state transition diagram
for each page and island.

SCC/exclusive
Perm: RW/none

SCC/write_acq S
Perm: none/RW

CClupgrd_acq
Perm: R/R

>

PAGEFAULT(WRITE)/
WRITE_PREPARE

PAGEFAULT(WRITE)/
WRITE_PREPARE

WRITE_PREPARE/
L2$_INVALIDATE + WP_ACK

SCC/remote SCC/shared
Perm: none/RW Perm: R/R

Figure 3: Shared Page States

Fall Workshop 2012 171

Memory Management in a Many-Core Distributed Hypervisor

As discussed above, arbitrary page mappings are valid, as long as no two different
islands have mapped a page for write access. Concurrent reads do not present an
issue, because the corresponding cache lines will never be marked modified and thus
never trigger a write-back. Therefore, read access can be acquired by an arbitrary
number of islands at the same time. However, write accesses result in modified cache
lines, so they potentially present two problems:

1. A cache line may reside in modified state on one island, and in unmodified (either
shared or exclusive in terms of the MESI protocol, depending on whether the
cores reside on a single- or multi-core island) state on another. After eviction of
the unmodified cache line and write-back of the modified one has occurred, the
second island may be able to observe the changed value after a non-deterministic
amount of time and other local behavior.

2. A cache line may reside in modified state on two different islands, which can
result in a lost update to main memory, or (if an observer’s timing is right) even a
non-deterministic rollback of a memory change.

To solve both problems, we require that, once an island attempts to acquire write
access, all other islands cease using the page. That is, their local page tables are
modified to mark relevant entries as invalid, and caches are flushed and invalidated,
before the acquire-write request is granted. Similarly, when an island requests read
access to a page another island was allowed to write, its page tables are modified
to write-protect the page, and cache contents are written back to memory, before the
request can be granted.

Our shared memory support is integrated into the LV1 operating system, so it works
transparently for all applications running under this kernel, including the hypervisor con-
tainer and I/O emulation processes. If the process uses only regular memory access
instructions to access the page, no further cooperation is possible — this is the case for
most operations, even when the hypervisor needs to access guest memory. There is
one notable exception, though: processes manipulating their own page tables.

In order to support MMU virtualization for the guest, the hypervisor container may
need to create its own page tables if the underlying processor core does not sup-
port nested address translation. To prevent invalid cache lines from occurring, these
page tables must be incorporated into the coherency mechanism in the same way the
regular (OS-maintained) ones have been; specifically, offending mappings must be re-
moved when a remote island requests conflicting page accesses, and such access
must be acquired from remote islands before inserting page table entries and allowing
the virtual CPU to run. For this, we integrated a callback interface that allows arbitrary
kernel-mode code, to interact with the coherency driver.

4.3 MMU Virtualization

Several algorithms have been developed for MMU virtualization, partially because x86
processors until a few years ago did not support hardware virtualization assists, so

172 Fall Workshop 2012

4 Memory Management in the Hypervisor

also did not provide nested paging. The purpose of these algorithms is to map a two-
level page translation scheme to the one level the hardware supports natively. In the
two-level scheme, the “outer” (lower) level represents the address translation of the
host (which runs the hypervisor as an application), whereas the “inner” (higher) level
represents the address translation of the guest. This two-level scheme is shown in
figure 4.

(2”" Order Virtual Addresses

- |:. Guest Virtual Memory

= " Guest Page Tables
- ./ Incoherent Cache: GTLB

1% Order Virtual Addresses Guest Physical Memory

. .:| . Host Virtual Memory

". Host Page Tables
.+ Incoherent Cache: (Real) TLB

Machine Addresses) Host Physical Memory

Figure 4: Two-Level Address Translation with TLBs

Each level of page tables has an associated (physical or virtual) Translation Looka-
side Buffer (TLB). The physical TLB is controlled by the host, and must be invalidated
according to the processor manual; it is an incoherent cache for the real page tables.
For example, on multi-core islands, if certain changes to page tables are made by one
core, but another core is referencing these page tables as well, it may have conflicting
information in its TLB. Therefore, the operating systems must perform a TLB shoot-
down whenever such a change is performed.

The need for TLB shootdowns lies in the processor architecture, so relevant code
is present in both the host and guest operating system — at least if the latter one is able
to run on non-virtualized machines as well. Our method for MMU virtualization, which
will be discussed later, uses this to its advantage.

4.3.1 Classic MMU Virtualization Approaches

Of the several MMU virtualization approaches, the Emulated TLB algorithm is probably
the most simple one. As the name implies, it emulates the guest TLB, by changing the
real page tables as the guest runs. The virtual CPU starts with an empty (real) page
table. When page fault occurs, the hypervisor interprets the guest’s page tables, and

Fall Workshop 2012 173

Memory Management in a Many-Core Distributed Hypervisor

constructs corresponding mappings as needed. When the guest switches to another
address space, the real page table is cleared again; therefore mimicking the operation
of a hardware TLB.

The main downside of the emulated TLB is a large number of “hidden” page faults:
page faults that occur due to virtualization, not due to non-existent or restrictive page
table entries installed by the guest. Hidden page faults constitute overhead, so ap-
proaches for eliminating them have been proposed and implemented. We mention two
of them Shadow Page Tables, and the approach pioneered by XEN [2].

For Shadow Page Tables, the hypervisor saves a set of page tables, and fills them
as needed from page faults. However, when the guest switches to another address
space, the previous page table is not cleared. Instead, it is retained and can be reused
later, if the guest decides to switch back to this address space. This saves hidden page
faults, but has another major drawback: the guest may, now that its previous page table
is unused, make arbitrary changes to it without informing the hypervisor. Therefore, the
contents of the guest page table and corresponding shadow page table may run out
of sync, unless the hypervisor recognizes such changes and reacts accordingly. The
VMware hypervisor uses a technique called “traces”: it marks guest pages containing
page table data as read only, so any write attempt by the guest will trigger a page fault.
The page fault handler then recognizes that the fault is due to a page table change,
and can take down the shadow page table if it still exists.

XEN [2], if running on hardware without virtualization support, uses a different ap-
proach. If running under XEN, the guest needs to be aware of the real (machine)
addresses of its pages, and it computes the outer page mapping itself. The guest OS
then simply installs the real machine address in its page tables; the hypervisor sim-
ply needs to check that these addresses are in the desired range (thus preventing the
guest from accessing memory it is not supposed to), but it can save on costly software
page table walks.

4.3.2 Our Approach: Cooperative Shadow Page Tables

For our many-core hypervisor, we use a different MMU virtualization scheme that is
based on shadow page tables. We call it “Cooperative Shadow Page Tables”, because
it is based on the concept shortly described above, but also requires cooperation be-
tween the hypervisor and guest.

Cooperative Shadow Page Tables also involves a set of cached real page tables
in the hypervisor, which are activated when the guest switches to the corresponding
address space. However, invalidation of these caches is handled differently. Following
the assumption that the guest is an SMP operating system, it is aware of the (G)TLB
that functions as an incoherent cache of its page tables. We now intercept the TLB
flushes of the guest to know exactly when certain shadow page tables need to be
invalidated.

On a real machine, the guest would need to perform TLB shootdowns if it modified
page tables in certain ways. This involves a message (or, more specifically: an IPI) to
all CPUs that use the page table. Because this may influence a potentially very large
number of CPUs, and IPls are relatively “expensive” runtime-wise, the corresponding

174 Fall Workshop 2012

5 Related Work

code paths in operating systems are highly optimized. No IPI is sent out unless ab-
solutely necessary, which means for real machines the hardware is actively using the
target page table; i.e., the corresponding address space is active.

In our approach, we now modify the notion of when an address space is considered
active in our guest (LV2) OS. On regular machines, an address space is active if it is
referenced by the hardware; that is, if the hardware page-table walker can access it,
because the page table base address is stored in the corresponding control register.
Therefore, a context switch from A to B on processor X happens in three steps:

1. Mark address space B as in-use by processor X.
2. Store base address of address space B in control register.

3. Mark address space A as not in-use by processor X.

The mark operations are carried out in this order to prevent a possible race condi-
tion: modifying the address space on another core between unmarking and changing
the base address. Therefore, up to two address spaces may be marked in-use by any
processor at any point in time.

For our guests, we perform steps 1 and 2 as usual, but omit step 3. Therefore, when
a virtual CPU switches to a new address space, it is marked to be in-use on the target
processor, but the old address space still remains as being marked this way. This is
the desired operation, because the corresponding hypervisor may still have cached the
shadow page table for the old address space.

If the address space is later changed in a way that would require a TLB flush, the
TLB shootdown code examines the list of processors on which it is active, and informs
them to flush their cached mappings. Consequentially, in our architecture, the flush
would be executed on all processors that had the address space active somewhere
in the past. Therefore, all hypervisors are guaranteed to be informed whenever the
shadow page tables need to be invalidated.

Up to now, changing address spaces works as on regular hypervisors, without any
“cooperation” with the guest. The “cooperative” part of the approach’s name handles a
certain subtle point: as of now, address spaces can only be marked active, but never
unmarked. Therefore, even if a hypervisor decided to delete a shadow page table, it
would still receive TLB flush IPls. To prevent these unneeded IPls from occurring, we
inform the hypervisor, during the context switch, where the in-use marking area of the
guest is located. Having this knowledge, a hypervisor can then perform unmarking
when it deletes the corresponding shadow page table. This eliminates any unwanted
and unneeded flush IPIs, safe the ones occurring due to races between guest’s modi-
fications and hypervisor page table deletes.

5 Related Work

Our RockyVisor is an extension of Iguest [13], which has been developed by Rusty
Russel. It is a minimal, but fully-functional hypervisor that is included with the Linux

Fall Workshop 2012 175

Memory Management in a Many-Core Distributed Hypervisor

kernel. It supports para-virtualization only, so the guest kernel must be changed ac-
cordingly; guest implementations exist for Linux and Plan 9. Unlike XEN [2] or KVM [8],
lguest is meant as a platform for research and experimentation; specifically, Ilguest fa-
vors readability of the hypervisor code over performance wherever possible.

vNUMA [3], developed by Matthew Chapman as part of his Ph.D. thesis, is a dis-
tributed hypervisor for IA-64 processors that simulates an SMP system on networked
workstations, using Gigabit Ethernet as node interconnect. NEX [15] by Xiao Wang et
al. is a similar effort based on the open-source XEN hypervisor, but requires hardware
extensions for virtualization. Versatile SMP [14] by ScaleMP is a commercial prod-
uct that claims to support up to 1024 processors (with up to 8192 cores) on standard
computers, interconnected via Infiniband, in a virtual SMP system.

Finally, MetalSVM [10] is another project aiming at hypervisor-based SMP on the
SCC. MetalSVM itself is a small operating system kernel, for which Jacek Galowicz
has ported the Iguest driver and user-mode code as part of his B.Sc. thesis [4]. It
is therefore comparable to the RockyVisor, both being Type 2 VMMs that run on top
of an underlying operating system. The main difference, at the time of writing, is that
the RockyVisor is functional for 2-way SMP, whereas the MetalSVM virtualization layer
only supports single-processor guests, just like the Iguest hypervisor.

6 Conclusion and Future Work

We have presented a model of a many-core processor that consists of smaller multi-
and single-core islands, interconnected by an on-chip network. Whereas each indi-
vidual processor core follows an established architecture (like IA-32) and can execute
existing software on its own, such software cannot run on the entire system, due to
missing hardware features like memory coherency.

To bridge this gap, we presented an architecture of a distributed hypervisor, named
RockyVisor, that can not only be used to run an application, but an entire shared-
memory symmetric multi-processing (SMP) operating system on the system. Because
an operating system for the predecessor architecture now runs on the new many-core
processor, this also allows arbitrary applications to work on the new system. We have
shown details on memory management and virtualization of the processor's memory-
management unit in such a system, and outlined our cooperative shadow page table
mechanism, in which the hypervisor works together with the guest operating system to
coordinate views of processes’ address space across the many-core processor.

Our architecture also allows for a peaceful coexistence of applications written for the
old and new machine. Existing applications do not need to be ported or re-written for
the new cluster-like environment, they can simply run unchanged in a virtual machine.
Furthermore, because we use a hosted VMM approach, native applications can run
side-by-side with older ones in the new environment.

A prototype of our hypervisor has been implemented on the Intel Single-chip Cloud
Computer (SCC) [5]. In its current state, the RockyVisor runs on two single-core tiles
of the SCC. It uses a Linux kernel as its host (Level 1) operating system that has been
extended with our memory coherency driver. The guest (Level 2) operating system is

176 Fall Workshop 2012

References

another Linux kernel, extended with a corresponding sub-architecture layer that imple-
ments the para-virtualization interface for the RockyVisor.

Further work involves finalizing the I/O emulation and redirection infrastructure, as
well as a specification of the para-virtualization interface between the guest and hyper-
visor.

References

[1] Advanced Micro Devices, Inc. AMD-V Nested Paging, July 2008.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, lan Pratt, and Andrew Warfield. Xen and the art of virtualization.
SIGOPS Oper. Syst. Rev., 37:164—177, October 2003.

[38] Matthew Chapman. vNUMA: Virtual Shared-Memory Multiprocessors. PhD the-
sis, Computer Science and Engineering, The University of New South Wales,
2008.

[4] Jacek Galowicz. Design and Implementation of a Virtualization Layer for the Op-
erating System Kernel “MetalSVM”. Master’s thesis, 2012.

[5] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gre-
gory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom, and
et al. A 48-Core |A-32 message-passing processor with DVFS in 45nm CMOS.
2010 IEEE International SolidState Circuits Conference ISSCC, 9:58-59, 2010.

[6] Intel Corporation. Intel Architecture Software Developer's Manual, Volume 3a:
System Programming, 2010.

[7] Intel Corporation. Intel Architecture Software Developer's Manual, Volume 3b:
System Programming, 2010.

[8] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. KVM: The
Linux virtual machine monitor. In Ottawa Linux Symposium, pages 225-230, July
2007.

[9] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Trans. Comput., 28:690-691, September 1979.

[10] Stefan Lankes. MetalSVM: A Bare-Metal Hypervisor for Non-Coherent Memory-
Coupled Cores. http://www.1lfbs.rwth—aachen.de/content/metalsvm,
2011.

[11] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model:
x86-TSO (extended version). Technical Report UCAM-CL-TR-745, March 2009.

[12] Gregory F. Pfister. In search of clusters. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2 edition, 1998.

Fall Workshop 2012 177

References

[13] Rusty Russel. Iguest: Implementing the little Linux hypervisor. In OLS '07: Pro-
ceedings of the Linux Symposium, volume 2, pages 173—-178, June 2007.

[14] ScaleMP. Versatile SMP (vSMP) Architecture. http://www.scalemp.com/
architecture.

[15] Xiao Wang, Mingfa Zhu, Limin Xiao, Zhonglin Liu, Xiao Zhang, and Xiangshan
Li. NEX: Virtual Machine Monitor Level Single System Support in Xen. In Inter-
national Workshop on Education Technology and Computer Science, volume 3,
pages 1047-1051, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

178 Fall Workshop 2012

Interleaving Programming Tasks:
Challenges for Interruption Handling in
Programming Environments

Marcel Taeumel

Software Architecture Group
Hasso-Plattner-Institut
marcel.taeumel@hpi.uni-potsdam.de

Whenever programmers stop working on one task to start or continue another, there
is a time-consuming overhead. Such task switches are often initiated by information
needs to gain a better understanding about the software system. If questions are
answered, the interrupted task will be resumed hence switching will happen again.
Thus, designers of programming environments are challenged to either reduce those
interruptions or support task resumption efficiently.

We propose several ideas considering interruption handling in programming tools
and describe our concept for environments that reduces interruptions and supports
task resumption for code-centric comprehension activities. Our current research ad-
dresses direct manipulation environments and tool-supported software classification.

1 Introduction

Programming is a difficult activity that involves huge mental effort for transforming inten-
tions originated in natural human language into a representation that can be processed
by computers [4]. When doing so, working with computer interfaces does not just mean
to write source code in a programming language, but also to interact with interfaces of
programming tools and environments.

During programming tasks, programmers need to access, comprehend, and apply
different kinds of information [12]. For example, this could be abstract documentation
to a module interface, concrete information about program behavior, or more general
system design rationals. Unfortunately, such information is often not immediately avail-
able. Accessing it involves several sub-steps and hence interrupts the current task.

Interruptions increase the time to complete tasks. Altmann et al. [1] described two
delays that occur in case of an interruption: (1) the interruption lag and (2) the resump-
tion lag. Before an interrupting task can be started, programmers need time to finish
the current step and prepare for resumption, e.g., take some notes [14]. After the inter-
rupting task is finished, programmers need time to regain focus for the interrupted task
along with reminding task-related details and understanding existent tool state.

This is where programming tools can support programmers:

Fall Workshop 2012 179

Challenges for Interruption Handling in Programming Environments

e Provide more direct access to information access to make task switching be less
interrupting, i.e., reduce interruption lags

e Support immediate interruption recovery for any kind of tool-driven activity that
shifts programmers’ focus to a different kind of information, i.e., reduce resump-
tion lags

Traditional programming environments like Eclipse’ already connect various sources
of information. For example, tooltips embed valuable documentation, context menus
provide links to associated source code artifacts, or panels show items in shared repos-
itories (e.g., bug trackers, version control systems). Thus, tool developers are improv-
ing static information access in traditional environments for quite some time. However,
programmers often have difficulties in understanding program run-time behavior and
hence require more than just access to static information. Unfortunately, accessing
information about program run-time is time-consuming and interrupting (e.g., using
breakpoint debugging) [15].

Current research reveals many new ideas for tools that aim for directly answering
relevant questions [25] and hence satisfying information needs of programmers [12].
Mostly, those questions target program run-time. Prominent examples include direct
support for Why-questions [13], direct access to run-time context using tests [26] and
ideas for environments that immediately reflect run-time effects as source code is writ-
ten?. By doing so, the chance for interruptions, which involve a noticeable overhead
between task switches, is reduced because the feedback loop is shortened.

Other research projects try to improve interruption recovery by providing support for
externalizing the mental model [31] of programmers into the environment. This com-
pares with manual note taking but should shorten the interruption lag and the resump-
tion lag. For example, using spatial context can be very supportive when reminding
tasks [17]. Thus, Bragdon et al. allow programmers in Code Bubbles [5] to freely ar-
range source code artifacts. Kersten et al. propose a degree-of-interest model [11] to
only show task-relevant artifacts and avoid cluttering of information on the screen. This
also shortens the amount of time that is needed to recover from an interruption.

However, there are still many shortcomings in addressing interruptions. Program-
ming environments do not sufficiently reflect the conceptual model that programmers
have in mind when thinking about object-oriented programs. On the one hand, this
makes information access often feel interrupting and on the other hand interruption
recovery time-consuming.

Thus, our current research focuses on the following topics:

e A feasible approximation of the conceptual model that programmers have in mind
when thinking about object-oriented programs

e A concept for programming environments that reflects this model and hence re-
duces noticeable interruptions while supporting interruption recovery

1http://www.eclipse.org
®http://worrydream.com/LearnableProgramming, accessed on 2012-10-04

180 Fall Workshop 2012

2 Why Interruptions are Time-consuming

The remainder of this paper is structured as follows. Section 2 explains the gap be-
tween programmers’ goals and programming environment interfaces. It also describes
what direct information access means and when interruption recovery becomes dif-
ficult. Section 3 describes our current research progress in the field of interruption
handling in programming environments. A new concept for accessing and arranging
static and dynamic program information should address several challenges for han-
dling interruptions when comprehending programs in a code-centric fashion. Finally,
section 4 sketches open hypotheses and next steps.

2 Why Interruptions are Time-consuming

Programmers are frequently interrupted due to information needs. They cannot know
every detail about a system part but need to query available information sources to ver-
ify assumptions and extend system knowledge. There are two reasons, which make
those queries be interrupting and time-consuming: (1) programmers need to map their
information goals to tool-specific intentions thus involving unnecessary task switches
and (2) programmers often do not notice task switches thus missing to prepare opti-
mized task resumption.

2.1 False Assumptions

If programmers should describe programming environments, they would think of a set
of tools that allow for finding, modifying, executing, and sharing source code while ex-
changing intermediate results. They would think of tasks like enhancing the program
with a new feature, debugging the program to fix a defect, or refactoring the code base
to reduce technical debt [8]. Designers of such environments create an appropriate
conceptual model (design model) that captures all common scenarios and implement
this model. Having this, programmers use the implementation and form their con-
ceptual model (user’s model) using the given features and inferring purposes, which
hopefully match the designer’s ones. As Norman [18, pp.189] explained, designers
only communicate their models to users via such a materialized system image. Having
this fact in mind, programming environments like Eclipse are improved continuously
with each new release considering user feedback.

However, programmers think of object-oriented programs in a different way, thus
rendering the basic (and stable) assumptions of traditional programming environments
invalid. Programmers do not think of writing statements into files. They do not think of
setting breakpoints to interrupt control flows for state inspection. They do not think of
committing code snippets into a repository for shared use. They think of objects. Be-
fore any code is written, programmers think about collaborating objects to achieve their
goals—at least when using object-oriented languages. In general, programmers think in
terms of the language model underlying the programming language that is appropriate
for the given problem. Hutchings et al. [10] coined the term semantic distance, which
describes the mismatch between the user’s goals and the features an interface pro-
vides. To overcome this distance, the user has to restate the goals into fine-granular

Fall Workshop 2012 181

Challenges for Interruption Handling in Programming Environments

Design User's
Model Model

— ———
Designer User

Figure 1: Designer and user only communicate through the system. Fortunately, the
language model is known to both the designer and the user. Thus, the design model
should include the language model to create more usable and less interrupting pro-
gramming environments. Graphics adapted and modified from [18, p.190].

intentions that match with the interface. This mapping is time-consuming and likely to
cause an interruption. Hence, the designer of programming environments should in-
clude the language model in the design model as illustrated in Figure 1. Programmers
could then be able to interact with tools in a less interrupting manner by transferring
thoughts into actions more directly.

2.2 Unnoticed Task Switches

Programmers have difficulties in noticing task switches triggered by sub-conscious or
unintended actions. Actually, they are aware of a distracting task that approaches the
current one if its signals are obvious: the telephone rings, the co-worker knocks the
door. There is time to prepare to optimize task resumption later on. However, program-
ming environments introduce task switches associated with information access, which
are not necessarily noticed by programmers and hence miss preparation for interrup-
tion recovery, e.g.:

Sub-conscious Whenever a test fails, the experienced programmer instantly switches
mentally into a “debugging mode” and thinks about where to set breakpoints and
inspect program state—without noticing that she starts to forget how far the new
feature was implemented.

Unintended The programmer just wanted to run all tests, which normally takes about
10 seconds, before committing the changed source code, but it took too long and
she went for a coffee after waiting some minutes—without noticing that she starts
to forget what kind of change she exactly made.

It is helpful to know in advance, whether an action will trigger an interrupting task
and hence whether to prepare for optimized resumption. Especially if the state of
the programming environment does not align with the programmer’s mental model of

182 Fall Workshop 2012

2 Why Interruptions are Time-consuming

the current task, unprepared interruption recovery can be time-consuming. Unfortu-
nately, this is the case in many situations where programmers need to explore available
information—documentation, source code, program behavior—to verify assumptions and
extend system knowledge.

Fleming et al. [9] applied the Information Foraging Theory (IFT) to programming
tasks that cover debugging, refactoring and code reuse. This theory is about humane
search behavior: evaluating information patches and navigating valuable links (known
as cues) between patches to achieve an information goal. The difficulty lies in estimat-
ing cost and value of cues and choosing the helpful ones. The authors use the IFT and
its applications to try to generalize requirements for supportive information processing
systems by introducing common patterns.

Programming environments should to consider the IFT to better guide programmers
when exploring information. Environments should either support quick interruption re-
covery automatically or make programmers aware of interrupting task switches to aim
for a semi-automatic trade-off.

2.3 Opportunities for Programming Environments

Programming environments should consider important questions about interruption
handling and the nature of interleaving tasks caused by the vast amount of supportive
information, which makes programming a difficult activity requiring high mental effort:

When do interruptions occur?
How to make programmers aware of unnoticed task switches?

What do programmers externalize before switching tasks?
How do programmers resume interrupted tasks?

How to reduce the interruption lag with tool support?
e How to reduce the resumption lag with tool support?

Using research results about humane working and information processing behav-
ior [17] [31] [9], we believe that designers of programming environments should solve
the following problems:

e Support scenarios that align with programmers’ mental model of the program and
its building blocks, i.e., consider the language model (see Figure 1)

e Provide direct access to information using simple queries, i.e., consider temporal,
spatial, and semantic immediacy [30] [9, “Cue Decoration”]

e Allow for free collection and arrangement of information to support interruption
recovery using spatial context [17] [9, “Gather Together”]

e Avoid cluttering of information to support interruption recovery [17]

e Prepare for frequent focus changes and design appropriate task reminders that
form a trade-off between reminding and interrupting [17]

Fall Workshop 2012 183

Challenges for Interruption Handling in Programming Environments

Hutchings et al. [10] explain that, at best, programmers do not recognize using dis-
tinct tools, but are engaged with a direct manipulation interface, which allows for trig-
gering actions to directly achieve desired goals without distracting intermediate steps.
Having this, the presence of tools becomes transparent to programmers and thus pro-
gramming feels less interrupting.

3 A Less Interrupting Programming Environment

In this section, we present our current research progress. It is a concept for program-
ming environments that reduce the number of context switches when accessing run-
time information during program comprehension activities. Within this environment,
programmers stay focused in their task-/problem-oriented thinking and do not have to
make tool-driven decisions that are distracting and hence time-consuming. A clear,
consistent user interface abstracts from technical details and integrates with program-
mers’ activities in a user-centric way by directly supporting answering questions in
understanding whenever they arise.

Unger et al. identified three different types of immediacy [30] that programming
environments should support to keep programmers focused on their task: (1) Tem-
poral immediacy addresses the delay between performing an action and receiving a
feedback in the environment, (2) spatial immediacy addresses the visual distance of
related information on-screen, and (3) semantic immediacy addresses the number of
user interactions (e.g., mouse clicks) needed to access a desired information.

At first, we address the problem of interruptions through tool-driven transformation
of intentions by explaining our notion of run-time information and how to capture and
provide it automatically. This corresponds to temporal immediacy. Then, we address
the problem of externalizing thoughts in the environment and present a visualization
based on a scrollable tape with embedded editors to display needed information in a
simple, clear, and predictable way. Hence, spatial and semantic immediacy are en-
sured.

3.1 Capturing Example Run-time Information

Our notion of run-time information encompasses exemplified program behavior to sup-
port code-centric comprehension tasks. In the strict sense, we want to collect informa-
tion about method calls—namely object states (i.e., callers, callees, arguments, results)
and behavioral traces (i.e., call trees). We do not target concrete debugging scenar-
ios where defects have to be found; the awareness of specific failing tests would be
important for that [19]. Furthermore, examples of indifferent origin should help to map
abstract source code to concrete program behavior and hence to verify and extend
system knowledge at an exemplary but valuable level.

Tests are well-suited program entry points that produce representative control flows
and hence valuable information about program behavior [26] [20] [19]. In fact, writing
tests is known to be supportive during software development [3] [2]. By having these
defined program entry points, dynamic analysis techniques [6] [22] [20] are able to

184 Fall Workshop 2012

3 A Less Interrupting Programming Environment

capture run-time information without requiring programmers’ attention. Programmers
can focus their comprehension activity and query run-time information directly when
needed—assuming that tests cover the method of interest.

There is a shift of responsibility from programmers to the environment considering
run-time information access. Hence, tests need to be deterministic. Until now, repro-
ducibility of run-time information has been more important from a programmer’s per-
spective than from a technical perspective. Programmers may need to recall the same
information several times during step-wise refinement of comprehension questions de-
pending on their mental capacity. In our concept, programmers do not have to think
of ways to achieve reproducible results anymore but implementations of such environ-
ments do have to. Direct information access means that programmers are aware of the
number of, for example, mouse clicks they have to perform and hence they will notice
how long the response times are, until the desired information becomes visible on the
screen. The size of this time frame has an impact on when to lose focus on the current
activity3. The problem is that dynamic analysis can be expensive considering time- and
memory-consumption [16]. Hence, implementations of our concept need to pay atten-
tion to performance issues and may consider partial tracing approaches [28] [21] [20].
Therefore, reproducible results rely on deterministic tests.

All kinds of program comprehension questions that we address can be reduced
to automatic capturing, querying, and post-processing of object states and behavioral
traces in the context of a specific method call. Post-processing varies from simply
accessing example data to aggregating all information for providing ranges of possible
variations in a broader scope.

3.2 Displaying Source Code and Run-time Information

The visualization part in our concept tries to mask the presence of dedicated sub-
tools and hence tries to combine source code and run-time information in a way that
directly integrates with programmers’ comprehension activities. For this, the desktop
metaphor, which tries to imitate real-world artifacts and activities in graphical user in-
terfaces, is considered as inappropriate because programming environments have no
representations of artifacts or activities in the real-world [23].

We put each self-contained portion of information (e.g., a class’ methods, an object
state, or a call tree) into one rectangular view—called editor. Editors are arranged on a
horizontal unbounded tape side by side. Connections between visible information are
displayed via overlays.

Horizontal Tape Modern wide-screen monitors offer an image ratio of 16:10 or 16:9.
Having this, the primary (since largest) screen axis is the horizontal one and program-
mers need to think about how to make efficient use of the available screen space.
Since source code lines are rarely longer than 100 characters, this kind of informa-
tion tends to spread along the vertical axis leaving much whitespace to the left or to
the right. Traditional programming environments surround this central code area with

3Shneiderman et al. [24, p.445] argue that a response delay of 1 second does still not distract users
from simple and frequent tasks.

Fall Workshop 2012 185

Challenges for Interruption Handling in Programming Environments

+— Fixed ——— Scrollable ———

Object Call

State Tree

Outline

Screen Space (16:9) . Hidden Part of the Tape ————

Figure 2: Our concept for integrated programming environments. Editors are arranged
from the left to the right either in a fixed portion of the screen space or on a horizontal
boundless tape that is accessible through a scrollable container. Overlays visualize
relations between editors. Any kind of editor can be placed multiple times on the tape.

freely-arrangeable views for, e.g., system outlines, documentation, or run-time informa-
tion to make use of whitespace. This leaves both screen dimensions open for different
kinds of information that programmers may have to look for.

Our concept proposes a horizontal unbounded tape that is embedded into a scrol-
lable area as shown in Figure 2 to make efficient use of wide-screen monitors. On
this tape, editors are freely-arrangeable from the left to the right. This assigns a clear
level of information granularity to each screen axis: the horizontal is reserved for dif-
ferent kinds of information (e.g., source code, call trees, object states) and the vertical
exposes details for each kind (e.g., chronologically ordered call nodes). Hence, pro-
grammers should be able to recall information more quickly and thus reducing the
resumption lag when recovering from an interruption.

Besides the tape, part of the screen space is reserved for editors that should always
be visible: the fixed area. Having this, the environment organizes information in a two-
level hierarchy: (1) Is the information always visible or potentially hidden? (2) Is the
information to the left or right of the current view? Still, these constraints allow for an
unrestricted exploration of the system while avoiding programmers to get distracted
when positioning information on the screen. Additionally, new editors that are about
to appear can be positioned in a more predictable manner for programmers. Hence,
navigating to supporting information should feel less interrupting.

Simple Editors Each editor contains details for one primary kind of information. This
can be displayed in a central list, table, tree, or other visualization. For example, class
editors can show a list of open methods, system overviews can show tree-like out-
lines of captions, call trees can show concrete behavioral traces, object explorers can
compare object states before and after an exemplary method call.

In addition, pop-up menus and tooltips can reveal other (secondary) kinds of infor-
mation that are directly associated. For example, the tooltip for each node in a call tree
can show the called method’s source code. Having this, programmers can directly con-
nect abstract source code with concrete run-time information and hence verify/extend
their current system knowledge.

186 Fall Workshop 2012

3 A Less Interrupting Programming Environment

Different to views in traditional programming environments, all editors in our concept
are of equal priority for program comprehension activities. Editors for source code are
not more important than editors for run-time information and vice versa.

Connecting Overlays Programmers open and arrange editors on the tape during
comprehension activities. Thus, there is a relation between open editors corresponding
to the navigation history and hence the programmers’ mental model of the system. Our
concept uses overlays as a third technique to illustrate those relations and hence allows
programmers to recall information more quickly while reducing the cognitive load and
the task resumption lag.

3.3 Interacting within the Environment

In our concept, direct access to run-time information means to provide supportive infor-
mation to an arising comprehension question with as few user interactions (e.g., mouse
clicks) as possible. Having this, we believe that programmers will keep on exploring the
program without noticing the environment as a distracting intermediate. To achieve this,
our concept considers common starting points for comprehension activities and simple
queries using a consistent vocabulary in pop-up menus to navigate between different
kinds of information.

Starting Points Code-centric program comprehension starts with source code read-
ing and looking for promising beacons [31]. This could mean to browse overviews of
system parts or detailed sources of methods. To achieve this, editors that show the ap-
propriate information need to be directly accessible using search mechanisms. In the
first place, a text-based search is sufficient because programmers start with looking for
identifiers (e.g., class names or method signatures) that seem to correspond with do-
main concepts when exploring systems [25]. When getting more knowledgeable with
the system, this search could be extended to make use of run-time information.

However, our concept tries to reduce the complexity of queries. Programmers
should not have to translate rather complex comprehension questions into the com-
plicated vocabulary of environments. We want to keep the semantic distance [10] low
for code-centric program comprehension tasks.

Simple Queries Simplicity is important when directly accessing run-time information.
At first, programmers need to transform their question into one out of three elementary
purposes: Browse Code, Explore Object, View Trace.

This transformation is supposed to be straightforward because programmers are
aware of the language model that underlies object-oriented programs as illustrated
in Figure 1. This simple vocabulary should be visualized with pop-up menus and in-
tegrated into all editors consistently. By doing so, programmers are free to decide
whether, for example, focused pieces of run-time information benefit from additional
run-time data or source code.

Fall Workshop 2012 187

References

Spacer 9 o Tetris 5 0 c MyTask x - Workspace x
'Transcut Methods TetrisBlock TetrisPlayfield new startGame.

00 Code Query TetrisBlock column

_Flags column

_Uncomment figure = * self location x

@) figure:

:.?::Ip;h Tnalae figure: aTetrisFigure

location
location:

figure := aTetrisFigure.
‘ row | =

TetrisFigure rod <
blocks) . a “TetrisPlayfield new startGame.” ®
bottomBoundingBlocks ~self 10cat|0!1mu Selector Class #
boundingBlocksInDirection: TetrisPlayfield all
hasBlockat: startGame B = %12 "TetrisPlayfield new startGame."
moveBy: = = initialize
newbshapeSymbol: self startStepping. | numberQfRows

P randomFiguredt self grabKeyboard. \ numberOfColumns
removeBlock: “| "TetrisBlock = initialize
rotate nunber0fRous initialize startGame
* (Class - -
* Tag ’ = super initialize. b
. . ‘M self extent: 18@18. E‘

Figure 3: Screenshot of our prototypical implementation called VIVIDE. The column-
oriented layout allows for simple collection and arrangement of important information.
Overlays visualize navigation history. Static and dynamic information are comparable
side-by-side and hence should reduce interruption and resumption lags.

4 Conclusions and Next Steps

Programmers experience frequent interruptions due to switches between unfinished
tasks during programming activities. Since programming tasks interleave, the occurring
lags form an overhead that disturbs the workflow. Most interruptions are initiated by the
programmers themselves when accessing required information. Thus, programming
tools could either simplify this access to avoid context switches completely or ease the
steps between interrupted and interrupting task to minimize overhead.

We implemented a prototype of our concept for programming environments—called
VIVIDE [27]. It supports code-centric comprehension activities by simplifying access to
run-time information (see Figure 3). For evaluation purposes, students created a small
Tetris game with it. Observations revealed that programmers’ ways to explore object-
oriented programs are still different to how editors present information. Additionally,
cluttering of information will become a problem if the environment is overpopulated
with source code, object explorers, and call trees.

At the moment, we are investigating how to better support querying static and dy-
namic information to provide immediate starting points in the environment and hence
support interruption recovery. This also involves the entire field of software classifica-
tion [7] because modularity issues are still present in programming languages [29] and
tools [11]. Actually, programmers are way more flexible in grouping artifacts mentally,
hence forming abstractions to ease comprehension, than they can do with such tools
or languages.

References

[1] E. M. Altmann and J. G. Trafton. Task Interruption: Resumption Lag and the Role of Cues.
In Proceedings of the 26th Annual Conference of the Cognitive Science, 2004.

188 Fall Workshop 2012

References

(2]
(3]

[4]

(5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

K. Beck. Test-driven Development: By Example. Addison-Wesley, 2003.

K. Beck and C. Andres. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 2004.

A. F. Blackwell. What is Programming. In Proceedings of the 14th Workshop of the Psy-
chology of Programming Interest Group, pages 204—-218. PPIG, 2002.

A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman,
F. Adeputra, and J. J. LaViola Jr. Code Bubbles: A Working Set-based Interface for Code
Understanding and Maintenance. In Proceedings of the 28th International Conference on
Human Factors in Computing Systems, pages 2503—-2512. ACM, 2010.

B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A Systematic
Survey of Program Comprehension Through Dynamic Analysis. IEEE Transactions on
Software Engineering, 35(5):684—702, September/October 2009.

K. De Hondt. A Novel Approach to Architectural Recovery in Evolving Object-oriented
Systems. PhD thesis, Vrije Universiteit Brussel, 1998.

M. Doernhoefer. Surfing the Net for Software Engineering Notes. ACM SIGSOFT Software
Engineering Notes, 37(3):10-17, 2012.

S. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy, J Lawrence, and Kwan I. An
Information Foraging Theory Perspective on Tools for Debugging, Refactoring, and Reuse
Tasks. ACM Transactions on Software Engineering and Methodology, 2012 (to appear).

E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct Manipulation Interfaces. Human-
Computer Interaction, 1(4):311-338, 1985.

M. Kersten and G. C. Murphy. Mylar: A Degree-of-Interest Model for IDEs. In Proceed-
ings of the 4th International Conference on Aspect-oriented Software Development, pages
159-168. ACM, 2005.

A. J. Ko, R. DeLine, and G. Venolia. Information Needs in Collocated Software Develop-
ment Teams. In Proceedings of the 29th International Conference on Software Engineer-
ing, pages 344-353. ACM/IEEE, 2007.

A.J. Ko and B. A. Myers. Debugging Reinvented: Asking and Answering Why and Why Not
Questions about Program Behavior. In Proceedings of the 30th International Conference
on Software Engineering, pages 301-310. ACM/IEEE, 2008.

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant Information During Software Maintenance
Tasks. IEEE Transactions on Software Engineering, 32(12):971-987, December 2006.

T. D. LaToza and B. A. Myers. Developers Ask Reachability Questions. In Proceedings of
the 32nd International Conference on Software Engineering - Volume 1, pages 185-194.
ACM/IEEE, 2010.

B. Lewis. Debugging Backwards in Time. In Proceedings of the 5th International Workshop
on Automated Debugging, Ghent, Belgium, September 2003.

Fall Workshop 2012 189

References

[17] Y. Miyata and D. A. Norman. Psychological Issues in Support of Multiple Activities. User
Centered System Design, pages 265—284, 1986.

[18] D. A. Norman. The Design of Everyday Things. Basic Books, 1988.

[19] M. Perscheid, M. Haupt, R. Hirschfeld, and H. Masuhara. Test-driven Fault Navigation for
Debugging Reproducible Failures. Journal of the Japan Society for Software Science and
Technology, 29, 2012.

[20] M. Perscheid, B. Steinert, R. Hirschfeld, F. Geller, and M. Haupt. Immediacy through
Interactivity: Online Analysis of Run-time Behavior. In Proceedings of the 17th Working
Conference on Reverse Engineering, pages 77-86. IEEE, 2010.

[21] D. Réthlisberger, M. Denker, and E. Tanter. Unanticipated Partial Behavioral Reflection:
Adapting Applications at Runtime. Computer Languages, Systems & Structures, 34(2-
3):46—65, July—October 2008.

[22] D. Réthlisberger, O. Greevy, and O. Nierstrasz. Exploiting Runtime Information in the IDE.
In Proceedings of the 16th International Conference on Program Comprehension, pages
63—-72. IEEE, 2008.

[23] D. Réthlisberger, O. Nierstrasz, and S. Ducasse. Autumn Leaves: Curing the Window
Plague in IDEs. In Proceedings of the 16th Working Conference on Reverse Engineering,
pages 237-246. IEEE, 2009.

[24] B. Shneiderman and C. Plaisant. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley, 5th edition, 2009.

[25] J. Sillito, G. C. Murphy, and K. De Volder. Asking and Answering Questions During a
Programming Change Task. IEEE Transactions on Software Engineering, 34(4):434—451,
July 2008.

[26] B. Steinert, M. Perscheid, M. Beck, J. Lincke, and R. Hirschfeld. Debugging into Examples.
Testing of Software and Communication Systems, pages 235-240, 2009.

[27] M. Taeumel, B. Steinert, and R. Hirschfeld. The VIVIDE Programming Environment: Con-
necting Run-time Information With Programmers’ System Knowledge. In Proceedings of
the 11th Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software. ACM, 2012 (to appear).

[28] E. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial Behavioral Reflection: Spatial and
Temporal Selection of Reification. In Proceedings of the 18th Conference on Object-
oriented programing, systems, languages, and applications, pages 27-46. ACM SIG-
PLAN, 2003.

[29] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr. N Degrees of Separation: Multi-
dimensional Separation of Concerns. In Proceedings of the 21st International Conference
on Software Engineering, pages 107—-119. ACM, 1999.

[30] D. Ungar, H. Lieberman, and C. Fry. Debugging and the Experience of Immediacy. Com-
munications of the ACM, 40(4):38—43, April 1997.

[31] A. Von Mayrhauser and A. M. Vans. Program Comprehension during Software Mainte-
nance and Evolution. Computer, 28(8):44-55, 1995.

190 Fall Workshop 2012

Workload Prediction and Utilization
Change Detection in Virtualized Data
Centers

Ibrahim Takouna

Internet-technologies and Systems
Hasso-Plattner-Institute
ibrahim.takouna@hpi.uni-potsdam.de

Cloud computing as a consolidation environment assists in reducing energy con-
sumption by computing services. Cloud’s providers provide on-demand computing
services where customers pay based on the actual resource usage. In this context,
capacity planning becomes a significant issue to handle the trade-off between perfor-
mance and energy.

Thus, this report presents an implementation of an adaptive workload prediction by
which we can predict the number of active VMs for the next planning period. Then, it
presents an online CPU-utilization state change detection approach that helps to take
efficient decisions to perform any action (e.g., VM migration). Furthermore, it presents
the modeling and implementation of memory bandwidth demand of the NAS Parallel
Benchmark suite. In this report, we discuss the results of each contribution. The results
demonstrate the efficiency of our approach for capacity planning in virtualized data cen-
ters. Finally, as future work, we investigate improving the accuracy of CPU-utilization
prediction and increasing the number of lookahead steps. Additionally, we implement
a robust optimization technique for capacity planning exploiting our proposed workload
prediction approach.

1 Introduction

In the last retreat, we presented a framework for energy-aware resource management
in virtualized data centers where many Clouds providers such as Amazon EC2 lever-
age virtualization technologies to increase the utilization of physical servers and reduce
the number of active physical servers. Realization of an efficient resource management
in cloud data centers implies determining the number of the required servers for host-
ing the active VMs and the number of VMs to be co-hosted (i.e., server consolidation)
on a physical server.

Although much research work has been done in this context [1] [2] [3], many re-
searchers did not consider the overhead of changing the power-state of servers and
the energy wastage due to this action. A normal server takes time to go from power-
state to another, during this time the server consumes energy without performing any
useful work (e.g., execution workload). Figure 1-(a) shows the time spent by a nor-
mal PC to switch from power-state to another with different types of operating system.

Fall Workshop 2012 191

Workload Prediction and Utilization Change Detection in Virtualized Data Centers

Turning on/off a server takes the longest time compared to the other saving power
states. This is because the boot process includes hardware components check, which
depends on the server types and its components.

Furthermore, Mao et al. [5] found that a VM in Amazon EC2 takes time to boot and
be ready to execute workload as depicted in Figure 1-(b). Mao et al. [5] observed that
the average startup time of a VM varies with its OS type (e.g., Linux or Windows) and its
image size. For instance, the average VM startup time of EC2-Linux and EC2-Windows
are 96.9 and 810.2 seconds, respectively. Thus, we need a pro-active optimization
solution that reacts before the real event occurred. For example, if we can predict the
number of the requested VMs in the next planning period, we can prepare these VMs
images and the physical server in advance. To this end, we conducted an analysis of
historical data for the number of active VMs per unit time (e.g., 5 min). Furthermore, we
developed an adaptive prediction algorithm that estimates the number of active VMs
for the next 5 minutes. The proposed algorithm is discussed in Section 3.

However, we found that predicting the number of VMs is not enough to develop
an energy-aware resource management algorithm. Thus, we decided to study the
historical VMs CPU-utilization. Unfortunately, VMs’ CPU-utilization fluctuates highly.
In this case, taking the raw CPU-utilization as a trigger is unsuitable to perform any
action. In this context, we develop two algorithms: i-CPU-utilization prediction; ii-CPU-
utilization state change detection. These two algorithms are presented in Section 4.

Finally, we found that using only the historical CPU-utilization is inefficient to guar-
antee applications’ performance in consolidation environment. For instance, we found
that the utilization of other shared resources particularly shared memory bus utilization
has high impact on applications performance [16]. Thus, we implemented a queuing
model that reflects the influence of the memory-bus utilization on co-hosted applica-
tions’ performance. This is presented in Section 5. However, next we present a few
details about the workload traces from Planet Labs, which were used to evaluate our
proposed algorithms.

(1]
25 ® Ubuntu B Windows 7 800
700

20 -
600
=400
T F300
200

5
100

. | |

Boot ShutDown Hibernate Wake 0 EC2-Linux EC2-Windows Azure Raksnace Linux Rakspace-Wir

=

v
'y
o
o

Time in Seconds

[y
o

Time in Seconds

) Power state change time) VM startup time

Figure 1: Power state change time and VM startup time [4] [5]

192 Fall Workshop 2012

2 Planet workload traces

2 Planet workload traces

The monitoring infrastructure project of PlanetLab provides traces of historical data for
CPU utilization, which measured every 5 minutes. These traces are for more than a
thousand VMs running in more than 500 locations around the world. Here, we present
data for four days that have different workload fluctuations. The number of VMs in the
traces is constant. However, to simulate the on-demand concept of the cloud comput-
ing environment (i.e., the open system behavior), we terminate the VMs with less than
5% CPU utilization. In other words, we considered it as being destroyed and exited the
system. Then, when the trace shows a VM with a CPU utilization higher than 5%, we
consider a new request for provisioning a VM.

Table 1 shows statistical information of four days of the traces. The average utiliza-
tion of VMs is around 22% with low standard deviation. On the other hand, the traces
show different averages of the number of VMs and levels of fluctuation. For instance,
the average number of active VMs for day03 is 532 VMs with 20 VMs as standard
deviation. The standard deviation reflects the workload fluctuation around the aver-
age value. Thus, day03 shows lowest fluctuation compared to the other days. On the
other hand, day09 experiences the highest fluctuation workload where the standard
deviation is 60 VMs. Finally, traces of day06 and day22 show medium fluctuation with
different average 423VMs and 723VMs, respectively.

Number of VMs
Number of VMs

ll
0 50 100 150 200 250 0 50 100
Time index (5 min.)

(b) Day06

Time index (5 min.)

(a) Day03

Figure 2: Planet workload traces

Table 1: Statistical analysis for 4days of Plantlab traces

Trace | Mean CPU Util. | Std. CPU Util. | Mean No. VMs | Std. No. VMs
Day03 22.43 0.87 532 20
Day06 22.02 0.77 423 37
Day09 21.13 1.28 487 60
Day22 17.43 1.09 723 43

Fall Workshop 2012

193

Workload Prediction and Utilization Change Detection in Virtualized Data Centers

3 Workload prediction with an adaptive window

In this section, we present a prediction approach with an adaptive window-size algo-
rithm to predict the number of demanded VMs in a data center. Our approach consists
of three stages: i-selecting the historical window size based on the statistical test, t-
test/p-value; ii-smoothing the values of the selected historical window; and iii-predicting
the next number of active VMs and its minimum and maximum range. In our approach,
we estimate the range based on the standard deviation value of the historical selected
window. Thus, the range becomes wider when the fluctuation of the values in the se-
lected historical window is high. For this reason, we try to find the suitable backward
values to the next value. This allows a higher accuracy of prediction.

Typically, point value prediction techniques might not cover the workload fluctuation
(i.e., number of demanded VMSs). The approaches solve the problem as a deterministic
optimization (i.e., pro-active), which assume the precise knowledge of the workload
demand. Furthermore, optimization based on the mean-value or the max-value of the
workload can produce low provision or high provision which is costly in both cases.

Furthermore, we plan to solve the optimization problem using a robust optimization
approach that applied on a range of values. We choose robust optimization because
it allows performing pro-active and reactive decisions. A pro-active method aims to
provide an initial off-line decision that is robust to uncertainties during run-time. On the
other hand, a reactive method reacts to uncertainties during run-time. The implemen-
tation of this approach is our next step.

Most of the related work in the context have been done for grid computing [6]
[7]1 [8] [9]. For example, Wu et al. [6] have proposed an adaptive prediction of grid
performance with a confidence window for the historical values. They used an auto-
regression to find a model for the historical interval by which predicts the future work-
load. They claimed that their approach could predict more than 20 steps ahead, which
equals to 100 minutes. In our point of view, predicting 100 minutes in advance is not
reasonable in virtualized data centers. As shown in Figure 2, the number of VMs shows
random behaviour, which cannot be accurately modeled.

3.1 Historical window-size selection

We introduce in Figure 3 a workload prediction approach. This approach uses an
adaptive window-size of historical values to provide a high accurate prediction range.
The measured workload values are shown by a series of line-dots up to time t. On the
other hand, the gray dot represents the predicted workload value. Our interest is to
predict the number of VMs for the next 5 minutes from the historical window HW. The
historical window-size is determined based on the P-value of both F-test and T-test to
filter out the values that are very unlikely to be in the same window.

We used F-test and T-test to probe the significance of the change in variance and
mean between two samples of populations, respectively. F-test and T-test give P-value,
which indicates whether the two samples have almost the same variance and the same
mean. The P-value of F-test is the probability of getting an extreme value under the
null hypothesis (i.e., HO:67 = 67). For example, after performing F-test, if we find out

194 Fall Workshop 2012

3 Workload prediction with an adaptive window

0 Historical Real value © predicted value | Predicted range {L,H}

No. of VMs
*g
VR SN,
O
=
[REN

Select Window Size(HW) at time t; | _
using F-test/T-test N

\ 4

Prediction of the value PVy;,,

Smoothing selected Window using 5| and its range PRy, {L,H} using
Savitzky-Golay Filter Holt Winter Alg.

Figure 3: Adaptive window-size prediction approach

that the P-value is less than a = 0.05, we reject the null hypothesis. This means that
these values do not belong to the same historical window. On the other hand, the
P-value of T-test indicates that whether we can accept the null hypothesis (i.e., HO:
u; = Ww). In other words, the P-value shows how well the two samples can be in the
same historical window. The smaller the P-value is the stronger the confidence to reject
the null hypothesis HO. Thus, a higher fluctuated workload, a smaller window-size is
selected.

3.2 Smoothing the selected window’s historical values

Using prediction algorithms with the historical values causes errors. Thus, we used a
smoothing filter to remove noise and prevent its influence on the prediction algorithm.
There are many smoothing filters, but we selected Savitzky-Golay filter. From literature,
Savitzky-Golay filter is effective in keeping the peak values and removing the spikes,
which can be considered as noise. Typically, a long polynomial or a moderate order
polynomial allows a high level of smoothing without attenuation of data features.

Savitzky-Golay filter has two significant parameters that guide the smoothing pro-
cess: the frame size and polynomial degree. In our approach, the frame size is not
constant, and it equals to the selected historical window-size. In contrast, Wu et al. [6]
fixed the frame size (i.e., frame size=51). Regarding the polynomial degree, after
conducting some experiments as shown in Figure 4, we found that using the second
degree is efficient in our work. Figure 4 shows the output of Savitzky-Golay filter with
different settings: S-G(25,2,11), S-G(25,4,11), and S-G(25,6,11).

Fall Workshop 2012 195

Workload Prediction and Utilization Change Detection in Virtualized Data Centers

550 T T T T 550
real values

real values
—+—sg(25:2,11) -+ =sg(25,2,11)

540 —6—59(25,4,11) [| 540 —o—5g(25,2,21)[]

—+—59(25,6,11) ——5g(25,2,41
g

530+ 530

value
value

520 520

510+ st0f 97

500

. . . . 500
0 5 10 15 20 25 0 5 10 15 20 25
Value index Value index

(a) Fix frame size with different poly. degree (b) Poly. degree size with different fix frame

Figure 4: Savitzky-Golay filter settings influence on time series

3.3 Prediction using HoltWinter algorithm

We used Holtwinter implemented in R-tool, because it dynamically determines the pa-
rameters o and B as shown in Equations 1 and 2 that influence the level and the trend
of the time series, respectively. For example, a low value of a (e.g., 0.3) indicates
that the estimation of the level at the current time point depends mainly on the recent
observations. On the other hand, the value of 8 shows the trend component.

Vi =y + (1 —o)(yr—1+F-1) (1)

Fr=Bi—5i-1)+(1=B)F (2)

Importantly, we determine the predicted range PR based on the single predicted point
value PV and the standard deviation of the selected window ogyw. The predicated
range PR {R. , Ry} equals {PV — oxw , PV + ogw}.

3.4 Implementation and results

We implemented the proposed approach using Java programming language with inte-
gration of R-tools, which consists of many statistical functions and the required filters.
Here, we present the results of our approach. Figure 5 shows the predicted range for
each value of workload (i.e., number of VMs). The low predicted R, is shown by a
red dashed-line meanwhile the high predicted Ry is represented by a blue dashed-line.
The purple sold-line represents the single point predicted value.

Figure 6 shows the CDF of the relative error for the proposed adaptive historical
window-size selection and different fixed values. From Figure 6, we notice the accu-
racy of our proposed approach compared to the fixed value. Importantly, we can notice
that the range covers the real measured values that revealed by time. Furthermore,
the range increases proportionally with workload fluctuation. In contrast, the historical
window size increases inversely proportional with workload fluctuation. For instance,
with high workload fluctuation the historical window-size is relatively small and the pre-
dicted range is relatively wide as shown in Figure 5 and Figure 7. Figure 7 shows the
cumulative distribution function (CDF) of the selected historical window-size for each
day. Clearly, from Table 1, Day03 has the less fluctuation workload compared to other

196 Fall Workshop 2012

4 CPU-utilization state change detection

- -Max. Pred. ---Min. Pred. - Real Workload —Single Value Pred.

590

570

(2]
= 530
>
Y= '
o {
o510 :
pd YA
490 A i BEE
‘;,Small range with low fluctuation F «:5' 'f‘
A H W
470 A v 1‘1,'
Large range with high fluctuation
450
1 20 39 58 77 96 115 134 153 172 191 210 229

Time index

Figure 5: Results of the proposed approach

days. From Figure 7, the historical window-size of Day03 is relatively large most of the
day. In contrast, the historical window-size of Day09 is relatively small most of the day.

4 CPU-utilization state change detection

Online dynamic resource management algorithms require a trigger to initiate an action.
The trigger can be a change in CPU-utilization of a virtual machine, and the action is
the virtual machine migration from a server and turning off the server. In this case,
we have one trigger and two actions. Thus, the efficiency of taking the best action
depends highly on state change of CPU utilization. Unfortunately, CPU-utilization is
not always in steady state, but it always fluctuates. Taking an action based on the real
measured value of CPU-utilization has two drawbacks: i- delaying the action ii-making
the system unstable. Hence, this section presents our approach to conceal or mitigate
the two drawbacks.

We propose an online detection of CPU utilization state change approach. This ap-
proach consists of three stages as shown in Figure 8, CPU utilization prediction, CPU
utilization state representation, and CPU utilization state change detection. Each of
these stages is discussed in the following sections. In the context there is much related
work [10] [11] [12]. However, these approaches assume a preliminary knowledge about
the statistical characteristic of the time series. Thus, they used these filters: Kalman
filter, sequential Monto Carlo method or particle filtering. In our work, we do not use
this assumption. Therefore, we used the recent proposed ROBUST.FILTER [13].

Fall Workshop 2012 197

Workload Prediction and Utilization Change Detection in Virtualized Data Centers

=T

e Rl

a4 - - 111 Fix-Win-6
ree Fix=Win—6 — Fix-Win-12 ||
Fix-Win-12 m— Adap-Win ||
— Adap-Win “''' Without-Filter
1 Without-Filter
w
[m]
(@]
‘ ‘ ‘ ol ‘.'a'il ‘ ‘ ‘ ‘ ‘
20 30 40 50 0 5 10 15 20 25 30 35
Error Error
(a) Day03 (b) Day06

Figure 6: Cumulative distribution function of relative error for the single predicated
value: adaptive historical window-size vs fixed window-size

1

----- Day03-(532,20)
0.9l """t Day09-(487,60)
)
)

Day06-(423,37,
= = = Day22-(723,43

0.8

0.71

0.6

0.5F

CDF

04f
0.3r
02,

01"

i i i i
20 25 30 35 40 45
Window-size

Figure 7: Cumulative distribution function of window-size for the 4 days

4.1 CPU utilization prediction

CPU utilization prediction is the first stage in our proposed approach. This stage al-
lows predicting the future CPU utilization of a virtual machine. Consequently, we can
detect the change in advance before that might occur. Furthermore, resource manage-
ment algorithms can work pro-actively to provide a suitable solution instead of waiting
the measured time series of utilization 7'S,, to be revealed. To this end, we used the
prediction approach that was presented in Section 3.

4.2 CPU utilization state representation

After prediction of a time series of CPU utilization TS, it passes to the second stage
converting TS, to TS, state-representation that represents the changes in the time se-
ries. Thus, we used ROBUST.FILTER that proposed in [13]. ROBUST.FILTER was

198 Fall Workshop 2012

4 CPU-utilization state change detection

Time Series-Predication Time Series-State Representation Time Series- Change State detection

HEW 3y & i Mean M, Kthresholéi

: §~ 4 T £ z : : ,

129 I B EE : : e

H RS - 8 T < - : : ! WV

H PR 23 > 5 : | Robust.Filter |: : CUSUM .

: A = H . . H . ————>
M& :- % s sk i>] with adaptive | : : Gain-Function
TS, il2 < o 53 TS, : | WindowSize |: TS, | ¢

m HEE £3 5—0 H : H

e |lsz (&7 ‘| std. deviationo

(e 8 £ < : . deviation 0,

H ERS 5> & >

Figure 8: CPU utilization prediction and state changes detection

proposed for a fast and reliable filtering of the data. It allows distinguishing artifacts
from clinically relevant changes in the patient’s condition. Fried [13] used robust re-
gression functional for the local approximation of the trend in a moving time window.
Furthermore, ROBUST.FILTER allows online outlier replacement and trimming based
on robust scale estimators. The output of this stage gives a squared signal as shown
in Figure 9, which further can be used to detect CPU utilization state changes.

4.3 CPU utilization state change detection

Once we have the squared signal TS,, we used a Cumulative Sum Control Chart
(CUSUM) technique for monitoring change detection. This technique developed by
E. S. Page of the University of Cambridge. TS, has a known mean u, and standard
deviation o,. When the value of gain function G exceeds a certain threshold value K, a
change in value is detected. The equation 3 detects the positive changes meanwhile
the equation 4 detects the negative changes. The output of this stage as depicted in
Figure 8 is a pulse function to identify the change and its direction (i.e., positive or
negative).

To detect changes, the two gain function (i.e., Gt and G~) are applied simultane-
ously. The initial values of G, and G, are 0. Furthermore, w, and w, represent the
weight of the increase detection G* and the decrease detection, respectively. The val-
ues of w, and w, equal to (u,+K) and (u, — K),respectively. In our case, the threshold
value K was set to 5 where the change is detected when CPU utilization is increased
or decreased by 5. This stabilizes the system in particularity when CPU utilization
fluctuates highly. The gain function shows high values at changes either in positive
or negative as shown in Figure 10. These high values will be used for triggering any
action (e.g., VM migration). Importantly, by using Equations 5 and 6, we update the
new mean of the new level of the representation state. The value of L specifies the
sensitivity of the gain function to the change.

G;Ll = max{0,G; + TS, — @y} (3)
G =min{0,G; + TS, — 0.} (4)
pi=pi1+K+GS if G >L (5)

Fall Workshop 2012 199

Workload Prediction and Utilization Change Detection in Virtualized Data Centers

wi=p 1 —K-G; if G >L (6)

4.4 Implementation and results

We implemented the proposed approach using Java programming language with inte-
gration of R-tools. Here, we present the results of our approach. Figure 9-(a) shows a
time series with three different means and standard deviations to illustrate the efficiency
of our proposed approach in detecting the significant change in CPU utilization. Figure
9-(b) depicts the gain function at each value. Clearly, we can distinguish between the
significant shift in CPU utilization from low to high mean around 60 and 70 time unit.
This is indicated by a high gain of the increase-detection value in the blue colour in
Figure 9. On the other hand, the gain of the absolute value of decrease-detection is
relatively high around 150 and 153 time unit. This detects the shift in CPU utilization
from high mean to low mean. Furthermore, we can exploit the value of standard de-
viation for efficient consolidation. Here, the standard deviation illustrates the workload
intensity where a higher value is a more intense. Thus, we can choose VMs with a
low CPU utilization standard deviation to be scheduled with other VMs showing a high
CPU utilization standard deviation.

Figure 10-(a) shows the gain function compared to the measured time series values
TS,,. This shows many noisy gains with low values. To reduce this noise, we decided to
use the representative time series T'S, as shown in Figure 10-(b). In contrast to Figure
10-(a), Figure 10-(b) clearly distinguishes the shifts of the CPU utilization’s mean 11 to
40.

Real utilization A i
Rectified state | M
| I

N
o

Mean=40, Std=6
Mean=11, Std=5 Mean=17, Std=1.4

Cpu utilization
w
o

N
o

10

1 20 39 58 77 9T6_ 115 134 153 172 191
Figure 9: An example of CPU utilization detection and the output of the gain function
of CUSUM

Furthermore, we examined the proposed approach against a time series with spikes
as shown in Figure 11-(a). The blue line is the output of the CPU utilization state repre-
sentation stage. Using ROBUST.FILTER in this stage assisted in removing the effects
of spikes. Additionally, it was capable to generate state representation at each signif-
icant change in CPU utilization. Figure 11-(b) depicts the output of the gain function.

200 Fall Workshop 2012

5 Modeling and implementation of memory bandwidth demand and VM migration

—increase detection — decrease detection ——increase detection — decrease detection

w
S

4

10

B
1S5}

o
b

o ap MA 4 A0 0 A aan)
M M V‘V v Elv vVSlvv Tor v 12‘{VV'V14Y

1 21 41 101

.. G-funcatio

AN
5]

2

Samples

G-funcation
o
S
=
~
8
~
a
@
2
o
®
-
S
2
=
o]
[
-
S
I3
-
@
@

Samples

N

S}
@
S

(a) With the measured time series (b) With the rectified time series

Figure 10: An example of CPU utilization detection and the output of the gain function
of CUSUM

@
o
IS

B
S
~

—Time series ——Time series representation — increase detection — decrease detection A

1 21 41 v 61 81 101 121 v 141 161 1V

w
S
o

™
S}

CPU utilization
;)

Samples

. GAuncation

& A

1 21 41 61 81 101 121 141 161 181

(a) CPU utilization time series with spikes (b) CPU utilization change detection

Figure 11: An example of CPU utilization detection and the output of the gain function
of CUSUM

The results show that our approach distinctly detected the changes that occurred over
the K threshold value (i.e., K =5).

5 Modeling and implementation of memory bandwidth
demand and VM migration

Simulation tools also have a trade-off between using a detailed simulation which accu-
rately reflects the real environment and simple simulation which models the basis of the
real environment. In consolidation environments such as Clouds, it is very important
to use a detailed simulation because an inadequate detail in the model representation
can lead to misleading or wrong results [14].

Thus, in this paper, we provide a detailed analysis and simulation of different as-
pects that concern consolidation and migration. First, we simulate memory-bus that
connects a processor with a memory-subsystem showing the significance of moni-
toring the utilization of memory-bus for predicting and enhancing applications’ perfor-
mance.

Second, we simulate different communication techniques of VMs including shared-
memory for multi-threaded applications (i.e., OpenMP applications) and network for
multi-processes applications (i.e., MPI applications). Thus, we can show the influence
of memory-bus’s utilization on multi-threaded applications and network utilization on
multi-processes applications.

Third, we give an analysis for NAS Parallel Benchmarks (NPB) benchmarks suite
enclosing three different implementations: Serial, OpenMP, and MPI. A simulation of

Fall Workshop 2012 201

References

the memory demands behavior and communication patterns of each benchmark are
also presented. To validate simulation, we compare the results with the real experi-
ments that have been presented in [15].

Finally, many migration algorithms consider only CPU utilization to trigger live migra-
tion, but they do not consider the consequences of migration’s overheads on the other
server resource such as memory bus and network. Hence, we illustrate the effects
of migration on CPU, memory bus, and network and their consequences on migration
time and power consumption. The details of this work are presented in [16].

6 Summary and Next step

In this report, we presented our work that included implementation of an adaptive work-
load prediction, CPU utilization state changes detection, and modeling and implemen-
tation of memory bandwidth demand of the NAS Parallel Benchmark suite. Further-
more, we presented the results of our work for the adaptive workload prediction and
CPU utilization state changes detection. These results showed the efficiency of our
approach to be used for capacity planning in virtualized data centers.

Regarding our next step, we will investigate improving the accuracy of CPU utiliza-
tion prediction and increasing the number of lookahead steps. Furthermore, we will
conduct more experiments to study the efficiency of our algorithm in server consolida-
tion based on CPU utilization state changes detection. As we mentioned earlier, we
can use the standard deviation of the CPU utilization state to identify the running job
intensity instead of just using the mean value. This will be investigated within the next
6 months.

As we implemented the prediction approach based on a range not a single value,
we will study the implementation of robust optimization for capacity planning. Robust
optimization deals with optimization problems where robustness is sought against un-
certainty or deterministic variability in the value of a parameter of the problem (i.e.,
the workload). The principle of robust optimization considers point prediction mean-
ingless and it replaced by range prediction. Thus, robust optimization addresses data
uncertainty by assuming that uncertain parameters belong to a bounded range.

In our approach, we avoid the assumption that considers the precise knowledge
of the workload demand in the planning horizon where many proposed solutions have
solved the problem as a deterministic optimization (i.e., pro-active) [1] [2] [3].

References

[1] D. Kusic, JO. Kephart, JE. Hanson, N. Kandasamy, and G. Jiang, "Power and
performance management of virtualized computing environments via lookahead
control, " Proceedings of the 5th IEEE ICAC. Chicago, USA, June 2008.

[2] A. Verma, P. Ahuja, A. Neogi, "pMapper: Power and migration cost aware applica-
tion placement in virtualized systems," Proceedings of the 9th ACM/IFIP/USENIX

202 Fall Workshop 2012

References

International Conference on Middleware (Middleware 2008), Springer, Leuven,
Belgium, 2008; 243-264.

[38] A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy, "Optimal power allocation in
server farms," Proceedings of the 11th International Joint Conference on Mea-
surement and Modeling of Computer Systems, ACM New York, NY, USA, 2009;
157-168.

[4] BOOTING-TIME.[Online]. Available:http://www.tomshardware.co.uk/ubuntu-
oneiric-ocelot-benchmark-review,review-32377-15.html.[Accessed: 1-Jun-2012].

[5] M. Mao and M. Humphrey, ” a performance study on the VM startup time in the
cloud," Proc. of fifth IEEE International Conference on Cloud Computing, 2012.

[6] Y. Wu, K. Hwang, Y. Yuan , and W. Zheng, "Adaptive Workload Prediction of Grid
Performance in Confidence Windows," IEEE Trans. on Parallel and Distributed
System, 2009.

[7] M. J. Clement and M.J. Quinn, "Analytical Performance Prediction on Multicom-
puters," J. Supercomputing, pp. 886-894, 1993.

[8] J. Dongarra, I. Fister, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White,
eds. Kaufman Publishers, 2002.

[9] I. Foster and C. Kesselman, "The Grid: Blueprint for a New Computing Infrastruc-
ture," Kaufmann Publishers, 2004.

[10] M. Andreolini, S. Casolari, M. Colajanni, "Models and framework for supporting
run-time decisions in web-based systems," ACM Tran. on the Web 2 (3)(2008).

[11] P. Dinda, D. O’Hallaron, "Host load prediction using linear models," Cluster Com-
puting 3 (4) (2000) 265-280.

[12] E. Hartikainen, S. Ekelin, "Enhanced network-state estimation using change de-
tection," in: Proc. of the 31st IEEE Conf. on Local Computer Networks, Nov. 2006.

[13] R. Fried, "Robust filtering of time series with trends," Journal of Nonparametric
Statistics, vol. 16, no. 3-4, pp. 313-328, Jun. 2004.

[14] D. Cavin, Y. Sasson, and A. Schiper, ” On the accuracy of manet simulators,"
In POMC '02: Proc. of the Second ACM Int. Workshop on Principles of Mobile
Computing, pages 38-43, New York, NY, USA, 2002. ACM Press.

[15] U. K. Medisetty, V. Beltran, D. Carrera, M. Gonzalez, J. Torres, and E. Ayguade,
"Efficient HPC application placement in Virtualized Clusters using low level hard-
ware monitoring," [Online]. Available:http://www.udaykiranm.com/hpcvirt.pdf

[16] I. Takouna, W. Dawoud, and Ch. Meinel, "Analysis and Simulation of HPC Appli-
cations in Virtualized Data Centers,"IEEE GreenCom, 2012.

Fall Workshop 2012 203

Understanding Code with Execution
Traces

Arian Treffer

Enterprise Platform and Integration Concepts
Hasso-Plattner-Institut
arian.treffer@hpi.uni-potsdam.de

This report outlines research ideas that were formed over the last few months. We
propose to use an in-memory database to store and access execution traces, espe-
cially of unit tests. Based on this, IDEs can be extended to search and visualize the
data in the context of its source. This might help to increase developer productivity
when understanding code or searching for bugs.

1 Introduction

Most developers spend much time understanding existing code. Especially in large
systems, another important task is finding the code in the first place [4]. Programmers
search code for various reasons, for instance,

¢ finding code that implements a feature,
e finding existing solutions to similar problems, or

e understanding how a code unit is used.

At development time, runtime information is not available. However, unit tests are
a source for reproducible runtime data. In a well-tested system, the tests should pro-
vide enough runtime information of common executions paths, as well as anticipated
excpetional cases, to answer typical questions about a program’s behavior.

There are several different approaches to work on runtime data of unit tests. Some
development tools collect only parts of the data, and discard information that is no
longer regarded relevant [1]. Others re-execute tests repeatately, collecting only the
data that is currently needed [5].

However, for a system-wide search these approaches cannot be used, as all data is
needed at once. A third, and maybe the most obvious approach, is to collect and store
everything that happens during the execution. This approach has been successfully
used to implement omniscient debuggers [2]. However, it is generally assumend that,
especially for large systems, this approach creates more data than can be handled in
a reasonable manner [1,2,5].

We want to challenge this assumption and propose that a modern database is ca-
pable of handling the trace data of unit tests even for business size applications. Re-
cent development in databases allows the fast execution of analytical queries on large
amounts of data [6]. This technology was already succesfully applied to static code
search [3]. However, this system does not include runtime information.

Fall Workshop 2012 205

Understanding Code with Execution Traces

2 Research Ildea

Execution traces of unit tests can be stored in a database. Then, an extension to
the developer’'s IDE can allow searching this data in a meaningful way. It does not
seem reasonable to expect the developer to formulate an exact query (e.g., in an SQL-
like language) of what she is looking for. Instead, a graphical interface can help with
the construction of the query. The developer begins with browsing the results of a
very broad query, which then can be refined incrementally, until the result set is small
enough so that each result can be examined individually. Using an in-memory will
ensure the fast response time that is necessary for performing incremental searches.

The research will show which data layouts are optimal for efficiently answering de-
velopers’ questions, how user interfaces can be designed to incrementally formulate
queries on execution traces, and how complex queries are that developers want to
ask.

3 Further Applications

There more useful applications to trace data, that can build upon a fast analytical
search. For instance, the IDE can quickly visualize execution paths and variable val-
ues that a developer should expect in a given method, show the typical history of an
object’s state, or provide a usage-search for virtual methods that is more precise than
the current search, based solely on static analysis.

Furthermore, it should be possible to implement an omniscient debugger on top of
the database. This debugger would not only allow forward and backward stepping, but
could also perfom semantic steps, such as

e “step to the next invocation of this method,”

¢ “find another invocation of this method (maybe even in a different trace), where
one parameter is different,” or

e “go back to the last step where this field was read or written.”

Until now, we only considered unit tests as a source for reproducible execution
traces. However, when the entire trace is stored, it does not have to be reproducible.
Thus, the proposed system could also be used to find non-deterministic bugs, for in-
stance, bugs that are caused by racing conditions or arbitrary output of external sys-
tems.

4 Summary

Searching code using runtime information can help to find code that implements a
feature of interest or to locate the source of a bug. An incremental approach should
allow to formulate complex queries that will yield a sufficiently narrow result set. Using
an in-memory database should ensure good response times even for large systems.

206 Fall Workshop 2012

References

Once a prototype is implemented, user studies will have to show which questions
are asked, how the construction of queries can be supported, and to which extend this
helper can increase developer productivity.

References

[1] Christoph Hofer, Marcus Denker, and Stéphane Ducasse. Design and implemen-
tation of a backward-in-time debugger. NODe 2006, pages 17-32, 2006.

[2] Bil Lewis. Debugging Backwards in Time arXiv : cs / 0310016v1 [cs . SE] 9 Oct
2003. (September):225-235, 2003.

[3] Oleksandr Panchenko, Jan Karstens, Hasso Plattner, and Alexander Zeier. Precise
and Scalable Querying of Syntactical Source Code Patterns Using Sample Code
Snippets and a Database. In 2011 IEEE 19th International Conference on Program
Comprehension, pages 41-50. IEEE, June 2011.

[4] Oleksandr Panchenko, Hasso Plattner, and Alexander Zeier. What do developers
search for in source code and why. Proceeding of the 3rd international workshop
on Search-driven development: users, infrastructure, tools, and evaluation - SUITE
'11, pages 33-36, 2011.

[5] Michael Perscheid, Bastian Steinert, Robert Hirschfeld, Felix Geller, and Michael
Haupt. Immediacy through Interactivity: Online Analysis of Run-time Behavior.
In 2010 17th Working Conference on Reverse Engineering, pages 77—-86. IEEE,
October 2010.

[6] H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point for
Enterprise Applications. Springer, 2011.

Fall Workshop 2012 207

Duplicate Decision for Data Quality Web
Services

Tobias Vogel

Forschungskolleg
Hasso-Plattner-Institut
tobias.vogel@hpi.uni-potsdam.de

Data Quality is an abstract measure of how well data can be utilized. Data Cleans-
ing is the process of establishing this quality. This report describes this process and
shows how to reduce the computational effort while keeping up the accuracy. More-
over, means to further automate the duplicate decision process are outlined.

1 Data Quality Services

“The only thing constant in life is change”! as the socio-economic change of the last
200 years shows. Developing from an agrarian society over the industrial and service
era, mankind has reached the information society age. Many companies now base on
and trade data. The enormous amount of data is continuously rising as well as the
rate of interchange between different stakeholders, whether companies, governmental
institutions, or divisions within.

To enable this interchange and to generally manage the mass of data, the informa-
tion’s data quality has to be high. This renders the data comparable, interchangeable,
searchable, etc. Data quality refers to the data being complete, relevant, trustworthy,
accessible, ..., and duplicate-free. Data cleansing helps assuring these properties.
Moreover, this activity shall be fast, cheap, and accurate.

Automatic data cleansing services promise to serve these requirements. A data
cleansing service identifying multiple representations of same real-world objects (du-
plicates) adheres to the following workflow shown in Figure 1.

1.1 Analyze Input

In the first phase, preparative tasks are performed. This comprises, for example, the
removal of noise (special or non-printable characters) or stop words. If the dataset
originates from different sources, the different schemas might be aligned to make the
datasets comparable. With that, attributes may have to be joined together (such as
street addresses) or be separated (such as given and family names). Records and
their properties have to be separated and sorted to be individually accessible. The
following sequence is applied.

"Heraklit of Ephesus

Fall Workshop 2012 209

Duplicate Decision for Data Quality Web Services

1. Analyze Input 5. Calculate Closure

2. Select Pairs 4. Classify Duplicates

3. Calculate Similarity

Figure 1: Overall data cleansing workflow

1. The overall file type is examined. Depending on the type, record separators are
single characters such as newlines (plain-text, CSV) or further parsing has to
be performed (JSON, XML formats). In case of non-machine-readable formats,
information extraction techniques have to be applied, for example, to extract gen-
uine, relational tables from HTML documents [8] and similar. The same is true for
the attributes of the records.

2. Once the attributes are separated, they might have different schemas, e. g., if they
were structured and schema-free data such as XML files. To be able to compare
corresponding attributes of several records with each other, the attributes have to
be aligned, i. e., the schemas have to be matched [5].

3. The duplicate detection can be made even more effective if the datatypes of the
attributes are known. This is only rarely the case. Since instance data is avail-
able, the semantics of the attributes can be estimated [6]. All values of an attribute
are matched against reference data values. For very clean attributes this might
already suffice, for more polluted attributes or attributes for which no reference
data are available, features are extracted from these values and compared to the
features extracted from example data with known semantics. With this knowl-
edge attached to the attributes, specialized similarity metrics can be used. How-
ever, also the previous schema matching step can benefit from these techniques.
Same attribute values are likely to have the same datatype.

Until here, no duplicate detection has been performed.

1.2 Select Pairs

Comparing pairs of records is a highly parallelizable process. With the ability of SaaS
application to easily scale up, more processing power can be offered in short time. Yet,
the complexity of duplicate detection is quadratic (each record has to be compared
to each other record) which still renders it infeasible or at least ineffective (and too
expensive) to work on all records.

210 Fall Workshop 2012

1 Data Quality Services

1]12]3]4]5]6]7]8]9]10J11]12 1]12]3]4]|5]6]|7]8]9]10j11|12

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10| 10|

11| 11

12| 12
Figure 2: Naive comparison: the base- Figure 3: Blocking: only elements within
line for saving comparisons (only dark each disjoint block (e.g., red) are com-
comparisons are actually performed) pared

Fortunately, the “duplicate” relation is symmetric and reflexive. Thus, only less than
the half of all comparisons have to be performed, because two records do not need
to be compared twice and a record does not need to be compared to itself. Figure 2
shows an illustration. Only the dark colored combinations have to be examined.

To further reduce the amount of comparisons, there exist comparison pair selection
algorithms that create disjoint or overlapping partitions of the data and also intentionally
ignore many pairs. To do that, they sort the elements regarding to a specific key and
put all elements with the same key into one cluster. Such a key could be, for example,
the (first two letters of the) family name for an address dataset or the year of first
manufacturing in a product database. It is common practice to generate different keys
to create different smaller clusters and to perform several runs for preserving the recall.
The precision depends solely on the similarity measures and the subsequent decision
on whether a pair is a duplicate or not. Figure 3 illustrates a blocking with disjoint
partitions.

Parameters such as the blocking key are usually tuned and developed by human
experts. Humans use their domain knowledge about the nature of the dataset and
then decide for the blocking key, e.g., some digits of the ZIP code. In the services
world, experts are not available and a service has to be self-configuring. Bilenko et
al. [1] present an algorithm that automatically proposes different blocking keys, but it
relies on the availability of positive and negative examples due to the machine learning
techniques employed.

The service will most likely not be in possession of such examples. However, to find
key candidate attributes, a service can make use of having many users with datasets
from similar domains. Blocking keys for one dataset perform comparatively well on
other datasets from the same domain, thus, they have to be retrieved only once per
domain.The automatic generation of blocking keys is described in Section 2.

Fall Workshop 2012 211

Duplicate Decision for Data Quality Web Services

1.3 Calculate Similarity and Classify Duplicates

In this phase, the similarity between the records is calculated, that have been marked
as promising in the pair selection phase (Section 1.2). Once the pairs are selected,
specific similarity measures are applied on each pair of attribute values. There are
several general-purpose similarity measures such as Edit Distance, Jaro-Winkler, and
Jaccard similarity. However, knowing about the very nature of an attribute, common
misspellings, and — more important — acceptable differences (known from the analysis
phase (Section 1.1)), strongly increases the significance of the similarity measure.

After similarity scores for all relevant pairs are calculated, they have to be used to
decide, whether a pair of records should be regarded as duplicate. This can be done
via weighted sums or decision trees, for example. Section 3 outlines how the blocking
information can be re-used to take the duplication decision.

1.4 Calculate Closure

With the previous step, a list of duplicate pairs was declared. However, it is not clear
whether there are only pairwise duplicates. There are probably clusters of duplicates
from which only a small fraction is explicitly listed, up to this point. Thus, the pairs have
to be joined to clusters. For example, the transitive closure can be calculated or some
other clustering means has to be applied.

2 Blocking

It is possible to find suitable blocking keys (see Section 1.2) automatically for a dataset
equipped with a gold standard, the training dataset. Those blocking keys can be re-
used for datasets from similar domains lacking a gold standard [7], the fest datasel(s).
To be general and to support a large variety of data types, blocking keys are created
based on unigrams.

2.1 Problem Formalization

The formalized problem is as follows: Given a dataset and its schema, find a valid
blocking key (or a set of k valid blocking keys) that achieves the optimal trade-off be-
tween pairs completeness and efficiency. The details are explained below. A blocking
key consists of a set of unikeys. Each unikey is a combination of an attribute (e.g., ZIP
code) and a position within this attribute. Applying such a unikey on actual attribute
values yields said unigrams.

Validity

Usually, a dataset different from the training dataset will comprise other attributes. A
given blocking key is called valid in a test dataset, iff all of its unikeys are available in
the test dataset, both regarding the availability of the schema attributes as well as the

212 Fall Workshop 2012

2 Blocking

attribute lengths. The attribute length is defined by the schema (e.g., a CHAR (100) in
SQL) or is infinite for other data sources (e.g., CSV files).

Pairs completeness

The pairs completeness [2, 4] is the measure of how many of the duplicates can be
found for a blocking key, i. e., how effective the blocking key is.

A blocking key is used to create a partitioning to pre-classify duplicate records. Sub-
sequently, a similarity measure is applied on each possible pair within each partition. If
the pair’s similarity is above a given threshold, it is treated as a duplicate, otherwise as
a non-duplicate. The ratio of actual duplicates among the declared pairs divided by all
duplicates is called recall and serves as the pairs completeness. In our experiments,
we replace such a similarity measure by a lookup in the true matches.

Efficiency

A blocking key is efficient if it uses relatively few comparisons to achieve a given pairs
completeness. Thus, the measure for efficiency is the average number of performed
comparisons for each found duplicate.

In practice, however, the number of comparisons should not exceed a fixed thresh-
old 6. We express efficiency by normalizing the number of comparisons ¢ according to
0 and subtract it from 1 to align it to the pairs completeness. Thus, efficiency is defined
as 1—(g)<10,1], assuming ¢ < 6.

This measure resembles the term Filtered Reduction Ratio [2]. Yet using the actual
number of potential comparisons (5-10'° for 100,000 tuples) in the denominator would
usually create a value close to 1. Therefore, we adapt the notion by Gu and Baxter,
but instead of a filtering step, we give the efficiency in relation to a baseline approach.
In our case this is the number of comparisons, the Sorted Neighborhood approach [3]
would have created.

Overall Blocking Key Quality (BQ)

A good blocking key should be effective and efficient. Therefore, we define the Over-
all Blocking Key Quality BQ as the harmonic mean between pairs completeness and

efficiency (BQ = %), where PC is pairs completeness and Ey is efficiency.

2.2 Key Generation Workflow

Automatic blocking key generation is performed in two steps. First, for a training dataset
with a given gold standard, all combinatorially possible blocking keys are evaluated.
Second, for a test dataset, typically lacking a gold standard, the previously created list
of blocking keys is iterated to find the best valid blocking key.

Fall Workshop 2012 213

Duplicate Decision for Data Quality Web Services

Training Phase
As the first step, good blocking keys are identified:
1. Generate all possible unikey combinations (i. e., blocking keys).

2. For each blocking key perform a duplicate detection experiment on the reference
dataset:

(a) If the number of comparisons exceeds the threshold 6, discard this blocking
key.

(b) Else, calculate the achieved overall blocking key quality (BQ) for the blocking
key.

3. Sort all non-discarded blocking keys descendingly by BQ.

Production Phase

The keys from the training phase can subsequently be used to find duplicates in test
datasets of similar domains.

1. For each blocking key in the previously calculated list, check for validity for the
current dataset.

2. For each remaining valid blocking key (still ordered by BQ), start a duplicate de-
tection run.

(a) If the number of comparisons exceeds a certain threshold, abort the run,
keeping the so-far detected duplicates.

(b) Else, finish the duplicate detection run until one of the following abortion
criteria is fulfilled: the desired number of passes have been executed, the
total number of actually performed comparisons over all runs exceeds a
threshold, the overall efficiency sinks below a given threshold (i.e., no or
not enough new duplicates are found), or the number of detected duplicates
is sufficient. Note that the thresholds might be domain dependent or given
by a user.

2.3 Evaluation

The experiments were performed on different random samples of two address datasets
examining 6 million blocking keys. Table 1 shows the most successful blocking keys
with regard to the number of found duplicates, comparisons, pairs completeness, effi-
ciency, and BQ. To compare, an “expert guess” — the ad-hoc blocking key [city-0,
familyname-0, givenname-0, zip-0] ahuman expert might have come up with
—only found 274 of the 804 duplicates to find. However, achieving a very high efficiency
value is typical for user-provided blocking keys.

214 Fall Workshop 2012

2 Blocking

Just a bit of derivation in the attribute positions as in [city-0, familyname-0,
givenname-3, zip-1] had found seven more duplicates comparing one fifth fewer
records. The most successful blocking key found 86.69% of the duplicates, but used
— on average — 12,521 comparisons for each duplicate. In contrast, the most ef-
ficient blocking key only performed 27 comparisons per duplicate revealing only a
small fraction of all the duplicates. Finally, the overall best key ([familyname-0,
familyname—-1, zip-0, zip-1, zip-2]) was both, effective and efficient and
achieved very good results in both disciplines. The respective maximum values in
the table are emphasized.

Description Blocking key Found Compa- Pairs Effi- BQ
dupli- risons Com- ciency
cates plete-
ness
Expert guess [city-0, 274 258,077 34.08% 97.39% 50.49%

familyname-0,
givenname-0,
zip—-0]
Most duplicates [zip-0, 697 8,727,009 86.69% 11.80% 20.78%
and maximum zip-1,
pairs complete- zip-2,
ness zip—-3]
Least compar- [city-0, 214 5,781 26.62% 99.94% 42.04%
isons per dupli- familyname-0,
cate and most family-
efficient name-3,
givenname-3,
street-3]
Overall best [familyname-0, 672 407,232 83.58% 95.88% 89.31%
familyname-1,
zip-0,
zip-1,
zip—2]

Table 1: Selected outstanding blocking keys

To evaluate the ability for domain transfers of blocking keys between two datasets
from similar domains, we took a sample of another dataset. We chose the 300 best
blocking keys (according to their BQ) from the training dataset and performed duplicate
detection runs on them.

The absolute number of found duplicates vastly increased, because there are much
more duplicates in the test dataset. The overall numbers of comparisons stayed in the
same order of magnitude (remember that there is a cut-off at 10 million comparisons).
Only 131 blocking keys were valid, however the first invalid blocking key had rank 50,
thus the best blocking keys did actually work also on the test dataset. The average
overall blocking key quality is 94.29% due to a generally higher pairs completeness.

Fall Workshop 2012 215

Duplicate Decision for Data Quality Web Services

This means that the duplicate characteristics resemble the blocking keys very well,
even with data from different languages and domains. Table 2 shows key figures for
the first 10 blocking keys.

3 Duplication Decision

It is common to weigh the similarities concerning to their relevance (for example, gen-
der might not be as relevant as family name) to calculate a weighted sum. If this sum is
above a given threshold, the pair is regarded as being duplicate, otherwise not. How-
ever, global thresholds are too inflexible. Different partitions might have completely
different similarity distributions. For example, John Does from a large city will be fre-
quent and only have tiny differences in their pairwise similarities. In contrast, another
partition (say) containing inhabitants of a smaller city will have very diverse similarities.
Applying a global high threshold will keep the John Does apart but will result in miss-
ing all the duplicates in the other partition. Applying a global low threshold will work
well in the second partition but will not classify any pair of John Doe as duplicate. A
global fixed threshold is easy to set by a user but will result in poor duplicate decision
capabilities.

Threshold-based Duplicate Decision The global threshold has to be adapted for
each block. Let there be two blocks of records. Block 1 contains pairwise similarities
between 80% and 95%, block 2 contains similarities between 30% and 90%. A theo-
retical, global threshold of 70% would result in an actual threshold of 90.5% for block 1
and 72% in block 2. Thus, the different similarity distributions within the specific blocks
are taken into consideration.

Blocking-key-based Duplicate Decision More flexibility is offered by a rule-based
approach. In this case, the similarities are used as predicates within a disjunctive
normal form or in a decision tree. With that, specific irregularities in the dataset can
be covered. For example, if the date and name similarities are above high thresholds,
the pair is regarded as a duplicate, ignoring, say, the city similarity. Also negative rules
are possible: if the dates of birth do not match, the pair is classified as non-duplicate
regardless of the (possibly high) similarity for family names.

Duplication classifiers need these parameters as input to aggregate a given set
of similarities between attributes of a duplicate candidate into a duplication decision.
Typically, these parameters change over domains, datasets, and even parts of the
data and a global parameter setting is too inflexible. For example, address records
might share the same ZIP code. For ZIP codes belonging to large cities, the city
name is irrelevant as well as parts of the phone number whereas for small cities, the
city name is very distinctive, because several smaller cities might share the same ZIP
code. Consequently, there should be different parameters for different partitions of the
dataset.

In the blocking phase (Section 2), partitions were generated whose participants
share specific characteristics. Those partitions (basing on blocking keys) can be re-

216 Fall Workshop 2012

4 Conclusion

used for the duplicate decision step. Following the pre-requisite, that a gold standard
for a training dataset is available, this standard does also serve for learning appropriate
rules for the duplication decision. Again, this knowledge can be transferred to other
datasets from similar domains. |. e., if the described city example is a general principle,
it will generally hold for other datasets. Creating a mapping from blocking keys to rule
sets will enable an automated duplicate detection service to autonomously decide on
duplication in new, unknown datasets.

4 Conclusion

The process of data cleansing in general and duplicate detection in particular poses
many research opportunities towards increasing effectiveness and efficiency and au-
tomating it as a whole. While it has been subject of innumerable efforts since more
than 40 years now, the Software-as-a-Service community did not yet fully investigate
the potential of the particularities of this new approach, namely having many different
customers and datasets from different domains as well as being used by unexperi-
enced users who cannot tune and tweak all the necessary parameters.

| presented the overall duplicate detection workflow (Section 1) and particularly
showed how to achieve a good blocking to reduce the computation effort while main-
taining accuracy (Section 2). Once these blocks are known, pairwise similarities can be
calculated. The next challenge is to make use of these similarities to actually classify
a pair of records as being duplicate. | presented two means to do that automatically
without human intervention (Section 3). The evaluation of this duplicate decision phase
is left as a next step.

References

[1] Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. Adaptive blocking:
Learning to scale up record linkage. In 6th IEEE International Conference on Data
Mining (ICDM), 2006.

[2] Lifang Gu and Rohan Baxter. Adaptive filtering for efficient record linkage. Pro-
ceedings of the SIAM International Conference on Data Mining (SDM), 2004.

[3] Mauricio A. Hernandez and Salvatore J. Stolfo. The merge/purge problem for large
databases. In Proceedings of the ACM International Conference on Management
of Data (SIGMOD), 1995.

[4] Matthew Michelson and Craig A. Knoblock. Learning blocking schemes for record
linkage. In Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI), 2006.

[5] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 2001.

Fall Workshop 2012 217

References

[6] Tobias Vogel and Felix Naumann. Instance-based "one-to-some" assignment of
similarity measures to attributes. In Proceedings of the International Conference
on Cooperative Information Systems (CooplS), 2011.

[7] Tobias Vogel and Felix Naumann. Automatic blocking key selection for duplicate de-
tection based on unigram combinations. In Proceedings of the International Work-
shop on Quality in Databases (QDB), 2012.

[8] Yalin Wang and Jianying Hu. Detecting tables in html documents. In Proceedings
of the International World Wide Web Conference (WWW), 2002.

218 Fall Workshop 2012

References

"1oselep 1s9] 8y} uo paldde joselep Buiuied; syl ul sAay Buiyoo|q 1s8q Q| 1S41} 8y} 40} saunbiy Ay ay) Jo uosiedwo?) g a|qeL

[z-dTz ‘1-dTz
‘y—9T3T3 ‘T-SweulATTwer
%6676 %.0°96 %E6'E6 <CLEB8BE L1L9 PL09°G8 %8268 %Lc28 899°090°L 199 ‘0-sweulATTWe]
[z-dTz ‘1-dTz
'7-9T3T3 ‘T-suweulAlIwe]
%1906 %S L8 %L0V6 699°L¥2 L /2.9 [L09°G8 %8268 %t2'28 999°090°L 199 ‘0-sweuATTwes]
[z-dTz ‘1-d1z
‘€-9T3T3 ‘T-sweulklTwel
%2026 %G6'68 %6116 /86°€66 9EL9 PL09°G8 %8268 %lce8 €99°090°L 199 ‘0-sweulTTWe]
[z-dTz ‘0-dTz
%0E V6 %6V 76 %2k ¥6 L60°GYS LEL'9 [Pol8'G8 %8588 %EE'ES €¥862L L 0.9 ‘y-39913s ‘T-39913S]
[z-dTz ‘1-d1z
%E0°G6 %9196 %E6'E6 6LE°6LE LLL9 Pol098 %8268 %80°E€E8 900°090°L 899 ‘T-39213s ‘0-399135]
[c-dTz
‘1-dtz ‘T-sweulATTwE]
%B6L V6 %29'G6 %86'C6 206CEY L2L'9 [LES 98 %G068 %8G ES €¥G280°L 29 ‘0-sweuATTwes]
[p—39213s ‘T-392I113S
%09 V6 %62'G6 %E6'E6 L¥8°GAY LLL'9 L8898 %G 06 %EECES 289VI6 0.9 ‘z-dtz ‘1-d1z]
[T-39213s ‘p-239=2113s
%6016 %9.°€6 %EY'¥6 O0V0'LL9 €GS9 61888 %6E'G6 %80°€8 0£2'GGy 899 ‘z-drz ‘1-drz ‘0-dTZ]
[z-dtz ‘1-dtz ‘Q-dTz
%E6' V6 %06'G6 %866 06¥'G0¥ 2.9 bl 68 %66'G6 %EECES /L9596 0.9 ‘p-3°9913s ‘1-399135]
[¢-dTz ‘1-dTz
‘0-d1z ‘T-swruUATTWE]
%1986 %9226 %00L 902042 LS. PlE68 %88°G6 %8G°'€8 2£2'/0v 2.9 ‘0-sweuATTweT]
soled
‘uajo|d sojed ‘uaja|d ||
Aouald -woH suosll -idnqg Aouald -woH Suosl -dng
o4g 43 siied -edwo) punoH | OF 43 siied -edwo) punod Aoy Bupjoolg
1S9 Buiures|

219

Fall Workshop 2012

Integrated Software Development for
Embedded Robotic Systems

Sebastian Watzoldt

Systems Analysis and Modeling Group
Hasso Plattner Institute
sebastian.waetzoldt@hpi.uni-potsdam.de

In the recent years, improvements in robotic hardware have not been matched by
advancements in robotic software and the gap between those two areas has been
widening. To cope with the increasing complexity of novel robotic embedded systems
an integrated and continuous software development process is required supporting dif-
ferent development activities and stages being integrated into an overall development
methodology, supported by libraries, elaborated tools and toolchains. For an efficient
development of robotic systems a seamless integration between different activities and
stages is required. In the domain of automotive systems, such an overall develop-
ment methodology, consisting of different development activities/stages and supported
by elaborated libraries, tools and toolchains, already exists. In this report, we show
how to adapt an existing methodology for the development of automotive embedded
systems for being applicable on robotic systems.

1 Introduction

In novel robotics applications steady improvements in robotic hardware is not matched
by advancement in robotic software leading to an increasing gap between those two
areas. The increasing complexity of modern robotic systems requires to further sup-
port several different software development activities such as modeling, simulation and
testing that allow the incremental development of robot systems, starting with a sin-
gle sensor and resulting in a complex application. Elaborated tools and toolchains are
required to support the different activities and integrate them into an overall and well
structured development methodology. To realize an efficient software development pro-
cess, on the one hand, one has to provide libraries supporting individual development
activities at different levels, e.g., at the level of individual sensors and control functions
or at the level of systems or sub-systems, being incrementally composed. On the other
hand, a seamless migration between individual development activities and stages has
to be achieved. Furthermore, one crucial aspect that needs to be considered for a
large portion of robotic systems is real-time behavior.

Accordingly, the following aspects need to be considered for bridging the gap be-
tween hardware and software development in novel robotic systems: (I) An overall
methodology is required that supports (ll) different development activities like model-
ing, simulation and testing at (lll) different stages, e.g., simulation, prototyping and

Fall Workshop 2012 221

Integrated Software Development for Embedded Robotic Systems

(pre-)production. Such a methodology has to be supported by (IV) elaborated tools
and (V) libraries integrated into (VI) an overall toolchain allowing a seamless migration
between the different development stages and artifacts. (VII) Simulation and testing
support is required for the stages, allowing to validate created functionality, developed
sub-systems or systems, e.g., by providing executable functional models, simulation
environments and plant models. (VIII) Last but not least, real-time constraints need to
be reflected.

As an example, in the automotive domain large complex real-time embedded sys-
tems are developed using different development stages, e.g., simulation, prototyping,
and pre-production. Advanced tools and libraries have emerged during the recent
years, integrated into sophisticated toolchains supporting different development stages
as well as a seamless migration between them. To deal with the increasing complexity
and to further reduce software development costs as well as time, advanced frame-
works for the distributed and component-based development have been developed. In
this report, we propose adapting the existing software development methodology used
in the domain of automotive embedded systems to support the software development
of novel, complex embedded robotic systems. The proposed methodology includes an
overall development process consisting of tools included into an overall toolchain as
well as libraries. We apply this existing approach to the domain of robotic systems and
evaluate as a proof of concept, which modifications have to be made. The approach is
evaluated using a mobile robot developed according to the adapted methodology. Spe-
cial attention is given to real-time constraints that need to be considered in a slightly
different way than in the case of automotive real-time embedded systems. Therefore,
we show a new approach for combining hard and soft real-time behavior in the existing
automotive framework.

The remainder of this report is organized as follows. Section 2 briefly discusses the
foundations of robotic as well as automotive systems and introduces a running exam-
ple for this report. Section 3 describes our development approach including different
stages and highlights our used tools as well as simulation and verification possibilities.
The report discusses related work in Section 4 and concludes in Section 5.

2 Foundations — Robotic and Automotive Systems

2.1 Robot Laboratory

For the evaluation of our research activities, we use our CPSLab' robot laboratory
consisting of three Robotino robots.? The robots can be equipped with several sensors
(e.g., laser scanner, infrared (IR) distance sensors, GPS like indoor navigation sys-
tems) as well as different actuators (e.g., servo motors, omnidirectional drive, gripper).
The general idea of our evaluation scenario is the realization of a variable production
setting, where robots are capable of transporting small pucks (representing goods in
a production system) to different locations. Robots have to fulfill different requirement,

1www.cpslab.de
2yww. festo—didactic.com

222 Fall Workshop 2012

2 Foundations — Robotic and Automotive Systems

e.g., they have to provide basic functionality like moving and avoiding obstacles in hard
real-time (reacting on obstacles within a few milliseconds). Further, the robots have
to reflect high level goals, e.g., energy saving of the battery, short routing to the desti-
nation points and optimizing the throughput while transporting the pucks. While basic
functionalities, such as obstacle avoidance, have to be realized in hard real-time, we
use existing libraries to realize higher functionalities such as path planning or creating
a map by evaluating measured distance values. The latter can rarely be realized un-
der hard real-time constraints because of insufficient libraries.® Furthermore, we run a
RTAI Linux operating system* on the robot to enable hard real-time execution.

As a running example, we use a single robot with the following hardware/ software
configuration: The robot has three wheels realizing an omnidirectional drive. The drive
unit provides an incremental encoder to realize odometry functionality, which calcu-
lates the relative position over time according to the drive speed and the orientation of
the omnidirectional drive of the robot. Due to the fact that this odometry calculation be-
comes more and more imprecise over time, we use an additional GPS like (NorthStar®)
indoor navigation system to correct the position in the long run. IR distance sensors
are used to avoid obstacles during movement. A more complex navigation logic uses
these sensors for maintaining a map® as well as computing an appropriate route for
the robot while avoiding obstacles.

2.2 Automotive Development Process

A commonly applied development process for the development of automotive embed-
ded real-time systems according to [4] is depicted on the left in Fig. 2. The develop-
ment process includes three different stages, namely the simulation, prototyping and
pre-production stage. During the simulation stages models are extensively used for
realizing control functionality as well as for representing the environment. At the pro-
totyping stage, a transition from a model-based to a software centric development ap-
proach is realized. Often, this is achieved by using code generators that automatically
derive source code from the models used in the previous stage. In the pre-production
stage, more and more aspects of the real system are involved, e.g., by using prototyp-
ing HW including the processor type (with additional debugging support) that is later
used. Furthermore, parts of the real plant enable a realistic validation of the real-time
behavior.

2.3 AUTOSAR

The AUTomotive Open System ARchitecture was invented to further support the devel-
opment of complex and distributed systems. AUTOSARS is the new de facto standard
in the automotive domain. It defines a layered architecture, standardized communi-
cation mechanism and a whole development methodology. Furthermore, it supports

3For path planning and creating a map the MRPT library is used (www .mrpt . org).
4www.rtai.org
5www.evolution.com/products/northstar/

waw.autosar.org

Fall Workshop 2012 223

Integrated Software Development for Embedded Robotic Systems

the interaction between different car manufactures and suppliers. Figure 1 gives an
overview of the layered AUTOSAR architecture. The layer at the bottom represents

AUTOSAR AUTOSAR
Software Software AUTOSAR

Component Component Software

Interface Interface

ECU-Hardware

Figure 1: The layered AUTOSAR architecture according to the specification in [12].

the real hardware including microcontroller and communication busses. An abstraction
layer on top of the real hardware, included in the basic software layer, offers standard-
ized interfaces for accessing the HW. Further functionality realizing the OS behavior as
well as functionality for realizing communication is included in the basic software layer.
The AUTOSAR runtime environment (RTE) is responsible for realizing the communica-
tion from and to the top software application layer. Software components (SWCs) re-
alize application functionality at the layer on top. There, the architecture style changes
from a layered to a component based approach [12]. SWCs communicate over well-
defined ports using AUTOSAR interfaces, which are realized by the RTE layer. Each
SWC consists of an arbitrary number of so-called Runnables that specify the behavior
entities of each component.” Such Runnable entities are mapped on OS tasks, which
are scheduled and handled by the operation system included in the basic software
layer.

2.4 Automotive vs. Robotic Systems

In an automotive embedded system, usually applications are developed in such a fash-
ion that hard real-time capable functionalities are separated from soft real-time appli-
cations. For example, it is quite common to deploy soft and hard real-time functionality
on disjoint execution nodes and direct communication between them is avoided.

For robotic systems it is quite common to combine soft and hard real-time behavior
into one application. For example, a mobile robot needs to avoid obstacles under
hard real-time during navigation while calculating a route and updating a map. Both
functionalities need to be combined while predicting the execution time, e.g., of a route
planing algorithm, is often not possible.2 Thus, one difference between automotive
and robotic systems concerning the real-time behavior is, that soft and hard real-time
capable functionalities need to be more closely linked in robotic systems.

"The functionality of a Runnable can be realized by a C/C++ function.
8Execution time depends on the size of the map, which is usually not known before runtime.

224 Fall Workshop 2012

3 Development Environment

3 Development Environment

In this section, we describe our development environment, the tools and libraries used
in the different development stages as well as our test and verification possibilities dur-
ing system development. According to [4], we distinguish three development stages
at different levels of abstraction targeting specific key aspects, namely simulation, pro-
totyping and pre-production. Validation and verification activities are applied in each
stage according to the given abstraction level. On the left in Figure 2, the overall pro-
cess including the different stages is shown. In the following, we describe the applied
validation and verification activities of each stage in the form of the libraries, methods
and tools used. Furthermore, we show how to achieve an AUTOSAR conform sys-
tem realizing the complex behavior of the robot incrementally developed, validated and
verified during the different development stages.

MiL = model-in-the-loop

f Matlab/ Simulink/
MT/MiL Stateflow
»/Simulation Prototyping
stage / s
RP - =
= Robotino®View
TargetLink =] @ | Robotino®SIM
\ 4 oy /'n- g 1 -
HiL o= ‘
MT = model test \‘;/ SystemDesk
I _T

RP = rapid prototyping ST

SiL = software-in-the-loop 5 3

HiL = hardware-in-the-loop Pre-production | T |

ST = system test stage e e —

Figure 2: On the left are the three development stages according to [4] in combination
with our toolchain during software and system development on the right.

Fall Workshop 2012 225

Integrated Software Development for Embedded Robotic Systems

3.1 Simulation Stage

5

speedX

vxin posX Position X

vyln

5

Y
speedY pos

omegaln

25 stepSizeSec phi Position Y

Odometry

5

turnRate

—ho

0.02 Orientation

Constant

Figure 3: Odometry in MATLAB, which calculates the position from fix drive speed and
turn rate.

Individual functions as well as composed behavior, resulting from multiple individual
functionalities, are the subject of the simulation stage. Data flow models in the form of
block diagrams (e.g., MATLAB/Simulink) usually in combination with control flow mod-
els like Statecharts (e.g. Stateflow) are used [6]. Normally, function development is
done independent from platform specific limitations (memory capacity, floating point
calculation or effects resulting from discretization). Additionally, environment specific
signals and other real sensor values (e.g. produced by A/D, D/A converter or specific
communication messages) are ignored for the sake of simplicity. The goal of the simu-
lation stage is to prove that the functional behavior can work and as a result provides
a first proof of concept for control algorithms.

As depicted in Fig. 2 and according to the aspect (IV), we mainly use the MATLAB
tool suite including the Simulink and Stateflow extension in this development stage.
Let us consider the MATLAB model shown in Fig. 3, as an example modeling the func-
tionality of an odometry. It reads data from moving sensors to calculate changes in the
position over time according the actual orientation and movement speed of the robot. In
the simulation stage, such a model is used to apply a so-called model test (MT), where
individual functionalities can be simulated sending static input values to the model (e.g.,
drive speed and turn rate of the robot as in Fig. 3) and plotting the computed output
values as shown in Fig. 4. These one-shot/ one-way simulations are typical for the MT
step and do not consider the interaction with the environment or a plant model. More
complex behavior is constructed and validated in the form of individual functionalities
and running model-in-the-loop (MiL) simulations [4] including preliminary environment
models of the plant. At this point in time, feedback simulations validate the developed
functionality considering the dynamic behavior of the environment. Outputs are sent
to the plant model, which itself gives feedback used as input for the function blocks in
the next iteration of the MiL simulation. In such a manner, the overall control law can
be validated concerning basic constraints like stability, safety or reliability of the system
(V).

In the case of robotic systems, such a plant model can be represented at different
levels, e.g., by using models representing a single sensor, the behavior of a single robot

226 Fall Workshop 2012

3 Development Environment

using multiple sensors or in the case of a complex simulation realizing the behavior of
multiple robots as well as relevant parts of the logical and/or physical environment.
Using such a plant model in the context of a MiL simulation, we must bridge the gap
between our MATLAB models and the provided model of the plant (VI). For this pur-
pose, on the one hand, we use the RobotinoSim simulator in combination with the
graphical RobotinoView environment? to create plant models (cf. the upper path from
the simulation stage in Fig. 2). Therefore, we implemented a block library for MAT-
LAB in our development environment, which allows access to sensors (e.g., distance
sensors, bumper, incremental encoder, electrical motors) and actuators according to
requirement (V). The sensors and actuators can be accessed individually inside a MiL
simulation supporting the validation of the models (VIl). The RobotinoSim simulator
provides optimal sensor values excluding effects such as sensor noise. Therefore, on
the other hand, we can access the HW of the robot directly via a wireless LAN con-
nection. Due to the fact that we use the concrete HW in this simulation setting, we
could verify our functionalities and control algorithm with real sensor values including
measure errors and sensor noise.

To sum it up, on the right in Fig. 2, one can follow the toolchain used via the flow
arrows.’® However, we are not limited to the RobotinoSim tool in our development
approach. We use this tool to show the proof of concept, but in general it is possible
to create block libraries in MATLAB or use existing ones'! for other robots, simulation
frameworks or individual sensors/ actuators.

3.2 Prototyping Stage

The focus of this stage changes from design to implementation. While in the simulation
stage models are the main artifacts, in this stage the source code plays a major role.
In the following, we show how to support the prototyping stage at the level of more
isolated functional parts as well as at the level of the system behavior by using the
professional, commonly used tools of the automotive domain.

Function Level — TargetLink: In the automotive domain, code generators are com-
monly used to derive an implementation for the specific target platform. Usually, the
models from the simulation stage are directly used or refined until a code generation
step is possible. In our development environment, the tool TargetLink from dSPACE
is fully integrated into MATLAB and can automatically derive the implementation from
behavior models in form of C-Code. In this step, we use the same MATLAB blocks as
discusses in Section 3.1. So, we are able to seamlessly migrate (VI) our functions and
control algorithm from the model level, realizing continuous behavior, to the implemen-
tation level, realizing a discrete approximation of the original continuous behavior.'2
We can configure several characteristics of the desired target platform/ HW.

%In the following, we only mention the simulator, but we always use both tools together in combination.
Tools see: www.festo-didactic.com

10The described RP flow to the real robot is not shown in the figure.

" For example this toolbox: http://petercorke.com/Robotics_Toolbox.html

2Discretization is applied at different levels. E.g., fixed point variables are used for the implementation at
the data level or time continuous differential equations are mapped to discrete execution intervals at the
timing level. For further details compare [4].

Fall Workshop 2012 227

Integrated Software Development for Embedded Robotic Systems

Position X

0 20 40 60 80 100
Position Y

0 20 40 60 80 100
Orientation

0 20 40 60 80 100

Figure 4: MiL (dashed line) and SiL simulation values of the odometry block.

Software-in-the-loop (SiL) simulation is a first step from the pure model execution
to a code-based testing. Certain assumptions can be validated by replacing more and
more models with code. While still executing the software on a host pc and not on
the real HW, different effects can be analyzed, which result from chosen configura-
tion parameters during code generation. Just as in the MiL simulation case, a SiL
simulation can be applied in MATLAB using the generated source code instead of the
original model. The developer can switch between the MiL and SiL simulation mode
in MATLAB. Therefore, he can easily compare the simulation results. Fig. 4, for ex-
ample shows the monitored results of the position as well as the orientation from the
MiL and SiL simulation runs of the odometry. The simulations run against the Roboti-
noSim simulator. In the MiL run (dashed line), appropriate values for the actual position
and orientation are calculated. Because of rounding (discretization) effects in the SiL
run, the calculated values are much too low. So, the difference between pure model
simulation and code generation becomes visible.

The problem in this special example could be fixed by choosing different values for
the discretization over time. Calculating the position each 0.02 time units (corresponds
to a scheduling with a period of 20 ms, cf. the constant value in Fig. 3) leads to very
small offsets in the position, which is often rounded to zero due to discretization. After
we identified the problem, we could easily fix it in the model. Instead of a 20 ms
period, we double it to 0.04 time units for calculating the position. After generating
code again, we could validate our assumption, which leads to a new requirement to
trigger the functionality of the odometry with a period of 40 ms. Using code generators
for automatically deriving the implementation realizing the behavior of initially created
models support the seamless migration from the model level to the implementation
level as well as allow to analyze effects arising from the implementation. Therefore, we
cover the aspects IV, VI, and VII developing robotic systems at this point.

228 Fall Workshop 2012

3 Development Environment

DriveOdometrySWC
ApplicationSoftware

posX
posY
posOmega

y

ﬁ OmniDrivelnterface : Receiver ---Jp Drivelnport OdometrySend P _.,’i OdometryInterface : Sender
deg

)_Od?mgrﬂ \T)rrgidﬁleﬂ‘
Runnable Runnable
e W]

\ {E/ ““““““ ﬁ iZZI:\Z'ﬁ

aaaaaaaa

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Figure 5: Mapping from MATLAB models to SWCs.

System Level — SystemDesk:

For more complex system behavior resulting from the composition of multiple indi-
vidual functionalities, we use the component-based architecture provided by the AU-
TOSAR framework. Individual functionalities provided by the MATLAB models are
mapped on components such as those depicted in Fig. 5. The generated source code
from TargetLink is mapped into the AUTOSAR SWC in the form of so-called Runnables.

NorthStar
ApplicationSoftware

Jodpanidayeied
PU3SIEISYHION

H

DriveOdometrySWC
ApplicationSoftware

Drivelnport DriveOutport

OdometrySend OdometryReceive

SA12094JRISYHON

NavigationLogicSWC
ApplicationSoftware

DistanceSensorsSWC
ApplicationSoftware
Outport DistanceSensorsReceive

Figure 6: SWC architecture in AUTOSAR.

podinopanidayeIea

So, the same C-Code as in the SiL simulation is used and thus, a seamless inte-
gration (VI) of individual functions into the overall system behavior is achieved. In our
example, we split the MATLAB model into two Runnables, namely OdometryRunnable
and OmnidriveRunnable.'®> The SWC communicates to other ones over well defined
ports. Furthermore, the input and output values are mapped to AUTOSAR interfaces
with data entries and types respectively.

The AUTOSAR architecture consists of four SWCs'# (see Fig. 6). It realizes the
autonomous movement of the Robotino robot and includes the SWCs DriveOdome-
trySWC, DistanceSensorsSWC, NorthStar and NavigationLogicSWC. Each SWC pro-
vides the functionality such as that described previously in Section 2.1.

System Configuration: In addition to the architecture modeling and the separation of
functions in different SWCs, SystemDesk supports a task specification for the under-
lying operating system. Runnables can be mapped to different tasks. Furthermore,

13This separation allows us to trigger the two Runnables with different periods.
“Due to a better understanding, we choose this simple excerpt of a larger architecture.

Fall Workshop 2012 229

Integrated Software Development for Embedded Robotic Systems

several task activation events including periodic and sporadic ones are supported and
additional scheduling information like periods and priorities can be modeled.

For a system simulation, one has to specify a concrete AUTOSAR conform sys-
tem configuration, which includes 1) a set of tasks, each consisting of one or more
Runnables, 2) one or more electronic control units, which are specialized proces-
sors, and 3) communication capabilities (buses) with a concrete mapping of messages,
which have to be exchanged. In the following, we describe the first point in more detail
using our running example.

22| CalculateDriveSpeed
E] Odometry

>
ES pistanceSensor 2] CalculateDriveSpeed || NorthStar
E OmniDrive E] Odometry - NorthStarReceive
DE
Trigger/pg ompletion
i =
f } f —— = >

0 10 20 30 40

Figure 7: Upper time line: scheduling of hard real-time functions. Lower time line:
combined hard and soft real-time scheduling.

The Runnables DistanceSensor, OmniDrive and CalculateDriveSpeed are mapped
to an OS task, which is executed with a period of 20 ms. A second task with the derived
period of 40 ms contains the Runnable Odometry (cf. Section 3.2). The resulting
execution of the Runnables and the schedule of the tasks is depicted in the upper time
line of Fig. 7. These four basic functions run under hard real-time constraints, so we
can be sure that all deadlines are met.

After adding more information to satisfy points 2) and 3), SystemDesk can real-
ize a system simulation. It automatically generates the required simulation framework
code according to the AUTOSAR standard, e.g., the RTE, messages, task bodies and
trigger events. Furthermore, existing source files, generated by TargetLink (from the
MATLAB models), are compiled and linked into the tasks. The complete system runs
in a special simulation environment inside the SystemDesk tool and considers the HW
configuration as well as OS task specifics. Again, this simulation is executed on a host
PC and thus belongs to the prototyping stage. As depicted in Fig. 2,we can validate the
overall system behavior in the three following scenarios considering the aspects (VI,
VII, and VIII): First, we can monitor different output values, messages and variables
inside the simulation environment itself. Second, we can connect the Robotino simula-
tion environment as a plant model, which interacts with the SystemDesk tool. Finally,
we are able to replace the plant simulator with the real robot. Therefore, we have to es-
tablish a W-LAN connection for the communication and to access the real sensors as
well as actuators. Unfortunately, this unpredictable connection can destroy the timing
behavior of the simulation, although the simulator tries to keep all deadlines. If we find
errors during our validation processes, we can change the configuration, architecture
or communication possibilities in SystemDesk and run our simulations again. Further-
more, we are able to re-import SWCs into MATLAB and therefore, switch between the
different development stages.

230 Fall Workshop 2012

3 Development Environment

According to the stage description in [4], Hardware-in-the-loop (HIL) simulations can

be applied in the prototyping stage too. In these kind of simulations, the "unlimited"
execution and testing hardware is often replaced by special evaluation boards with
additional debugging and calibration interfaces, which are similar to the final hardware
configuration. Due to limitations of our robot laboratory and missing evaluation boards,
we do not use such HiL simulations. However, the integration of such boards can be
carried out easily in the SystemDesk tool by changing the HW specification during the
system configuration step.
Adaptation to Robotic Systems: In contrast to classic (hard) real-time applications in
the domain of automotive embedded systems, robotic systems must realize functional-
ities, for which worst-case execution times (WCETSs) are hard or impossible to predict.
As a result, the integration of such behavior can only guarantee soft real-time con-
straints. In our application example, we use the NorthStar sensor, which is accessed
via a serial USB port. Due to the fact that we use the default Linux OS driver, the timing
behavior is unpredictable for that port. Additionally, we implement the navigation logic,
which uses this NorthStar sensor, with library function from the MRPT library (cf. Sec-
tion 2.1) for maintaining the map information of the explored topology. This includes
the dynamic instantiation of an unknown number of C++ objects (classes) at runtime,
what hinders the WCET estimation, too. Therefore, the WCET can rarely be estimated
at the range of a few milliseconds.

Due to te fact that AUTOSAR does not directly support such a combination of soft
and hard real-time behavior, we need to adapt the framework to realize it in such a
way that: (1) the schedule guarantees the preservation of hard real-time constraints
for the basic functionality and (2) the communication between soft and hard real-time
functionality is achieved as such that only consistent data is read.

In the first step, we separate the hard and soft real-time functions/ Runnables and
map them onto different OS tasks. A soft real-time task can be configured with a lower
priority in such a way that it will be interrupted by all hard real-time tasks with a higher
priority. Following this development guideline achieves the first requirement (1). For
the second one, we use special data events (DE) in combination with Sender/Receiver-
interfaces of the AUTOSAR standard. Such events can be used to trigger the execution
of Runnables inside an OS task. A DE is sent from the hard real-time task (resp.
Runnable) to trigger the execution of the soft real-time Runnable. The interruptible soft
real-time function produces another DE, iff, the requested output data is in a consistent
state (2). The hard real-time task can read the data in its next period and triggers the
soft real-time function again if required.

The lower time line in Fig. 7 illustrates the combined scheduling of soft and hard
real-time tasks. The soft real-time task is triggered via a DE generated by the Om-
niDrive Runnable. During execution, it is preempted in order to ensure the timing
deadlines of the other hard real-time Runnables. After the NorthStar Runnable has
finished its execution, it sends another DE to indicate completion, which includes that
the consistent data results can be read in the next period of the OmniDrive Runnable.

Our described development approach supports the prototyping stage of robotic sys-
tems very well. We are able to incrementally refine more and more information to spec-
ify the system while seamlessly integrating artifacts of the previous stages (VI). Activi-
ties like function development and system configuration can be applied in a round-trip

Fall Workshop 2012 231

Integrated Software Development for Embedded Robotic Systems

engineering approach (I, Il). First, we develop the control functions in MATLAB (l1). Af-
terwards, we generate code using the TargetLink code generation capabilities (1V). At
this point, we can manually integrate additional, arbitrary functionality in C/ C++or use
existing libraries (V). As soon as sufficient code artifacts and libraries are provided, we
are able to use the code generation and simulation capabilities of the SystemDesk tool
(1V, VII). Existing SWCs, e.g., developed in a previous project can be seamlessly in-
tegrated into the system architecture and new components can be exported as library
elements for other projects. Additionally, we have shown the idea of creating a com-
bination of hard and soft real-time tasks using the AUTOSAR framework during this
stage (V).

3.3 Pre-Production Stage

Within the pre-production stage, usually, a prototype of the real system is built. This
prototype is tested against external environmental influences (such as temperature,
vibration or other disturbances). The goal of this stage is to prove whether all require-
ments and constraints are still met on the real HW. During this last integration of all
components and system parts, upcoming problems should be fixed as early as possi-
ble and before the final production of the product starts [4]. In our setting, we did not
built any HW prototypes. Instead, we integrate the overall functions, components as
well as the generated RTE and tasks to a complete system, compile and run it on the
target processor of the robot'®. So in this last step, we have no simulation semantic
and W-LAN connection to other tools. We can fully operate the behavior of the robot
in hard real-time. For verification, we use some hard real-time logging mechanism of
the robot OS. Furthermore, we can change the hardware composition of the robot by
adding or removing special sensors and actuators (see Section 2.1).

4 Related Work

Tackling the complexity of robotic and other embedded systems, we found a great deal
of previous work covering partial aspects of developing such systems. According to our
found aspects in Section 1 and our focus on the automotive domain, we combine the
existing development methodology from [4] and the AUTOSAR standard. We evaluate
our approach in a robotic production scenario using the component-based AUTOSAR
architecture [12]. Other frameworks often cover only parts of the found aspects. RT-
Middleware [1,2] and ORCA [5] focus on the specification of components including
interfaces and ports (aspects 1V, V, and VII). They lack the integration of an overall
methodology as well as architecture specification. Very similar to the AUTOSAR ap-
proach but with the focus on the robotic domain is the MOAST framework [3], which
covers the points Il, I, 1V, and partially VII. However, a seamless integration of an over-
all methodology and the support for different tools is missing. A good comparison with
other frameworks can be found in [8].

5We can automatically transform AUTOSAR compliant applications to the RTAI Linux.

232 Fall Workshop 2012

5 Conclusion

In the embedded world, testing and simulation are the major activities to verify the
behavior of the system [4]. We have made intensive use of the MATLAB, Robotino and
SystemDesk simulators. However, other simulators like Gazebo [7] or Webots [9] are
applicable as well.

Furthermore, there are other tools for modeling and simulation of AUTOSAR con-
form parts of the system architecture as the Real-Time Workshop(RTW) (MATLAB
extension) from the MathWorks company.'® The RTW extension is limited to compo-
nent functionality and interfaces. The overall system architecture description is needed
beforehand [11]. Parts of this description can be built by the Volcano Vehicle Sys-
tems Architect!” (VSA), which can import and export AUTOSAR conform architecture
description [10]. However, all these different tools can be used instead of the tools pre-
sented in this report, if the integration in the overall methodology as well as the support
for the different development stages is guaranteed.

Considering real-time constraints and combining hard and soft real-time tasks are
important because of the support for library functionalities in different use-cases. For
example, our navigation logic in this report cannot be done in a predictive amount of
time. Combining soft and hard real-time guarantees (1) a basic hard real-time be-
havior of the robotic system and (2) supports the development of complex algorithm
and higher system components. Existing robotic frameworks as the Robot Operating
System'® or Microsoft Robotics Studio'® are well established for developing complex
robotic systems. They have drawbacks concerning the integration of hart real-time
constraints.

5 Conclusion

We have shown in this report an overall methodology (l) along with different exemplary
development activities as well as artifacts on different levels of abstraction (ll, 1lI). We
know that not all tasks can be executed in HRT. Therefore, we have shown the idea
of combining different hard and soft real-time tasks into the overall system using the
AUTOSAR approach (VIII). Furthermore, we are able to integrate several tools and ex-
ternal libraries into our overall toolchain (1V, V, VI). However, we are not limited to the
tools we show in this report. This provided flexibility is stabilized by a clear structure
of different development stages (lIl) allowing a round-trip engineering for different func-
tions, the integration of components as well as the simulation and testing of the devel-
opment artifacts to the point of the complete system on the target platform. Therefore,
we adapt ideas of the automotive domain to the development of robotic systems.

As future work, we want to build a complex robot production scenario applying the
proposed methodology of this report and evaluate the interaction of soft and hard real-
time system parts.

www.mathworks.com/embedded-systems/
www.mentor.com/

WWW.rO0S.0org
www.microsoft.com/robotics/

Fall Workshop 2012 233

References

Acknowledgment

This report is based on joint work with Stefan Neumann and Falk Benke. For more
information see [13].

References

[1]

2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and Y. Woo-Keun. RT-middleware: distributed compo-
nent middleware for RT (robot technology). In 2005 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 3933—-3938, 2005.

Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. A software platform for component based
rt-system development: Openrtm-aist. In Proceedings of the 1st International Conference on Sim-
ulation, Modeling, and Programming for Autonomous Robots, SIMPAR ’08, pages 87-98, Berlin,
Heidelberg, 2008. Springer.

Stephen Balakirsky, Frederick M. Proctor, Christopher J. Scrapper, and Thomas R. Kramer. A
mobile robot control framework: From simulation to reality. In Proceedings of the 1st Interna-
tional Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR
‘08, pages 111-122, Berlin, Heidelberg, 2008. Springer.

Bart Broekman and Edwin Notenboom. Testing Embedded Software. Wesley, 2003.

A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback. Towards component-based
robotics. In International Conference on Intelligent Robots and Systems, pages 163—168, 2005.

Holger Giese, Stefan Neumann, Oliver Niggemann, and Bernhard Schétz. Model-Based Integra-
tion. In Model-Based Engineering of Embedded Real-Time Systems, Dagstuhl Castle, Germany,
volume 6100 of LNCS, pages 17-54. Springer, 2011.

Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2149-2154, 2004.

Luis Manso, Pilar Bachiller, Pablo Bustos, Pedro Nufiez, Ramén Cintas, and Luis Calderita. Robo-
comp: atool-based robotics framework. In Proceedings of the 2nd international conference on Sim-
ulation, modeling, and programming for autonomous robots, SIMPAR’10, pages 251-262, Berlin,
Heidelberg, 2010. Springer.

O. Michel. Webots: Professional Mobile Robot Simulation. International Journal of Advanced
Robotic Systems, 1:39-42, 2004.

G. Sandmann and M Seibt. AUTOSAR-Compliant Development Workflows: From Architecture to
Implementation - Tool Interoperability for Round-Trip Engineering and Verification and Validation.
Technical Report 2012-01-0962, SAE International, 2012.

G. Sandmann and R Thompson. Development of AUTOSAR Software Components within Model-
Based Design. Technical Report 2008-01-0383, SAE International, 2008.

http://www.autosar.org/. AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf, 2011. page
id: 94ju5.

Sebastian Watzoldt, Stefan Neumann, Falk Benke, and Holger Giese. Integrated Software Devel-
opment for Embedded Robotic Systems. In Proceedings of the 3rd International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), volume 7628, pages
335-348, October 2012.

234

Fall Workshop 2012

Band

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

Aktuelle Technische Berichte

ISBN

978-3-86956-
246-9

978-3-86956-
245-2
978-3-86956-
241-4

978-3-86956-
232-2

978-3-86956-
231-5

978-3-86956-
230-8

978-3-86956-
229-2

978-3-86956-
225-4

978-3-86956-
228-5

978-3-86956-
227-8

978-3-86956-
226-1

978-3-86956-
217-9

978-3-86956-
204-9
978-3-86956-
212-4
978-3-86956-
194-3

978-3-86956-
201-8

Titel

Modeling and Verifying Dynamic Evolving
Service-Oriented Architectures

Modeling and Enacting Complex
Data Dependencies in Business
Processes

Enriching Raw Events to Enable Process
Intelligence

Explorative Authoring of ActiveWeb
Content in a Mobile Environment

Vereinfachung der Entwicklung von
Geschaftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

HPI Future SOC Lab - Proceedings 2011

Akzeptanz und Nutzerfreundlichkeit der
AusweisApp: Eine qualitative
Untersuchung

Fiinfter Deutscher IPv6 Gipfel 2012

Cache Conscious Column Organization in
In-Memory Column Stores

Model-Driven Engineering of Adaptation
Engines for Self-Adaptive Software

Scalable Compatibility for Embedded
Real-Time components via Language
Progressive Timed Automata

Cyber-Physical Systems with Dynamic
Structure: Towards Modeling and
Verification of Inductive Invariants

Theories and Intricacies of
Information Security Problems

Covering or Complete?
Discovering Conditional Inclusion
Dependencies

Vierter Deutscher IPv6 Gipfel 2011

Understanding Cryptic Schemata in Large
Extract-Transform-Load Systems

des Hasso-Plattner-Instituts

Autoren / Redaktion

Holger Giese, Basil Becker

Andreas Meyer, Luise Pufahl,
Dirk Fahland, Mathias Weske

Nico Herzberg, Mathias Weske

Conrad Calmez, Hubert Hesse,
Benjamin Siegmund, Sebastian
Stamm, Astrid Thomschke,
Robert Hirschfeld, Dan Ingalls,
Jens Lincke

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin

Schreiber, Eric Seckler, Bastian

Steinert, Robert Hirschfeld

Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Stromann,
Ulrike Seibold, Doc D'Errico

Susanne Asheuer, Joy
Belgassem, Wiete Eichorn, Rio
Leipold, Lucas Licht, Christoph
Meinel, Anne Schanz, Maxim
Schnjakin

Christoph Meinel, Harald Sack
(Hrsg.)

David Schalb, Jens Kriiger,
Hasso Plattner

Thomas Vogel, Holger Giese

Stefan Neumann, Holger Giese

Basil Becker, Holger Giese

Anne V. D. M. Kayem,
Christoph Meinel (Eds.)

Jana Bauckmann, Ziawasch
Abedjan, UIf Leser, Heiko Miller,
Felix Naumann

Christoph Meinel, Harald Sack
(Hrsg.)

Alexander Albrecht,
Felix Naumann

ISBN 978-3-86956-256-8
ISSN 1613-5652

	Titelblatt
	Impressum

	Contents
	 Synonym Discovery in RDF Data (Ziawasch Abedjan)
	1 Synonyms in LOD
	2 Related Work
	2.1 Mining the Semantic Web
	2.2 Synonym Discovery
	2.3 Schema Matching

	3 Association Rules and Triples
	3.1 Association Rule Mining
	3.2 Association Rules on RDF Statements

	4 Synonym Discovery
	4.1 Schema Analysis
	4.2 Range Content filtering
	4.3 Range Structure Filtering
	4.4 Combined Approach

	5 Evaluation Plan
	6 Summary and Future Work
	References

	 Methodologies for Goal-Oriented Process Performance Management (Evellin Cardoso)
	1 Introduction
	2 General Overview of a Goal-Oriented Methodology for Process Performance Management
	2.1 Business Process Strategy Phase
	2.1.1 Approaches for Goal Modeling
	2.1.2 Approaches for KPI Modeling

	2.2 Business Process Controlling Phase
	2.2.1 Approaches for guiding the (re)design
	2.2.2 Approaches for evaluating the operating process

	3 Conclusions
	References

	 Hybrid parallel computing with Java (Frank Feinbube)
	1 Introduction
	1.1 Target Group
	1.2 Target Systems

	2 Bridging the Gap
	2.1 Don’t do anything
	2.2 Let the Operating System / Virtual Machine handle it
	2.3 Use Special Libraries
	2.4 Dig into Details
	2.5 Use Abstractions

	3 HyFor.parallel - Hybrid Loops in Java
	3.1 Requirements
	3.2 Concept
	3.3 Implementation

	4 Conclusion
	References

	 On the Complex Nature of MDE Evolution – A Meta Study (Regina Hebig)
	1 Introduction
	2 Meta Study on Evolution
	2.1 Review process
	2.2 Literature on support for evolution
	2.3 Evolution observed in practice
	2.4 Summary of change types
	2.5 Structural changes vs. non-structural changes
	2.6 Threats to validity

	3 Conclusion
	References

	 Steuerung der Datenübertragung in öfentlichen zellularen Netzen im Kontext telemedizinischer Anwendungen (Uwe Hentschel)
	1 Synchronisation auf Anwendungsebene
	1.1 Anwendung des MAPE-K Modells
	1.2 Aufteilung der verfügbaren Übertragungsrate
	1.3 Überwachung des Modems
	1.4 Modell des Modems
	1.5 Überwachung des Übertragungspfades
	1.6 Kommunikationsmodell

	2 Synchronisation der Endgeräte im Netzwerk
	References

	 Heterogeneous Computing for Algorithms with Low Numerical Intensity (Fahad Khalid)
	1 Introduction
	2 Heterogeneous Computing for Enumeration of Elementary Flux Modes
	2.1 Parallel Candidate Generation Model for GPU
	2.2 Memory Partitioning and Multiple Grid Invocations
	2.3 Index Algebra
	2.4 Naïve Kernel
	2.5 Employing the Map-Reduce Structural Pattern for Parallel Applications
	2.6 Introducing the Compression Factor
	2.7 Brief Overview of Planned Optimizations

	3 Open Questions
	4 Conclusions and Outlook
	References

	 3D Gevisualization Services for Efficient Distribution of 3D Geodata (Jan Klimke)
	1 Introduction
	2 Related Work
	3 Challenges
	4 A Service-based 3D Visualization System
	4.1 Stylization of 3D Contents

	5 Thin-Clients for Map-Like Visualization of 3D Geodata
	6 Conclusions and Future Work
	References

	 Applications of Virtual Collaboration Monitoring in Software Development Projects (Thomas Kowark)
	1 Introduction
	1.1 Data Repositories in Empirical Software Engineering
	1.2 Outline

	2 Team Collaboration Network Extensions
	3 Classroom Application
	3.1 Project Background
	3.2 Modelling Process Violations
	3.3 Data Analysis
	3.4 Lessons Learned
	3.5 Future Applications

	4 Industry Application
	5 Summary and Outlook
	Teaching Assistance
	References

	 Muscle Propelled Force-feedback: ultra-mobile haptic devices (Pedro Lopes)
	1 Introduction
	2 Mobile force-feedback device
	2.1 Device hardware

	3 Benefits and Contribution
	4 Related Work
	4.1 Motor-based Force-Feedback
	4.2 Optimizing force-feedback for size and weight
	4.3 Electrical Muscle Stimulation (EMS)

	5 Experiments
	5.1 Study 1: Measurement of Generated Force
	5.1.1 Participants
	5.1.2 Apparatus
	5.1.3 Task & Experimental De
	5.1.4 Results and Discussion

	5.2 Study 2: Proprioceptive and Force-Feedback
	5.2.1 Participants
	5.2.2 Apparatus
	5.2.3 Controlling for tactile feedback
	5.2.4 Experimental Design
	5.2.5 Results and Discussion

	5.3 Study 3: Mobile force-feedback gaming
	5.3.1 Participants
	5.3.2 Apparatus
	5.3.3 Experimental Design
	5.3.4 Questionnaire Results and Discussion

	6 Conclusion
	References

	 Discovering SPARQL Query Templates for Dynamic RDF Triple Prefetching (Johannes Lorey)
	1 Introduction
	2 SPARQL
	3 Discovering Query Templates
	3.1 Triple Pattern Similarity and Merging
	3.2 Graph Pattern Matching
	3.3 Query Templates and Clusters

	4 SPARQL Query Augmentation
	4.1 Augmentation Constraints
	4.2 Query Broadening
	4.3 Random Triple Removal
	4.4 Selective Triple Removal
	4.5 Language Substitution

	5 Evaluation
	5.1 Query Session Analysis
	5.2 Query Augmentation Analysis

	6 Summary and Outlook
	References

	 The Role of Objects in Process Model Abstraction (Andreas Meyer)
	1 Introduction
	2 Execution Semantics
	3 Extracting Objects and Object States
	4 Notion of Weak Conformance
	5 Object Abstraction
	6 Conclusion
	Publications 2012
	Teaching Summer Term 2012
	References

	 Comprehensible 3D Maps and Building Panoramas (Sebastian Pasewaldt)
	1 Introduction
	2 Comprehensible 3D Maps
	2.1 Design Principles
	2.2 Multi-Perspective Views

	3 Building Panoramas
	3.1 Image Synthesis
	3.2 Application Examples

	4 Summary & Outlook
	References

	 Demonstrating Test-driven Fault Navigation (Michael Perscheid)
	1 Introduction
	2 Motivating Example: Typing Error in Seaside
	3 Anomalous Guide to Localize Causes in Failing Test Cases
	4 Example: Debugging Seaside’s Typo
	4.1 Structure Navigation: Localizing Suspicious Response Objects
	4.2 Team Navigation: Finding Experienced Seaside Developers for Help
	4.3 Behavior Navigation: Understanding How the Failure Comes to Be
	4.4 State Navigation: Come Closer to the Typing Error

	5 Summary and Next Steps
	References

	 Migrating Traditional Web Applications into Multi-Tenant SaaS (Eyad Saleh)
	1 Introduction: Multi-tenancy Evolution
	2 Related Work
	3 Our Proposed Approach
	3.1 The Back-End Layer
	3.2 The Configuration and Customization Layer

	4 Use Case and Implementation
	5 Summary and Future Work
	References

	 Challenges in the Visualization of Large Multi-Dimensional Hierarchies (Sebastian Schmechel)
	1 Introduction
	2 Challenges
	2.1 Layout Algorithms
	2.1.1 Readability
	2.1.2 Stability

	2.2 Additional Attribute Encoding
	2.3 Large Hierarchical Data-Sets
	2.4 Constraints in Hierarchies

	3 Related Work
	4 Approaches
	5 Next Steps
	6 Further Activities
	References

	 Memory Management in a Many-Core Distributed Hypervisor (Jan-Arne Sobania)
	1 Introduction
	2 System Model
	3 SMP-Emulation via Virtualization
	4 Memory Management in the Hypervisor
	4.1 Memory Consistency Model
	4.2 Coherency Simulation
	4.3 MMU Virtualization
	4.3.1 Classic MMU Virtualization Approaches
	4.3.2 Our Approach: Cooperative Shadow Page Tables

	5 Related Work
	6 Conclusion and Future Work
	References

	 Interleaving Programming Tasks: Challenges for Interruption Handling in Programming Environments (Marcel Taeumel)
	1 Introduction
	2 Why Interruptions are Time-consuming
	2.1 False Assumptions
	2.2 Unnoticed Task Switches
	2.3 Opportunities for Programming Environments

	3 A Less Interrupting Programming Environment
	3.1 Capturing Example Run-time Information
	3.2 Displaying Source Code and Run-time Information
	3.3 Interacting within the Environment

	4 Conclusions and Next Steps
	References

	 Workload Prediction and Utilization Change Detection in Virtualized Data Centers (Ibrahim Takouna)
	1 Introduction
	2 Planet workload traces
	3 Workload prediction with an adaptive window
	3.1 Historical window-size selection
	3.2 Smoothing the selected window’s historical values
	3.3 Prediction using HoltWinter algorithm
	3.4 Implementation and results

	4 CPU-utilization state change detection
	4.1 CPU utilization prediction
	4.2 CPU utilization state representation
	4.3 CPU utilization state change detection
	4.4 Implementation and results

	5 Modeling and implementation of memory bandwidth demand and VM migration
	6 Summary and Next step
	References

	 Understanding Code with Execution Traces (Arian Treffer)
	1 Introduction
	2 Research Idea
	3 Further Applications
	4 Summary
	References

	 Duplicate Decision for Data Quality Web Services (Tobias Vogel)
	1 Data Quality Services
	1.1 Analyze Input
	1.2 Select Pairs
	1.3 Calculate Similarity and Classify Duplicates
	1.4 Calculate Closure

	2 Blocking
	2.1 Problem Formalization
	2.2 Key Generation Workflow
	2.3 Evaluation

	3 Duplication Decision
	4 Conclusion
	References

	 Integrated Software Development for Embedded Robotic Systems (Sebastian Wätzoldt)
	1 Introduction
	2 Foundations – Robotic and Automotive Systems
	2.1 Robot Laboratory
	2.2 Automotive Development Process
	2.3 AUTOSAR
	2.4 Automotive vs. Robotic Systems

	3 Development Environment
	3.1 Simulation Stage
	3.2 Prototyping Stage
	3.3 Pre-Production Stage

	4 Related Work
	5 Conclusion
	Acknowledgment
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

