
Towards Polyglot Adapters for the GraalVM
Fabio Niephaus

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

fabio.niephaus@hpi.uni-potsdam.de

Tim Felgentreff

Oracle Labs

Potsdam, Germany

tim.felgentreff@oracle.com

Robert Hirschfeld

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
Today, there are many different programming languages and

even more software libraries and frameworks for various use

cases. Polyglot runtime environments such as GraalVM allow

developers to build and extend applications using multiple

languages, which gives them a much broader choice in terms

of frameworks and libraries available for reuse. Nonetheless,

some usability problems remain, for example with regard to

passing data from one language to another. GraalVM pro-

vides language interoperability through its polyglot API and

allows objects and messages to be passed across languages.

From a developer perspective, however, it is sometimes un-

clear how to pass non-primitive objects from one language

into a library or framework written in another language.

Code from that other language may expect these objects to

respond to a different set of messages, which they may not

understand at all.

In this paper, we present polyglot adapters, an early-stage

concept that helps to pass objects across different languages.

We explain how these adapters can improve the polyglot pro-

gramming experience and demonstrate this with a prototype

for the GraalVM.

CCS CONCEPTS
• Software and its engineering→ Interoperability; Pat-
terns; Object oriented languages.

KEYWORDS
GraalVM, polyglot programming, language interoperability

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

Programming ’19, April 1–4, 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6257-3/19/04. . . $15.00

https://doi.org/10.1145/3328433.3328458

ACM Reference Format:
Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. To-

wards Polyglot Adapters for the GraalVM. In Companion of the 3rd
International Conference on Art, Science, and Engineering of Program-
ming (Programming ’19), April 1–4, 2019, Genova, Italy. ACM, New

York, NY, USA, 3 pages. https://doi.org/10.1145/3328433.3328458

1 INTRODUCTION
Today, developers can use a wide range of programming lan-

guages for building software. The decision which language

to use is often based on the skill set of a developer, but also on

personal preference. In many cases, the latter is influenced

by the libraries and frameworks available in a language. And

once a language is chosen, it can be hard to re-use software

artifacts from other languages.

Polyglot runtime environments such as GraalVM allow

applications to be built using multiple languages. This gives

developers a much broader choice in terms of libraries and

frameworks they can use. Consequently, this allows them

greater freedom in the choice of language, library, and frame-

work for specific use cases.

Although projects like GraalVM support fast language

interoperability, it is sometimes unclear how to use them for

building polyglot applications, especially when data needs to

be passed from one language to another. GraalVM supports

to exchange objects between languages, which works well

for values of primitive types [3]. As we will demonstrate,

however, interoperability is not as seamless when exchang-

ing non-primitive objects such as lists or data frames.

We present polyglot adapters, an early-stage concept sup-

porting developers in passing objects across object-oriented

(oo) languages. We explain how they can improve the poly-

glot programming experience and discuss advantages, disad-

vantages, and alternatives.

2 BACKGROUND
GraalVM [6] is a high-performance polyglot virtual machine

developed by Oracle Labs. It provides language interoperabil-

ity through its polyglot API which allows communication

between objects throughmessages. For this to work, each lan-

guage must be implemented in Truffle, GraalVM’s language

implementation framework. Since data from all languages

must be represented internally as TruffleObjects, messages

1

https://doi.org/10.1145/3328433.3328458
https://doi.org/10.1145/3328433.3328458

Programming ’19, April 1–4, 2019, Genova, Italy Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld

can be sent even to data of languages that do not follow

the oo paradigm. Moreover, the language implementers are

responsible for implementing predefined interfaces required

for language interoperability and must somehow expose the

polyglot API within their language. At the time of writing,

implementations for JavaScript, R, Ruby, LLVM, and Python

are officially supported by GraalVM. All of them expose the

polyglot API in a similar way: an evaluate API call allows
evaluation of code of a certain language. Furthermore, it is

possible to export data to a shared polyglot namespace which

can then be imported again from any supported language.

3 APPROACH
We propose to apply the adapter pattern [1, pp. 139–150]

in the context of polyglot programming to translate mes-

sages sent between languages. A polyglot adapter wraps

around an object from a language and ensures that messages

from other languages are understood correctly. This way, a

non-primitive object does not need to be converted or recon-

structed in another language before passing it into foreign

code. Instead, it can be accessed directly from any other lan-

guage. To make common use cases as easy as possible, we

suggest that the adapters could provide a default mapping

between languages for the most common object types. Ad-

ditionally, it should be possible to configure and extend the

behavior of polyglot adapters, so that developers can control

how their objects behave when accessed from foreign code.

4 IMPLEMENTATION
We have implemented a prototype

1
of our polyglot adapters

concept in Python 3 and demonstrate how they work in

combination with GraalVM’s polyglot shell
2
.

Let’s assume the Ruby function from Listing 1 has been

exported to the shared polyglot namespace. Although this

function can be imported in other languages via the polyglot

API, calling it with objects from other languages may raise

errors as shown in Listing 2. As the error message suggests,

a Python object does not understand the <=> message which

is sent to it as part of calling ruby_func.

This is where our polyglot adapters come into play. They

intercept the message dispatch and translate the <=>message

to an equivalent operation in Python. This message must

be understood by all Ruby objects, but is not allowed by

Python’s syntax. Our adapters, however, are able to translate

this message, so that Ruby’s sort function can, for example,

operate correctly on lists of Python lists as shown in Listing 3.

Moreover, the adapters can further be specialized depend-

ing on the wrapped object. For example, an adapter for a

1
https://www.github.com/hpi-swa-lab/polyglot-adapters

2
http://www.graalvm.org/docs/reference-manual/polyglot/

Listing 1: A simple Ruby function exported to the
polyglot namespace using GraalVM’s polyglot shell.
ruby> def ruby_func(*args) args.sort() end
:ruby_func
ruby> Polyglot.export_method(:ruby_func)
#<Method: Class(Object)#ruby_func <shell>:1>

Listing 2: Calling the Ruby function from Listing 1
with Python objects results in an AttributeError.
python> ruby_func = polyglot.import_value('ruby_func')
python> ruby_func([1, 3], [1, 2])
AttributeError: 'list' object has no attribute
'<=>' (PException)

Listing 3: Polyglot adapters ensure the Ruby function
from Listing 1 can be called with any Python objects.
python> from polyglot_adapters import as_ruby
python> ruby_func = polyglot.import_value('ruby_func')
python> ruby_func(as_ruby([1, 3]), as_ruby([1, 2]))
[[1, 2], [1, 3]]

Listing 4: Behavior of polyglot adapters is extendable.
javascript> Polyglot.export('squared',

(array) => array.map((x) => x * x))
python> squared = polyglot.import_value('squared')
python> squared(as_js([1, 2, 3], extended_behavior={

'map': lambda self, func: map(func, self)}))
<map object at 0x1883871b> # representing `[1, 4, 9]`
python> square_func(as_js(numpy.array([1, 2, 3])),

extended_behavior={'map': 'map'})
<map object at 0x70d3cdbf> # representing `[1, 4, 9]`

Python list object that is passed to JavaScript could automat-

ically come with additional mappings that are typical for

JavaScript arrays, so that they respond to messages like push

or reduceRight.

Lastly, an adapter’s behavior can be configured and ex-

tended in different ways. Our prototype supports to define

new and override existing message mappings with other

method names or Python lambda expressions. Listing 4 shows

how a JavaScript function can be called with a Python list as

well as an array from NumPy, a Python library for scientific

computing. In case of the list, we extend the behavior of the

adapter with an additional mapping for the message map and

provide a Python lambda for computing the response. The

NumPy array, on the other hand, already understands the

message map. However, our adapters do not provide special

default mappings for these objects, so it necessary to explic-

itly add a mapping for map. The value of this mapping is a

string which instructs the adapter to look up the identifier

in the original object. This way, it is possible to forward or

redirect messages.

2

https://www.github.com/hpi-swa-lab/polyglot-adapters
http://www.graalvm.org/docs/reference-manual/polyglot/

Towards Polyglot Adapters for the GraalVM Programming ’19, April 1–4, 2019, Genova, Italy

5 DISCUSSION
The first thing to note is that our concept requires devel-

opers to always explicitly request a new polyglot adapter

for each object they want to pass to another language. Also,

it is unclear how well the concept scales considering there

are lots of different languages, language concepts, semantic

differences, and object types. To further improve usability,

these adapters could be defined once and then applied auto-

matically to certain kinds of objects.

Moreover, our prototype is completely implemented on

the language level. This allows developers to fully control

the behavior of the adapters. A requirement for the imple-

mentation, however, is a mechanism to intercept message

sends, which might not be supported by every language. In

these cases, at least parts of the implementation could be

moved to the level of the language implementation frame-

work. Nonetheless, it needs to be possible to extend the de-

fault behavior somehow fromwithin the language to support

all kinds of objects.

An alternative solution would be to further extend the

TruffleObject interface with more language concepts, but

this, too, cannot anticipate all use cases. Thus, there would

still be a need for customization on the part of the user.

As another alternative, objects could be converted between

languages using serialization formats such as JSON. Other-

wise, the developer is responsible for providing multiple im-

plementations of the same data structures for all languages

used as well as corresponding conversion mechanisms. Any

serialization approach, however, comes with performance

costs and requires coordination.

Another open question is related to the assumption that

all sources are available. When sources of libraries or frame-

works are unavailable, the concept of polyglot adaptersmight

not be applicable, for example when it is unclear which mes-

sages need to be understood by each object.

Lastly, allocating polyglot adapters and intercepting mes-

sage sends may impose performance overheads which need

to be further investigated.

6 RELATEDWORD
GraalVM provides proxy interfaces [4] as part of its SDK

which allow Java applications to allocate objects of prede-

fined kinds that, when passed to a guest language, are treated

as objects of that language with special behavior. These in-

terfaces are part of the Truffle framework and need to be

supported by each language implementation.

Protocol Buffers [2] are used at Google to automate object

serialization across languages. For this, a compiler can gen-

erate definitions and serialization code for various languages

from a language-independent specification. This approaches

the problem from the opposite perspective of sharing data

inside of objects rather than the objects themselves.

Polyfills [5] are used in JavaScript as compatibility layers

for technologies and language features across browsers and

different versions of them. Therefore, they allow develop-

ers to use APIs regardless of whether they are supported

by a browser or not. Similarly, polyglot adapters provide

compatibility for objects of different languages.

7 CONCLUSION AND FUTUREWORK
We propose polyglot adapters, an early-stage concept which

allows developers to pass non-primitive objects from one

language to another. For this, polyglot adapters translate

messages between languages and mimic language-specific

behavior.

In the future, it would be interesting to see how these

adapters could be used to facilitate interoperability between

languages not following the oo paradigm. Furthermore, we

want to investigate if these adapters could be automatically

applied, for example from within the language implementa-

tion framework.

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of Oracle

Labs
3
, HPI’s Research School

4
, and the Hasso Plattner Design

Thinking Research Program
5
.

REFERENCES
[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.

Design Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[2] Google. 2019. Protocol Buffers. https://github.com/protocolbuffers/

protobuf

[3] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger,

and Hanspeter Mössenböck. 2015. High-performance Cross-language

Interoperability in a Multi-language Runtime. In Proceedings of the 11th
Symposium on Dynamic Languages (DLS 2015). ACM, New York, NY,

USA, 78–90. https://doi.org/10.1145/2816707.2816714

[4] Oracle. 2019. GraalVM SDK Java API Reference. https://www.graalvm.

org/sdk/javadoc/org/graalvm/polyglot/proxy/package-summary.html

[5] Remy Sharp. 2010. What is a Polyfill? https://remysharp.com/2010/10/

08/what-is-a-polyfill/

[6] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,

Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and

Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward! 2013). ACM, New York,

NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581

3
https://labs.oracle.com/

4
https://hpi.de/en/research/research-school.html

5
https://hpi.de/en/dtrp/

3

https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://doi.org/10.1145/2816707.2816714
https://www.graalvm.org/sdk/javadoc/org/graalvm/polyglot/proxy/package-summary.html
https://www.graalvm.org/sdk/javadoc/org/graalvm/polyglot/proxy/package-summary.html
https://remysharp.com/2010/10/08/what-is-a-polyfill/
https://remysharp.com/2010/10/08/what-is-a-polyfill/
https://doi.org/10.1145/2509578.2509581
https://labs.oracle.com/
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/

	Abstract
	1 Introduction
	2 Background
	3 Approach
	4 Implementation
	5 Discussion
	6 Related Word
	7 Conclusion and Future Work
	Acknowledgments
	References

