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Abstract—Visualizations of actual run-time data support

the comprehension of programs, like examples support the

explanation of abstract concepts and principles. Unfortunately,

the required run-time analysis is often associated with an

inconvenient overhead that renders current tools impractical

for frequent use.

We propose an interactive approach to collect and present

run-time data. An initial shallow analysis provides for imme-

diate access to visualizations of run-time information. As users

explore this information, it is incrementally refined on-demand.

We present an implementation that realizes our proposed

approach and enables developers to instantly explore run-time

behavior of selected code entities. We evaluate our interactive

approach by measuring time and memory overhead in the

context of ten different-sized projects. Our empirical results

show that run-time data for an initial overview can be collected

in less than 300 milliseconds for 95% of cases.

Keywords-Program comprehension; dynamic analysis; object

collaboration; test cases; development environments

I. INTRODUCTION

Developers of object-oriented software systems spend a
significant amount of time on program comprehension [1]–
[3]. They require an in-depth understanding of the code base
that they work on; ranging from the intended use of an
interface to the collaboration of objects, and the effect of
a method activation during this collaboration. Gaining an
understanding of a program by reading source code alone is
difficult as it is inherently abstract.

The visualization of run-time information supports the
comprehension of programs. Collected run-time data reports
on the effects of source code and thus helps understanding
it. At run-time, the abstract gets concrete; variables refer
to concrete objects and messages get bound to concrete
methods. For example, profilers and back-in-time debuggers
support exploration of a program’s run-time to answer
questions such as: “What is the value of a particular method
argument?” or “How does the value of a variable change?”

Unfortunately, the overhead imposed by current tools
renders them impractical for frequent use. We argue that
this is mainly due to two issues, which we discuss in more
detail in Section II: a) Setting up an analysis tool usually
requires a significant configuration effort, as well as a
context switch, b) performing the required in-depth analysis

is time-consuming. Both issues inhibit immediacy and thus
discourage developers from using these tools frequently.

We argue that the overhead imposed by current ap-
proaches to dynamic analysis is uncalled-for and that im-
mediate accessibility of run-time information is beneficial
to developers. Continuous and effortless access to run-time
views on source code supports developers in acquiring and
evaluating their understanding. Run-time views are based on
actual data. Thus, they arguably encourage the evaluation of
assumptions and eliminate space for speculation.

We employ a new approach to dynamic analysis that en-
ables a feeling of immediacy that current tools are missing.
To that effect, the central contributions of this work are:

• A novel approach to dynamic analysis based on a
shallow analysis and detached in-depth on-demand re-
finements,

• A realization of this approach by providing an inte-
grated tool for accessing run-time information during
program development,

• Empirical results to evaluate our claims with respect to
feasibility.

The remainder of this paper is organized as follows: Sec-
tion II highlights the benefits of dynamic views for program
comprehension and discusses desired tool characteristics. In
Section III, we present our interactive approach to dynamic
analysis that collects data exactly when needed. Section IV
describes our implementation of the proposed approach. In
Section V, we demonstrate the desired immediacy character-
istics by evaluating our corresponding implementation. Sec-
tion VI discusses related work and Section VII concludes.

II. BACKGROUND AND MOTIVATION

Due to its abstract nature, source code provides a limited
perspective on software systems. Conversely, dynamic views
support program comprehension as they aid developers in
understanding how a system works. In this section, we
illustrate, by means of a running example, how developers
benefit from visualized run-time information during program
comprehension. We continue by discussing requirements that
visualization tools should meet to encourage their frequent
adoption in practice.
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Figure 1. Observer pattern running example.

A. Exploring a Program’s Run-time

Visualized run-time information helps developers to better
understand program behavior. In our running example, a
developer faces the task of understanding a simple clock
application, which provides an analog and digital view. The
application is based on the description of the Observer
design pattern [4]. Figure 1 shows the structure of the sample
application. The ClockTimer subject represents a ticking
clock, whose instances either of the two concrete observers
can display. Each tick invocation notifies the observers
about the change of state.

The developer in our example is unaware of these inter-
nals, but can use visualized run-time information to learn
about them, and to eventually discover the Observer usage.
This process could look as follows.

The visualized information in Figure 2 primarily consists
of a call tree that reflects a particular run of the application.
A call tree provides comprehensive information of the entire
program execution rather than a single execution path. Some
of the tree nodes have been expanded to reveal details: for
instance, it is evident that tick invokes notify (index 1).

The figure shows (at index 2) that notify sends the
update: message to two different clocks. From this in-
formation, the developer can conclude that there exist two
observers, and ascertain this by inspecting the run-time
state information attached to the execution of notify.
The object explorer view at index 3 confirms that the
observers list contains two clock objects. Moreover,
index 4 highlights that a ClockTimer participates as the
subject in the Observer pattern.

The provided run-time view helps to answer follow-
up questions. For instance, call trees and object explorers
point out the relationship between observers and subjects.
At index 5 in the figure, the developer speculates that
attach: is responsible for registering observers. In an
expanded attach: invocation, at index 6, the combined
before and after views of a method node execution show how
a ClockTimer registers a DigitalClock observer. As
another example, index 7 marks two views that show how
the state of the subject changes after a tick execution.

If interested, the developer could now further examine the
implementation of that method to continue exploring.

In a nutshell, the developer is able to identify the con-
ceptual structure as part of the application: It conforms
to the structure of the Observer pattern. In addition to
comprehending structural aspects of the application, the
developer also gains deep insight about the interactions of
the structural elements at run-time.

Visualized run-time information sensibly augments the
information available from static views on applications, e. g.,
their source code. For instance, the authors of the Gang of

Four book on design patterns [4] aid comprehension of their
examples by presenting sequence diagrams alongside class
diagrams to visualize collaborations among objects.

In a sense, visualizations of run-time information make
the mental model readily available that developers otherwise
would have to elaborate manually. There exist valuable
approaches to building mental models of software systems
from static representations. IDEs support developers in navi-
gating a code base, for example by tracing message sends, in
order to gain an understanding of how a system works. How-
ever, visualizations such as call trees put application source
code and structure into meaningful behavioral contexts, and
object explorers provide actual examples of objects rather
than their abstract names.

B. The Need for Immediacy

Tools that provide such visualizations of run-time infor-
mation should allow for a feeling of immediacy to encourage
frequent use. To that effect, two essential characteristics
should be met. Firstly, visualization tools have to be integral
parts of the programming environment. Developers would
welcome a tool carrying them from method source code to
the visualization of an actual run of the same method by
means of one click. Secondly, response times have to be low.
Visualized run-time information has to be available within
some hundreds of milliseconds rather than minutes [5].
However, immediacy must not hamper the level of detail
available from views.

We intend to support program comprehension by reducing
the effort of accessing run-time information. We aim to
encourage developers to use our tools frequently. Developers
shall be able to avoid guesswork and validate assumptions
by inspecting actual run-time information instead. The main
question that our work addresses is how to make dynamic
analysis results available to developers immediately.

III. IMMEDIACY THROUGH INTERACTIVITY

Our interactive approach to dynamic analysis enables
immediacy. Traditional approaches are time-consuming as
they capture comprehensive information about the entire
execution up-front. Low costs can be achieved by structur-
ing program analysis according to user interaction. More
specifically, user interaction allows for dividing the analysis
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Figure 2. Pathfinder is our interactive dynamic analysis tool for the Squeak IDE.

into multiple steps: A high-level analysis followed by on-
demand refinements. This distinction reduces the overhead
to provide visualizations of run-time information while pre-
serving instantaneous access to detailed information.

A. Step-wise Run-time Analysis

Splitting the analysis of a program’s run-time over multi-
ple runs is meaningful because developers typically follow a
systematic approach to understand program behavior. For ex-
ample, in our scenario (see Section II-A), the developer first
uses the presented call tree to gain an initial understanding
(1). Later on, the developer identifies execution paths that
lead to the population of the list of observers by inspecting
relevant state (2). More generally, program comprehension
is often tackled by exploring an overview of all run-time
information, and continuing to inspect details.

This systematic approach to program comprehension
guides our approach to dynamic analysis: Run-time data
is captured when needed. (1) A first shallow analysis fo-
cuses on the information that is required for presenting
an overview of a program run. For example, method and
receiver names are sufficient to render a call graph as
presented in Section II-A. Further information about method
arguments or instance variables are not recorded. (2) As the
user identifies relevant details, they are recorded on-demand
in additional refinement analysis runs. In our example,
the developer clicks on the observers variable to see
registered clocks. Information about instances contained in

the list are recorded in a separate run triggered by user
interaction.

This interactive approach to dynamic analysis requires the
ability to reproduce arbitrary points in a program execution.
In order to refine run-time information in additional runs, we
assume the existence of entry points that specify determinis-
tic program executions. For our implementation, we leverage
test cases as such entry points, as they commonly satisfy this
requirement [6]. However, our approach is applicable to all
entry points that describe reproducible behavior.

B. Less Effort through Step-wise Analysis

Splitting run-time analysis and refining the results on-
demand reduces the effort for providing an initial overview,
as well as comprehensive details. The amount of required
data for generating a run-time visualization to support an
inital overview is limited compared to the information that
is generated in an entire program run. The data on method
activations is sufficient to render the call tree in our example.
More specifically, the overhead for collecting method name
and receiver information is significantly less than performing
a full analysis. A full analysis includes recording exhaustive
information before each state change in the execution of
a program. In contrast to performing a complete analysis
up-front, minimizing the collected data imposes a reduced
overhead with respect to the execution of the instrumented
program.

User interaction with the initial overview can be leveraged
to minimize the overhead of refinement analysis. As the
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user identifies interest in individual objects at explicit points
of the execution, the information is loaded on-demand in
additional analysis steps. Such a subsequent refinement step
involves recording of object state at the specified point in
the execution. While recording object state might be time-
consuming in general, we limit the extent of data collection.
More specifically, a refinement step imposes a minimal
overhead by focussing on a single object at a particular
execution step. This means that refinement analysis is hardly
more expensive than execution without instrumentation (see
Section V-C).

Our approach divides the effort for dynamic analysis
across multiple runs. The information required for program
comprehension is arguably a subset of what a full analysis
of a program execution can provide. While our approach
entails multiple runs, the additional effort is kept to a
minimum, especially when compared to a full analysis that
has no knowledge of which data is relevant to the user. We
reduce the costs by loading information only when the user
identifies interest. This provides for quick access to relevant
run-time information without collecting needless data.

Our tool Pathfinder (Figure 2) realizes the described
interactive approach to dynamic analysis. It is integrated into
the the Squeak Smalltalk IDE following our objective of
achieving a feeling of immediacy. Pathfinder1 demonstrates
the feasibility of our approach and is the basis of our
evaluations in Section V.

IV. PATHFINDER IMPLEMENTATION

The realization of step-wise run-time analysis and its as-
sociated immediacy is built on flexible and lightweight data
structures and algorithms. This section describes selected
implementation details of Pathfinder based on our interactive
dynamic analysis example described in Section II-A.

Identification and maintenance of suitable analysis entry
points are described in Section IV-A. These entry points
drive instrumentation of the system under observation with
method wrappers, as discussed in Section IV-B. Section IV-C
describes how wrappers gather run-time information to build
the initial call tree for shallow analysis. In subsequent
refinement steps, this call tree is further augmented with
deeply copied objects, as Section IV-D illustrates.

A. Analysis Entry Points

As mentioned in Section III-A, principled entry points
allow for tracing particular examples of system behavior.
Pathfinder leverages test cases as entry points, an approach
that we presented in previous work [7]. By maintaining a
test coverage relationship, it is possible to identify tests
that provide examples for covered methods. We achieve this
by extending each method’s meta-data by a collection of
all tests covering it; the collection is continuously updated

1A screencast of Pathfinder is available online at
http://www.hpi.uni-potsdam.de/swa/projects/pathfinder/

during development as tests are selectively executed [8].
That way, methods of interest are reliably embedded in
meaningful examples at all times.

Our implementation also includes an extension of the
Smalltalk class browser that supports immediate access
to method coverage information. From within this view,
Pathfinder can directly be invoked. For instance, the example
described in Section II-A contains a test case that automati-
cally executes the run method and thereby covers notify.

Leveraging test cases as entry points is not a requirement
for our interactive approach to dynamic analysis. Pathfinder
works best if test coverage for the developed application is
high, but resorts to manually specified entry points if no cov-
ering test is found. This, however, requires more knowledge
about the system under observation in the developer than
relying on test coverage: it is not always trivial to anticipate
control flows leading to methods of interest.

B. Instrumenting Methods

Pathfinder analyzes the execution of entry points by
instrumenting the code using method wrappers [9]. Method
wrappers are light-weight first-class entities that transpar-
ently replace methods with alternative implementations and
can delegate to the original (wrapped) implementation. They
can be handled like ordinary objects, allowing for simple ex-
tensions of method behavior as well as dynamic installation
and deinstallation. Pathfinder uses different kinds of method
wrappers to decorate methods with additional functionality
required during shallow and refinement analysis. Call wrap-

pers simply wrap methods and provide fundamental trace
data for constructing the call tree (Section IV-C), and explore

wrappers extract objects for refinement (Section IV-D).
Pathfinder restricts instrumentation of application code to

relevant methods. Methods in selected packages that the de-
veloper is interested in are wrapped. This process takes test
coverage data into account, wrapping only methods covered
by a test case used as entry point. Library and framework
methods being of no interest are excluded from wrapping,
yielding partial traces. The selection of relevant packages
and exclusion of others avoids unnecessary overhead [10].
In terms of the Observer example, the tool instruments only
those classes and methods that actually belong to the method
in question—for instance, the add: method of Smalltalk’s
collection library is not relevant for the call tree, and is
consequently not instrumented.

Method wrappers are simple and flexible, but bear a
certain overhead when compared to immediate bytecode
modification. Although they are arguably not the approach
to tracing that exhibits the best performance characteristics,
the run-time overhead is still acceptable, as we will show in
Section V.

In programming languages that do not allow direct ac-
cess to the meta-level like Smalltalk, other techniques can
be employed to achieve the same behavior. In Java, for
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Figure 3. Building the call tree from the perspective of the tracer.

instance, it would be possible to use aspect-oriented pro-
gramming (AOP) in the form of the AspectJ [11] pro-
gramming language to instrument all methods with analysis
logic. However, since AspectJ does not support dynamic
updates, the approach requires auxiliary conditions to be
checked at all method invocations. Alternatively, dynamic
AOP implementations like CaesarJ [12] could be used, as
they allow for dynamically reconfiguring a software system.
The underlying technology, however, is the same as used in
AspectJ with conditions.

C. Building the Call Tree

Shallow analysis (see Section III-A) ensures low start-up
costs for Pathfinder. It builds upon a light-weight call tree
that is later on augmented with additional information (see
below). This section covers initial call tree construction in
detail. The data structure resulting from building a call tree
for the example from Section II-A is illustrated in Figure 3.

At first, Pathfinder creates a tracer object for the entry
point in question. The tracer object is responsible for con-
structing and managing the call tree. During execution of
entry points, events signaled by call wrappers lead to new
nodes being inserted into the call tree. Initially, the call tree
consists of a sole root node representing the entry point. All
subsequent nodes are attached to the root or its children. In
the figure, the root node (with ID 0) can be seen at the top
of the tree; it represents a test case calling only the run
method on an instance of the Driver class.

Next, all methods covered by the selected entry point are
decorated with method call wrappers. These reference the
aforementioned tracer object and report data they collect
to it in the form of tracing events, which they signal as
soon as each wrapped method is invoked. Now, the entry

point is executed, leading to the production of tracing events
and their consumption by the tracer object. The information
carried by tracing events consists of the current method
reference, number of already traced calls to that method, and,
optionally, the receiver’s type. The latter is only included if
it differs from that of the class declaring the method. The
number of previous calls is relevant for refinement analysis
(see below). In Figure 3, the tracer has already constructed
the call tree up to and including the notify method, i. e.,
AnalogClock’s update: method is currently being run
and the corresponding event consumed by the tracer.

From each tracing event, a new call node with a consec-
utive unique ID is created and inserted in the call tree. The
relationship between a node in the tree and its children is
bidirectional: downward links denote method calls, while up-
ward links denote senders. To facilitate quick node insertion,
the tracer object maintains a reference to the most recently
inserted call node, called the “current node”. A new node
is inserted below the current node, and the current node is
updated to reference the newly inserted node after that. This
way, call node insertion takes place in constant time. In the
figure, a new call node (with ID 12 and grey background) has
just been inserted below the current node (ID 11). The new
node represents the method update: in AnalogClock,
which has not been called before (the call counter is 0).

When methods terminate, the tracer is notified by the
corresponding wrappers and reacts by adjusting the current
node reference accordingly. The unique call node IDs are
used to correctly drive this adjustment in case of recursive
method calls and non-local returns. Once the entry point
itself terminates, shallow analysis is completed, and all
wrappers related to the given entry point are deinstalled.
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D. Refining Nodes

The implementation of refinement analysis guarantees fast
lookup and re-execution of entry points, during which call
tree nodes are augmented with deep copies of relevant
objects.

Retrieval of call nodes is very quick, as the Pathfinder
GUI’s representations of method activations are directly
connected to their call node counterparts. Once a call node
is known for which details are requested, the method whose
activation the node represents is decorated with an explore

wrapper. Explore wrappers, like call wrappers, signal tracing
events to the tracer object, but their payload consists of deep
copies of relevant objects, e. g., the receiver and method
call arguments. Next, the tracer executes the entry point
containing the call node in question.

Since the explore wrapper wraps an entire method, it will
be triggered multiple times during call tree re-execution.
It must however produce tracing events only when the
activation corresponding to the call node in question is met.
This is realized by means of the count of already traced calls
to the respective method (see above): the wrapper maintains
an internal activation counter, checking whether its value
matches that of the call node’s counter. As soon as the
desired activation is recognized, the required deep copies
are created and attached to the call node.

For copying objects, we rely on Smalltalk’s
veryDeepCopy protocol, which relieves us of the
burden of dealing with details of copying. When refinement
affects an object for the first time, a deep copy is created
right away, even though not all depth levels of the object’s
structure are of interest at this point in time. While
this approach is arguably more memory-consuming than
necessary, it is straightforward to implement. Investigation
of a more fine-grained solution that copies object elements
only as needed is deferred to future work.

Note that the structure of the call tree itself is not changed
at all during refinement analysis—it is merely augmented
with new data. The wrapper is deinstalled once the requested
information has been delivered.

In the example in Figure 3, assume additional information
for the node with ID 9 is required. Pathfinder will, in
this case, decorate Subject’s attach: method with an
explore wrapper and trigger re-execution at the entry point
node (ID 0). Re-execution of the wrapped method at node 6
will not lead to augmentation of that node. Reaching node 9
will trigger deep copying of all relevant objects and addition
of these copies to the node.

V. EVALUATION

The main argument of this paper is that an interactive
approach to dynamic analysis enables immediacy. A step-
wise analysis becomes feasible by leveraging user interac-
tion, and allows for instant access to run-time information.
We evaluate our approach by measuring the total time and

memory needed for collecting the required data for rendering
dynamic views.

A. Experimental Setup

We examine our implementation’s immediacy charac-
teristics by measuring the time required for shallow and
refinement analysis for various projects. While low response
times for providing dynamic views are the desired result,
our interactive approach aims to reduce the overhead for
collecting run-time information. Therefore, we focus our
experiments on the intermediary dynamic analysis steps,
rather than the time required for selecting entry points or
rendering results. Figure 4 summarizes the individual steps
and highlights the evaluated parts: Code instrumentation, the
collection of data and subsequent de-instrumentation. The
experiments were run on a MacBook with a 2.4 GHz Intel
Core 2 Duo and 4 GB RAM running Mac OS X 10.6.2, using
Squeak version 3.11 alpha on a 4.2.1b1 virtual machine.

Instrumentation 

De-Instrumentation 

Collecting Run-Time 
Information 

Visualizing Data 

Test Selection User Click 

GUI Update 

Figure 4. Process for providing dynamic views.

We selected ten different Squeak Smalltalk projects to
analyze our approach with respect to various characteristics
of the included test suites. Of the ten projects, two (Awe-
SOM and zEmu) are research prototypes developed in our
group. The remaining eight are production-quality projects
ranging from the Smalltalk compiler over IDE tools to Web
application frameworks. All of the latter are in daily use in
software development and business activities.

The projects include a total of 4,378 tests, which cover
system, acceptance, and unit tests. Measurements for both
shallow and refinement analysis entail execution of each test.
The individual suites impose different computational costs:
The assertions range from checking for simple return values
to more demanding I/O operations.

The project properties are summarized in Table I. The last
row lists the average number of method calls per test for
application code that are instrumented for shallow analysis.

To allow for a more general assessment of both the project
characteristics and experiment results, we present the project
characteristics of an arguably representative Java project:
JHotDraw2. The metrics indicate that the selected Smalltalk
projects are similar: The average number of method invoca-
tions for tests in Squeak Smalltalk projects is 1,416 while
JHotDraw’s tests entail 1,429 method activations on average.

2http://www.jhotdraw.org/, last accessed on June 25, 2010
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Table I
SUMMARY OF PROJECT PROPERTIES.

Compiler Xml SUnit Monticello Browser aweSOM zEmu Seaside Magritte Pier JHotDraw
Classes 64 25 16 140 51 68 47 410 189 266 551

Methods 1294 367 313 1773 1179 742 1012 4030 1972 2564 5052
Tests 49 4 45 112 59 164 349 242 1645 1709 1216

Calls/Tests 4502 2732 47 30703 218 6664 1178 327 74 474 1429

Table II
AVERAGE EXECUTION TIME, SHALLOW ANALYSIS (SA), REFINEMENT ANALYSIS (RA) AND MEMORY OVERHEAD.

Compiler Xml SUnit Monticello Browser aweSOM zEmu Seaside Magritte Pier
Execution time (ms) 7.69 1.13 63.81 720.42 28.09 17.33 15.12 0.47 0.38 0.50

∆ SA (ms) 247.23 164.38 133.50 1216.52 164.64 235.79 172.28 288.19 203.38 238.39
∆ RA (ms) 2.15 5.38 1.61 108.40 1.13 5.93 1.81 564.14 3.44 2.13

SA Memory (kbyte) 991 608 12 6860 60 1464 259 93 17 106

B. Results

The empirical results3 of our experiments are summarized
in Table II. It presents average values for each project: The
time required for executing tests, the overhead resulting from
shallow and refinement analysis, and memory consumption
of a populated data structure that is used to generate the
initial call tree. The average time for collecting data for
shallow analysis is below 246 milliseconds (ms) and the
99th percentile is below 375 ms. The collected data during
shallow analysis required less than 320 kilobytes on average.
Figure 5 illustrates that the time and memory overhead for
shallow analysis grow linearly with respect to the number
of methods that are invoked by a test. The average analysis
time required for refinement, which entails a single deep
copy, is below 37 ms.

C. Discussion

Our empirical results illustrate the feasibility of our inter-
active approach: The imposed overhead for dynamic analysis
is divided across multiple runs and allows for short response
times. The time it takes to collect data for generating a call
tree is below 300 ms and for a refinement step below 60 ms
on average (this includes the time it takes to run the test).
While our evaluation focusses on measuring the time re-
quired for dynamic analysis, we also conducted independent
experiments to consider the response time of our graphical
interface. The time required for rendering call trees averaged
around 200 ms for the Monticello project, which involves
the highest number of calls per test. We argue that this
supports our claim of achieving immediacy characteristics
by providing a visualization of run-time information in
considerably less than a single second in the majority of
cases. Schneiderman [5] argues that two seconds is the upper
limit for responding to a user request.

The overhead for refinement analysis is relatively high for
the Monticello and Seaside projects. This is due to the deep

3Raw data is available online at http://www.hpi.uni-potsdam.de/swa/
projects/pathfinder/

structures of the objects that are being copied: source code
repository mock ups for Monticello and web sessions with
attached web applications for the Seaside project. However,
incremental refinement imposes a minimum of overhead
in most cases: the 95th percentile for refinement analysis
overhead is 6 ms for all tests.

Our approach focusses on collecting data that is of direct
use, as we are able to load additional details on-demand. We
rely on the user to identify relevant information. Refinement
steps only entail deep copies of single objects, while shallow
analysis is limited to message and receiver names. Thus, we
are able to keep response times and memory consumption
low for both shallow and refinement analysis. This is a major
advantage over other tools that collect a vast amount of data
to reconstruct a program’s runtime.

Threats to Validity: Validity might be impeded by limited
scalability to practical applications. As mentioned in Section
V-A, most of the studied projects are in fact practical real-
world systems. Moreover, it cannot be concluded that the
observed linear growth (see Figure 5) continues for tests
with much more method activations.

Regarding general applicability of our approach, one
might argue that evaluating it only in a Smalltalk context
does not allow for such a conclusion. However, as we
have pointed out in Section V-A, a particular complex Java
framework exhibits characteristics comparable to those of
the studied Smalltalk systems. While this insight does not
guarantee scalability to arbitrary languages and systems, it
provides a worthwhile direction for future studies assessing
applicability.

The evaluation setting has two particular characteristics
that might limit validity. On the one hand, garbage collec-
tion was disabled during measurement runs to be able to
gather memory consumption data, and to elide performance
influences of garbage collector runs. In a realistic setting
with enabled garbage collection, minimal slow-downs would
be possible. On the other hand, we rely on tests to obey
certain rules of good style: e. g., they should be deterministic.
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Figure 5. Shallow analysis overhead (run-time and memory consumption).

Tests that do not follow these guidelines might hamper
the conclusions we made. The tests that we used in our
evaluation were all acceptable in this respect.

VI. RELATED WORK

To highlight the motivation for our work, we present
recent studies of developer activities in the context of
program comprehension and software maintenance tasks.
We continue by presenting several approaches that leverage
collected run-time information to support developers. We
divide related approaches into three categories: Integration
of run-time data into IDEs, debugging tools, and call graph
visualizations.

A. Program Comprehension Studies

Sillito et al. [13] focused on source code related questions
that arise during maintenance. The studies investigated what
kinds of information developers required, which information
retrieval paths they followed, and which tools they used. The
results indicate that run-time views as described in Section II
can help developers to answer 13 of the 29 questions that
are currently not well supported.

Latoza et al. [14] presented three studies concerning
reachability questions, which are described as a “search
across feasible paths through a program for target statements
matching search criteria”. The authors show that developers
often failed to understand program behavior and modified
the code relying on false assumptions. Developers were
asked to rate the frequency and difficulty of 12 questions
concerning program comprehension, such as “In what sit-
uations is this method called?”. The study revealed that

developers ask over nine of these questions in day-to-day
work, and that they are often hard to answer. Furthermore,
“9 of the 10 longest activities were associated with reach-
ability questions.” These questions address program run-
time behavior rather than relationships between source code
artifacts. The authors concluded that lack of adequate tool
support was a reason for the developers’ problems with
answering reachability questions.

Our proposed approach provides run-time information vi-
sualizations immediately. Run-time views support exploring
run-time behavior and facilitate answering specific questions
such as: In what context is a particular method used? Our
approach encourages frequent use of corresponding tools
and thus promotes the validation of assumptions rather than
relying on guess work.

B. Run-time Information in IDEs

The feature driven browser in [15] and Senseo [16] are
both extensions to an IDE that provide additional support
by collecting run-time information. The former helps devel-
opers to locate and highlight source code that contributes to
features of interest [17]. For that purpose, developers have
to assign test cases to features. Analyzing the execution of
these tests, the feature driven browser provides a constrained
set of code entities that are relevant for a certain feature.

The IDE extension Senseo [16] supports the navigation
in source code artifacts. IDEs usually trace message sends
statically. For instance, they provide lists of all possible
callers of a particular method. Due to late-binding, these lists
can include much more entries than those that are actually
relevant for the program at hand. Senseo collects run-time
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information to restrict those lists to entries that are relevant.
This approach helps to identify actual types that are used at
run-time in the context of polymorphism.

Both tools support program comprehension mainly by
improving the navigation in static views. In contrast, our in-
teractive approach to dynamic analysis targets visualizations
of actual program executions. It allows for understanding
application source code based on sensible examples.

C. Debugging Tools

Debuggers usually allow for examining the effects of a
program step by step. They support reasoning about the
behavior of programs in general, which might be the reason
why developers use debuggers to improve their understand-
ing of source code [18]. However, the use of debugging tools
requires appropriate entry points into the execution of pro-
gram code. Pathfinder applies an approach introduced in [7]:
Leveraging test cases as sensible entry points. Appropriate
test cases can be determined by maintaining a test coverage
relationship during the regular execution of tests.

Back-in-time debuggers [19] enable developers to nav-
igate an entire program execution and help to answer
questions about the cause of a particular state [20]. This
is achieved by recording run-time data until execution is
interrupted, e. g., by defining a break-point. The required
dynamic analysis is time-consuming, the performance slows
down up to 300 times and up to 100 MB of memory are
consumed per second [19]. Several techniques to reduce the
costs have been reported [21], [22], in return for a more
complicated setup.

Compared to such debugging tools, our approach is
designed specifically to facilitate program comprehension
tasks. Pathfinder quickly provides established dynamic
views. This is achieved by enabling developers to interact
with the analysis tool to specify interest in particular parts
to load detailed information on-demand.

D. Software Visualization of Call Graphs

There are plenty approaches to software visualization that
present behavior using call graphs [23]. One of the first
approaches [24] presents several prototypes ranging from
a global overview of large traces to lowest system level
events. Subsequent approaches primarily focus on presenting
large amounts of trace data. The execution pattern view [25]
automatically classifies repetitive behavior into high order
execution patterns. The VizzAnalyzer [26] merges static and
dynamic analysis to generate static call graphs with run-
time information. The call graph analyzer [27] visualizes call
graphs in a 2.5D environment and extends this information
by a number of other analysis approaches. Circular Bundle
Views [28] deal with the fact that sequence diagrams do not
scale and present a scalable view inside a circle.

Although all approaches are useful in their specific sce-
nario, no approach can be generalized for various tasks

in program comprehension [29]. Most such visualizations
are rarely used during software development [30]. One
reason might be the missing integration into development
environments [31] or the neglected aspect of low setup and
performance costs that Pathfinder addresses.

VII. SUMMARY

We have proposed an interactive approach to collect and
present run-time data. We have described the systematic
approach that developers use to understand program behav-
ior, and argued that it can be leveraged to divide dynamic
analysis across multiple runs. Connecting dynamic analysis
with user interaction enables reduced effort for providing an
initial overview. Refine steps impose a minimum of addi-
tional cost to provide relevant details on-demand. We have
presented an integrated implementation of our approach:
Pathfinder. It enables immediate access to run-time views for
selected code entities at the push of a button. Our empirical
results demonstrate that our approach allows for immediacy
characteristics, and thus arguably encourages frequent use
of actual run-time information for understanding abstract
source code.

Future work is two-fold. Firstly, the implementation is
being extended to support multi-threaded applications, and
we investigate the performance / memory tradeoffs of a
refinement analysis implementation that does not make use
of eager deep copies. Secondly, we are planning a user
study to assess how developers use the features available in
Pathfinder, and how the approach improves on maintenance
tasks.
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