
Follow the Path: Debugging
State Anomalies along Execution Histories

Michael Perscheid, Tim Felgentreff, and Robert Hirschfeld
Software Architecture Group

Hasso-Plattner-Institute
University of Potsdam, Germany

Email: firstname.lastname@hpi.uni-potsdam.de

Abstract—To understand how observable failures come into
being, back-in-time debuggers help developers by providing
full access to past executions. However, such potentially large
execution histories do not include any hints to failure causes.
For that reason, developers are forced to ascertain unexpected
state properties and wrong behavior completely on their own.
Without deep program understanding, back-in-time debugging
can end in countless and difficult questions about possible failure
causes that consume a lot of time for following failures back to
their root causes.

In this paper, we present state navigation as a debugging guide
that highlights unexpected state properties along execution histo-
ries. After deriving common object properties from the expected
behavior of passing test cases, we generate likely invariants,
compare them with the failing run, and map differences as state
anomalies to the past execution. So, developers obtain a common
thread through the large amount of run-time data which helps
them to answer what causes the observable failure. We implement
our completely automatic state navigation as part of our test-
driven fault navigation and its Path tools framework. To evaluate
our approach, we observe eight developers during debugging
four non-trivial failures. As a result, we find out that our state
navigation is able to aid developers and to decrease the required
time for localizing the root cause of a failure.

Index Terms—Back-in-time Debugging, Likely Invariants, Dy-
namic Analysis, Testing, Test-driven Fault Navigation

I. INTRODUCTION

Debugging is largely an attempt to understand what causes
failures [1]. Starting with a test case, which reproduces the
observable failure, developers follow failure causes and their
effects on the infection chain back to the root cause (defect).
For localizing failure causes, they examine involved program
entities and distinguish relevant from irrelevant behavior and
expected from unexpected state. After understanding all details
of failure causes and their effects, developers are able to iden-
tify and correct the root cause. Unfortunately, this idealized
procedure requires deep knowledge of the system and its
behavior [2]. Since failures and defects can be far apart from
each other, their unknown infection chains are consequently
long and demand a laborious effort for debugging [3].

To better comprehend what causes failures, back-in-time de-
buggers [4] can help developers by providing access to all re-
quired execution details. These debugging tools include every
information for describing what happened before observable
failures. However, they also force developers to understand a
large amount of run-time data that bears little relation to failure

causes. As there are no hints to unexpected state properties or
misleading behavior, developers have to decide what is right
or wrong. Especially, the missing identification of suspicious
state makes tracing of infection chains a tedious task. At each
suspect position in the execution history, developers have to
examine the current object space for potential failure causes
and find the related computation completely on their own. We
state our research question as follows:

How can we support developers in localizing cor-
rupted program states, tracing of infection chains,
and understanding how failures come into being?

We argue, if developers get hints about suspicious program
entities and how they are related to each other, they are able
to systematically trace failures back to their root causes. They
understand failure causes step by step, make fewer and simpler
decisions about how to follow execution histories, and focus
their attention on finding defects [1].

In this paper, we present state navigation as a debug-
ging guide that reveals infection chains by emphasizing state
anomalies along execution histories. Starting with deriving
common object properties from passing test cases, we are able
to generalize expected program states. Based on such likely
invariants, we generate dynamic contracts and compare them
with failing test cases. Differences reveal state anomalies that
can be good indications of failure causes. With a mapping on
execution histories of our previous back-in-time debugger [5],
[6], anomalies reveal infection chains and guide developers to
root causes. Thus, our state navigation supports developers in
understanding failures and how they come into being.

The contributions of this paper are as follows:
• State navigation integrates likely invariants into a back-

in-time debugger to reveal unexpected state properties
and to assist in the observation of infection chains.

• Inductive analysis derives likely invariants by incremen-
tally generalizing common object properties such as types
and value ranges from methods that are covered by
passing tests and overlap with the failing execution.

• The Path tools framework implements our completely
automatic approach as part of our test-driven fault navi-
gation in Squeak/Smalltalk [7].

To evaluate our state navigation, we present a motivating
example and conduct a comparative user study within the

978-1-4799-3752-3/14/$31.00 c© 2014 IEEE CSMR-WCRE 2014, Antwerp, Belgium124

Client
(Browser)

StreamedResponse BufferedResponse

Request

Response
Seaside

Web Server

Typo in write header
"Content-Lenght"

Fig. 1. An inconspicuous typo corrupts the header state of buffered responses
and leads to faulty results of several client requests.

scope of a real world project. In this case, we discover that
our approach is able to further decrease debugging cost with
respect to required time and developer’s effort.

The remainder of this paper is structured as follows: Sec-
tion II introduces the background of our approach. Section III
presents our state navigation. Sections IV explains our induc-
tive analysis. Section V outlines our Path tools framework.
Section VI evaluates our approach, Section VII discusses
related work and Section VIII concludes.

II. FINDING CAUSES OF REPRODUCIBLE FAILURES

We introduce a motivating example that serves as a basis
for our discussion of debugging challenges, our test-driven
fault navigation1, and the explanation of our approach in the
following sections.

A. Motivating Example: Typing Error in Seaside

We have inserted a defect into the Seaside Web
framework [8] and its request/response processing logic
(BufferedResponse class, writeHeadersOn: method).
Fig. 1 illustrates the typing error inside the header creation
of buffered responses. The typo in “Content-Lenght” is in-
conspicuous but corrupts the header state. For that reason,
browser requests that demand buffering are unable to render
the invalid responses. Streamed responses are not influenced
and still work correctly.

Although the typo is simple to characterize, observing it can
be laborious. First, some clients hide the failure since they are
able to handle corrupted header information. Second, as the
response header is built by concatenating strings, the compiler
does not report an error. Third, by reading source code like a
text, developers tend to overlook such small typos [9].

B. Challenges of Debugging

However, debugging this example and other failures faces
several challenges with respect to localizing root causes.

1) Symbolic Debugger: How to Follow Infection Chains?:
Although symbolic debuggers are nowadays available in al-
most all development environments, they are not well-suited
for systematically following infection chains back to their root
causes. They only allow developers to stop a program, step
forward, and to access the run-time stack at a particular point
in time. They neither report what is going wrong nor offer
capabilities to go back in time. In our motivating example,

1More information on our test-driven fault navigation (including state
navigation) can be found at: http://www.michaelperscheid.de/projects/

developers only have access to the last point in execution with-
out any hints to the corrupted state in buffered responses and
no possibility to access the prior execution. Thus, developers
need to rely primarily on their intuition in order to understand
and find past failure causes with a tool that is only be able to
debug in the forward direction.

2) Back-in-time Debuggers: What Happened before?: In
contrast to symbolic debuggers, back-in-time debuggers [4]
provide access to entire execution histories by recording all
run-time information before the failure occurs. Based on this
data, developers can start with the observable failure, step
backward, and search for failure causes at each point in the
program’s execution history.

However, starting debugging at failures still includes a long
way back to their root causes [3]. Back-in-time debuggers
do not emphasize failure causes and so developers have to
examine an enormous amount of data on their own. Especially,
the missing classification of suspicious and harmless program
entities leads to numerous and often laborious decisions which
execution subtree to follow [1]. In our motivating example,
a back-in-time debugger records every method call and each
state change during a request-response processing. Although
this information contains everything that is required for local-
izing the root cause, developers have no support for tracing the
infection chain within the large amount of run-time data. Thus,
debugging entire executions can become a tedious activity.

3) Anomalies: What Are Possible Failure Causes?: Anoma-
lies such as from program spectra [10] or likely invariants [11]
automatically identify possible failure causes by deriving run-
time properties from reference runs and comparing them with
failing executions. Differences have a high probability of
including failure causes [12] and so help developers to narrow
down the search space by answering which program entities
are potentially infected.

Unfortunately, existing approaches are not well-suited for
localizing root causes because they potentially detect false
positives, distribute loosely-coupled anomalies all over the
program, and do not relate suspicious properties with failing
behavior [13]. For each difference, developers still have to
answer whether the anomaly is a failure cause and, if so,
how it is related to the infection chain. For these reasons,
developers have only a lot of unrelated starting points that
must tediously be debugged one by one. In our motivating
examples, there are several anomalies all over the Seaside Web
framework. Although one of them also includes a typo close
by the defect, developers need a lot of time to costly debug
unrelated anomalies one after the other.

C. Test-driven Fault Navigation

Our test-driven fault navigation [5] is a debugging guide that
integrates spectrum-based anomaly detection [10], [12] into a
systematic breadth-first search for tracing failure causes back
to defects. Starting with at least one test case that reproduce
the observable failure, we localize anomalies by comparing the
method coverage of all failed and passed test cases. Methods
being executed by a large number of failing but only a few

125

passing tests have a higher failure cause probability (anomaly)
than methods being executed by less failing but many passing
test cases. By integrating these spectrum-based anomalies into
our back-in-time debugger [6], we highlight suspicious method
calls and allow developers to distinguish between suspicious
and expected run-time behavior. Thus, our execution histories
include additional information about failure cause probabilities
that gives developers helpful advice on how to follow infection
chains back to their root causes.

Fig. 2 (a) illustrates the integration of spectrum-based
anomalies into execution histories of failing test cases. The
small example represents the infection chain with the observ-
able failure (method 11, bottom right corner) and the root
cause also known as defect (method 4, center left). Each row
shows all eleven methods and highlights the specific method
that is executed at this point in time. Colors express the failure
cause probability (from red as high to green as low) which
are computed by the comparison with the passing test case.
In the end, the execution history is classified with anomalies
and developers can directly start debugging on the left sub
tree—as methods 8 and 6 are less suspicious, developers can
shorten the infection chain to methods 5, 4, and 2. Without this
anomalous guidance, it is hard to abbreviate the trace because
developers have to decide at each executed method whether
there is a failure cause or not.

Although our test-driven fault navigation already leads
developers along suspicious behavior, it misses important
information about corrupted state. At this point, developers
cannot easily answer the critical question “which program state
is infected?” because the applied spectrum-based anomalies
are only based on behavioral coverage data. In our motivating
example, we guide developers close to the defect but the
analysis of the unexpected header state and the difficult iden-
tification of the typo remains open. As our previous approach
misses to highlight corrupted state properties along infection
chains, it lasts unclear what causes the failure.

III. STATE NAVIGATION

Our state navigation technique reveals infection chains by
identifying corrupted state along execution histories. To detect
state anomalies, we first derive likely invariants from passing
test cases and then create dynamic contracts that verify the
collected object properties. Differences during the execution
of failing test cases uncover state anomalies that have a
high probability to include failure causes. To reveal infection
chains and explain how corrupted state is related to each
other, we emphasize anomalies along the failing behavior. Our
entire state navigation works automatically and requires only
a comprehensive test suite with several passing test cases.

A. Likely Invariants from Passing Test Cases

We start our state navigation by deriving likely invariants.
To learn common object properties, we first execute all passing
test cases and collect their used objects. For each method
called, we check its arguments, the return value, and the
receiver object. Having a concrete object, we accumulate its

specific properties into generalized invariants that hold with
previously observed objects at the same program entity. We
analyze several properties such as type information and value
ranges. During this analysis, we steadily expand likely invari-
ants once concrete objects come along with new properties
that are not covered so far. Finally, we gather enough data for
pre- and post-conditions of methods as well as invariants of
accessed instance variables.

In Fig. 2 (b), we illustrate the concrete objects of a passing
test case example. In different executions, method 6 is called
with 1.0, 5.2, and 10 at the same argument. During its first
method call, we collect a Float in the value range of 1.0 to
1.0. With the second execution, we extend the value range to
5.2. Finally, with the last Integer argument we change the
type to the superclass Number and enlarge the value range
again. Thus, we have a generalized object property for this
argument that expects numbers between 1 and 10. We also
derive invariants by all other called method. The arguments
of method 5 are equal to method 6, while its return values
allow Integer types between 1 and 30. These return values
are input to method 8 that always returns a receiver object
with the same specific class type. All observable objects of
method 9 are the same booleans and for that reason they also
uncover a possibility for writing more tests.

Although the collected information is helpful with respect
to program comprehension and later debugging, its quality
strongly depends on the test base. We assume that concrete
objects have meaningful values and that tests check the
entire code base comprehensively. The first assumption is
valid because test cases should check at least common use
cases of a system. So, their execution includes the most
important state properties for program comprehension and our
likely invariants. The second assumption depends on the test
coverage of the system. If test cases do not check extensive
enough, we miss invariants or they tend to be too specific. To
provide meaningful results, we assume systems that test again
the most common use cases and so reach a test coverage above
50 %. In the case of too specific invariants, we argue that this
concrete data is at least a valuable source for understanding
the expected program behavior.

B. Detection of State Anomalies with Dynamic Contracts

With likely invariants, our state navigation generates dy-
namic contracts [14] that automatically detect corrupted state
in failing test cases. For each generalized object property, we
create suitable assertions and aggregate them into contracts.
Depending on the covered program entity, we add contracts
for arguments as pre-conditions to methods, return values as
post-conditions to methods, and receiver state as invariants
to their corresponding classes. After that, developers are able
to run test cases with activated contracts. While passing test
cases should work correctly, failing test cases create anomalies
if their state is not in accordance to our expected invariants.
Such state differences have a high probability to include failure
causes so that developers can rely on this information for
creating their hypotheses [1]. To further reveal parts of the

126

highlighted
infection chain

#! defect in method #

failure in method

executed method ##method calls of
failing test behavior

not executed method #passing test behavior

corrupted state and
violated contract

2 3 4 5 7 8

1 2 3 4 5 6 7 8

1 3 5 6 7 8

1 2 3 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

1 2 3 4 5 6 7

1 2 3 4 5 6 7

!

1 3 4 5 6 7 8

9 10 11

9 10 11

9 10 11

9 10 11

9 11

9 10 11

9 10 11

9 10 11

9 10 11

1 2 3 4 5 6 7 8

2 4 5 6 7 8

10 11

9 10

6

4

8

2

10

1time

methods

3

1

8

9

11

2

4

5

Arguments: 1.0; 5.2; 10

Arguments: 1; 16; 30

Arguments: true
Return: true

Return: self

Return: self 2 3 4 5 7 8

1 2 3 4 5 6 7 8

1 3 5 6 7 8

1 2 3 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

1 2 3 4 5 6 7

1 2 3 4 5 6 7

!

1 3 4 5 6 7 8

9 10 11

9 10 11

9 10 11

9 10 11

9 11

9 10 11

9 10 11

9 10 11

9 10 11

1 2 3 4 5 6 7 8

2 4 5 6 7 8

10 11

9 10

6

4

8

2

10

1time

methods

3

1

8

9

11

2

4

5

!

 argument = 0
 Expect Integer between 1 and 30

Arguments: 1.0; 5.2; 10
Return: 1; 16; 30

argument = -10
 Expect positive Number

return = 0
 Expect Integer between 1 and 30

(a) (b) (c)
2 3 4 5 7 8

1 2 3 4 5 6 7 8

1 3 5 6 7 8

1 2 3 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

1 2 3 4 5 6 7

1 2 3 4 5 6 7

!

1 3 4 5 6 7 8

9 10 11

9 10 11

9 10 11

9 10 11

9 11

9 10 11

9 10 11

9 10 11

9 10 11

1 2 3 4 5 6 7 8

2 4 5 6 7 8

10 11

9 10

6

4

8

2

10

1time

methods

3

1

8

9

11

2

4

5

!100%

100%

80%

100%

50%

50%

0%

100%

100%

80%

100%

50%

50%

!

!

!

Fig. 2. Test-driven fault navigation with its suspicious execution history (a) is extended with our state navigation. Based on the derivation of likely invariants
from passing test cases (b), we reveal state anomalies and emphasize parts of the infection chain within the failing behavior (c).

infection chain and to understand how anomalies relate to each
other, we map these state violations to the execution history
as provided by a back-in-time debugger. Thus, developers can
explore the failing behavior and our state navigation guides
them along the infection chain.

In Fig. 2 (c), we present how state anomalies complete
our test-driven fault navigation by revealing parts of the
infection chain. Based on the derived invariants, our failing
test case calls method 5 with -10 as argument and violates the
contract for positive numbers. After that the method returns
an unexpected 0 and violates its postcondition as well as the
precondition of method 8. While the Integer type is still
valid, the value range assertion allows only numbers between
1 and 30. All state anomalies are valuable indications for
failure causes and with their mapping along the suspicious
execution history, it further reveals parts of the infection chain.
Developers are able to understand corrupted state properties
and how to follow the observable failure back to its root cause.

C. Example: Coming Closer to the Typing Error

In our Seaside typing error, we first run all passing tests
from the still working streamed responses and collect type and
value ranges of their applied objects. For example, we verify
string arguments with a spellchecker. Based on this data, we
derive likely invariants, create corresponding contracts, and so
propagate the implicit assertions of the response tests to each
covered method. Finally, we execute our failing test case with
enabled contracts. As soon as a contract is violated, we mark
its exception in the execution history and proceed. Among
others, we reveal two state anomalies close by the defect.

Fig. 3 summarizes the call tree of our back-in-time
debugger [5], [6] with our state navigation extension.
We mark method calls that trigger a violation with
small exclamation marks (1). Developers can further in-
spect these violations and see that a precondition fails in

Fig. 3. State anomalies (exclamation marks) extend our back-in-time debugger
to highlight the typing error and to reveal the infection chain near the defect.
(Colors relate to our existing test-driven fault navigation and reflect the failure
cause probability of method calls from red (high) to green (low))

WAHeaderFields>>privateAt:put:. There is a spelling
violation in the first argument of this method because all
streamed responses and their passing test cases used correctly
spelled identifier keys for their header information. The cor-
rupted state is opened for further exploration on the right (2).
As our typo in “content-lenght” is automatically revealed, our
state navigation gives developers helpful advice about the real
failure cause. Another spelling violation is close by and with
the help of our previous test-driven fault navigation developers
can easily follow the infection chain back to the root cause
in the very suspicious and red-colored writeHeadersOn:

method (3).

IV. INDUCTIVE ANALYSIS

For our state navigation, we need to derive common object
properties from passing test cases. However, the correspond-

127

ing dynamic analysis of likely invariants tends to be time-
consuming because each object has to be explored at each
execution point in full detail [11]. Especially, in large systems
this method is not only expensive but also results in a vast
amount of data with numerous imprecise invariants. Both
drawbacks limit the debugging possibilities of current ap-
proaches [13]. For that reason, our inductive analysis restricts
uncertain assertions and collects object properties only if
needed. First, we analyze only common object properties with
unambiguous assertions such as types and value ranges to limit
false positives and provide reliable state anomalies. Second,
we derive as few as possible likely invariants for the current
failure. We limit the initial analysis scope to methods that are
only executed in failing and passing test cases. Depending on
their needs, developers can control the kind of collected object
properties. If desired, they can complement the results later on
by re-executing test cases again and at the same time focusing
on other object properties and methods. Fig. 4 summarizes our
inductive analysis approach.

On the left, developers first select the system packages for
our analysis. Based on the coverage of our failing tests, we
instrument each of the included classes and their methods with
harvester wrappers to transparently add analysis code around
the original implementation [15]. After that, we execute all
passing test cases that overlap in method coverage with failing
test cases. If a wrapped method is executed, we send object
events including concrete values to our inductive analysis
tracer. In the example of Fig. 4, developers are only interested
in the suspicious BufferedResponse class. If a passing test
case later calls the wrapped method initializeOn:, we send
the concrete ReadWriteStream object as its first argument
to our inductive analysis tracer.

In the middle, our inductive analysis tracer receives object
events and forwards them to its harvesters for generalizing
object properties. Depending on the developer’s choice, our
tracer includes several harvesters for different properties. Each
harvester notes common object properties in so called buckets
to compare and align upcoming object events with them.
Each bucket consists of dictionaries for generalized method
arguments, return values, and instance variables and a mapping
to their program entities. In Fig. 4, developers indicate interest
in type and value range properties. While the first harvester
collects from objects their most common superclass type,
the latter explores value ranges of primitive objects such as
numbers, strings, and streams. In the type bucket, we find for
the first argument of initializeOn: the common Stream

superclass. In the range bucket, we store stream properties
such as data about its content and if it is already closed.

On the right, our derived object properties can be accessed
by our state navigation to create dynamic contracts. We iterate
over all generalized object properties and create assertions as
source code snippets. With a contract builder, we aggregate all
assertions into corresponding contracts for pre- and postcondi-
tions and invariants. For example, Fig. 4 presents the created
source code for the Stream type and its value range which is
then added to the initializeOn: method as contract.

Object
- constant
- nil allowed

Number
- range
- zero included

Character
- range
- letters, digits, or
separators included
- lower- or uppercase
- is http safe

Collection
- number of elements
- fixed size
- empty allowed

String
- spelling correct
- numbers or
separators included
- is ascii safe
- content types

Stream
- contents
- is closed

Date
- date range
- weekdays
- is leap year
- time zones

Duration
- range
- is positive,
negative, or zero

Fig. 5. Harvested value ranges of primitive Smalltalk objects.

Based on this architecture, we can implement arbitrary har-
vesters for collecting generalized object properties. Developers
only have to specify how common properties are derived
from concrete objects and stored into the bucket. If this new
harvester is installed in our inductive tracer, object events auto-
matically call corresponding interface methods for arguments,
return values, and instance variables. Furthermore, each object
property should implement a printContract method that
automatically converts its generalized data into assertions. So
far, we have implemented two specific harvesters.

A. Type Harvester: Collecting Type Information

Our type harvester gathers detailed type information of
executed program entities [16]2. This is especially helpful in
dynamically typed programming languages such as Smalltalk
where type information is not explicitly represented in source
code. From each covered method argument, return value, and
instance variable our type harvester derives its most common
superclass by checking the type of the concrete object and
comparing it to the deposited information in our type bucket.
In the case that our bucket does not know the related program
entity, we note the new type. If both types are equal or
the new type inherits from the stored type, we do nothing
because the stored information already comprises the new
type. In all other cases, we store the common superclass of
both types. Furthermore, we also collect type information of
container objects and their children such as in collections
and dictionaries. For creating dynamic contracts, we provide
a generic implementation of the printContract method at
Smalltalk’s root class. With some meta-programming, this
method creates the corresponding type assertion for all classes.

B. Range Harvester: Checking Value Ranges of Objects

Value range harvesting collects common object properties
for primitive data types such as numbers, collections, and
strings. Fig. 5 summarizes all properties for primitive objects
that we currently harvest. For example, in the case of a number
we store its value range and check if it contains a zero. If an
object’s class inherits from other primitive types, we check

2Compared to our previous work, we improve our type harvester with
respect to generalizability (inductive analysis tracer), performance (method
wrappers), support of containing types, and creation of contracts.

128

Invariants cache

Value range harvester

BufferedResponse

destroybinary contents

writeCon
tentOn:

writeHea
dersOn:

initialize
On:

new on:

pass
pass

pass
Test cases

BufferedResponse

Run

Object events
for arguments,
returns, and
instance
variables

Public API for
argument,

return, and
member object

properties

Instrumented system with harvester wrappers Inductive analysis tracer

Value range bucket

Note

destroybinary contents

writeCon
tentOn:

writeHea
dersOn:

1. Stream
^Object

^Object 1. Stream
^Object

Instance Variables: Stream

Type harvester

BufferedResponse

Value range bucket

Note

destroybinary contents

writeCon
tentOn:

writeHea
dersOn:

1. Stream
^Buffered
Response

^Buffered
Response

1. Stream
^Buffered
Response

Instance Variables: Stream

Type bucket

Range bucket

Dynamic contracts

1. Stream
value range

1. Stream
type

Create contracts

Create contracts

...

...

DCContract expect: aParameter
 toBeKindOf: Stream.

DCContract expect: aParameter
 ofType: Stream isNot: #closed.
DCContract expect: aParameter
 ofType: Stream
 property: #'contents class'
 includes: {ByteString}.

Legend

Method Method
wrapper

Test
case

Value range
bucket

Bucket storing object properties that occur
during the execution of specific methods
1. - property of first argument
^ - property of return value

...
fail covers

Fig. 4. We derive common object properties from passing test cases with method wrappers and buckets in order to create dynamic contracts later on.

all of the corresponding properties, too. Since numbers inherit
from objects, we also harvest whether numbers are constant
and contain nil values.

To derive all these common properties, we first check
which behavior the corresponding object includes and then
collect the common object properties with Smalltalk’s libraries
and reflection mechanisms. For example, the spelling correct
property is verified by a spellchecker. If common object
properties do not exist, we create a new range property for
this concrete object. Otherwise, we compare the new and
existing value ranges and, if necessary, expand the common
properties. For example, we assume that nil objects are
not allowed, but as soon as an object event includes an
undefined object we change this value to true. In this case, the
object property denotes a final value that cannot be changed
by subsequent events without nil objects. In this way, we
generalize object properties step by step. Finally, each range
property implements the printContract method and knows
how to convert its generalized data into proper assertions.

C. Discussion

So far, our inductive analysis only derives types and value
ranges. We started with this small subset of likely invari-
ants because we do not want developers to be overwhelmed
by countless violated contracts. Otherwise, developers would
need more time for comprehending assertions instead of
following infection chains backwards. We argue that already
such a small subset can help in debugging as it restricts the
number of violations, false positives, and unimportant invari-
ants. Compared to Daikon [11] that provides a considerable
amount of more likely invariants, it has been shown that too
many invariants can limit their intent for debugging [13],
[17]. Nevertheless, we consider the incremental integration
and evaluation of Daikon’s rich set of likely invariants for
our debugging purposes as future works.

V. THE PATH TOOLS FRAMEWORK

We implement our state navigation as part of our test-driven
fault navigation and its corresponding Path tools framework [5]
for the Squeak/Smalltalk development environment [7]. The
tool suite consists of our enhanced test runner PathMap [18]
and our lightweight back-in-time debugger PathFinder [6]. The
Path analysis framework provides the basis for our tools on
top of the SUnit testing framework3. By leveraging unit tests
as a basis for dynamic analysis, we can ensure reproducibility
and a high degree of automation, scalability, and performance
during debugging with our tools.

To support our state navigation, we extend our PathMap
with an additional flap for deriving object properties and
adding contracts. With that developers only have to select test
suites and harvesters—everything else is done automatically.
Furthermore, we enhance our PathFinder to react on con-
tract violations and present the corresponding state anomalies
along execution histories. While colors represent spectrum-
based anomalies, exclamation marks emphasize state anoma-
lies (compare to Fig. 3). For a detailed description of our tools
and how to debug with them, we refer to [19].

VI. EVALUATION

We conduct a user study and compare developers while
debugging with standard and our Path tools. As a result, we
find out that our state navigation can further decrease the
required time for localizing the root cause of a failure.

A. Experimental Setup

We base this study on our previous user study [5] in order
to assess the positive influence of our state navigation. It is
difficult to evaluate the presented approach in isolation because

3We consider unit test frameworks as a technique for implementing different
kinds of test cases such as acceptance, integration, and module tests.

129

TABLE I
DESCRIPTION OF ICALENDAR’S FAILURES.

Failure Description Difficulty Infection State
length anomalies

1 Unintended string constant Normal 5 1
in phone types

2 Forgotten deletion of Normal 84 18
obsolete calendar events

3 Missing separator for Hard 520 28
parsing event files

4 Return of improper but poly- Hard 2133 1
morph objects for alarms

of its integration into our complete test-driven fault naviga-
tion and its corresponding Path tools. For that reason, we
examine whether other developers with a similar background
can debug the same hard to solve failures in less time.

We choose Squeak’s iCalendar project4 as the underlying
software system for our user study. iCalendar is a library
that supports the identically named file format for sharing
meeting requests and tasks independent of specific calendar
applications. The project implements file import and export
functionality including a parser, a domain-specific object
model, and I/O handling. It is an external, open source, and
real-world project that is used in several other applications.
We choose iCalendar because of its maturity, comprehensive
test base, understandable domain, and ideal project size (77
classes, 1,375 methods, 7,704 lines of code, and 71.42 % test
coverage) that is neither too small nor too large.

For our user study, we observe eight developers that have
a similar background as the participants of our previous
study [5]. All of them are computer science students in the
6th-8th semester, with about six years of programming ex-
perience and professional expertise with symbolic debuggers.
They are well acquainted with object-oriented programming
and Smalltalk because they passed our software engineering
courses with excellent grades. All participants have similar
development skills and become familiar with iCalendar in this
user study for the first time. Thus, we can ensure that the
required debugging effort is not much influenced by individual
skills and knowledge about the system.

During the study, our participants are supposed to localize
four failures which we have already applied in our previous
study5 [5]. Table I describes their characteristics. We insert
these four defects all over the system, whereby we described
them obviously. For example, we comment important state-
ments instead of deleting them. As we focus on following
infection chains, this help simplifies the final verification a
bit but not the more time-consuming localization. For each
failure, we assess a difficulty level that estimates the required
debugging effort based on our experience and the infection
chain length. All failures are reproducible in 1-10 failing tests,
which do not trivially include defects within their stack traces.

4http://www.squeaksource.com/ical/
5Compared to our previous study, we do not observe the two easy failures

because our approach already localized them in a short amount of time.

B. User Study Procedure

For the preparation of our participants, we introduced test-
driven fault navigation and iCalendar. Within two hours,
we first presented our Seaside typing error followed by an
instructed and comprehensive practice with our tools. The
students debugged one example failure in iCalendar under
our guidance. In doing so, they understood iCalendar’s basic
concepts, investigated its source code, and learned to debug
with our approach.

We conducted the user study by observing our developers
while debugging iCalendar’s failures with different tools. First,
all developers debugged two failures with Squeak’s standard
debugging tools. After that, they debugged the remaining two
failures with our Path tools. While using test-driven fault
navigation, we provided assistance with handling PathFinder’s
user interface and its features. The process of localizing
failures remained free of influence. For all four failures, we
measured the complete debugging time. If the defect was not
localized after 15 minutes, we marked the failure as not solved.

To evaluate our approach, we assigned each developer two
failures for debugging with standard tools (symbolic debugger
and test runner) and two failures for test-driven fault naviga-
tion (PathFinder and PathMap). For each of the four failures,
we ensured a unique combination of developers and applied
tools. At each level of difficulty, a developer debugged one
failure with standard and the other one with our Path tools.

After the study, we interviewed each participant and asked
for feedback with respect to our approach and Path tools.

C. Discussion of Study Results

Fig. 6 summarizes the required debugging time for each
failure with standard tools and our Path tools. For both
levels of difficulty, the position of a bar corresponds to the
same developer with respect to the applied tools per failure.
For example, the second bar in normal failure 1 standard
debugging and the second bar in normal failure 2 test-driven
fault navigation represent the same developer.

In the case of failure 1, developers with test-driven fault
navigation are very fast compared to developers with symbolic
debuggers and test runners. While our approach requires less
than one minute each time, standard debugging tools range
from about two minutes to not solved after 15 minutes.
Regarding our state navigation, we reduce the debugging time
by additional two minutes because the state anomaly matches
the defect very close. One method call after the defect, a
violation indicates the unexpected string as an obvious cause.

With failure 2, developers with standard tools have some
problems in localizing failure causes while our state navigation
performs very well. Two standard debugging students do not
find the defect within 15 minutes and also the other two
require at least the same time as the slowest test-driven fault
navigation participant. The remaining three students just need
about three minutes and test-driven fault navigation is once
more faster. However, state navigation adds one more minute
than in our previous study. We observe two reasons for this
issue. First, even if we expected similar development skills, we

130

Fig. 6. Required debugging time (the less the better, x marks not solved failures) with Smalltalk’s standard tools (symbolic debugger and test runner) compared
to our test-driven fault navigation including state navigation and its corresponding Path tools (PathFinder and PathMap).

see a few differences between the participants for the benefit of
the previous study—the standard debugging time is in many
cases above the previous average. Second, developers need
more time for understanding state anomalies in comparison
to the suspicious method calls of our behavior navigation. For
example, developers analyze a size violation for a while before
they comprehend which items are wrong. But this analysis also
allows them later on to explain what causes the failure.

The hard failure 3 is solved by only one developer with
standard tools and all with our Path tools. Besides the slowest
test-driven fault navigation participant with 13 minutes, all
other identify the defect within six to seven minutes and solve
it faster than in our previous study. Although only two students
are one minute faster, we argue that our state navigation still
helps a lot. Compared to our previous study, all participants
explain the root cause and the infection chain very well. Thus,
they could fix the defect without any problems.

Failure 4 is so difficult that no developer solves it with
standard tools but three out of four with our approach. With
our Path tools, two developers find this failure in less than
seven minutes and another one in about ten minutes. With
our state navigation, all three developers are several minutes
faster than in our previous study. However, one student does
not solve this failure with our tools. Although he followed the
infection chain close to the defect, he did not understand how
the state anomaly relates to the root cause. Due to the wrong
polymorphic receiver object, the state anomaly suggested a
correct argument (for another receiver) as corrupted. As the
student focused his debugging effort on the complex argument,
he could not solve this failure in time.

During debugging, we observed the participants and noticed
some interesting insights. Developers with standard tools re-
lied primarily on their intuition. Often, they guessed reasons
for failure causes such as wrong behavior and infected state.
In doing so, some developers had proper hypotheses about
failure causes, but no participant was consistently better at
guessing than another one. This observation was also reflected
in the differences of required debugging time. In contrast, our
test-driven fault navigation allowed developers to rely on a
systematic debugging process and the advice of our tools.

With the help of our additional state navigation, developers
linked the corresponding anomalies with their hypotheses and
followed the infection chain backwards. Compared to our
previous studies, they focused first on state anomalies and
followed later on the suspiciousness scores of method calls.
This improved in many cases not only the required debugging
time but also led to reduced effort because developers got
helpful advice about what went wrong.

With the help of our user study, we conclude that our state
navigation can reduce the required time for localizing failure
causes. Compared to standard debugging tools, developers
who apply our test-driven fault navigation need in the majority
of cases less time for debugging. Especially, our presented
state navigation complements our debugging approach and
is able to further decreases the required debugging time
by several minutes. With the additional integration of state
anomalies into our back-in-time debugger, developer better
understood how failures come into being and could directly
jump to unexpected state properties. All developers confirmed
that our approach had been promising for debugging with
less effort. They liked our Path tools and conceived them
as very valuable for debugging. A participant summarized
it as follows: “The state anomalies are very helpful and a
good advice to failure causes. In particular, the combination
with a back-in-time debugger, suspicious method calls, and
unexpected state properties allows me to easily follow the
infection chain back to its root cause.”

D. Threats to Validity

We rely on tests to obey certain rules of good style; they
should be reproducible and deterministic. Tests that do not
follow these guidelines might hamper our conclusions. The
tests in our evaluation were all acceptable in this respect.

The chronological order of debugging the first three failures
with standard tools could positively influence participants’
program comprehension. To reduce this factor, we have a
preparation phase of two hours to become acquainted with
iCalendar and our tools. Furthermore, we make sure that
all defects and their infection chains are unique. They are

131

located in completely different system parts and their failure-
reproducing test cases do not overlap each other.

Regarding the quality of state anomalies in the emphasis
of infection chains, we expect no false positives. We consider
each anomaly as valid with respect to the root cause because of
our experimental setup. We derive common object properties
only from overlapping passing test cases. Without a defect
and activated dynamic contracts, all test cases pass and no
state anomaly occurs. Thus, each contract violation is caused
by this defect.

A current study reports that automatically generated pro-
gram invariants by Daikon [11] are sometimes hard to under-
stand and tend to produce false positives [17]. In comparison to
the numerous, complex, and linked invariants by this tool, we
limit our inductive analysis to unambiguous assertions such
as types and value ranges. Our invariants are not related to
each other with the effect that they are easier to understand
and mostly prevent misleading results. Nevertheless, these
assertions are still strong enough to emphasize several failure
causes along infection chains. An integration of Daikon’s more
complex invariants into our debugging approach and a full
discussion about benefits and drawbacks remains future work.

Even if our evaluation does not cover all kinds of defects,
we applied several realistic failures that lead to numerous
state anomalies. We base our applied defects on hard to
solve failures that we experienced in other projects multiple
times. For example, typos are common and often difficult to
localize [20]. Also the remaining two easy failures of our
previous user study include a few state anomalies that cover
their infection chains. For that reason, we introduced these
failures during our user study preparation.

As we compare our evaluation with our previous study,
individual developer skills could influence our results. Due
to the fact that we had no access to the previous participants
anymore, we conduct a study with similar experienced devel-
opers and the same failures to analyze the benefits of our state
navigation. Although we choose students with similar grades,
experience, and project results, we observed by some partici-
pants weaker debugging skills than expected. Nevertheless, we
can conclude that our state navigation improves debugging
because the shown improvements with weaker participants
probably implicate still better results with equal skills.

VII. RELATED WORK

As our approach combines likely invariants with back-in-
time debugging, related work deals with these two topics.

A. Back-in-time Debugging

To follow infection chains from observable failures back to
their root causes, back-in time debuggers allow developers to
navigate an entire program execution and answer questions
about the cause of a particular state.

The omniscient debugger (ODB) [4] records every event,
object, and state change until execution is interrupted. How-
ever, the required dynamic analysis is quite time- and memory-
consuming. Unstuck [21] is the first back-in-time debugger

for Smalltalk but suffers from similar performance problems.
WhyLine [22] allows developers to ask a set of “why did”
and “why didn’t” questions such as why a line of code
was not reached. However, WhyLine requires a statically-
typed language and does not scale with long traces. Other
approaches aim to circumvent these issues by focusing on
performance improvements in return for a more complicated
setup. The trace-oriented debugger (TOD) [23] combines an
efficient instrumentation for capturing exhaustive traces and
a specialized distributed database. Later, a novel indexing
and querying technique [24] ensures scalability to arbitrarily
large execution traces and offers an interactive debugging
experience. Object flow analysis [25] provides a practical
back-in-time debugger that leverages the virtual machine and
its garbage collector to remove no longer reachable objects
and to discard corresponding events.

All presented back-in-time debugger focus on presenting
execution histories as efficient as possible. However, they
do not classify the large amount of run-time data in or-
der to localize failure causes more easily. For that reason,
developers still have to understand long-running infection
chains by themselves. Compared to these tools, our PathFinder
is a lightweight and specialized back-in-time debugger for
localizing failure causes in failing test cases [6]. So far, this
tool already supports the classification of suspicious method
calls with spectrum-based anomalies [5]. Our state navigation
completes this approach by highlighting corrupted state and
automatically revealing infection chains. Without our naviga-
tion concepts, developers require more internal knowledge to
isolate failure causes and to decide which path to follow.

B. Likely Invariants

Likely invariants automatically identify possible failure
causes by deriving run-time properties from reference runs
and comparing them with failing executions. Differences have
a high probability of including failure causes and so help
developers to narrow down the search space by answering
which program entities are potentially infected.

Daikon [11] comprises a set of automatic techniques for
inferring generalized program state from execution traces.
It observes occurring objects and summarizes their specific
properties into invariants such as non-zero properties and
containment relationships. These invariants detect not only
corrupted state, but also help in generating test cases and
repairing inconsistent data structures. However, the first ver-
sion suffers from a scalability issue which creates too many
results, misses important invariants, and requires too much
time. Later, an extension to Daikon [26] solves this problem
by optimizing polymorphism and filtering unchanged values.
Carrot [13] experiments with a subset of Daikon’s invariants
and tries to localize failure causes. However, the experimental
results are unsatisfactory because anomalies are distributed all
over the program. Developers cannot relate violated invariants
with failing behavior so that they have to tediously debug
all these unrelated starting points one by one. Diduce [27]
extends Daikon’s approach and derives invariants on the fly.

132

During program execution, it monitors its run-time and grad-
ually relaxes invariants of observed objects. After a while,
developers receive violations only for corner cases, which
then identify failure causes more easily. Screeners [28] further
optimize the run-time overhead and decrease it to only 14 %.
ClearView [29] also monitors invariants on the fly but it
applies them to automatically patch upcoming failures. As
soon as a violation occurs, it generates candidates to hold
the invariant and continues the application with changed state.
Finally, comparative studies [17], [30] of programmer-written
and likely invariants conclude that a combination of both
methods is most promising.

Our state navigation discovers likely invariants and reveals
infection chains by emphasizing state anomalies along execu-
tion histories. We analyze run-time data from test cases similar
to Daikon with the difference that we restrict invariants to
unambiguous assertions and developers can adapt the analysis
to their needs. To ensure that developers can rely on revealed
state anomalies, we derive only invariants that include a low
probability of false positive results. Furthermore, developers
can incrementally refine the derived invariants in additional
test runs and add handwritten assertions if needed. Finally,
we map violated contracts on execution histories to reveal
infection chains. This integration further supports developers
in understanding and localizing failure causes.

VIII. CONCLUSION

We propose state navigation as new part of our test-driven
fault navigation that guides developers during debugging from
observable failures back to their root causes. Starting with
our inductive analysis that derives likely invariants from
passing test cases, we create dynamic contracts and compare
them with failing executions. Based on violated contracts,
we emphasize state anomalies along execution histories and
so automatically reveal infection chains. We implement our
state navigation within the Path tools framework. It consists
of PathMap, an extended test runner for deriving likely in-
variants, and PathFinder, a lightweight back-in-time debugger
for integrating uncovered anomalies into its execution history.
With the help of a user study, we show that our presented state
navigation supports developers not only in revealing infection
chains but also further decreases the required debugging costs.

Future work deals with three topics. First, our approach
will be extended with why-questions [22] to even better guide
developers through execution histories. Second, our anomalies
shall be refined with interactive developer feedback [31]
in such a way that identified false positives strengthen the
remaining failure cause probabilities. Finally, we are planning
a larger user study to evaluate the benefits of several debugging
techniques in practice.

REFERENCES

[1] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, 2009.

[2] I. Vessey, “Expertise in Debugging Computer Programs: A Process
Analysis,” Int. J. Man Mach. Stud., vol. 23, no. 5, pp. 459–494, 1985.

[3] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan, “Scalable
Statistical Bug Isolation,” in PLDI, 2005, pp. 15–26.

[4] B. Lewis, “Debugging Backwards in Time,” in AADEBUG, 2003, pp.
225–235.

[5] M. Perscheid, M. Haupt, R. Hirschfeld, and H. Masuhara, “Test-driven
Fault Navigation for Debugging Reproducible Failures,” Journal of the
JSSST on Computer Software, vol. 29, no. 3, pp. 188–211, 2012.

[6] M. Perscheid, B. Steinert, R. Hirschfeld, F. Geller, and M. Haupt, “Im-
mediacy through Interactivity: Online Analysis of Run-time Behavior,”
in WCRE, 2010, pp. 77–86.

[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to the
Future: The Story of Squeak, a Practical Smalltalk Written in Itself,” in
OOPSLA, 1997, pp. 318–326.

[8] M. Perscheid, D. Tibbe, M. Beck, S. Berger, P. Osburg, J. Eastman,
M. Haupt, and R. Hirschfeld, An Introduction to Seaside. Software
Architecture Group (Hasso-Plattner-Institut), 2008.

[9] G. Rawlinson, “The Significance of Letter Position in Word Recogni-
tion,” Ph.D. dissertation, University of Nottingham, 1976.

[10] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van Gemund, “A Practical
Evaluation of Spectrum-based Fault Localization,” JOSS, vol. 82, no. 11,
pp. 1780–1792, 2009.

[11] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz,
and C. Xiao, “The Daikon System for Dynamic Detection of Likely
Invariants,” Sci. Comput. Program., vol. 69, no. 1-3, pp. 35–45, 2007.

[12] J. Jones, M. Harrold, and J. Stasko, “Visualization of Test Information
to Assist Fault Localization,” in ICSE, 2002, pp. 467–477.

[13] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. Reiss, “Automated
Fault Localization Using Potential Invariants,” in AADEBUG, 2003, pp.
273–276.

[14] R. Hirschfeld, M. Perscheid, C. Schubert, and M. Appeltauer, “Dynamic
Contract Layers,” in SAC, 2010, pp. 2169–2175.

[15] J. Brant, B. Foote, R. Johnson, and D. Roberts, “Wrappers to the
Rescue,” in ECOOP, 1998, pp. 396–417.

[16] M. Haupt, M. Perscheid, and R. Hirschfeld, “Type Harvesting A
Practical Approach to Obtaining Typing Information in Dynamic Pro-
gramming Languages,” in SAC, 2011, pp. 1282–1289.

[17] M. Staats, S. Hong, M. Kim, and G. Rothermel, “Understanding
User Understanding: Determining Correctness of Generated Program
Invariants,” in ISSTA, 2012, pp. 188–198.

[18] M. Perscheid, D. Cassou, and R. Hirschfeld, “Test Quality Feedback -
Improving Effectivity and Efficiency of Unit Testing,” in C5, 2012, pp.
60–67.

[19] M. Perscheid and R. Hirschfeld, “Follow the Path: Debugging Tools for
Test-driven Fault Navigation,” in CSMR/WCRE Tools Track, 2014.

[20] R. Metzger, Debugging by Thinking - A Multidisciplinary approach.
Elsevier Digital Press, 2003.

[21] C. Hofer, M. Denker, and S. Ducasse, “Design and Implementation of
a Backward-in-Time Debugger,” in NODE, 2006, pp. 17–32.

[22] A. Ko and B. Myers, “Debugging Reinvented: Asking and Answering
Why and Why Not Questions about Program Behavior,” in ICSE, 2008,
pp. 301–310.

[23] G. Pothier, E. Tanter, and J. Piquer, “Scalable Omniscient Debugging,”
in OOPSLA, 2007, pp. 535–552.

[24] G. Pothier and E. Tanter, “Summarized Trace Indexing and Querying
for Scalable Back-in-Time Debugging,” in ECOOP, 2011, pp. 558–582.

[25] A. Lienhard, T. Gı̂rba, and O. Nierstrasz, “Practical Object-Oriented
Back-in-Time Debugging,” in ECOOP, 2008, pp. 592–615.

[26] M. Ernst, A. Czeisler, W. Griswold, and D. Notkin, “Quickly Detecting
Relevant Program Invariants,” in ICSE, 2000, pp. 449–458.

[27] S. Hangal and M. Lam, “Tracking Down Software Bugs Using Auto-
matic Anomaly Detection,” in ICSE, 2002, pp. 291–301.

[28] R. Abreu, A. González, P. Zoeteweij, and A. van Gemund, “Automatic
Software Fault Localization Using Generic Program Invariants,” in SAC,
2008, pp. 712–717.

[29] J. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin,
C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W. Wong, Y. Zibin,
M. Ernst, and M. Rinard, “Automatically Patching Errors in Deployed
Software,” in SOSP, 2009, pp. 87–102.

[30] N. Polikarpova, I. Ciupa, and B. Meyer, “A Comparative Study of
Programmer-written and Automatically Inferred Contracts,” in ISSTA,
2009, pp. 93–104.

[31] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive Fault Localization
Leveraging Simple User Feedback,” in ICSM, 2012, pp. 67–76.

133

