
Science of Computer Programming 140 (2017) 17–29
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Adaptive just-in-time value class optimization for lowering

memory consumption and improving execution time

performance

Tobias Pape a,∗, Carl Friedrich Bolz b, Robert Hirschfeld a

a Software Architecture Group, Hasso Plattner Institute, University of Potsdam, Germany
b Software Development Team, King’s College London, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 December 2015
Received in revised form 21 June 2016
Accepted 5 August 2016
Available online 20 August 2016

Keywords:
Meta-tracing
JIT
Data structure optimization
Value classes

The performance of value classes is highly dependent on how they are represented in the
virtual machine. Value class instances are immutable, have no identity, and can only refer
to other value objects or primitive values and since they should be very lightweight and
fast, it is important to optimize them carefully. In this paper we present a technique to
detect and compress common patterns of value class usage to improve memory usage
and performance. The technique identifies patterns of frequent value object references and
introduces abbreviated forms for them. This allows to store multiple inter-referenced value
objects in an inlined memory representation, reducing the overhead stemming from meta-
data and object references. Applied to a small prototype and an implementation of the
Racket language, we found improvements in memory usage and execution time for several
micro-benchmarks.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The way data structures are represented affects their performance. Especially virtual machine developers carefully choose
the representation of their data structures, classes, or objects so that using them is efficient. In this paper we propose,
implement, and evaluate an optimized representation for value classes [1] on the virtual machine level. Value class instances
are immutable objects without identity that can reference only other value classes instances or primitive data. They have
been suggested for an extended Java [1], Java itself [2], exist in .NET [3] and—in a limited form—in Scala [4]. However,
related constructs of immutable identity-less structures also occur in several other languages, particularly in functional ones.
Examples include the algebraic data types of ML and Haskell, Prolog’s terms, cons cells in certain LISPs,1 and structures in
Racket [5]. Therefore, our optimization should be applicable to a number of other contexts. Nevertheless, in this paper we
will use the terminology value classes and instances of value classes (value objects for short).

The simplest approach to a machine representation of value objects is a class pointer together with their fields as a list
of pointers to other value objects and primitive values. We propose an object layout that stores nested value object groups
in a compacted, linearized fashion. This works by observing that in practice some shapes in the object graph are much more

* Corresponding author.
E-mail addresses: tobias.pape@hpi.uni-potsdam.de (T. Pape), cfbolz@gmx.de (C.F. Bolz), hirschfeld@hpi.uni-potsdam.de (R. Hirschfeld).

1 This is a special case, since LISP only supports one “value type”, cons. Also, other LISPs exist where cons cells do have identity or are mutable.
http://dx.doi.org/10.1016/j.scico.2016.08.003
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2016.08.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:tobias.pape@hpi.uni-potsdam.de
mailto:cfbolz@gmx.de
mailto:hirschfeld@hpi.uni-potsdam.de
http://dx.doi.org/10.1016/j.scico.2016.08.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2016.08.003&domain=pdf

18 T. Pape et al. / Science of Computer Programming 140 (2017) 17–29
common than other shapes. There are often repeating patterns of how value objects reference each other. For example, a
cons cell is likely to reference another cons cell in its tail field, or a tree node often references other tree nodes.

For such common shapes we inline the fields of the referenced value object into the referring object to save space and
to accelerate the traversal of the object graph. This inlining can be repeated with fields of nested value objects, potentially
several levels deep. We detect which object graph shapes are common by keeping statistics at run-time, since it is often
impossible to statically infer what shapes will be common in practice.2 The inlining is only possible because of the key
properties of value objects:

a) Value objects are immutable, so the reference to an inlined object can never be replaced by another reference.
b) Value objects do not have identity, so the fact that an inlined object does not have a separate memory address that can

be used as its identity does not create problems. Likewise, multiple copies of an inlined object are not problematic for
identity concerns.

We implement the proposed optimization in two prototypes. One implements a variant of the lambda calculus extended
with value objects and pattern matching, which we used to prototype and evaluate the proposed optimization in isolation.
To also evaluate the approach in a more realistic setting, we implemented the same optimization for Pycket [6], a re-
implementation of the Racket language. Both languages use the RPython virtual machine implementation framework and
its tracing just-in-time (jit) compiler. The tracing jit compiler is instrumental to our approach since it is responsible for
producing fast machine code for accessing the modified representation.

The contributions of this paper are as follows:

• We propose an approach for finding patterns in value object usage at run-time.
• We present a compressed layout for value objects that makes use of those patterns to store value objects more effi-

ciently.
• We report on the performance of micro-benchmarks for a small prototype language and a Racket implementation.

The paper is structured as follows. Section 2 gives a brief introduction to tracing jit compilers. In section 3, we present
our approach to just-in-time optimization of data structures. Our two implementations are presented briefly in section 4
and their performance is evaluated in section 5. Our approach is put into context in section 6 and we conclude in section 7.

2. Tracing just-in-time compilers

We briefly introduce tracing just-in-time (jit) compilers [7], as some of their properties are key to the performance
characteristics of our approach (cf. section 3.2 and section 3.3).

Just-in-time (jit) compilation has become a mainstream technique for, among other reasons, speeding up the execu-
tion of programs at run-time. After its first application to LISP in the 1960s, many other language implementations have
benefited from jit compilers—from APL, Fortran, or Smalltalk and Self [8] to today’s popular languages such as Java [9] or
JavaScript [10].

One approach to writing jit compilers is using tracing [11]. A tracing jit compiler records the steps an interpreter takes
in common execution paths such as hot loops. The obtained instruction sequence is commonly called a trace. This trace
can on be optimized independently or transformed to machine code and used instead of the interpreter to execute the
same part of that program [12] at higher speed. Tracing produces specialized instruction sequences, for example for one
path in if–then–else constructs; if execution takes a different branch later, it switches back to use the interpreter. Tracing
jit compilers have been successfully used for optimizing native code [11] and also for efficiently executing object-oriented
programs [13].

Meta-tracing takes this approach one step further by observing the execution of the interpreter instead of the execution of
the application program. Hence, a resulting trace is not specific to a particular application but the underlying interpreter [14,
15]. Therefore, it is not necessary for language implementers to program an optimized, language-specific jit compiler but
rather to provide a straightforward language-specific interpreter in RPython, a subset of Python that allows type inference.
Hints to the meta-tracing jit enable fine-tuning of the resulting jit compiler [16]. RPython’s tracing JIT also contains a
very powerful escape analysis [17], which is an important building block for the optimization described in this paper.
Meta-tracing has been most prominently applied to Python with PyPy [18].

3. Optimization approach

Our optimization uses an unconventional memory representation for value objects within the virtual machine to save
memory and to speed up access. The optimization stays invisible to the programmer.

2 Note that these shapes are totally different what some JavaScript VMs such as Firefox’ IonMonkey and Higgs call shapes. Those JavaScript “shapes” are
equivalent to Self maps or V8’s hidden classes. We will discuss the relationship to Self maps in the related work section.

T. Pape et al. / Science of Computer Programming 140 (2017) 17–29 19
Fig. 1. Straightforward value class representation for a linked list and a tree. Top: the language view; bottom: runtime environment view with storage and
shape.

Fig. 2. Left: Shapes comprise a class reference, an arity, and a structure of sub-shapes. Center: “Transformation rules” describe substitutions for shapes
which are consulted during the inlining process; “history” contains a histogram of all sub-shapes encountered at a certain position in a certain shape
collected during all value object creation. Right: Key to the visual language used.

A straightforward representation for a value object in memory is a chunk of memory that stores a reference to the
object’s class first, followed by references for each of its fields. We call the latter the storage of the object. An example of
this straightforward representation can be seen in Fig. 1, which shows a linked list and a tree structure.

The idea of our optimization is to look for common patterns in the object graph at run-time. If a frequently appearing
pattern is identified, we introduce an abbreviated form to store the pattern. Newly created instances that exhibit this pattern
use the abbreviated form to save memory.

The abbreviated form uses object inlining for instances with these common patterns. Instead of storing references to
a sub-object, the sub-object’s fields are inlined into the referencing object’s fields. This saves the pointer from the outer
object to the inlined one, the overhead of maintaining a separate object and the reference to the inlined object’s class. This
inlining is done recursively, if possible. During the inlining process, we need to maintain certain meta-information to keep
track of which fields belong to which level of an inlined object and in order to remember the classes of the inlined objects.
Therefore, we replace the pointer to the object’s class with a pointer to this meta-information, which we call the shape of
the object. If no inlining occurs, we still give the object a shape, which only references the class and the fact that no inlining
is being performed. This is called the default shape of a class.

It is important to not just arbitrarily inline objects but to do so only for frequent combinations of outer classes and inner
classes. Since the shape needs memory too, introducing shapes that are solely used by a single object would actually waste
memory.

To understand the rest of the system, we now need to look at (a) how structure patterns are recognized, (b) how the
construction of values ensures the proper usage of shapes, and (c) how the access to of inlined fields is implemented.

20 T. Pape et al. / Science of Computer Programming 140 (2017) 17–29
3.1. Shapes and their recognition

A shape describes the abstract, structural representation of value objects. It is shared between all identically structured
instances of the same value class3 and captures the structure of these instances. Value objects have a permanent reference
to their shape during their life time.

Shapes can be nested; they consist of sub-shapes for each field in a value object’s storage. A special, flat shape denotes
unaltered access to object fields (direct access shape, � in all figures) and termination of shape nesting. It conveys no more
information than that a field exists and may contain data. Value objects with these shapes are treated as black boxes, for
example scalar data or unoptimized objects that are stored directly. This is depicted in the bottom part of Fig. 1; all three
nodes in the list share the same shape, which denotes that each node consists of two references with direct access shapes.
The same holds for the nodes of the tree in that figure, but with three references.

As long as no optimization has taken place, a value object refers to the default shape of its value class that solely consist
of direct access sub-shapes. The shapes in Fig. 1 are the default shapes for their value classes. Initially, all value object use a
default shape. To reach a state where more complex shapes can be used, our approach depends on auxiliary data.

To guide the overall optimization process, we keep track of all shapes that we encounter during object creation. That
way, we create a histogram of all shapes used in the fields of value objects. We explain this profiling data, which we call
the history, in subsubsection 3.1.1.

Based on the history profiles, we determine the fields in a value class where inlining value objects could be worthwhile.
We infer new shapes for value objects with certain referenced value objects inlined, and record a transition from the old to
the new shape. We call this process shape recognition and explain it in subsubsection 3.1.2.

We collect all results from the shape recognition in a table that we call the transformation rules. We explain its structure
briefly in subsubsection 3.1.3.

3.1.1. History
The history is a table that counts how often certain sub-shapes are found in the fields of new value objects. It is essen-

tially a histogram of all sub-shapes. It is rather simple to maintain, as due to the immutability of value objects, modifications
of this table are only necessary during value object creation. At this point, all objects that will constitute a new value object
are available and we can count the occurrences of sub-shapes at specific positions in the value object.

As example, the history table in Fig. 2 shows that for shape s1 at position 1, the shape s1 itself has been encountered 17
times as sub-shape, while shape s2 has been encountered 5 times as sub-shape in that position.

The most important operation on the history table is updating the count of a shape×position×sub-shape–entry, besides
initializing it to 1 on the first encounter. It is possible to remove a history entry after it had been used for creating a
transformation rule, if desired.

3.1.2. Shape recognition
During the creation of a value object we first update the shape history table and then check the counters associated

with the shapes of the object’s fields. Whenever one of these counters exceeds a preset threshold, create a new shape that
combines the value object’s current shape with the sub-shape that exceeded the threshold. In this new shape, we replace
the direct access sub-shape at the position where the threshold was reached with the sub-shape found in the history entry.
We then create a new transformation rule that maps from the old shape, the position, and the sub-shape at that position
to the newly created shape.

Considering Fig. 2 as example, shape s2 would be the result of turning the history entry (s1, 1, s1, 17) into the transfor-
mation rule (s1, 1, s1) �→ s2.

3.1.3. Transformation rules
We maintain the set of all transformation rules as a lookup table that is used during value object creation. This table

is only ever updated during shape recognition and typically, rules are never removed from it. However, it is usually much
smaller than the history table. Find an example transformation rule table in the top center of Fig. 2.

Note that we consider both history and transformation rules to conceptually be tables. Depending on circumstances it
may be advisable to merge them into one table or split them by the first column’s entries and attach them directly to those
shape.

3.2. Compaction through inlining

The information of what shapes occur often and which shape transformations to use can be applied at run-time to
create value objects in a compacted representation. The process of creating such a compacted value object is outlined in the
following. As running example, we will use the combination of the primitive datum “1” with a linked list into a new linked
list as depicted in Fig. 3 and using the shapes and transformation rules as given in Fig. 2.

3 We refer to a value class by its name and the arity of its type in a Prolog style, for example Node/2 for binary node objects.

T. Pape et al. / Science of Computer Programming 140 (2017) 17–29 21
Fig. 3. When creating a new node value object that should contain “1” and the list “Node/2[2, Node/2[3, Node/2[4, ⊥]]]”, a new value object that merges
the “1” with the “2” object and a different shape is created instead.

First, it is only necessary to consider compaction when creating new value objects. Since they are immutable, there is no
need to consider compaction on mutation. Therefore, the inlining process starts with the following two components:

1. the value class of the object that is to be created, and
2. the elements that should constitute said object’s new fields.

In our example, the class is Node/2 and the new fields are “1” and a Node/2 value object (“Node/2[2, . . .]”). As pointed
out earlier, every value class has an associated default shape equivalent to a straightforward representation. In the case of
the class Node/2, this default shape corresponds to shape s1 in Fig. 2. With the default shape and the fields, the inlining
algorithm as specified in Algorithm 1 can now commence. In our example, the initial shape s provided as input to the
algorithm is the default shape s1 and the fields f are “1” and “Node/2[2, . . .]”.

Algorithm 1: Determining shape and fields of a value object during its creation. The shape is derived based on trans-
formation rules and the fields are inlined based on the resulting shape.

1 Input: s : Shape, f : [Value Object]
2 i ← 0
3 while i < | f | do
4 si ← f i{shape}
5 s′ ← transformationss,i,si

or s
6 if s′ �= s
7 f ← [

f0,...,i−1, f i{storage}, f i+1,...,| f |
]

8 s ← s′
9 // restart with new storage

10 i ← 0
11 else
12 i ← i + 1
13 end
14 end
15 return s, f

We now iterate over the fields (line 3) and consider each new field f i separately. For that, we look at the sub-shape si of
the new field f i and try to look up a substitute shape s′ (line 5). If we have no substitution, for example because none has
been recorded yet or the new field f i is primitive data, the shape is not substituted and we continue with the next element.
However, if we find a substitute (line 6), we replace the value object f i with a copy of its storage in the new fields f (line
7); the value object f i is now inlined. The new shape s′ becomes the new value object’s shape s (line 8) and the inlining
process is restarted (line 10) with the new shape and fields. This allows possible other transformation rules to be applied
due to the shape change.

Once no further transitions are found, the value object’s shape s and the current fields f are returned as the shape and
storage of the new value object (line 16).

For our example, the following happens: while iterating over the new fields f , we encounter “1” as the first field f0.
Since this is a primitive datum, no new shape can be found and no shape change happens. The next new field f2 to consider
is “Node/2[2, . . .]”. The sub-shape s1 of this value object is s1 and we can now look up a transformation rule for (s1, 1, s1)
and find a substitution s′ , s2 (line 5). Thus, we inline the storage of f1 by copying it into the new fields f at position 1.4

The fields of f are now “1”, “2”, and “Node/2[3, . . .]”. Furthermore, we change the shape of the new value object to s2
(line 8). At that point, we restart the inlining process by resetting the counter (line 9). This means, we again encounter “1”
as first field f0 and no substitution happens. Moreover, the second field f1 is now “2”, so no substitution happens either.

4 The original value object “Node/2[2, . . .]” remains untouched and can still be referenced from other objects.

22 T. Pape et al. / Science of Computer Programming 140 (2017) 17–29
Fig. 4. Referenced value object reification. Accessing the second item 2 of the list l ← Node/2[1, Node/2[2, Node/2[3, Node/2[4, ⊥]]]] by two operations
head(tail(l)) results in two reified rest lists to be created.

We continue with the third field f2, which is “Node/2[3, . . .]”. The sub-shape of this value object is s1, and since s is s2, we
can look up a transformation rule for (s2, 2, 21) in the table. However, no such transformation rule exists and, hence, no
further inlining is possible. Since we visited all fields, the algorithm terminates and returns the value object’s new shape s2
and its new fields [1, 2, Node/2[3, . . .]].

During the inlining process, potentially short-lived objects might be created. This can happen when the storage of a value
object is inlined into its surrounding list of fields. Typically, a new list of correct lengths is created and the old list will be
un-referenced. In subsequent inlining steps, this new list itself may be short-lived. To retain simplicity in our approach, we
refrained from introducing sophisticated mechanisms to avoid the allocation but rather rely on modern jit compilers. We
expect those allocations to happen in tight loops, but more importantly, in a very restricted scope. Hence, jit compilers with
good escape analysis and allocation removal, such as meta-tracing jit compilers [19], should be able to completely remove
all allocations during the inlining process.

This shape inlining technique has two main advantages. First and foremost, inlined value objects take up less space than
individual, inter-referenced value objects. But even more, the shape of a value object provides structural information in a
manner the meta-tracing jit compiler can speculate on. This is crucial to optimize field accesses in a value object.

3.3. Implementing field access

While optimization of data structures takes place during construction, we have to apply the reverse during deconstruc-
tion, that is when accessing a value object referenced by another. This is no longer trivial, as several (formerly referenced)
value objects may have been inlined into their referencing value objects. Therefore, we construct new value objects when-
ever a reference is navigated, essentially reifying it. We use the information a value object’s shape provides to identify
which parts of the value object’s storage comprise the value object to be reified. The structural information allows a direct
mapping from the language view of the data structure to the actually stored elements. In Fig. 4, the structural information
in the shape of the leftmost list allow the reasoning that the first element of the storage is equivalent to the head of the
language level node value object and the remaining three storage elements are equivalent to the tail of that value object, as
recored in the shape. Hence the middle view in that figure; both the element “1” and the rest list have been reified. The
same goes for the rightmost view.

Note that this reification is completely invisible to programmers. Taking, for example the tail of a node value object or
accessing the third element of a ternary tree repeatedly, the operations remain the same on the language level, no matter
what is the shape inlining status of the value objects on the implementation level.

3.4. Benefits

With the shape inlining approach, fewer value objects need to be created for long living data structures, since the
references to the now-inlined value objects are elided. Combining this with the reification and the shape recognition, more
memory is saved the longer a program runs; the shapes will be tailored to fit the specific application running. That said,
there may be cases where no memory can be saved, especially in programs that only work on primitive data, flat data
structures, or with a high amount of sharing between data structures.

4. Implementation in RPython with a tracing JIT compiler

We present two implementations of our approach, both integrating the tracing jit compiler of RPython as presented in
section 2.

4.1. JIT interaction

While the techniques we described so far can lead to a good amount of memory usage reduction, shape recognition,
shape inlining, and reified reference access combined, do not yield a performance increase on their own. In fact, implement-
ing the approach naively yields significantly worse performance, due to the constant check of the transformation rules every

T. Pape et al. / Science of Computer Programming 140 (2017) 17–29 23
time a new value object is created. Additionally, reading inlined fields of compacted value objects results in the allocation
of intermediate data structures. This is of course not the case in the naive representation. Hence, the presence of the jit

compiler is necessary to begin with.
To improve performance, the jit compiler needs to reduce the overhead of these operations. The first step is to treat

the transformation tables as constant when a function is compiled. This allows the jit compiler to compile value object
creation down to a series of type checks for the types of the referenced value objects. We instruct the jit compiler to treat
transformation tables as constant after filling it with enough information.

Second, we have to avoid the otherwise necessary reification of referenced value objects when it is being read from a
value object it has been inlined into. For that, the observation that most of these intermediate value objects are actually
short-lived is crucial; most value object are created just to be either immediately discarded or consumed in another, typically
larger data structure. As a concrete example, typical linked list operations deconstruct the list they are working on. Hence,
if the tail is read off a linked list node which has the tail inlined (as the transition from left to middle in Fig. 4) and needs
to be reified, that tail is usually soon deconstructed itself into its head and tail components (as the transition from middle
to right in the same figure). This allows the tracing jit compiler to optimize the reading of fields that need reification. Since
the value objects allocated when reifying a field are short-lived, the built-in escape analysis [19] will fully remove their
allocation and thus remove the overhead of reification.

4.2. Best-case prototype

To assess best-case performance, we implemented our optimization approach using a simple execution model prototype.5

It provides a λ-calculus with pattern matching as the sole control structure and is implemented as a direct application of the
cek-machine [20]. The only structured data types available are value classes. We used the RPython tool chain to incorporate
its meta-tracing jit compiler [7]. The implementation has been carefully unit-tested during development to make sure that
various complex substitutions and compactions work correctly.

4.3. Structures in Racket and Pycket

Since the best-case prototype is arguably unfit for comparison with existing languages and their implementations, we
applied our optimization to an implementation of the Racket language [5], a dynamically typed, multi-paradigm program-
ming language in the Scheme family. Racket supports, among others, immutable-by-default lists, a design-by-contract [21]
implementation, and heterogeneous structure datatypes.

The structure types are of special interest because, if applied carefully, they can be used like value classes.6 Moreover,
structures can form hierarchies and—by default—are immutable with the option to make some or all fields mutable. Racket
structures go beyond other structured heterogeneous datatypes; they support the notion of structure type properties that
can influence the way structures interact with the system. For example, a special structure type property can make structure
instances callable, so they can act like a procedure.

Pycket [6] is an implementation of Racket using the RPython toolchain and its tracing jit. While not feature-complete, it
provides a fair amount of functionality and can compete with the reference implementation performance-wise, in certain
areas even outperforming high-performance ahead-of-time (aot) Scheme compilers. The support for Racket structures in
Pycket is recent [22] and showed potential for the optimization presented here. Furthermore, the implementation technique
(cek machine) and environment (RPython, tracing jit) come close to the prototype and suggest a good base for comparison.

Our approach is present in a modified Pycket implementation.7 The existing structure implementation [22] already tries
to optimize memory consumption and execution time. It already deals with the distinction of smaller and larger structure
instances; for the former, objects with a known, small number of fields are used, for the latter, separate storage objects are
created. Hence, an abstraction for field accesses already existed. We were able to take the implementation of the prototype
with little modification and use it as storage for all structure kinds. Only few adaptions were necessary: we added the
management logic for shapes and re-routed access to fields through them. All in all, the changes amounted to less than 550
lines of code added and a handful of lines of codes removed.

4.4. Configuration parameters

Our approach makes use of three parameters that may influence performance:

Maximum object size Only value objects up to this size are considered for inlining. Setting this to zero disables our opti-
mization, setting it to a very high number might result in very large value object at runtime, which might be undesirable.

5 Available at https :/ /bitbucket .org /krono /lamb.
6 Structures in the Racket language actually do not by default compare based on their value and do have identity which is relied upon. However,

value-based comparison can be enabled explicitly. Also, plans exist to provide a structure derivative that has a concept of identity compatible with value
classes. [Sam Tobin-Hochstadt, personal communication.]

7 https :/ /github .com /samth /pycket /releases /tag /shapes-scp (last accessed 2015-12-15).

https://bitbucket.org/krono/lamb
https://github.com/samth/pycket/releases/tag/shapes-scp

24 T. Pape et al. / Science of Computer Programming 140 (2017) 17–29
Maximum shape depth The number nested shape occurrences per value object is bounded by this parameter. Setting this to
a low value may not catch all optimizable object shapes, setting it to a very high number may lead to an excessive number
of shapes at runtime should there be a lot of value objects with no fields at all.

Substitution threshold The threshold for transformation rule creation (as in section 3.1.3), when set to zero or a very low
value can lead to excessive transformation rule creation for value object combinations that are only rarely used. A very high
number might inhibit the creation of such rules at all and practically disables our optimization.

5. Results

We present two kinds of results. First, we show that the shape recognition part (cf. section 3.1) of our approach is
feasible and can be used instead of manually specifying shape transformation rules. And second, we present the execu-
tion time and memory consumption for selected micro-benchmarks on our two implementations and three more language
implementations.

5.1. Setup

Hardware The processor used was an Intel Xeon E5410 (Harpertown) clocked at 2.33 GHz with 2 × 6 MB cache; 16 GB
of RAM were available. All runs are un-parallelized, hence the number of cores (four) was irrelevant to the experiment.
Although virtualized on Xen, the machine was dedicated to the benchmarks.

Software The machine ran Ubuntu 14.04.3 LTS with a 64 bit Linux 3.13.0. ReBench8 was used to carry out all execution
of the benchmarks and collection of measurements. RPython as of revision 0c8d6f715aac served for translation of our
prototype (tag shapes-scp) and the optimized Pycket (tag shapes-scp).

Optimization configuration During the measurements of our implementations, we used the following settings for the config-
uration parameters as described in section 4.4:

Maximum object size We used a maximum size of 7 fields.
Maximum shape depth We used a maximum depth of 7 shapes.
Substitution threshold We used a threshold of 17 shape occurrences.

5.2. Shape recognition fitness

To assess whether our recognition approach is favorable to manually specifying shape transformation rules, we ran
several list operations on increasingly longer, large lists in our prototypical implementation in three configurations: no
optimization at all (None), optimization using our approach but only using ahead-of-time, manually specified transformation
rules without using shape recognition or history data (Inlining only), and optimization with transformation rules derived
using shape recognition and history data (Recognition). We provide the execution time results for reversing a long list in
Fig. 5. In this case, we found that

a) both optimized versions are always significantly faster than the not optimized version,
b) initially, the version with manually specified transformation rules is faster than the version with shape recognition, but
c) for most data points, the version with shape recognition and transformation rule inference is as fast as or even faster

than the version with manually specified transformation rules.

The results for other list operations (appending, mapping, filtering) were very similar and have hence been omitted.
The results suggest that the shape recognition approach could be fitting in the context of our optimization and could be

favorable to specifying transformation rules manually.

5.3. Comparative micro-benchmarks

We report the performance of five micro-benchmarks with their execution time and peak memory consumption.

Compared implementations For the benchmarks, we included an unmodified Pycket , Racket , and PyPy 9 in the
comparison. For all these, value classes or equivalent means supporting immutable data are available. The unmodified Pycket
is the baseline of our implementation and does not include our optimization. Racket’s cons cells, structs and classes can act

8 ReBench is a benchmarking framework. https :/ /github .com /smarr /ReBench.
9 Pycket revision 291d80fbd43a; Racket version 6.3; PyPy version 4.0.1.

https://github.com/smarr/ReBench

T. Pape et al. / Science of Computer Programming 140 (2017) 17–29 25
Fig. 5. Runtime results for reversing list of different lengths. None is without our optimization approach. Inlining only uses our optimization approach with
ahead-of-time, manually specified transformation rules without using shape recognition. Recognition uses our optimization approach with transformation
rules derived using shape recognition. (The data points were smoothed using local regression [23]; the semi-transparent areas are based on standard
deviation of each data point. Note the logarithmic scale on the “Execution time” axis.)

Table 1
Benchmark execution times. We give means of the execution time along with the confidence interval showing the 95 % confi-
dence level.

Benchmark Prototype Pycket (optimized) Pycket (original) Racket PyPy

mean error mean error mean error mean error mean error

append 5088 ±27 ms 5545 ±32 ms 9432 ±52 ms 13218 ±42 ms 10655 ±32 ms
filter 1285 ±4 ms 4743 ±42 ms 5590 ±87 ms 14240 ±172 ms 6691 ±43 ms
map 6344 ±87 ms 5609 ±22 ms 8332 ±63 ms 15010 ±161 ms 9632 ±83 ms
reverse 350 ±6 ms 1172 ±5 ms 3347 ±45 ms 6421 ±159 ms 4864 ±27 ms
tree 2814 ±17 ms 2420 ±17 ms 3926 ±21 ms 3893 ±27 ms 7949 ±41 ms

Table 2
Benchmark memory consumption. We give means of the memory consumption along with the confidence interval showing the 95 %
confidence level.

Benchmark Prototype Pycket (optimized) Pycket (original) Racket PyPy

mean error mean error mean error mean error mean error

append 1220256 ±0 kB 1826172 ±3 kB 3342362 ±2 kB 3393476 ±329 kB 4625309 ±2 kB
filter 522631 ±1 kB 1360879 ±3 kB 2195701 ±5 kB 2713104 ±5883 kB 2996973 ±9 kB
map 1141762 ±1 kB 1600280 ±1 kB 2709864 ±4 kB 2518191 ±9704 kB 3512922 ±2 kB
reverse 192552 ±1 kB 651634 ±8 kB 1604697 ±2 kB 1647545 ±1935 kB 3512605 ±5 kB
tree 71233 ±1 kB 209180 ±55 kB 502130 ±2 kB 300500 ±16 kB 956974 ±4 kB

as value classes. Racket acts as a virtual machine with a handwritten jit compiler. PyPy is the RPython implementation of
Python and has a meta-tracing jit compiler. While Python has no actual concept of value classes, we used regular classes
without mutating them. PyPy detects this case and is able to apply special optimizations, effectively treating them like
value classes. We intended to also include the standard Python (CPython) but it was too slow and would have rendered the
comparison meaningless.

Methodology Every benchmark was run ten times uninterrupted at highest priority, in a new process. The execution time
(total time) was measured in-system and, hence, does not include start-up; however, warm-up was not separated, so jit

compiler execution time is included in the numbers. The maximal memory consumption (resident set size) was measured
out-of-system and may hence include set-up costs. We report the arithmetic mean of the ten runs; for the execution time
we include confidence intervals showing the 95 % confidence level. The memory measurements only indicate a negligible
error10 that was hence omitted. We provide all numbers for execution time in Table 1 and memory consumption in Table 2.
Our benchmarking code and infrastructure are publicly available.11

10 Except for Racket, which we attribute to its garbage collector (cf. Tables 1 and 2).
11 https :/ /bitbucket .org /krono /lamb-bench.

https://bitbucket.org/krono/lamb-bench

26 T. Pape et al. / Science of Computer Programming 140 (2017) 17–29
5.3.1. Benchmarks
The benchmarks chosen are append, filter, map, and reverse on very long linked lists and the creation and complete prefix

traversal of a binary tree. Due to the limited feature scope of our best-case prototype, more sophisticated applications are
currently not available for benchmarking. For our optimization of Pycket, the structure benchmarks shipped with Racket
would be interesting for our measurements. However, the structure benchmarks do not run yet on Pycket due to missing
(not structure related) features [22].

5.3.2. Non-regression
Our optimization should not influence anything except value classes. To ensure this for Pycket, we ran the shootout

benchmarks described in the original paper on Pycket [6]. These benchmarks hardly make use of structures. On average, the
execution time for these benchmarks deviates less than 6 % (both faster or slower) from the original implementation. This
low deviation shows that our approach has very little overhead when structs are not used.

5.3.3. Performance results
In the top part of 6, the execution time of all benchmarks is reported. Our first implementation, labeled prototype ,

is significantly faster—from two to ten times faster. Our second implementation, labeled optimized Pycket , performs as
expected. It is not as fast as the best-case prototype, as the language semantics of Racket have to be maintained as much as
possible. However the speed-up compared with the unmodified, unoptimized version of Pycket is apparent. The optimized
version is 1.2 to 2.9 times faster than the unoptimized version. In the case of map and filter, the optimized Pycket version is
even faster than the prototype. We attribute this to the more mature status of Pycket compared with the prototype, which
is a pretty direct implementation of the λ-calculus.

For memory consumption, shown in the bottom part of Fig. 6, our implementations always use significantly less memory
than the other implementations. The optimized Pycket implementation is always second to our best-case prototype and
in the best case uses only 40 % of the memory the unoptimized Pycket uses. The memory consumption of our best-case
prototype is very low, as its execution model is quite restricted, and the only data structure types available are value
classes, the subject of our optimization. On the other hand, the other language implementation face more complex execution
models with more meta-data and other kinds of data structures besides value classes. Under this assumption, we think the
differences between the optimized Pycket and the unoptimized Pycket are the most significant result from the memory
analysis.

One key reason for our implementations’ performance is the interaction between escape analysis and the compacted
storage. The benchmarks exhibit a certain usage pattern, in particular, the access to a list element is typically followed by
inserting this element into a new list, with possibly processing it. The tracing jit compiler and its escape analysis can infer
that no reification of the actual value object is necessary and, furthermore, that a certain number of such operations occur
consecutively. Hence, operations can happen block wise, for example for a list inlined n levels deep, reverse can operate in
chunks of n items. Proper tail recursion amplifies this effect.

Given our parameters (maximum object size of 7 and maximum shape depth of 7), we expect the inlining for to result
in chunks of 6 consecutive list elements. This means that (a) five class references and five next-element references can be
saved per chunk, that is more than 50 %, and (b) the list operations can work on these chunks consecutively, comparable to
what list unrolling achieves. Moreover, the tracing jit compiler can make assumptions on these chunk and remove almost all
type checks, reduce the number of allocations to a minimum, has to follow less references, and reduce the overall number
of operations the tracing jit processes by up to 60 %.

6. Related work

Data structure optimization is well documented in literature and industry. We want to put our approach to value class
optimization into this context.

Algebraic data types From a data structure optimization point of view, value classes are similar to algebraic data types as
found in languages in the ML family [24,25]. Hence, optimizations done to this category of data structures are relevant to
value classes, too [26,27].

Object inlining Wimmer has proposed object inlining [28] as a general data structure optimization for structured objects
in Java. This approach shares many similarities with ours: it also inlines objects into their referring objects, saving space
and pointer indirections. It has a number of advantages over our approach: the approach guarantees to never need more
memory than without the optimization. Also, it does not need any complex run-time support, since it relies on a static,
global analysis to identify classes for which the inlining is possible. This latter property is however also a weakness: it
restricts the approach to statically typed programs where global analysis is possible, which hampers the use in dynamic
languages and in settings where reflection or class loading is used. Additionally, the inlining decision is done per class,
while in our approach different shapes and thus inlining patterns can be created for a single value class.

T. Pape et al. / Science of Computer Programming 140 (2017) 17–29 27
Fig. 6. Benchmarking results. Each bar shows the arithmetic mean of ten runs for execution time (top) and memory consumption (bottom). Lower is better.

Language-level optimization Improving data structures to gain execution speed has been proposed for operations on linked
lists in functional languages, for example by unrolling [29]. Typically, those optimizations are restricted to linked lists of
cons-cells.

One of the key effects in our optimization is avoiding to allocate intermediate data structures. In that respect, hash
consing [30–32], as used in functional languages for a long time, is related to this work. However, hash consing typically
works at the language level using libraries, coding conventions, or source-to-source transformations. It is not adaptable at
run-time.

28 T. Pape et al. / Science of Computer Programming 140 (2017) 17–29
Ahead-of-time optimization Deforestation [33–35] has the aim to eliminate intermediate data structures and is in this re-
spect related to our approach. However, deforestation deliberately works through program transformation and does not
incorporate dynamic usage information. It is typically only available to statically typed functional languages, such as ML.

Just-in-time compilers Compiling to native code at run-time, that is jit compilation, is a prevalent and extensively studied
technique, found in several different, but chiefly object-oriented, dynamically-typed languages [8]. Prominent examples in-
clude the Smalltalk-80 bytecode-to-native-code compiler by Deutsch and Schiffman [36], and the optimizing jit compiler of
Self, with type specialization and speculative inlining [37]. These concepts were later used in the HotSpot jit compiler [9]
for Java.

The prevalence of web browsers has made jit compilation an important topic for JavaScript implementations, for example
the int V8 JavaScript implementation [10]. The map transitions for hidden classes used in V8 [38] and inspired by Self [37],
are in principle similar to our notion of transformation rules. As well as objects in V8 start with a default hidden class and
follow map transitions to their most optimal hidden class, the transformation rules in our approach change the shape of a
value object from its default shape to its most optimized one during the value object’s creation.

An important difference between the hidden classes of V8 to the shapes of our approach is that V8 needs to deal with
the objects being mutated after their construction. Indeed, while the hidden classes of V8 (and similarly of Higgs [39]) can
encode the type of the fields of the objects, they do that only for primitive values like int, float etc. They cannot recursively
express that a field is itself an object with a specific hidden class, which is what we do with shapes in the current paper.
The reason this is impossible (or at least significantly harder) in the JavaScript setting is the fact that the inner object can
be mutated later, which might cause its hidden class to change.

Tracing jit compilers as introduced by Mitchell [12] have seen implementations for Java [13], JavaScript [40], or Lua,12

to name a few. In the context of a JavaScript implementation, the SPUR project [41] provided a tracing jit compiler for
Microsoft’s Common Intermediate Language (CIL).

Tracing an interpreter that runs a program instead of tracing the program itself it the core idea of meta-tracing jit

compilers, pioneered in the DynamoRIO project [42]. PyPy [18,14] is a meta-circular Python implementation that uses a
meta-tracing jit compiler. Provided through the RPython tool chain, other language implementations can benefit from a
meta-tracing, for example Smalltalk [43], Haskell [44], PHP,13 or R.14 The meta-tracing jit used in this work is provided by
RPython, as well.

7. Conclusion and future work

Our approach to just-in-time optimization of value classes provides very good initial results both for execution time
and memory consumption for a small prototype implementation on selected micro-benchmarks. They are promising and
motivate us to investigate the matter further.

However, the current results are not yet fit for generalization. While our prototypes give promising results on micro-
benchmarks, they allow only limited reasoning about more general programs. The applicability of our approach to more
general languages and especially more realistic programs remains to be assessed in future work. Hence, immediate next
steps include broadening the benchmarks for the Pycket-based implementation so that we can assess the viability of our
approach in more representative context.

Racket supports more datatypes that may be subject to our approach, for example (immutable) cons cells. We plan to
integrate these with our approach.

Our aim is then to broaden the scope of our approach beyond value classes. We want to support objects that have iden-
tity as well as mutable objects. While the usage of a cell indirection in the Pycket implementation has proven worthwhile
to allow mutability, we do not yet know whether this approach of quasi-immutability is portable to other languages. Even
more, maintaining identity, and hence object-oriented concepts, needs more in-depth investigation.

Acknowledgements

We gratefully acknowledge the financial support of HPI’s Research School and the Hasso Plattner Design Thinking Re-
search Program (HPDTRP). Carl Friedrich Bolz is supported by the EPSRC Cooler grant EP/K01790X/1. We thank Alan Borning
for comments on a draft version of this paper. We thank the anonymous reviewers for their detailed feedback.

References

[1] D.F. Bacon, Kava: a Java dialect with a uniform object model for lightweight classes, Concurr. Comput., Pract. Exp. 15 (3–5) (2003) 185–206,
http://dx.doi.org/10.1002/cpe.653.

[2] J. Rose, JEP 169: value objects, http://openjdk.java.net/jeps/169, 2014 (visited on 2014-09-15).

12 http :/ /luajit .org.
13 http :/ /hippyvm .com/.
14 https :/ /bitbucket .org /roy _andrew /rapydo.

http://dx.doi.org/10.1002/cpe.653
http://openjdk.java.net/jeps/169
http://luajit.org
http://hippyvm.com/
https://bitbucket.org/roy_andrew/rapydo

T. Pape et al. / Science of Computer Programming 140 (2017) 17–29 29
[3] Microsoft Developer Network, Common type system, http://msdn.microsoft.com/en-us/library/zcx1eb1e(d=default,l=en-us,v=vs.110).aspx, 2014 (visited
on 2014-09-15).

[4] M. Odersky, P. Alther, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, M. Zenger, An overview of the Scala programming
language, Tech. rep. LAP-REPORT-2006-0001, EFPL, Lausanne, Switzerland, 2006.

[5] M. Flatt, PLT, Reference: Racket, Tech. rep. PLT-TR-2010-1, PLT Inc., 2010, http://racket-lang.org/tr1/.
[6] S. Bauman, C.F. Bolz, R. Hirschfeld, V. Krilichev, T. Pape, J. Siek, S. Tobin-Hochstadt, Pycket: a tracing JIT for a functional language, in: Proc. of ICFP 2015,

ICFP ’15, Vancouver, BC, Canada, ACM, 2015.
[7] C.F. Bolz, Meta-tracing just-in-time compilation for RPython, Ph.D. thesis, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich Heine Universität

Düsseldorf, 2012.
[8] J. Aycock, A brief history of just-in-time, ACM Comput. Surv. 35 (2) (2003) 97–113, http://dx.doi.org/10.1145/857076.857077.
[9] M. Paleczny, C.A. Vick, C. Click, The Java HotSpot server compiler, in: Proceedings of the 2001 Symposium on Java Virtual Machine Research and

Technology Symposium, vol. 1, JVM ’01, Monterey, CA, USENIX Association, 2001.
[10] M. Hölttä, Crankshafting from the ground up, Tech. rep., Google, 2013.
[11] V. Bala, E. Duesterwald, S. Banerjia, Dynamo: a transparent dynamic optimization system, ACM SIGPLAN Not. 35 (5) (2000) 1–12.
[12] J.G. Mitchell, The design and construction of flexible and efficient interactive programming systems, Ph.D thesis, Carnegie Mellon University, Pittsburgh,

PA, USA, 1970.
[13] A. Gal, C.V. Probst, M. Franz, HotpathVM: an effective JIT compiler for resource-constrained devices, in: Proceedings of the 2nd International Conference

on Virtual Execution Environments, VEE ’06, Ottawa, ON, Canada, ACM, 2006, pp. 144–153.
[14] C.F. Bolz, A. Cuni, M. Fijalkowski, A. Rigo, Tracing the meta-level: PyPy’s tracing JIT compiler, in: Proceedings of the 4th Workshop on the Implementa-

tion, Compilation, Optimization of Object-Oriented Languages and Programming Systems, ICOOOLPS ’09, Genova, Italy, ACM, 2009, pp. 18–25.
[15] C.F. Bolz, L. Tratt, The impact of meta-tracing on VM design and implementation, Sci. Comput. Program. (2013), http://dx.doi.org/10.1016/j.scico.

2013.02.001.
[16] C.F. Bolz, A. Cuni, M. Fijalkowski, M. Leuschel, S. Pedroni, A. Rigo, Runtime feedback in a meta-tracing JIT for efficient dynamic languages, in: Proc.

ICOOOLPS, 2011, pp. 9:1–9:8.
[17] C.F. Bolz, A. Cuni, M. Fijalkowski, M. Leuschel, S. Pedroni, A. Rigo, Allocation removal by partial evaluation in a tracing JIT, in: Proc. PEPM, 2011,

pp. 43–52.
[18] A. Rigo, S. Pedroni, PyPy’s approach to virtual machine construction, in: Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented Pro-

gramming Systems, Languages, and Applications, OOPSLA ’06, Portland, OR, USA, ACM, 2006, pp. 944–953.
[19] C.F. Bolz, A. Cuni, M. Fijalkowski, M. Leuschel, S. Pedroni, A. Rigo, Allocation removal by partial evaluation in a tracing JIT, in: Proceedings of the 20th

ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM ’11, Austin, TX, USA, ACM, 2011, pp. 43–52.
[20] M. Felleisen, D.P. Friedman, Control operators, the SECD-machine and the λ-calculus, in: M. Wirsing (Ed.), Proceedings of the 2nd Working Conference

on Formal Description of Programming Concepts, vol. III, Elsevier, 1987, pp. 193–217.
[21] R. Mitchell, J. McKim, B. Meyer, Design by Contract, by Example, Addison–Wesley, 2001.
[22] T. Pape, V. Kirilichev, R. Hirschfeld, Optimizing record data structures in Racket, in: Proceedings of the 31st Annual ACM Symposium on Applied

Computing, SAC ’16, Pisa, Italy, ACM, 2016, pp. 1798–1805.
[23] W.S. Cleveland, E. Grosse, W.M. Shyu, Local regression models, in: J.M. Chambers, T.J. Hastie (Eds.), Statistical Models in S, Wadsworth & Brooks/Cole,

Pacific Grove, CA, 1992, pp. 309–376.
[24] R. Milner, M. Tofte, R. Harper, D. MacQueen, The Definition of Standard ML, revised edition, MIT Press, 1997.
[25] L. Damas, R. Milner, Principal type-schemes for functional programs, in: Proceedings of the 9th ACM SIGPLAN–SIGACT Symposium on Principles of

Programming Languages, POPL ’82, Albuquerque, NM, ACM, 1982, pp. 207–212.
[26] P. Lee, M. Leone, Optimizing ML with run-time code generation, in: Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language

Design and Implementation, PLDI ’96, Philadelphia, PA, USA, ACM, 1996, pp. 137–148.
[27] X. Leroy, The ZINC experiment: an economical implementation of the ML language, Technical report 117, INRIA, 1990.
[28] C. Wimmer, Automatic object inlining in a Java virtual machine, Ph.D. thesis, Johannes Kepler Universität, Linz, Austria, 2008.
[29] Z. Shao, J.H. Reppy, A.W. Appel, Unrolling lists, SIGPLAN Lisp Pointers VII (3) (1994) 185–195, http://dx.doi.org/10.1145/182590.182453.
[30] A.P. Ershov, On programming of arithmetic operations, Commun. ACM 1 (8) (1958) 3–6, http://dx.doi.org/10.1145/368892.368907.
[31] E. Goto, Monocopy and associative algorithms in extended Lisp, Technical report TR-74-03, University of Tokyo, Japan, 1974.
[32] J.-C. Filliâtre, S. Conchon, Type-safe modular hash-consing, in: Proceedings of the 2006 Workshop on ML, ML ’06, Portland, OR, USA, ACM, 2006,

pp. 12–19.
[33] P. Wadler, Deforestation: transforming programs to eliminate trees, Theor. Comput. Sci. 73 (2) (1990) 231–248, http://dx.doi.org/10.1016/

0304-3975(90)90147-A.
[34] A. Gill, J. Launchbury, S.L. Peyton Jones, A short cut to deforestation, in: Proceedings of the Conference on Functional Programming Languages and

Computer Architecture, FPCA ’93, Copenhagen, Denmark, ACM, 1993, pp. 223–232.
[35] A. Takano, E. Meijer, Shortcut deforestation in calculational form, in: Proceedings of the Seventh International Conference on Functional Programming

Languages and Computer Architecture, FPCA ’95, La Jolla, CA, USA, ACM, 1995, pp. 306–313.
[36] L.P. Deutsch, A.M. Schiffman, Efficient implementation of the Smalltalk-80 system, in: Proceedings of the 11th ACM SIGACT–SIGPLAN Symposium on

Principles of Programming Languages, POPL ’84, Salt Lake City, UT, USA, ACM, 1984, pp. 297–302.
[37] C. Chambers, D. Ungar, E. Lee, An efficient implementation of Self, a dynamically-typed object-oriented language based on prototypes, SIGPLAN Not.

24 (10) (1989) 49–70, http://dx.doi.org/10.1145/74878.74884.
[38] Google, Inc., Chrome V8 documentation: design elements, https://developers.google.com/v8/design, 2012 (visited on 2014-09-11).
[39] M. Chevalier-Boisvert, M. Feeley, Extending basic block versioning with typed object shapes, arXiv:1507.02437 [cs.PL], 2015.
[40] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M.R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E.W. Smith, R. Re-

itmaier, M. Bebenita, M. Chang, M. Franz, Trace-based just-in-time type specialization for dynamic languages, SIGPLAN Not. 44 (6) (2009) 465–478,
http://dx.doi.org/10.1145/1543135.1542528.

[41] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte, N. Tillmann, H. Venter, SPUR: a trace-based JIT compiler for CIL, SIGPLAN Not. 45 (10)
(2010) 708–725, http://dx.doi.org/10.1145/1932682.1869517.

[42] G.T. Sullivan, D.L. Bruening, I. Baron, T. Garnett, S. Amarasinghe, Dynamic native optimization of interpreters, in: Proceedings of the 2003 Workshop on
Interpreters, Virtual Machines and Emulators, IVME ’03, San Diego, CA, ACM, 2003, pp. 50–57.

[43] C.F. Bolz, A. Kuhn, A. Lienhard, N.D. Matsakis, O. Nierstrasz, L. Renggli, A. Rigo, T. Verwaest, Back to the future in one week—implementing a Smalltalk
VM in PyPy, in: Self-Sustaining Systems, in: Lecture Notes in Computer Science, vol. 5146, Springer, Berlin–Heidelberg, 2008, pp. 123–139.

[44] E.W. Thomassen, Trace-based just-in-time compiler for Haskell with RPython, Master’s thesis, Norwegian University of Science, Technology Trondheim,
2013.

http://msdn.microsoft.com/en-us/library/zcx1eb1e(d=default,l=en-us,v=vs.110).aspx
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib6F646572736B792B3A323030363A6F766572766965772D7363616C61s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib6F646572736B792B3A323030363A6F766572766965772D7363616C61s1
http://racket-lang.org/tr1/
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib7370656E7365722D6261756D616E2B3A323031353A7079636B65743A2D74726163696E67s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib7370656E7365722D6261756D616E2B3A323031353A7079636B65743A2D74726163696E67s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A3A323031323A6D6574612D74726163696E672D6A7573742D696E2D74696D65s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A3A323031323A6D6574612D74726163696E672D6A7573742D696E2D74696D65s1
http://dx.doi.org/10.1145/857076.857077
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib70616C65637A6E792B3A323030313A6A6176612D686F7473706F74s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib70616C65637A6E792B3A323030313A6A6176612D686F7473706F74s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib686F6C7474613A323031333A6372616E6B7368616674696E672D66726F6Ds1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib62616C612B3A323030303A64796E616D6F3A2D7472616E73706172656E74s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib6D69746368656C6C3A313937303A64657369676E2D636F6E737472756374696F6Es1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib6D69746368656C6C3A313937303A64657369676E2D636F6E737472756374696F6Es1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib67616C2B3A323030363A686F7470617468766D3A2D656666656374697665s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib67616C2B3A323030363A686F7470617468766D3A2D656666656374697665s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A2B3A323030393A74726163696E672D6D6574612D6C6576656C3As1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A2B3A323030393A74726163696E672D6D6574612D6C6576656C3As1
http://dx.doi.org/10.1016/j.scico.2013.02.001
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A5F72756E74696D655F32303131s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A5F72756E74696D655F32303131s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib426F6C7A3A323031317031373837s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib426F6C7A3A323031317031373837s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib7269676F2B3A323030363A70797079732D617070726F616368s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib7269676F2B3A323030363A70797079732D617070726F616368s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A2B3A323031313A616C6C6F636174696F6E2D72656D6F76616Cs1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A2B3A323031313A616C6C6F636174696F6E2D72656D6F76616Cs1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib66656C6C656973656E2B3A313938373A636F6E74726F6C2D6F70657261746F7273s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib66656C6C656973656E2B3A313938373A636F6E74726F6C2D6F70657261746F7273s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib6D69746368656C6C2B3A323030313A64657369676E2D636F6E7472616374s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib706170652B3A323031363A6F7074696D697A696E672D7265636F7264s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib706170652B3A323031363A6F7074696D697A696E672D7265636F7264s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib636C6576656C616E642B3A313939323A6C6F63616C2D72656772657373696F6Es1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib636C6576656C616E642B3A313939323A6C6F63616C2D72656772657373696F6Es1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib6D696C6E65722B3A313939373A646566696E6974696F6E2D7374616E64617264s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib64616D61732B3A313938323A7072696E636970616C2D747970652D736368656D6573s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib64616D61732B3A313938323A7072696E636970616C2D747970652D736368656D6573s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib6C65652B3A313939363A6F7074696D697A696E672D77697468s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib6C65652B3A313939363A6F7074696D697A696E672D77697468s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib4C65726F792D5A494E43s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib77696D6D65723A323030383A6175746F6D617469632D6F626A656374s1
http://dx.doi.org/10.1145/182590.182453
http://dx.doi.org/10.1145/368892.368907
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib676F746F3A313937343A6D6F6E6F636F70792D6173736F63696174697665s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib66696C6C69617472652B3A323030363A747970652D736166652D6D6F64756C6172s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib66696C6C69617472652B3A323030363A747970652D736166652D6D6F64756C6172s1
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib67696C6C2B3A313939333A73686F72742D6465666F726573746174696F6Es1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib67696C6C2B3A313939333A73686F72742D6465666F726573746174696F6Es1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib74616B616E6F2B3A313939353A73686F72746375742D6465666F726573746174696F6Es1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib74616B616E6F2B3A313939353A73686F72746375742D6465666F726573746174696F6Es1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib646575747363682B3A313938343A656666696369656E742D696D706C656D656E746174696F6Es1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib646575747363682B3A313938343A656666696369656E742D696D706C656D656E746174696F6Es1
http://dx.doi.org/10.1145/74878.74884
https://developers.google.com/v8/design
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib63686576616C6965722D626F6973766572742B3A323031353A657874656E64696E672D6261736963s1
http://dx.doi.org/10.1145/1543135.1542528
http://dx.doi.org/10.1145/1932682.1869517
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib73756C6C6976616E2B3A323030333A64796E616D69632D6E6174697665s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib73756C6C6976616E2B3A323030333A64796E616D69632D6E6174697665s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A2B3A323030383A6261636B2D667574757265s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib626F6C7A2B3A323030383A6261636B2D667574757265s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib74686F6D617373656E3A323031333A74726163652D62617365642D6A7573742D696E2D74696D65s1
http://refhub.elsevier.com/S0167-6423(16)30103-4/bib74686F6D617373656E3A323031333A74726163652D62617365642D6A7573742D696E2D74696D65s1
http://dx.doi.org/10.1016/j.scico.2013.02.001
http://dx.doi.org/10.1016/0304-3975(90)90147-A

	Adaptive just-in-time value class optimization for lowering memory consumption and improving execution time performance
	1 Introduction
	2 Tracing just-in-time compilers
	3 Optimization approach
	3.1 Shapes and their recognition
	3.1.1 History
	3.1.2 Shape recognition
	3.1.3 Transformation rules

	3.2 Compaction through inlining
	3.3 Implementing ﬁeld access
	3.4 Beneﬁts

	4 Implementation in RPython with a tracing JIT compiler
	4.1 JIT interaction
	4.2 Best-case prototype
	4.3 Structures in Racket and Pycket
	4.4 Conﬁguration parameters

	5 Results
	5.1 Setup
	5.2 Shape recognition ﬁtness
	5.3 Comparative micro-benchmarks
	5.3.1 Benchmarks
	5.3.2 Non-regression
	5.3.3 Performance results

	6 Related work
	7 Conclusion and future work
	Acknowledgements
	References

