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Abstract In 1997, Henry Lieberman stated that debugging is the dirty little secret of

computer science. Since then, several promising debugging technologies have been

developed such as back-in-time debuggers and automatic fault localization methods.

However, the last study about the state-of-the-art in debugging is still more than 15 years

old and so it is not clear whether these new approaches have been applied in practice or

not. For that reason, we investigate the current state of debugging in a comprehensive

study. First, we review the available literature and learn about current approaches and

study results. Second, we observe several professional developers while debugging and

interview them about their experiences. Third, we create a questionnaire that serves as the

basis for a larger online debugging survey. Based on these results, we present new insights

into debugging practice that help to suggest new directions for future research.

Keywords Debugging � Literature review � Field study � Online survey

1 Introduction

‘‘Debugging is twice as hard as writing the program in the first place’’ (Kernighan and Plauger

1978). This quote of Brian W. Kernighan illustrates a problem every software developer has to

face. Debugging software is difficult and, therefore, takes a long time, often more than creating

it (Zeller 2009). When debugging, developers have to find a way to relate an observable failure

to the causing defect in the source code. While this is easy to say, the distance from defect to

failure may be long in both time and space. Developers need a deep understanding of the

software system and its environment to be able to follow the infection chain back to its root
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cause. While modern debuggers can aid developers in gathering information about the system,

they cannot relieve them of the selection of relevant information and the reasoning. Debugging

remains a challenging task demanding much time and effort.

Several researchers, educators, and experienced professionals have tried to improve our

understanding of the knowledge and activities included in debugging programs. The earliest

studies trying to understand how debugging works date as far back as 1974 (Gould and

Drongowski 1974). In the following years, debugging tools have been improved and the lack

of knowledge has been tackled. However, more than 20 years later, Henry Lieberman had to

say that ‘‘Debugging is still, as it was 30 years ago, largely a matter of trial and error.’’

(Lieberman 1997). Also, a more recent survey from 2008 still indicates that debugging is seen

as problematic and inefficient in professional context as ever (Ballou 2008). The main reasons

seem to be aged debugging tools and a lack of knowledge of modern debugging methods.

Since that time, researchers proposed still more advanced debugging tools and methods (Zeller

2009). For example, back-in-time debuggers (Lewis 2003) that allow developers to follow

infection chains back to their root causes or multiple automatic fault localization methods

(Wong and Debroy 2009) that automatically highlight faulty statements in programs. Never-

theless, so far it is not clear whether the current advancement in research has already improved

the situation in practice or not. For that reason, we state our research question as follows:

Have professional software developers changed their way of debugging by using

recent achievements in debugging technology?

We aim to answer this question by studying debugging in the field—observing the

number of bugs, the time of detection, and the effort to fix them. First, we started with a

comprehensive literature review that revealed current debugging trends and existing study

results. After that, we visited four software companies in Germany and interviewed a total

of eight developers. With these results, we got first insights into current debugging prac-

tices and derived a systematic questionnaire that has been answered in a larger online

survey. The contributions of this paper are:

• Review of the available literature on studies on debugging behavior

• A field study in four companies with eight developers in order to learn about their

debugging habits

• Deriving a questionnaire and conducting an online survey in order to reveal current

debugging practices and propose further research directions

Compared to the previous version of this paper as presented at the Fifth International

Workshop on Program Debugging (2014), we include the results of our online survey and

infer promising directions for the future of debugging.

The remainder of this paper is structured as follows: Section 2 gives more details on our

literature review. Section 3 explains the design of our field study and presents its results.

Section 4 describes the questions of our online survey, discusses the answers, and proposes

possible research directions. Section 5 concludes.

2 Literature review

The earliest study of debugging behavior dates as far back as 1974. Gould and Drongowski

(1974) conducted a laboratory study with 30 participants. Each participant was given a

printed Fortran source code and varying additional information. They then had to find an
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artificially inserted bug in that source code. Due to the limitations of the time, the

developers could not execute the program. Nevertheless, the authors observed similarities

among all developers: they scanned the code for usual suspects before trying to actually

understand its behavior.

A year later, the same authors studied developers equipped with a symbolic debugger

(Gould 1975). While the use of the debugger did not improve but lengthen the debugging

times, this was attributed to distorting factors. It was only used for bugs that were to hard to

solve without and the programs used were short and with a linear flow of control. The

authors formulated a ‘‘gross descriptive model of debugging’’ which consisted of a repe-

ated iteration of three steps:

1. Select a debugging tactic

2. Try to find a clue

3. Generate a hypothesis based on the clue if any

This was also the first time that evidence had been found for backwards reasoning from

observable failure to root cause.

In 1982, Weiser introduced the notion of program slicing (Weiser 1982). Developers

debugged one of three Algol-W programs that contained an artificially inserted bug and

were afterward asked to identify statements taken from that program. The results showed

that programmers could remember statements that influenced or were influenced by the

statement containing the bug better than unrelated statements.

In 1985, Vessey found evidence that programming experts and novices differ in their

debugging strategies (Vessey 1985). She found out that experts are more flexible in

choosing their tactics and develop an overall program understanding. Novices who lack

that understanding are often constrained by their initial tactic and hypothesis, even if both

turned out to be not useful.

In 1997, Eisenstadt (1997) collected 59 bug anecdotes from experts and proposed a

three-dimensional classification of bug stories:

1. The reason, why the bug was difficult.

2. The type of the root cause identified.

3. The most useful technique used to find the root cause.

He then identified two main sources for difficult bugs: large gaps between root cause and

failure and bugs that render tools inapplicable. The results also showed that these bugs can

be solved by gathering and examining additional runtime data.

Since 2000, many researchers have tried to improve the understanding of specific

aspects of debugging (Ahmadzadeh et al. 2005; Chmiel and Loui 2004; Hailpern and

Santhanam 2002; Hanks and Brandt 2009; James et al. 2008; LaToza and Myers 2010;

Lencevicius 2000; Lewis 2003; Murphy et al. 2008), but these focus mostly on the

introduction of new tools or how debugging can be taught to students. For example, there

have been multiple approaches to automate parts of the fault localization process (Agrawal

et al. 1995; Artzi et al. 2010; Arumuga et al. 2010; Baah et al. 2010; Cleve and Zeller

2005; Dallmeier et al. 2005; Gupta et al. 2005; Janssen et al. 2009; Jeffrey et al. 2008;

Jiang and Su 2007; Jones et al. 2007; Liblit et al. 2005; Liu et al. 2005; Park et al. 2010;

Renieres and Reiss 2003; Yilmaz et al. 2008; Zeller 2002; Zhang et al. 2006), a catego-

rization and overview can be found in Wong and Debroy (2009). Moreover, a complete

discussion of current debugging approaches can be found in Perscheid (2013).

Many software developers have also tried to create a guideline that can help other

troubled developers improve their debugging skills and reduce time and effort spent on
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debugging in favor of developing new features. Some of these discussions resulted in

debugging guides published as books.

‘‘Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive Software

and Hardware Problems’’ (Agans 2002) was one of the first general purpose debugging

books. It teaches general strategies and how to apply them to real-life bug stories by

example.

‘‘Debugging by Thinking’’ (Metzger 2004) relates debugging with other domains of

problem solving and tries to apply their methods. It also provides a list of debugging

strategies, heuristics and tactics, each with a detailed instruction how and when it can be

applied.

‘‘The Developer’s Guide to Debugging’’ (Grötker et al. 2012) teaches techniques to

solve specific types of problems, that are usually very challenging. It exemplifies them

using GDB, Visual Studio and other Tools applicable to C and C??.

‘‘Why Programs Fail’’ (Zeller 2009) introduces the reader to the infection chain and

how the knowledge of its existence can help in debugging and bug prevention. It teaches

formal processes for testing, problem reproduction, problem simplification and actual

debugging. It promotes Scientific Debugging, a debugging method based on the scientific

method of generating theories. It involves repeatedly formulating hypotheses, planning and

executing experiments for verification, and refining hypotheses until the root cause is

found.

In the last years, we have seen many new debugging tools and methods. However, to the

best of our knowledge, the latest general purpose debugging study among professional

software developers is more than 15 years old (Eisenstadt 1997). For that reason, we argue

that it is necessary to update our knowledge about professional software debugging to

know which problems are still open and which should be solved next.

3 Field study

This section explains the setup and results of our field study. The goal was to get an

impression of professional debugging in modern software companies. This impression was

necessary to decide which questions might produce interesting insights. To get that

impression, we decided to visit companies and observe developers during a normal

workday. We contacted many companies on a university relation fair and were able to

convince four of them to help us.

3.1 Experimental setup

We visited four software companies in Germany varying in size from five to several

hundred employees. All four companies are creating web applications, some self-hosted

and some licensed. We could follow eight developers through the course of their day and

observe their methods. We asked each developer to think aloud so we could get an

impression of their methods. At the end of each visit, we asked each developer to describe

his overall process himself. We also asked if they knew modern tools such as back-in-time

debuggers and if they deemed them useful.

An overview of the relevant characteristics of each company is given in Tables 1 and 2.

For each company, it shows the number of employees, the number of software developers,

the number of developers we observed, and the usual size of teams in that company, as well
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as the development process they used, the technology they built upon, and the tools they

applied. These lists are not exhaustive but rather show the tools and technologies we could

see during our visits. In addition to that data, it is worth noting that the third company is

part of a larger Web-oriented enterprise.

Tables 3 and 4 show an overview of the relevant characteristics of the individual

participants. We asked for their age, gender, and highest educational degree. We also noted

their experience in software development and current position.

3.2 Study results

3.2.1 Company A

The development process of the first company includes a mandatory code review for each

feature or fix. Each team had a dedicated quality assurance employee, who performs

Table 1 Relevant characteristics of the four companies visited in the field study

# Employees # Developers # Observed Team size Process

A 300 50 3 7 Scrum 3 week sprints

B 25 15 2 5 Kanban

C 150 60 1 5 Kanban

D 5 3 2 5 Scrum weekly sprints

Table 2 Used technologies and tools of the four visited companies

Used technologies Used tools

A Java EE, Hibernate, JUnit, JSF, ANT, JBoss, Tomcat Jira, Jenkins, Git, Eclipse, PL/SQL Developer

B Java, ANT, JUnit, Tomcat, XML, SVG, JavaScript,
NodeJS, Grunt, Jasmine, Karma

Jira, Jenkins, Git, Eclipse, Sublime Text,
Chrome DevTools

C Java EE, ANT, Sonar, Tomcat, Morphia, JSON,
MongoDB

Jira, Jenkins, Git, Eclipse

D PHP, Zend, Propel, MySQL, New Relic, JavaScript,
XHTML, JQuery

Jira, Hudson, Git, Sublime Text, Chrome
DevTools, PHPStorm, Apache

Table 3 Relevant characteristics of the eight participants (#) of the field study

# Company Age Gender Degree

1. A 40 male Diploma in Engineering

2. A 26 male Master in Computer Science

3. A 31 male Bachelor in Computer Science

4. B 27 male Master in IT Systems Engineering

5. B 28 male Master in Engineering

6. C 30 male Master in Computer Science

7. D 27 male Bachelor in Artificial Intelligence and Computer Science

8. D 34 male Bachelor in Computer Science

Certified IT Specialist
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manual and automated integration and acceptance tests. They also regularly execute

automated unit tests written by the developers themselves.

The first developer we observed uses full text search and the search-for-class utilities of

the Eclipse IDE to navigate the source code. When confronted with unexpected behavior,

he first checks which code was recently modified and therefore might probably contain the

fault. He then sets breakpoints at key locations of the program flow to interrupt the

program and check the program state. Checking database contents required a separate tool.

Interrupting the program to check its state is also a preventive instrument to him, when new

code is complex or uses unfamiliar interfaces. He is not aware of any standard approach,

but his approach can be classified as scientific debugging (Zeller 2009) without taking

notes, as he formulates hypotheses and then checks these by experiment.

The second developers’ source code navigation methods of choice are the search-for-

class, jump-to-implementation, and find callers utilities of the Eclipse IDE. When

debugging, he makes sure to work on the exact same Git branch the bug was found on to

eliminate possible version dependencies. He then inspects the latest changes on that branch

utilizing the capabilities of git to show differences between commits. Explaining his

approach is as hard to him as to the first developer, but he also follows a simple version of

scientific debugging, setting breakpoints to inspect the program state to verify assumptions.

He calls this an ‘‘intuitive method.’’ When testing hypotheses, the hot recompile capa-

bilities of Java proved allowed him to change the code at runtime and proceed in a trial-

and-error fashion until understanding the problem.

When we visited the company, the third developer had to find the cause of a dependency

conflict. A class included in multiple libraries was delivered in different, not compatible

versions. To find out which jar files included the class, he first inspected the state of the

Java Runtime Environment using print statements to get a list of all jar files actually

loaded. He then used the command line tool grep to check the content of these files for

the conflicting class. After spending a reasonable amount of time and effort this way, he

postponed the fix and planned to improve the overall dependency management instead.

This also meant postponing tasks depending on a new library that introduced the conflicts.

Table 4 Experience and position of participants (#)

# Experience Position

1. 8 years freelance web development Java back-end developer

3 years web front-end development

1 year back-end development

2. 2 years back-end development Java back-end developer

3. 5 years back-end development Java back-end developer

4. 6 years miscellaneous Developing a JavaScript graphics library

1 year JavaScript development

5. 2 years back-end development Java back-end developer

6. 7 years back-end development Java back-end developer

7. 4 years front-end development Web front-end developer

8. 15 years miscellaneous PHP back-end developer

1 year back-end development
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3.2.2 Company B

The development process of the second company includes a mandatory code review for

each feature or fix. Following test-driven development, the general process for new fea-

tures includes an automated ‘‘happy case’’ test written upfront and automated edge case

tests written after or while implementing. Bug reports were created on GitHub, either by a

customer or by support employees. If the bug is simple, support employees fix it them-

selves, but most problems are only reproduced by support and fixed by developers. Some

cases cannot be reproduced because of third party systems the customer uses. In that case,

support employees try to help with diagnosis until the problem is either solved or can be

reproduced using substitutes.

The first participant in this company uses mainly full text search or a search for symbols

provided by Sublime Text to navigate the code. New automated test cases mark the

beginning of each of his debugging sessions. At this point, he usually has a first hypothesis,

that can be tested by setting breakpoints at relevant locations and inspecting the program

state. To gather more data, he uses the interactive console of the Google Chrome devel-

opment tools to explore objects and APIs. When examining the program flow, he makes

extensive use of stepping and the ‘‘restart frame’’ functionality of the Google Chrome

debugger. At one instance, he refactored the program and ran his test suite again to verify

his internal model of the program.

The other developers’ source code navigation tools are full text search and many of the

navigation utilities provided by the Eclipse IDE. He follows a simple debugging philos-

ophy called ‘‘Test it, don’t guess it,’’ which can be seen as a simplified version of scientific

debugging. When confronted with a runtime exception, he reads the stack trace provided

very carefully to identify the relevant classes and methods, proceeding by setting break-

points, stepping through the program, and inspecting the program state to verify

hypotheses. When needing backwards navigation he uses Eclipses ‘‘Drop to Frame’’ utility

where applicable.

3.2.3 Company C

The development process of the third company includes mandatory code review for each

new feature or fix. There is a separate quality assurance department that performs auto-

mated as well as manual testing. Unit tests written by the developers themselves com-

plement the test suite.

We observed only one developer in this company. To navigate the source code, he uses

full text search as well as the navigation utilities provided by Eclipse. His general

debugging approach usually starts at the beginning of a relevant use case, stepping into the

program and inspecting variables to get an impression of the program and data flow. He

then starts setting breakpoints at relevant locations and testing hypotheses. Exception

breakpoints, capturing all exceptions, even if caught by the program, provide him with

further data. When inspecting complex objects, he sometimes writes a custom

toString() method to aid the investigation.

3.2.4 Company D

The development process of the fourth company includes an optional code review and

automated unit tests. The review is not mandatory because they deem the slow down too
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heavy for a start-up needing to evolve quickly. A beta tester group of users reports bugs

unnoticed by the developers themselves.

The front-end developer uses only full text search and search for files by name to

navigate the source code. When debugging, his first step is reading recent source code,

checking it for obvious mistakes. He then uses the Google Chrome debugger to set

breakpoints, step through the program and inspect variables, using the interactive console

to explore objects and APIs. When working with the (X)HTML document, he uses the

inspector to examine the results of the code.

The back-end developers’ code navigation tools are full text search, manual folder

navigation, and the ‘‘find implementers’’ and ‘‘find callers’’ utilities of the PHPStorm IDE.

When working on a bug report, he first examines the logs of the New Relic monitoring

system to get a impression of the system parts involved, proceeding by setting breakpoints

and examining the program state and flow to test hypotheses. He also compares the

defective modules to working ones which employ the same patterns and use the same APIs

to check for differences.

3.3 General findings

While the level of education and amount of practical experience varies among the

developers, all reported that they were never trained in debugging. They learned debug-

ging either by doing or from demonstration by colleagues. Not surprisingly, they have

difficulties describing their approach. While they can speak about development processes

in general on an abstract level, they resort to showing and examples when speaking about

debugging.

All developers use a simplified scientific method, although they did not describe it using

that name. They formulate hypotheses about the program and then set up simple experi-

ments to verify them. They do neither take notes nor mark their results in the source code,

though. This might be a hint that scientific debugging is a way of thought that comes easy

to most developers. Some developers allowed us to see how they formed their initial

hypotheses. They use stack traces, log files, and review the code to identify related

modules, classes, and methods. They then use their system knowledge and reference

material to identify suspicious code in these parts of the program. Others were able to

formulate an initial hypothesis just after reading the bug report. This is probably due to

different levels of difficulty of the bugs they encountered and also their knowledge about

the system.

All participants are proficient in using symbolic debuggers. They also prefer them to the

use of log statements, because debuggers allow for additional inspections without the need

to restart the program. Only a few developers claim that they are aware of all features of

their IDE or debugger, though. Unknown features include ‘‘Drop to Frame’’ or ‘‘Restart

Frame,’’ conditional breakpoints, and various kinds of special breakpoints.

No subject had known back-in-time debuggers before. All of them question the use-

fulness of back-stepping by deeming it sufficient to set a breakpoint earlier in the program

and rerun the test. A back-in-time debugger is only considered useful if it has only a very

small overhead and memory footprint when compared to a regular debugger.

Automatic fault localization was also unknown, but the suspects deem it more useful,

depending on the analysis runtime and difficulty of the debugging session. They consider

running an analysis overnight to localize a bug that could not be found till the end of a

workday a viable option.
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3.4 Threats to validity

The results of this field study can not be generalized. The main concern is the small scale.

Eight developers are not enough to rule out statistical anomalies, the same goes for four

companies. Another concern is the limited time span. Each developer was only observed

for some hours during one workday. This results in a limited sample of problems they

might encounter during day-to-day work limiting the observed methods and approaches.

Furthermore, all companies created web applications, which may or may not result in a

similar company culture. Nevertheless, these interviews provide meaningful insights that

helped us design our debugging questionnaire.

4 Online survey

While our field study provided a first idea of the debugging habits in modern software

companies, it is unreasonable to use it to formulate meaningful results. To achieve a useful

certainty, we needed a larger sample. However, it was unfeasible to visit hundreds of

developers and observe them. An easier way is using a questionnaire that can be filled in

online. With such a questionnaire, we can reach a large number of people and process the

results statistically. So, we can find and describe relations between different characteristics

of professional software debugging. This section summarizes the questionnaire, describes

the experimental setup, details our findings, and proposes further research directions.

4.1 Formulating the questionnaire

To consolidate and expand our results with reliable statistic data, we are performing an

online survey. Based on the results of our field study, we formulated a broad spectrum of

debugging questions:

4.1.1 Background information

At the beginning of the survey, we collect some background information, namely age,

gender, degree, development experience, the size of the companies the participants work

for, and the programming languages they use.

4.1.2 Education

We want to study the spread of education on debugging, because the field study indicated it

as uncommon. To this end, we ask the participants if they got any debugging education and

when that was. We also ask if they have read any literature on debugging methods.

4.1.3 Debugging tools

Because modern tools are largely unknown to the participants in the field study, the

questionnaire asks which tools developers know and which they use for debugging. We

divide debugging tools into 13 categories: printing and logging, assertions and Design by

Contract, symbolic debuggers, back-in-time debuggers, generated likely invariants, pro-

gram slicing, slice-based fault localization, spectrum-based fault localization, statistics-

based fault localization, program state-based fault localization, machine learning-based
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fault localization, model-based fault localization, and data mining-based fault localization.

The distinction of the automatic fault localization methods is taken from Wong and Debroy

(2009). We also ask how much developers value different aspects of new debugging tools.

The available aspects are features, overhead or runtime, IDE integration, easy installation,

easy to use, and available documentation or support.

4.1.4 Workload

We then try to assess the participants debugging workload by asking how much of their

time they spend debugging and how many bugs of different difficulties they encounter. We

also ask them to estimate if the difficulty of debugging has changed in the last years or will

change in the next.

4.1.5 Hardest bug

As difficult bugs often enable deeper insights into the developers approach, we include

some questions on the hardest bug the participants had to face. We ask them to position it

in all three dimensions of a bug war story as defined by Eisenstadt (1997): The type of the

bug, why it was especially hard to debug, and what technique turned out to be the most

helpful to find it. Early tests have shown that many of the bugs remembered as the hardest

are due to parallel execution and do not fit in the existing categories. Therefore, we added

the category of parallel problem to the root cause dimension. We also ask how long it took

to fix the bug, if fixed at all.

4.1.6 Learning from past bugs

Bug histories of a project can identify problems in the development process and help to fix

future bugs faster. Therefore, we ask the participants if they keep a log of fixed bugs, if

they add solutions to their log, and if they use it to learn from past mistakes.

4.1.7 Bug prevention

We also want to get an idea of the relation between bug prevention, the remaining bugs,

and how they are tackled. Therefore, we include questions in the survey to assess what type

of automated tests and analysis the participants perform.

With all these questions, we hope to find out to what extent the advancements in the

debugging technology have entered the field of professional software development. We

want to assess what factors influence the adoption of new tools or methods and what

directions future research and education should take to further improve developers’

debugging abilities.

4.2 Experimental setup

To get as many answers as possible, we made the survey available publicly and sent the

link to as many people as possible using different channels. First, we sent emails to 20

different software companies which were interested after a short talk at the Connecticum

fair. Second, we sent mails to different software development-related mailing lists,

including C/C??, Python, Ruby, Smalltalk, git, several Linux distributions, mailing lists
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of Hackerspace, and several open-source projects. We also spread the link on social media

via Facebook, Google? and Xing groups, Twitter, Reddit, and ResearchGate. Judging on

the number of answers arriving after each time we spread the link, Reddit brought in the

most participants. Reddit also was the medium where we received the most feedback from

participants in the form of comments.

4.3 Results

In the end, our online survey has completely been answered by 303 participants.

4.3.1 Background information

The vast majority of our participants were male (287 participants, 95 %). Only four par-

ticipants reported being female and twelve gave no answer. The average age of participants

is 33, the median is 31. A detailed view of the age distribution can be seen in Fig. 1.

Two hundred and thirty-two participants reported having an IT-related educational

degree (77 %), while 71 said they had none (23 %). Most participants had a Bachelor’s (98

participants, 32 %) or Master’s degree (102 participants, 34 %), while Ph.D. (20 partici-

pants, 7 %) and Job Training (12 participants, 4 %) are less common. Of those having no

IT-related degree, 23 reported having some sort of school degree, 15 reported having a

Bachelor’s degree, 16 reported having a Master’s degree, four reported having a doctoral

degree, one reported having an associate degree, and eight did not report any degree. Four

participants reported having a degree not fitting in the English classification.

The distribution of experience in software development is shown in Fig. 2. It can be

seen that our participants range from inexperienced developers to very experienced ones.

Forty-seven Participants reported working alone (15 %). These are either freelance

developers or students. Calculated over the remaining participants, the estimated company

Fig. 1 How old are you?
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size ranges from two to large corporations with more than 100,000 employees. The median

company size is at 200 employees. The first and third quartile are 25 and 1,400 employees.

This shows that most of our participants work for small- to medium-sized companies

except for some outliers. The number of software developers in the company shows a

similar distribution. The maximum number of software developers is 65,000, and the

median 40. The first and third quartile are eight and 250.

Finally, we asked our participants for their favorite programming language (multiple

answers allowed). Figure 3 presents the results that highlight the most common answers

out of 64 different programming languages in total.

All in all, we argue that the distributions constitute a representative set for software

development practice. It reflects our observations from the field study as well as matches to

our own experiences from our academic and industrial cooperation partners. We have most

diverse developers from all ages, with different experiences (education as well as pro-

fessional), and various programming communities.

4.3.2 Education

When asked, 156 participants said they have not received any education in debugging

(51 %). In other words, more than 50 % of our software developers had no formal

debugging knowledge. One hundred and forty-seven participants mentioned they have

(49 %). Figure 4 shows where they received it. The majority of participants received their

debugging education at universities or colleges but often only once. For that reason,

participants having an IT-related graduation are slightly more likely to have received

debugging education (Pearson coefficient 0.231).

Fig. 2 For how long have you been developing software?

1 The Pearson coefficient can be used to find linear relations between numeric variables. Values between
�1 and 1 indicate how well the actual relation can be approximated by a linear function (Pearson 1895).
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Figure 5 shows the relation between age and debugging education. Younger participants

reported having received such education more often than older participants. However, this

is only a small trend and the Pearson correlation coefficient is only -0.06, indicating no

linear correlation. Both results together indicate that debugging education is still

uncommon, but more university or college courses started including it recently.

Fig. 3 What are your favorite programming languages?

Fig. 4 Where and how often have you received debugging education?
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Seventy participants reported that they never read any literature on debugging methods

(23 %). The types of literature the remaining 233 read (77 %) are shown in Fig. 6, as well

as if they also read other kinds. It can be seen that online media are the most common

source of debugging literature. Books and scientific articles are a less common. There are

only a few participants who use only one source of literature, most use two ore even more

Fig. 5 Debugging education depending on age

Fig. 6 What and how often have you read literature about debugging?
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types of sources. Sources mentioned as other included software documentation, magazines,

the source code of debugging tools, and online lectures. Based on these numbers, we

conclude that there is a need for most developers to learn more about debugging in

general.

4.3.3 Debugging tools

As can be seen in Fig. 7, only the older debugging tools such as printf, assertions and

symbolic debuggers are commonly used by many participants. While back-in-time

debuggers are known by a larger portion, only a small number of participants use the more

advanced debugging tools or Automatic Fault Localization (AFL) approaches. These

observations confirm our findings from the field survey.

There are almost no correlations between the programming language used and the

debugging tools used. However, participants using C?? show a small tendency to use

assertions (Pearson coefficient 0.26), and participants using C show a small tendency to use

printf debugging (Pearson coefficient 0.23).

To further investigate what is missing to adapt new debugging tools in practice, we

asked our participants about the importance of properties new tools need to fulfill. Figure 8

shows the distribution of answers. Overall, every property is considered extremely

important by some participants. Most important to our participants are ease of use and

available documentation. Runtime overhead and an easy installation are less important

than the actual debugging features. Finally, IDE Integration is most often considered not

that important.

We also checked for correlations between both debugging tools questions. The highest

Pearson coefficients were only 0.20, indicating that there are either no or only small

Fig. 7 Which debugging tools do you know?
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correlations. Nevertheless, we found a small relation between participants who value a

small overhead and yet apply generated likely invariants. This can imply that likely

invariant tools such as Daikon seem to have a feasible runtime. However, we also found

that participants who prefer rich documentation are less likely to apply back-in-time

debuggers. This may indicate a lack of documentation for current available tools. There are

no strong correlations between the programming language used and the properties of

debugging tools participants value. Neither the use or knowledge of tools nor the properties

valued correlate with participant age, company size, or debugging education.

4.3.4 Workload

Debugging is known to be an integral part of daily software development. Most developers

(144 participants, 47 %) spend 20 to 40 % of their work time for debugging. The next

largest groups estimate using 40–60 % (77 participants, 26 %) or 0–20 % (54 participants,

17 %). Twenty-six participants spend 60–80 % (9 %) and only two developers spend more

than 80 % (1 %) of their time for debugging.

Figure 9 shows the number of bugs participants reported encountering per month. As

could be expected, they report facing many easy and only a hand full hard bugs. The

answers were strict descending with rising difficulty for 222 participants (73 %).

When relating work time for debugging with the number of bugs encountered per

month, one would expect participants spending less time on debugging to encounter less or

less difficult bugs. Using the means of the choosable intervals, the highest Pearson coef-

ficients are 0.18 for medium and 0.16 for hard. All other coefficients indicate no corre-

lation. This indicates that there is no overall pattern in the difficulty of bugs that make

people spend time on debugging. However, medium and hard bugs are more related to high

percentages of debugging time than other difficulties. Neither the time spent debugging nor

Fig. 8 What properties are important for new debugging tools?
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the number of bugs encountered per month correlate with participant age, programming

language used, debugging education, the debugging tools used, or the properties valued.

When asked how they feel about the change in difficulty of debugging software over the

last 10 years, 133 said it got easier (44 %), 131 said it did not change (43 %), and 39 said

it got harder (13 %). The predictions of the next 10 years show a similar distribution. One

hundred and thirty-nine Participants said debugging will get easier (46 %), 117 said it will

not change (39 %), and 47 said it will get harder (15 %). The predictions about the future

correlate with the feeling about the past with a Pearson coefficient of 0.61.

4.3.5 Hardest bug

As already stated by Eisenstadt (1997), we can learn a lot from studying the most difficult

bugs. These are the problems that profit most from improvements in debugging technology.

For that reason, we asked our participants to position the hardest bug they ever faced in

Eisenstadt’s three dimensions. But first, we wanted to know how much time the partici-

pants needed to find and fix their hardest bug. Table 5 shows the results. Only a small

portion of hardest bugs could be solved in one working day or less (17). The majority took

1 week or even longer (191) or was never fixed (46). This shows that the most difficult bugs

are serious issues taking up a lot of development time.

1. Type of bug Table 6 shows the root cause participants could identify for their hardest

bug.2 The most frequent root cause was a design fault. This confirms that there is a need for

development processes that help finding design errors as early as possible. The second

most frequent root cause was parallel behavior, shortly followed by memory errors, and

vendor responsibility. This indicates that debugging parallel applications is especially

Fig. 9 How difficult are the bugs
that you have to deal with (per
month)?

2 As early results of the survey have shown a large number of parallel behavioral bugs, we added it as a new
choice that was not represented in Eisenstadt’s original version.
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difficult and may require specialized tools and methods not yet available. The high number

of memory errors indicates that existing memory debuggers such as Valgrind or mtrace are

either not powerful enough or not well known. Although one might suspect memory errors

to be more prominent in C and C??, the distribution of used programming languages is

not significantly different to the overall distribution. This may, however, be influenced by

the fact that many participants named multiple languages. The high number of bugs caused

by vendor components indicates that external libraries also include a high number of

failures. Answers given as ‘‘other’’ are mostly bugs that are triggered by a combination of

root causes acting together. It is noteworthy that many of the participants that said their

hardest bug was never fixed could, however identify a root cause. We attribute this to bugs,

that could be worked around or encapsulated so they did not impact the final program, but

not really fixed. There is also the inverted case of bugs that were fixed according to the

previous question but their root cause was unknown. These may be bugs that just vanished

after a while, meaning they got fixed by accident.

2. Why was it especially hard to debug? Table 7 shows the technique that was most

helpful to our participants, when they localized their hardest bug. The most helpful

technique were controlled experiments. This indicates that scientific debugging is not only

easy to learn but also very useful to our participants. The second most frequent answer was

stepping through the program. This might be caused by the prominence of symbolic

debuggers or by inspecting the program being useful to locate difficult bugs. It might also

indicate that some of these bugs may be caught faster if developers had other tools that

could help them better. The next most frequent answers were reading the code, setting

breakpoints, and printf debugging. These indicate that hard bugs are those that require the

developer to question his model of the program and rebuild or verify it. Useful techniques

mentioned as ‘‘other’’ include combinations of the provided categories, time to let the mind

calm down, insights from non-experts, a redesign of program components, acquiring

access to source code not available before, and creating a minimal failing example.

Table 5 Time it took to fix the hardest bugs (number of answers given)

1 day 2 days 3–4 days 1 week 2 weeks [2 weeks never

17 21 38 70 31 80 46

Table 6 Root cause of the hardest bug (number of answers given)

Memory Parallel Vendor Design Init Variable

42 53 41 82 9 3

Lexical Ambiguous User Unknown Other

1 6 5 29 32

Table 7 Most useful technique to find the hardest bug (number of answers given)

Stepping Wrapper Printf Log diff Breakpoints Tool

54 5 33 12 38 15

Reading Expert Experiments Not fixed Other

41 4 58 31 12
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When relating the root cause of bugs with the most useful technique to find them, some

patterns emerge. Applying a v2 test3 indicates that these dimensions are dependent (v2 =

108, p value = 0.006):

• Specialized tools were useful to find memory errors and less useful for other types of

bugs.

• Reading code was especially helpful to find bugs caused by parallel behavior.

• Controlled experiments were most useful to find bugs that were caused by vendor

components.

• Almost all design errors have been fixed.

3. What technique turned out to be the most helpful to find it? Table 8 shows the reason

why the hardest bugs were so difficult to find. The most frequent answer was the distance

between the unexpected behavior and the root cause being high. This indicates that tools

that help uncovering the infection chain might especially support debugging efforts. Such

tools may for example be back-in-time debuggers and program slicing. Except for mis-

leading program output, which was answered only once, the remaining categories share a

similar number of answers. There was an very high number of ‘‘other’’ answers indicating

that Eisenstadt?s categories are not sufficient: 14 participants blamed the inability to

inspect or change relevant system parts; 14 identified their inability to reproduce the

erroneous behavior in a controlled environment as the main difficulty; 10 participants

named the necessity to change large parts of the system to verify their theory of the bug

their highest obstacle; six participants blamed poor design, requirements, or documenta-

tion; six participants were hindered by a high complexity of the program; four candidates

attributed the difficulty to a multitude of problems coming together; a long runtime of

related test cases was mentioned twice; and one participant blamed company politics for

keeping him from spending the necessary amount of time on the bug.

When relating the difficulty to the root cause, the main difficulty when trying to find

errors caused by parallel behavior or by vendor components seems to be the large distance

between symptoms and root cause (v2 = 101 p value = 0.036). Relating the difficulty to the

most useful technique gave some more insights (v2 = 104 p value = 0.024). The interesting

combinations were:

• Printf debugging was seldom useful to find the root cause with a large distance to

symptoms.

• Stepping through the program or controlled experiments helped closing that gap.

• When the usual tools were hampered, most times only reading the code could help.

• When bad code limited the debugging success, stepping through the program provided

the most help.

Changes in the last 15 years There are several differences to Eisenstadt’s results. Bugs

caused by a faulty design logic were more common in our survey, while memory errors

Table 8 Main difficulty source for hardest bug (number of answers given)

Distance Tools Output Assumption Bad code Unknown Other

87 47 1 33 38 35 62

3 A v2 test can be used for any kind of discretely categorized data with a large number of samples in each
category. A large value indicates dependence and a low independence (Pearson 1900).
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were less common. The new category of parallel errors was very common. While con-

trolled experiments were very seldom among Eisenstadt’s war stories, it was a very

common answer in our survey. Eisenstadt’s identified inapplicable tools as a main diffi-

culty for hard bugs. While inapplicable tools were still very common in our survey, it was

not much more common than other sources. Bad code was very seldom in Eisenstadt’s

analysis but the third most common shortly after hampered tools in our survey. This shows

a significant shift in difficult bugs and the methods employed to find them, but a similar set

of difficulties faced in the process.

4.3.6 Learning from past bugs

To find out what professional developers learn from their bugs, we asked them if they keep

a log of their fixed bugs. One hundred and thirty-eight participants (46 %) said they add

every bug to their log, 76 (25 %) said they add major bugs to the log, and 89 (29 %) said

they do not keep one. Of those who use a log, 108 developers (50 %) said they add the

solution to every bug to the log too. Ninety-six (45 %) said they add the solution to

difficult bugs and 10 (5 %) said they do not add the solution to the log. This may indicate a

need among professional software developers to learn from the past and to avoid creating

similar bugs again.

To further investigate this, we asked our participants what they use these logs for. The

results can be seen in Table 9. The most participants said they use it to perform code

review. This makes sure the bug is removed and the cause is understood by at least one

colleague. Using it to identify similar bugs in the future and to improve the development

process are the next most frequent categories. Teaching colleagues and improving code

quality mentioned our participants less often. Other answers included the coupling of logs

with the version history of programs (10 times), a documentary function (5 times), using it

to indicate a finished step in the development process (4 times), an extension of their own

memory (3 times), the prevention of regressions (3 times), and communicating their work

to customers. One participant explicitly mentioned not using it for anything.

Calculating the Pearson coefficients for the different uses of bug logs revealed some

tendencies. People using their logs to improve code quality tend to also aim for

improvement of their development process and vice versa (Pearson 0.32). Comparing new

bugs to the log to identify similarities seems to be common among those participants who

teach colleagues (Pearson 0.22) or try to improve their process (Pearson 0.24) using the

bug log.

4.3.7 Bug prevention

We asked our participants to tell us how they check if their bugs are really removed. The

results can be seen in Table 10. As might be expected, manual and automated testing are

very common. Half of our participants also perform a code review, but code review was

never the only method used. One hundred and fourteen participants (38 %) said they use

three methods, 108 (37 %) use two of them, and 71 (23 %) use only one method. The

Table 9 For what reasons, do you keep logs? (number of answers given)

Teaching Similar Code review Quality Development process Other

50 91 113 38 90 30
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remaining 10 participants (2 %) mentioned a quality assurance or testing department,

benchmarks, user testing, and ‘‘letting time pass.’’

Figure 10 shows when developers create automated tests and if they do so at all. Test

cases written after fixing the bug are slightly less common then test cases written upfront.

Test cases written while debugging are in the middle. The minority of developers (45

participants, 15 %) never create any test cases. Most developers (171 participants, 56 %)

create test cases for major or difficult bugs, but not for all. However, there is also a

substantial number of developers (87 participants, 29 %) who always create test cases at

least at one of these times. Surprisingly, the creation of tests shows no correlations with the

time spent on debugging nor with the number of bugs encountered.

Figure 11 shows how often automated tests of different types are run. Functional tests

are common among our participants, 175 (58 %) run them at least daily. Performance and

destructive tests are less common, but still run regularly by 129 participants (43 %) each.

There are also many participants (105 (35 %) and 91 (30 %)) who run these tests irreg-

ularly. Automated security tests are run less often. Only 72 (24 %) participants said they

run them regularly, 129 (43 %) do not run them at all. This might indicate a neglect for

security, but can also attribute to the different needs of different software projects. While

functional specifications, a reasonable performance, and stability under unforeseen cir-

cumstances are a need for most software products, only those working with sensitive data,

providing network operations, or potentially endangering people are concerned about

security.

Table 10 How do you check the successful removal of bugs? (number of answers given)

Code review Manual testing Automatic testing Other

166 275 208 7

Fig. 10 Do you create tests during debugging?
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Figure 12 presents how often participants use automated tools to analyze different

features of their product. The answers show the same tendency as in the previous question.

If participants adopted these methods at a regular part of their development process, they

also decided to run them often. While analyses are less common then automated tests, there

is a substantial number of participants who analyze their source code for common pitfalls

using a static code checker such as lint. We attribute this to the high efficiency of modern

Fig. 11 How often do you run automated tests?

Fig. 12 How often do you
perform automated analyses?
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lint tools and their easy integration in IDEs or automated build processes. Test coverage

analyses and checking for memory-related errors are almost as common, but not performed

as regularly as lint. Security analyses are still performed by over half of the participants,

but even less regular than coverage and memory analyses. Data flow analyses and model

checking are not common among our participants. This might be attributed to the high run

time of such tools and the development process overhead they can introduce. As it is the

case for automated testing, the use of automated analysis shows no relation with the

number of bugs encountered or the time spent debugging.

4.4 Research directions

The results of our online survey show that the field of debugging still has a lot of open

issues. There are several things that can be further improved to easier the life of software

developers. Here, we summarize our results and discuss valuable directions for future

work.

Education The fact that participants having received debugging education did not

answer significantly different may indicate that the existing education is not enough. While

it is important to know how to use debugging tools, it is also important to know how to

reason about a program and track down the source of a problem. There is a need to broaden

this topic not only at universities. For example, at our institute, debugging is limited to one

lecture as part of the ‘‘software engineering I’’ course. From our experience, the situation is

often not much different at other locations. As debugging still requires a lot of time in

software development, we argue to extend debugging education, to create practical exer-

cises, and advanced tutorials. This will give students and software developers not only the

right tools but also several systematic ways to tackle a problem.

Debugging tools In the last years, many researchers presented several new and very

promising debugging tools. Unfortunately, these tools have not yet adopted by many

professional software developers. On the other hand, popular debugging tools maturing

very slowly with respect to new features and methods. For that reason, we need to mature

our sophisticated tools for a large audience. In doing so, it is important to tackle the

challenges of new debugging tools, namely, usability and overhead.

Workload Today as well as 15 years ago, debugging is a tedious task. We have not

found a clear picture of improvement in debugging. It still costs developers a huge amount

of their daily work time and bugs are as common and difficult to resolve as ever before.

Thus, we conclude that there is still a lot to do. Research as well as practice need to

incorporate their approaches, best practices, and experiences in order to reduce the

workload for developers.

Hardest bug We have learned a lot from the hardest bug stories but the most important

outcome for future work is the existence of a new root cause. Bugs being related to parallel

behavior are the second most source. This points to a need for new tools and methods that

better support debugging of parallel applications. The many different patterns for creating

parallel programs and the difficulties in observing multiple control flows at the same time

hinder current debugging tools to support developers effectively. Further investigation of

this special area of program debugging could provide valuable insights.

Learning from past bugs Our study revealed that bug logs are an important tool. This

source of information allows developers to share their experiences and to prevent similar

bugs in advance. However, maintaining these logs requires additional time and carefulness.

For that reason, they are mostly done, if at all, only for the most difficult bugs. We think

that a better support in logging can help developers in training colleagues for localizing
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similar bugs more easily. For example, the idea of an automated logging mechanism seems

to be promising as it records all debugging steps without much effort. After that, devel-

opers can share their results with the team for teaching purposes.

Bug prevention We could not prove any relation between automated testing and anal-

yses and the number of bugs encountered or the time spent on debugging. While this could

indicate ineffectiveness of the established automated methods with respect to debugging,

we rather argue that testing and analyses enhance the development process and its outcome

in general. With the help of such tools, developers not only produce more and complex

code but also they help them to reveal more bugs in their more difficult code. It might be

interesting to study the effects of using automated bug prevention methods with respect to

code quality and developer effectiveness in more detail.

4.5 Threats to validity

The main threat to the validity of our results is the limited number of participants. While

303 participants can provide interesting insights, a larger number is required to make

reliable statements. Many of the Pearson coefficients we calculated are small, meaning

they cannot be relied on to draw a final conclusion on the relation of the variables.

However, they are distinct from zero and so indicate at least a positive correlation.

Additionally, all answers depend on self-reflectance of the participants, which may vary

in precision and correctness. While this did probably not create a systematic error, it may

have increased the noise to levels that make correlation checks incorrect. The most

prominent tasks of this type are rating the importance of tool properties and estimating the

change in difficulty of debugging software.

It may be worth noting that it is disputable if participants under the age of 20 can be

considered professional software developers. However, at the beginning of the study we

explicitly asked only professional software developers to continue, so these participants

probably consider themselves such. Although they are probably inexperienced, they may

work as interns or contribute to open-source projects.

There is some information, that we did not acquire, although it would be useful. For

example, we did not collect the kind of software development our participants are working

in. This disables us from analyzing the difference between web developers, backend

developers, mobile application developers, and probably more groups.

Although we tested the questionnaire internally before starting the online survey, there

remain some flaws in the design of the existing questions:

• When asking the participants, what programming languages they use, a lot of people

gave too many answers. This made it very difficult to analyze the programming

language used for correlations. A limit on the number of languages named could help to

reduce this problem.

• In the question about the knowledge of debugging tools there was the option ‘‘I tried.’’

Some participants told us, they felt this option was poorly chosen, because it suggested

rejecting the tool. ‘‘I use sometimes’’ might have been a better choice.

• When analyzing the importance score participants assigned to different properties of

debugging tools, we were not able to analyze if the order of importance shows patterns.

There are more properties then degrees of importance and many developers chose the

same degree for multiple answers. Asking them to order the properties instead of

assigning an importance score may have been more useful.
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• Similarly, participants disagreed what counts as a bug log, varying from sophisticated

bug tracking software to commit messages.

• Some of the answers given as ‘‘other’’ in all three of Eisenstadt’s dimensions included

answers that fit in one of the provided categories. This indicates that the categories

were not explained clearly enough in the survey, causing confusion in the participants.

Nevertheless, we ordered these answers manually in the end.

Another indicator for flaws in the survey design is the number of people who did not

complete the survey. Out of 713 participants who started the survey, only 303 completed it.

One hundred and ninety-nine potential participants did not answer any question. Another

34 did not want to answer questions about their companies size. Ninety-four stopped before

answering the questions on tool knowledge and tool properties. Thirty-five would not tell

about their workload. Thirty-four did not answer the questions concerning the hardest bug.

Twelve did not answer the bug prevention question. The remaining four would not answer

the questions on debugging related education. Almost all questions were mandatory, some

participants told us that they did not like that. While we used this feature to prevent holes

in the data, it might have prevented us from reaching a larger number of participants. It is

also possible that some participants chose random answers because they were forced to

answer a question they did not want to. This might contribute to some noise.

5 Conclusion

In this paper, we presented our results of studying debugging behavior of professional

software developers. We reviewed the available literature and noted a 17-year gap since

the last comparable study. We performed an explorative field study, visiting four com-

panies in Germany and observing a total of eight developers in their habitual working

environment. All of them were proficient in using a symbolic debugger. Although all

followed a standard approach that can be seen as a simplified scientific method, none of

them was aware of this or able to explain his approach without resorting to demonstration.

None of them had any formal education in debugging and also nobody had knowledge of

back-in-time debuggers or automatic fault localization techniques. Based on these results,

we created an online survey to consolidate and expand our results. A total of 303 software

developers took part in this survey and answered all the questions.

Only half of our participants mentioned receiving debugging education, indicating that

educators still assume that debugging is a minor part of software development or that

students will learn it by themselves. However, there also was no significant difference

between participants with and without education, indicating that the existing courses and

trainings are indeed not more effective in teaching important debugging skills than self-

learning.

By placing the hardest bugs in Eisenstadt’s dimensions of bug classification, we were

able to show that the most difficult bugs are related to erroneous program design or parallel

behavior. Most participants named a large distance between root cause and observable

failure as the main difficulty of finding bugs. This indicates that developers are in need of

tools that support them in analyzing the interactions of different parts of the program, even

if those run in parallel. We could also observe that different tools and methods were useful

for different types of bugs, judging which strategy and tool to apply may be one important

skill to learn when trying to reduce debugging time. Our results also vary from Eisenstadt’s

in many ways: we found fewer memory errors and the new category of parallel errors; we
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revealed that it is now very common to apply controlled experiments, and, finally, the main

difficult sources for bugs are not only inapplicable tools anymore but causes such as bad

code have also strong influence. This shows that debugging is an ever changing field,

where it is necessary to reevaluate the challenges and opportunities from time to time.
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