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The performance of value classes is highly dependent on how they are represented in the 
virtual machine. Value class instances are immutable, have no identity, and can only refer
to other value objects or primitive values and since they should be very lightweight and 
fast, it is important to optimize them carefully. In this paper we present a technique to 
detect and compress common patterns of value class usage to improve memory usage 
and performance. The technique identifies patterns of frequent value object references and 
introduces abbreviated forms for them. This allows to store multiple inter-referenced value 
objects in an inlined memory representation, reducing the overhead stemming from meta-
data and object references. Applied to a small prototype and an implementation of the 
Racket language, we found improvements in memory usage and execution time for several 
micro-benchmarks.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The way data structures are represented affects their performance. Especially virtual machine developers carefully choose 
the representation of their data structures, classes, or objects so that using them is efficient. In this paper we propose,
implement, and evaluate an optimized representation for value classes [1] on the virtual machine level. Value class instances 
are immutable objects without identity that can reference only other value classes instances or primitive data. They have 
been suggested for an extended Java [1], Java itself [2], exist in .NET [3] and—in a limited form—in Scala [4]. However,
related constructs of immutable identity-less structures also occur in several other languages, particularly in functional ones.
Examples include the algebraic data types of ML and Haskell, Prolog’s terms, cons cells in certain LISPs,1 and structures in 
Racket [5]. Therefore, our optimization should be applicable to a number of other contexts. Nevertheless, in this paper we 
will use the terminology value classes and instances of value classes (value objects for short).

The simplest approach to a machine representation of value objects is a class pointer together with their fields as a list 
of pointers to other value objects and primitive values. We propose an object layout that stores nested value object groups 
in a compacted, linearized fashion. This works by observing that in practice some shapes in the object graph are much more 
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common than other shapes. There are often repeating patterns of how value objects reference each other. For example, a 
cons cell is likely to reference another cons cell in its tail field, or a tree node often references other tree nodes.

For such common shapes we inline the fields of the referenced value object into the referring object to save space and 
to accelerate the traversal of the object graph. This inlining can be repeated with fields of nested value objects, potentially
several levels deep. We detect which object graph shapes are common by keeping statistics at run-time, since it is often 
impossible to statically infer what shapes will be common in practice.2 The inlining is only possible because of the key
properties of value objects:

a) Value objects are immutable, so the reference to an inlined object can never be replaced by another reference.
b) Value objects do not have identity, so the fact that an inlined object does not have a separate memory address that can 

be used as its identity does not create problems. Likewise, multiple copies of an inlined object are not problematic for
identity concerns.

We implement the proposed optimization in two prototypes. One implements a variant of the lambda calculus extended 
with value objects and pattern matching, which we used to prototype and evaluate the proposed optimization in isolation.
To also evaluate the approach in a more realistic setting, we implemented the same optimization for Pycket [6], a re-
implementation of the Racket language. Both languages use the RPython virtual machine implementation framework and 
its tracing just-in-time (jit) compiler. The tracing jit compiler is instrumental to our approach since it is responsible for
producing fast machine code for accessing the modified representation.

The contributions of this paper are as follows:

• We propose an approach for finding patterns in value object usage at run-time.
• We present a compressed layout for value objects that makes use of those patterns to store value objects more effi-

ciently.
• We report on the performance of micro-benchmarks for a small prototype language and a Racket implementation.

The paper is structured as follows. Section 2 gives a brief introduction to tracing jit compilers. In section 3, we present 
our approach to just-in-time optimization of data structures. Our two implementations are presented briefly in section 4
and their performance is evaluated in section 5. Our approach is put into context in section 6 and we conclude in section 7.

2. Tracing just-in-time compilers

We briefly introduce tracing just-in-time (jit) compilers [7], as some of their properties are key to the performance 
characteristics of our approach (cf. section 3.2 and section 3.3).

Just-in-time (jit) compilation has become a mainstream technique for, among other reasons, speeding up the execu-
tion of programs at run-time. After its first application to LISP in the 1960s, many other language implementations have 
benefited from jit compilers—from APL, Fortran, or Smalltalk and Self [8] to today’s popular languages such as Java [9] or
JavaScript [10].

One approach to writing jit compilers is using tracing [11]. A tracing jit compiler records the steps an interpreter takes 
in common execution paths such as hot loops. The obtained instruction sequence is commonly called a trace. This trace 
can on be optimized independently or transformed to machine code and used instead of the interpreter to execute the 
same part of that program [12] at higher speed. Tracing produces specialized instruction sequences, for example for one 
path in if–then–else constructs; if execution takes a different branch later, it switches back to use the interpreter. Tracing
jit compilers have been successfully used for optimizing native code [11] and also for efficiently executing object-oriented 
programs [13].

Meta-tracing takes this approach one step further by observing the execution of the interpreter instead of the execution of 
the application program. Hence, a resulting trace is not specific to a particular application but the underlying interpreter [14,
15]. Therefore, it is not necessary for language implementers to program an optimized, language-specific jit compiler but 
rather to provide a straightforward language-specific interpreter in RPython, a subset of Python that allows type inference.
Hints to the meta-tracing jit enable fine-tuning of the resulting jit compiler [16]. RPython’s tracing JIT also contains a 
very powerful escape analysis [17], which is an important building block for the optimization described in this paper.
Meta-tracing has been most prominently applied to Python with PyPy [18].

3. Optimization approach

Our optimization uses an unconventional memory representation for value objects within the virtual machine to save 
memory and to speed up access. The optimization stays invisible to the programmer.

2 Note that these shapes are totally different what some JavaScript VMs such as Firefox’ IonMonkey and Higgs call shapes. Those JavaScript “shapes” are 
equivalent to Self maps or V8’s hidden classes. We will discuss the relationship to Self maps in the related work section.
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Fig. 1. Straightforward value class representation for a linked list and a tree. Top: the language view; bottom: runtime environment view with storage and 
shape.

Fig. 2. Left: Shapes comprise a class reference, an arity, and a structure of sub-shapes. Center: “Transformation rules” describe substitutions for shapes 
which are consulted during the inlining process; “history” contains a histogram of all sub-shapes encountered at a certain position in a certain shape 
collected during all value object creation. Right: Key to the visual language used.

A straightforward representation for a value object in memory is a chunk of memory that stores a reference to the 
object’s class first, followed by references for each of its fields. We call the latter the storage of the object. An example of 
this straightforward representation can be seen in Fig. 1, which shows a linked list and a tree structure.

The idea of our optimization is to look for common patterns in the object graph at run-time. If a frequently appearing 
pattern is identified, we introduce an abbreviated form to store the pattern. Newly created instances that exhibit this pattern 
use the abbreviated form to save memory.

The abbreviated form uses object inlining for instances with these common patterns. Instead of storing references to 
a sub-object, the sub-object’s fields are inlined into the referencing object’s fields. This saves the pointer from the outer
object to the inlined one, the overhead of maintaining a separate object and the reference to the inlined object’s class. This 
inlining is done recursively, if possible. During the inlining process, we need to maintain certain meta-information to keep 
track of which fields belong to which level of an inlined object and in order to remember the classes of the inlined objects.
Therefore, we replace the pointer to the object’s class with a pointer to this meta-information, which we call the shape of 
the object. If no inlining occurs, we still give the object a shape, which only references the class and the fact that no inlining 
is being performed. This is called the default shape of a class.

It is important to not just arbitrarily inline objects but to do so only for frequent combinations of outer classes and inner
classes. Since the shape needs memory too, introducing shapes that are solely used by a single object would actually waste 
memory.

To understand the rest of the system, we now need to look at (a) how structure patterns are recognized, (b) how the 
construction of values ensures the proper usage of shapes, and (c) how the access to of inlined fields is implemented.
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3.1. Shapes and their recognition

A shape describes the abstract, structural representation of value objects. It is shared between all identically structured 
instances of the same value class3 and captures the structure of these instances. Value objects have a permanent reference 
to their shape during their life time.

Shapes can be nested; they consist of sub-shapes for each field in a value object’s storage. A special, flat shape denotes 
unaltered access to object fields (direct access shape, � in all figures) and termination of shape nesting. It conveys no more 
information than that a field exists and may contain data. Value objects with these shapes are treated as black boxes, for
example scalar data or unoptimized objects that are stored directly. This is depicted in the bottom part of Fig. 1; all three 
nodes in the list share the same shape, which denotes that each node consists of two references with direct access shapes.
The same holds for the nodes of the tree in that figure, but with three references.

As long as no optimization has taken place, a value object refers to the default shape of its value class that solely consist 
of direct access sub-shapes. The shapes in Fig. 1 are the default shapes for their value classes. Initially, all value object use a 
default shape. To reach a state where more complex shapes can be used, our approach depends on auxiliary data.

To guide the overall optimization process, we keep track of all shapes that we encounter during object creation. That 
way, we create a histogram of all shapes used in the fields of value objects. We explain this profiling data, which we call 
the history, in subsubsection 3.1.1.

Based on the history profiles, we determine the fields in a value class where inlining value objects could be worthwhile.
We infer new shapes for value objects with certain referenced value objects inlined, and record a transition from the old to 
the new shape. We call this process shape recognition and explain it in subsubsection 3.1.2.

We collect all results from the shape recognition in a table that we call the transformation rules. We explain its structure 
briefly in subsubsection 3.1.3.

3.1.1. History
The history is a table that counts how often certain sub-shapes are found in the fields of new value objects. It is essen-

tially a histogram of all sub-shapes. It is rather simple to maintain, as due to the immutability of value objects, modifications 
of this table are only necessary during value object creation. At this point, all objects that will constitute a new value object 
are available and we can count the occurrences of sub-shapes at specific positions in the value object.

As example, the history table in Fig. 2 shows that for shape s1 at position 1, the shape s1 itself has been encountered 17
times as sub-shape, while shape s2 has been encountered 5 times as sub-shape in that position.

The most important operation on the history table is updating the count of a shape×position×sub-shape–entry, besides 
initializing it to 1 on the first encounter. It is possible to remove a history entry after it had been used for creating a 
transformation rule, if desired.

3.1.2. Shape recognition
During the creation of a value object we first update the shape history table and then check the counters associated 

with the shapes of the object’s fields. Whenever one of these counters exceeds a preset threshold, create a new shape that 
combines the value object’s current shape with the sub-shape that exceeded the threshold. In this new shape, we replace 
the direct access sub-shape at the position where the threshold was reached with the sub-shape found in the history entry.
We then create a new transformation rule that maps from the old shape, the position, and the sub-shape at that position 
to the newly created shape.

Considering Fig. 2 as example, shape s2 would be the result of turning the history entry (s1, 1, s1, 17) into the transfor-
mation rule (s1, 1, s1) �→ s2.

3.1.3. Transformation rules
We maintain the set of all transformation rules as a lookup table that is used during value object creation. This table 

is only ever updated during shape recognition and typically, rules are never removed from it. However, it is usually much 
smaller than the history table. Find an example transformation rule table in the top center of Fig. 2.

Note that we consider both history and transformation rules to conceptually be tables. Depending on circumstances it 
may be advisable to merge them into one table or split them by the first column’s entries and attach them directly to those 
shape.

3.2. Compaction through inlining

The information of what shapes occur often and which shape transformations to use can be applied at run-time to 
create value objects in a compacted representation. The process of creating such a compacted value object is outlined in the 
following. As running example, we will use the combination of the primitive datum “1” with a linked list into a new linked 
list as depicted in Fig. 3 and using the shapes and transformation rules as given in Fig. 2.

3 We refer to a value class by its name and the arity of its type in a Prolog style, for example Node/2 for binary node objects.
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Fig. 3. When creating a new node value object that should contain “1” and the list “Node/2[2, Node/2[3, Node/2[4, ⊥]]]”, a new value object that merges 
the “1” with the “2” object and a different shape is created instead.

First, it is only necessary to consider compaction when creating new value objects. Since they are immutable, there is no 
need to consider compaction on mutation. Therefore, the inlining process starts with the following two components:

1. the value class of the object that is to be created, and
2. the elements that should constitute said object’s new fields.

In our example, the class is Node/2 and the new fields are “1” and a Node/2 value object (“Node/2[2, . . . ]”). As pointed 
out earlier, every value class has an associated default shape equivalent to a straightforward representation. In the case of 
the class Node/2, this default shape corresponds to shape s1 in Fig. 2. With the default shape and the fields, the inlining 
algorithm as specified in Algorithm 1 can now commence. In our example, the initial shape s provided as input to the 
algorithm is the default shape s1 and the fields f are “1” and “Node/2[2, . . . ]”.

Algorithm 1: Determining shape and fields of a value object during its creation. The shape is derived based on trans-
formation rules and the fields are inlined based on the resulting shape.

1 Input: s : Shape, f : [Value Object]
2 i ← 0
3 while i < | f | do
4 si ← f i{shape}
5 s′ ← transformationss,i,si

or s
6 if s′ �= s
7 f ← [

f0,...,i−1, f i{storage}, f i+1,...,| f |
]

8 s ← s′
9 // restart with new storage

10 i ← 0
11 else
12 i ← i + 1
13 end
14 end
15 return s, f

We now iterate over the fields (line 3) and consider each new field f i separately. For that, we look at the sub-shape si of 
the new field f i and try to look up a substitute shape s′ (line 5). If we have no substitution, for example because none has 
been recorded yet or the new field f i is primitive data, the shape is not substituted and we continue with the next element.
However, if we find a substitute (line 6), we replace the value object f i with a copy of its storage in the new fields f (line 
7); the value object f i is now inlined. The new shape s′ becomes the new value object’s shape s (line 8) and the inlining 
process is restarted (line 10) with the new shape and fields. This allows possible other transformation rules to be applied 
due to the shape change.

Once no further transitions are found, the value object’s shape s and the current fields f are returned as the shape and 
storage of the new value object (line 16).

For our example, the following happens: while iterating over the new fields f , we encounter “1” as the first field f0.
Since this is a primitive datum, no new shape can be found and no shape change happens. The next new field f2 to consider
is “Node/2[2, . . . ]”. The sub-shape s1 of this value object is s1 and we can now look up a transformation rule for (s1, 1, s1)
and find a substitution s′ , s2 (line 5). Thus, we inline the storage of f1 by copying it into the new fields f at position 1.4

The fields of f are now “1”, “2”, and “Node/2[3, . . . ]”. Furthermore, we change the shape of the new value object to s2
(line 8). At that point, we restart the inlining process by resetting the counter (line 9). This means, we again encounter “1”
as first field f0 and no substitution happens. Moreover, the second field f1 is now “2”, so no substitution happens either.

4 The original value object “Node/2[2, . . . ]” remains untouched and can still be referenced from other objects.
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Fig. 4. Referenced value object reification. Accessing the second item 2 of the list l ← Node/2[1, Node/2[2, Node/2[3, Node/2[4, ⊥]]]] by two operations 
head(tail(l)) results in two reified rest lists to be created.

We continue with the third field f2, which is “Node/2[3, . . . ]”. The sub-shape of this value object is s1, and since s is s2, we 
can look up a transformation rule for (s2, 2, 21) in the table. However, no such transformation rule exists and, hence, no 
further inlining is possible. Since we visited all fields, the algorithm terminates and returns the value object’s new shape s2
and its new fields [1, 2, Node/2[3, . . .]].

During the inlining process, potentially short-lived objects might be created. This can happen when the storage of a value 
object is inlined into its surrounding list of fields. Typically, a new list of correct lengths is created and the old list will be 
un-referenced. In subsequent inlining steps, this new list itself may be short-lived. To retain simplicity in our approach, we 
refrained from introducing sophisticated mechanisms to avoid the allocation but rather rely on modern jit compilers. We 
expect those allocations to happen in tight loops, but more importantly, in a very restricted scope. Hence, jit compilers with 
good escape analysis and allocation removal, such as meta-tracing jit compilers [19], should be able to completely remove 
all allocations during the inlining process.

This shape inlining technique has two main advantages. First and foremost, inlined value objects take up less space than 
individual, inter-referenced value objects. But even more, the shape of a value object provides structural information in a 
manner the meta-tracing jit compiler can speculate on. This is crucial to optimize field accesses in a value object.

3.3. Implementing field access

While optimization of data structures takes place during construction, we have to apply the reverse during deconstruc-
tion, that is when accessing a value object referenced by another. This is no longer trivial, as several (formerly referenced)
value objects may have been inlined into their referencing value objects. Therefore, we construct new value objects when-
ever a reference is navigated, essentially reifying it. We use the information a value object’s shape provides to identify
which parts of the value object’s storage comprise the value object to be reified. The structural information allows a direct 
mapping from the language view of the data structure to the actually stored elements. In Fig. 4, the structural information 
in the shape of the leftmost list allow the reasoning that the first element of the storage is equivalent to the head of the 
language level node value object and the remaining three storage elements are equivalent to the tail of that value object, as 
recored in the shape. Hence the middle view in that figure; both the element “1” and the rest list have been reified. The 
same goes for the rightmost view.

Note that this reification is completely invisible to programmers. Taking, for example the tail of a node value object or
accessing the third element of a ternary tree repeatedly, the operations remain the same on the language level, no matter
what is the shape inlining status of the value objects on the implementation level.

3.4. Benefits

With the shape inlining approach, fewer value objects need to be created for long living data structures, since the 
references to the now-inlined value objects are elided. Combining this with the reification and the shape recognition, more 
memory is saved the longer a program runs; the shapes will be tailored to fit the specific application running. That said,
there may be cases where no memory can be saved, especially in programs that only work on primitive data, flat data 
structures, or with a high amount of sharing between data structures.

4. Implementation in RPython with a tracing JIT compiler

We present two implementations of our approach, both integrating the tracing jit compiler of RPython as presented in 
section 2.

4.1. JIT interaction

While the techniques we described so far can lead to a good amount of memory usage reduction, shape recognition,
shape inlining, and reified reference access combined, do not yield a performance increase on their own. In fact, implement-
ing the approach naively yields significantly worse performance, due to the constant check of the transformation rules every
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time a new value object is created. Additionally, reading inlined fields of compacted value objects results in the allocation 
of intermediate data structures. This is of course not the case in the naive representation. Hence, the presence of the jit

compiler is necessary to begin with.
To improve performance, the jit compiler needs to reduce the overhead of these operations. The first step is to treat 

the transformation tables as constant when a function is compiled. This allows the jit compiler to compile value object 
creation down to a series of type checks for the types of the referenced value objects. We instruct the jit compiler to treat 
transformation tables as constant after filling it with enough information.

Second, we have to avoid the otherwise necessary reification of referenced value objects when it is being read from a 
value object it has been inlined into. For that, the observation that most of these intermediate value objects are actually
short-lived is crucial; most value object are created just to be either immediately discarded or consumed in another, typically
larger data structure. As a concrete example, typical linked list operations deconstruct the list they are working on. Hence,
if the tail is read off a linked list node which has the tail inlined (as the transition from left to middle in Fig. 4) and needs 
to be reified, that tail is usually soon deconstructed itself into its head and tail components (as the transition from middle 
to right in the same figure). This allows the tracing jit compiler to optimize the reading of fields that need reification. Since 
the value objects allocated when reifying a field are short-lived, the built-in escape analysis [19] will fully remove their
allocation and thus remove the overhead of reification.

4.2. Best-case prototype

To assess best-case performance, we implemented our optimization approach using a simple execution model prototype.5

It provides a λ-calculus with pattern matching as the sole control structure and is implemented as a direct application of the
cek-machine [20]. The only structured data types available are value classes. We used the RPython tool chain to incorporate 
its meta-tracing jit compiler [7]. The implementation has been carefully unit-tested during development to make sure that 
various complex substitutions and compactions work correctly.

4.3. Structures in Racket and Pycket

Since the best-case prototype is arguably unfit for comparison with existing languages and their implementations, we 
applied our optimization to an implementation of the Racket language [5], a dynamically typed, multi-paradigm program-
ming language in the Scheme family. Racket supports, among others, immutable-by-default lists, a design-by-contract [21]
implementation, and heterogeneous structure datatypes.

The structure types are of special interest because, if applied carefully, they can be used like value classes.6 Moreover,
structures can form hierarchies and—by default—are immutable with the option to make some or all fields mutable. Racket 
structures go beyond other structured heterogeneous datatypes; they support the notion of structure type properties that 
can influence the way structures interact with the system. For example, a special structure type property can make structure 
instances callable, so they can act like a procedure.

Pycket [6] is an implementation of Racket using the RPython toolchain and its tracing jit. While not feature-complete, it 
provides a fair amount of functionality and can compete with the reference implementation performance-wise, in certain 
areas even outperforming high-performance ahead-of-time (aot) Scheme compilers. The support for Racket structures in 
Pycket is recent [22] and showed potential for the optimization presented here. Furthermore, the implementation technique 
(cek machine) and environment (RPython, tracing jit) come close to the prototype and suggest a good base for comparison.

Our approach is present in a modified Pycket implementation.7 The existing structure implementation [22] already tries 
to optimize memory consumption and execution time. It already deals with the distinction of smaller and larger structure 
instances; for the former, objects with a known, small number of fields are used, for the latter, separate storage objects are 
created. Hence, an abstraction for field accesses already existed. We were able to take the implementation of the prototype 
with little modification and use it as storage for all structure kinds. Only few adaptions were necessary: we added the 
management logic for shapes and re-routed access to fields through them. All in all, the changes amounted to less than 550 
lines of code added and a handful of lines of codes removed.

4.4. Configuration parameters

Our approach makes use of three parameters that may influence performance:

Maximum object size Only value objects up to this size are considered for inlining. Setting this to zero disables our opti-
mization, setting it to a very high number might result in very large value object at runtime, which might be undesirable.

5 Available at https :/ /bitbucket .org /krono /lamb.
6 Structures in the Racket language actually do not by default compare based on their value and do have identity which is relied upon. However,

value-based comparison can be enabled explicitly. Also, plans exist to provide a structure derivative that has a concept of identity compatible with value 
classes. [Sam Tobin-Hochstadt, personal communication.]

7 https :/ /github .com /samth /pycket /releases /tag /shapes-scp (last accessed 2015-12-15).

https://bitbucket.org/krono/lamb
https://github.com/samth/pycket/releases/tag/shapes-scp
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Maximum shape depth The number nested shape occurrences per value object is bounded by this parameter. Setting this to 
a low value may not catch all optimizable object shapes, setting it to a very high number may lead to an excessive number
of shapes at runtime should there be a lot of value objects with no fields at all.

Substitution threshold The threshold for transformation rule creation (as in section 3.1.3), when set to zero or a very low
value can lead to excessive transformation rule creation for value object combinations that are only rarely used. A very high 
number might inhibit the creation of such rules at all and practically disables our optimization.

5. Results

We present two kinds of results. First, we show that the shape recognition part (cf. section 3.1) of our approach is 
feasible and can be used instead of manually specifying shape transformation rules. And second, we present the execu-
tion time and memory consumption for selected micro-benchmarks on our two implementations and three more language 
implementations.

5.1. Setup

Hardware The processor used was an Intel Xeon E5410 (Harpertown) clocked at 2.33 GHz with 2 × 6 MB cache; 16 GB 
of RAM were available. All runs are un-parallelized, hence the number of cores (four) was irrelevant to the experiment.
Although virtualized on Xen, the machine was dedicated to the benchmarks.

Software The machine ran Ubuntu 14.04.3 LTS with a 64 bit Linux 3.13.0. ReBench8 was used to carry out all execution 
of the benchmarks and collection of measurements. RPython as of revision 0c8d6f715aac served for translation of our
prototype (tag shapes-scp) and the optimized Pycket (tag shapes-scp).

Optimization configuration During the measurements of our implementations, we used the following settings for the config-
uration parameters as described in section 4.4:

Maximum object size We used a maximum size of 7 fields.
Maximum shape depth We used a maximum depth of 7 shapes.
Substitution threshold We used a threshold of 17 shape occurrences.

5.2. Shape recognition fitness

To assess whether our recognition approach is favorable to manually specifying shape transformation rules, we ran 
several list operations on increasingly longer, large lists in our prototypical implementation in three configurations: no 
optimization at all (None), optimization using our approach but only using ahead-of-time, manually specified transformation 
rules without using shape recognition or history data (Inlining only), and optimization with transformation rules derived 
using shape recognition and history data (Recognition). We provide the execution time results for reversing a long list in 
Fig. 5. In this case, we found that

a) both optimized versions are always significantly faster than the not optimized version,
b) initially, the version with manually specified transformation rules is faster than the version with shape recognition, but
c) for most data points, the version with shape recognition and transformation rule inference is as fast as or even faster

than the version with manually specified transformation rules.

The results for other list operations (appending, mapping, filtering) were very similar and have hence been omitted.
The results suggest that the shape recognition approach could be fitting in the context of our optimization and could be 

favorable to specifying transformation rules manually.

5.3. Comparative micro-benchmarks

We report the performance of five micro-benchmarks with their execution time and peak memory consumption.

Compared implementations For the benchmarks, we included an unmodified Pycket , Racket , and PyPy 9 in the 
comparison. For all these, value classes or equivalent means supporting immutable data are available. The unmodified Pycket 
is the baseline of our implementation and does not include our optimization. Racket’s cons cells, structs and classes can act 

8 ReBench is a benchmarking framework. https :/ /github .com /smarr /ReBench.
9 Pycket revision 291d80fbd43a; Racket version 6.3; PyPy version 4.0.1.

https://github.com/smarr/ReBench
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Fig. 5. Runtime results for reversing list of different lengths. None is without our optimization approach. Inlining only uses our optimization approach with 
ahead-of-time, manually specified transformation rules without using shape recognition. Recognition uses our optimization approach with transformation 
rules derived using shape recognition. (The data points were smoothed using local regression [23]; the semi-transparent areas are based on standard 
deviation of each data point. Note the logarithmic scale on the “Execution time” axis.)

Table 1
Benchmark execution times. We give means of the execution time along with the confidence interval showing the 95 % confi-
dence level.

Benchmark Prototype Pycket (optimized) Pycket (original) Racket PyPy

mean error mean error mean error mean error mean error

append 5088 ±27 ms 5545 ±32 ms 9432 ±52 ms 13218 ±42 ms 10655 ±32 ms
filter 1285 ±4 ms 4743 ±42 ms 5590 ±87 ms 14240 ±172 ms 6691 ±43 ms
map 6344 ±87 ms 5609 ±22 ms 8332 ±63 ms 15010 ±161 ms 9632 ±83 ms
reverse 350 ±6 ms 1172 ±5 ms 3347 ±45 ms 6421 ±159 ms 4864 ±27 ms
tree 2814 ±17 ms 2420 ±17 ms 3926 ±21 ms 3893 ±27 ms 7949 ±41 ms

Table 2
Benchmark memory consumption. We give means of the memory consumption along with the confidence interval showing the 95 %
confidence level.

Benchmark Prototype Pycket (optimized) Pycket (original) Racket PyPy

mean error mean error mean error mean error mean error

append 1220256 ±0 kB 1826172 ±3 kB 3342362 ±2 kB 3393476 ±329 kB 4625309 ±2 kB
filter 522631 ±1 kB 1360879 ±3 kB 2195701 ±5 kB 2713104 ±5883 kB 2996973 ±9 kB
map 1141762 ±1 kB 1600280 ±1 kB 2709864 ±4 kB 2518191 ±9704 kB 3512922 ±2 kB
reverse 192552 ±1 kB 651634 ±8 kB 1604697 ±2 kB 1647545 ±1935 kB 3512605 ±5 kB
tree 71233 ±1 kB 209180 ±55 kB 502130 ±2 kB 300500 ±16 kB 956974 ±4 kB

as value classes. Racket acts as a virtual machine with a handwritten jit compiler. PyPy is the RPython implementation of 
Python and has a meta-tracing jit compiler. While Python has no actual concept of value classes, we used regular classes 
without mutating them. PyPy detects this case and is able to apply special optimizations, effectively treating them like 
value classes. We intended to also include the standard Python (CPython) but it was too slow and would have rendered the 
comparison meaningless.

Methodology Every benchmark was run ten times uninterrupted at highest priority, in a new process. The execution time 
(total time) was measured in-system and, hence, does not include start-up; however, warm-up was not separated, so jit

compiler execution time is included in the numbers. The maximal memory consumption (resident set size) was measured 
out-of-system and may hence include set-up costs. We report the arithmetic mean of the ten runs; for the execution time 
we include confidence intervals showing the 95 % confidence level. The memory measurements only indicate a negligible 
error10 that was hence omitted. We provide all numbers for execution time in Table 1 and memory consumption in Table 2.
Our benchmarking code and infrastructure are publicly available.11

10 Except for Racket, which we attribute to its garbage collector (cf. Tables 1 and 2).
11 https :/ /bitbucket .org /krono /lamb-bench.

https://bitbucket.org/krono/lamb-bench
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5.3.1. Benchmarks
The benchmarks chosen are append, filter, map, and reverse on very long linked lists and the creation and complete prefix

traversal of a binary tree. Due to the limited feature scope of our best-case prototype, more sophisticated applications are 
currently not available for benchmarking. For our optimization of Pycket, the structure benchmarks shipped with Racket 
would be interesting for our measurements. However, the structure benchmarks do not run yet on Pycket due to missing 
(not structure related) features [22].

5.3.2. Non-regression
Our optimization should not influence anything except value classes. To ensure this for Pycket, we ran the shootout

benchmarks described in the original paper on Pycket [6]. These benchmarks hardly make use of structures. On average, the 
execution time for these benchmarks deviates less than 6 % (both faster or slower) from the original implementation. This 
low deviation shows that our approach has very little overhead when structs are not used.

5.3.3. Performance results
In the top part of 6, the execution time of all benchmarks is reported. Our first implementation, labeled prototype ,

is significantly faster—from two to ten times faster. Our second implementation, labeled optimized Pycket , performs as 
expected. It is not as fast as the best-case prototype, as the language semantics of Racket have to be maintained as much as 
possible. However the speed-up compared with the unmodified, unoptimized version of Pycket is apparent. The optimized 
version is 1.2 to 2.9 times faster than the unoptimized version. In the case of map and filter, the optimized Pycket version is 
even faster than the prototype. We attribute this to the more mature status of Pycket compared with the prototype, which 
is a pretty direct implementation of the λ-calculus.

For memory consumption, shown in the bottom part of Fig. 6, our implementations always use significantly less memory
than the other implementations. The optimized Pycket implementation is always second to our best-case prototype and 
in the best case uses only 40 % of the memory the unoptimized Pycket uses. The memory consumption of our best-case 
prototype is very low, as its execution model is quite restricted, and the only data structure types available are value 
classes, the subject of our optimization. On the other hand, the other language implementation face more complex execution 
models with more meta-data and other kinds of data structures besides value classes. Under this assumption, we think the 
differences between the optimized Pycket and the unoptimized Pycket are the most significant result from the memory
analysis.

One key reason for our implementations’ performance is the interaction between escape analysis and the compacted 
storage. The benchmarks exhibit a certain usage pattern, in particular, the access to a list element is typically followed by
inserting this element into a new list, with possibly processing it. The tracing jit compiler and its escape analysis can infer
that no reification of the actual value object is necessary and, furthermore, that a certain number of such operations occur
consecutively. Hence, operations can happen block wise, for example for a list inlined n levels deep, reverse can operate in 
chunks of n items. Proper tail recursion amplifies this effect.

Given our parameters (maximum object size of 7 and maximum shape depth of 7), we expect the inlining for to result 
in chunks of 6 consecutive list elements. This means that (a) five class references and five next-element references can be 
saved per chunk, that is more than 50 %, and (b) the list operations can work on these chunks consecutively, comparable to 
what list unrolling achieves. Moreover, the tracing jit compiler can make assumptions on these chunk and remove almost all 
type checks, reduce the number of allocations to a minimum, has to follow less references, and reduce the overall number
of operations the tracing jit processes by up to 60 %.

6. Related work

Data structure optimization is well documented in literature and industry. We want to put our approach to value class 
optimization into this context.

Algebraic data types From a data structure optimization point of view, value classes are similar to algebraic data types as 
found in languages in the ML family [24,25]. Hence, optimizations done to this category of data structures are relevant to 
value classes, too [26,27].

Object inlining Wimmer has proposed object inlining [28] as a general data structure optimization for structured objects 
in Java. This approach shares many similarities with ours: it also inlines objects into their referring objects, saving space 
and pointer indirections. It has a number of advantages over our approach: the approach guarantees to never need more 
memory than without the optimization. Also, it does not need any complex run-time support, since it relies on a static,
global analysis to identify classes for which the inlining is possible. This latter property is however also a weakness: it 
restricts the approach to statically typed programs where global analysis is possible, which hampers the use in dynamic 
languages and in settings where reflection or class loading is used. Additionally, the inlining decision is done per class,
while in our approach different shapes and thus inlining patterns can be created for a single value class.
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Fig. 6. Benchmarking results. Each bar shows the arithmetic mean of ten runs for execution time (top) and memory consumption (bottom). Lower is better.

Language-level optimization Improving data structures to gain execution speed has been proposed for operations on linked 
lists in functional languages, for example by unrolling [29]. Typically, those optimizations are restricted to linked lists of 
cons-cells.

One of the key effects in our optimization is avoiding to allocate intermediate data structures. In that respect, hash 
consing [30–32], as used in functional languages for a long time, is related to this work. However, hash consing typically
works at the language level using libraries, coding conventions, or source-to-source transformations. It is not adaptable at 
run-time.
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Ahead-of-time optimization Deforestation [33–35] has the aim to eliminate intermediate data structures and is in this re-
spect related to our approach. However, deforestation deliberately works through program transformation and does not 
incorporate dynamic usage information. It is typically only available to statically typed functional languages, such as ML.

Just-in-time compilers Compiling to native code at run-time, that is jit compilation, is a prevalent and extensively studied 
technique, found in several different, but chiefly object-oriented, dynamically-typed languages [8]. Prominent examples in-
clude the Smalltalk-80 bytecode-to-native-code compiler by Deutsch and Schiffman [36], and the optimizing jit compiler of 
Self, with type specialization and speculative inlining [37]. These concepts were later used in the HotSpot jit compiler [9]
for Java.

The prevalence of web browsers has made jit compilation an important topic for JavaScript implementations, for example 
the int V8 JavaScript implementation [10]. The map transitions for hidden classes used in V8 [38] and inspired by Self [37],
are in principle similar to our notion of transformation rules. As well as objects in V8 start with a default hidden class and 
follow map transitions to their most optimal hidden class, the transformation rules in our approach change the shape of a 
value object from its default shape to its most optimized one during the value object’s creation.

An important difference between the hidden classes of V8 to the shapes of our approach is that V8 needs to deal with 
the objects being mutated after their construction. Indeed, while the hidden classes of V8 (and similarly of Higgs [39]) can 
encode the type of the fields of the objects, they do that only for primitive values like int, float etc. They cannot recursively
express that a field is itself an object with a specific hidden class, which is what we do with shapes in the current paper.
The reason this is impossible (or at least significantly harder) in the JavaScript setting is the fact that the inner object can 
be mutated later, which might cause its hidden class to change.

Tracing jit compilers as introduced by Mitchell [12] have seen implementations for Java [13], JavaScript [40], or Lua,12

to name a few. In the context of a JavaScript implementation, the SPUR project [41] provided a tracing jit compiler for
Microsoft’s Common Intermediate Language (CIL).

Tracing an interpreter that runs a program instead of tracing the program itself it the core idea of meta-tracing jit

compilers, pioneered in the DynamoRIO project [42]. PyPy [18,14] is a meta-circular Python implementation that uses a 
meta-tracing jit compiler. Provided through the RPython tool chain, other language implementations can benefit from a 
meta-tracing, for example Smalltalk [43], Haskell [44], PHP,13 or R.14 The meta-tracing jit used in this work is provided by
RPython, as well.

7. Conclusion and future work

Our approach to just-in-time optimization of value classes provides very good initial results both for execution time 
and memory consumption for a small prototype implementation on selected micro-benchmarks. They are promising and 
motivate us to investigate the matter further.

However, the current results are not yet fit for generalization. While our prototypes give promising results on micro-
benchmarks, they allow only limited reasoning about more general programs. The applicability of our approach to more 
general languages and especially more realistic programs remains to be assessed in future work. Hence, immediate next 
steps include broadening the benchmarks for the Pycket-based implementation so that we can assess the viability of our
approach in more representative context.

Racket supports more datatypes that may be subject to our approach, for example (immutable) cons cells. We plan to 
integrate these with our approach.

Our aim is then to broaden the scope of our approach beyond value classes. We want to support objects that have iden-
tity as well as mutable objects. While the usage of a cell indirection in the Pycket implementation has proven worthwhile 
to allow mutability, we do not yet know whether this approach of quasi-immutability is portable to other languages. Even 
more, maintaining identity, and hence object-oriented concepts, needs more in-depth investigation.
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