
Toward Understanding Task Complexity
in Maintenance-Based Studies of Programming Tools

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

patrick.rein@hpi.uni-potsdam.de

Tom Beckmann
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

tom.beckmann@hpi.uni-potsdam.de

Toni Mattis
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

toni.mattis@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
Researchers conducting studies on programming tools often make
use of maintenance tasks. The complexity of these tasks can influ-
ence the behavior of participants significantly. At the same time, the
complexity of tasks is difficult to pinpoint due to the many sources
of complexity for maintenance tasks. As a result, researchers may
struggle to deliberately decide in which regard their tasks should
be complex and in which regard they should be simple.

To help researchers make more deliberate decisions about the
complexity of their tasks, we discuss different factors of task com-
plexity. We draw these factors from previous user studies on pro-
gramming tools as well as from a task complexity model from er-
gonomics research that we apply to maintenance tasks. In the end,
task complexity might always be too complex to be fully controlled.
Nevertheless, we hope that our discussion helps other researchers
to decide in which dimensions their tasks are complex and in which
dimensions they want to keep them simple.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; • Human-centered computing → HCI design and evalua-
tion methods.

KEYWORDS
task complexity, user studies, experiments, methodology

ACM Reference Format:
Patrick Rein, Tom Beckmann, Toni Mattis, and Robert Hirschfeld. 2022.
Toward Understanding Task Complexity in Maintenance-Based Studies of
Programming Tools. In Companion Proceedings of the 6th International Con-
ference on the Art, Science, and Engineering of Programming (‹Programming›

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9656-1/22/03. . . $15.00
https://doi.org/10.1145/3532512.3535223

’22 Companion), March 21–25, 2022, Porto, Portugal. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3532512.3535223

1 INTRODUCTION
Researchers working on programming tools empirically study pro-
grammers using tools through experiments or user studies [18]. A
typical setup of such studies revolves around maintenance tasks
that “take the form of an addition, removal or debug task carried
out on a piece of code” [12, 14]. In these setups, researchers face
the challenge that the complexity of the maintenance tasks can
influence the behavior of programmers. In this paper, we aim to
provide guidance to researchers on how to analyze and, to some
degree, shape the complexity of tasks.

Tasks are a central component of study setups. Correspondingly,
their selection and design is prominently discussed in papers that
describe strategies to design studies on programming tools [14, 18].
Generally, the tasks are often the main stimulus for participants,
next to the tool under investigation. The characteristics of the tasks
may influence the behavior of programmers with regard to, for
example, their overall comprehension strategy, whether they use
concrete or symbolic mental simulation, or whether they debug
opportunistically or systematically [10, 31, 36]. As a result, the tasks
may determine the explanatory power of an experiment or the use-
fulness of observations in user studies and their interpretation [14,
p. 112].

Tasks have multiple characteristics that influence programmer
behavior. One such characteristic is task complexity. Task complex-
ity can have a profound impact on programming and comprehen-
sion strategies employed by programmers [10, 31]. For example,
programmers may employ different debugging strategies when
working on a small method in comparison to working on a large
system [36]. The problem with task complexity is that it is com-
posed of several factors. For example, while the complexity of a
task often depends on the size of the source code, the complexity
might also result from other characteristics such as the kind of the
defect to be fixed, the quality of the source code, or the presence or
absence of additional documentation. Thus, a task can be complex
in some regard and simple in others. This variety of characteristics

38

https://orcid.org/0000-0001-9454-8381
https://orcid.org/0000-0003-0015-1717
https://orcid.org/0000-0001-7024-9838
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3532512.3535223
https://doi.org/10.1145/3532512.3535223

‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal P. Rein, T. Beckmann, T. Mattis, and R. Hirschfeld

makes it difficult for researchers to consciously and comprehen-
sively decide for which of these characteristics their task should be
simple or complex.

With this paper, we want to enable researchers in analyzing
and shaping the complexity of maintenance tasks so that those are
appropriate for their research questions. Therefore, we describe the
factors that contribute to task complexity based on a comprehensive
and generic framework of task complexity used in ergonomics re-
search [23]. The framework describes 27 factors of task complexity
summarized from previous research [23]. We customize this frame-
work for maintenance tasks used in programming tool studies. To
keep our framework focused, we limited our scope to studies with
trained programmers. We then use our instantiated framework to
determine and arrange specific complexity factors of maintenance
tasks from related work and our experience. Our framework can
be used to analyze purposefully designed tasks as well as tasks
retrieved from existing projects.

In the following, we define task complexity, contrast it to related
concepts such as task difficulty, and illustrate the role of mainte-
nance tasks in studies on programming tools (Section 2). We briefly
introduce the task complexity framework used and our adaptation
to maintenance tasks for programming tool studies (Section 3).
Within our adapted framework, we present factors making up task
complexity (Section 4).

2 MAINTENANCE TASKS IN STUDIES AND
TASK COMPLEXITY

Maintenance tasks are used in a variety of studies on program-
ming tools. There are various kinds of maintenance tasks, but we
focus on perfective and corrective tasks in this paper and introduce
them briefly. To lay the foundation for the subsequent analyses,
we define task complexity and contrast it to task difficulty. While
task complexity is seldom use and defined in programming tools
studies, we show examples of studies that already discuss some
task characteristics that contribute to task complexity. Finally, we
briefly point out how researchers in other researchers areas use
and describe task complexity, namely in industry ergonomics and
information retrieval.

2.1 Studies Based on Maintenance Tasks
Software maintenance tasks are tasks in which participants are
presented with an existing program or system and some form of
description of a desired change or outcome. Such tasks are used in
observational studies as well as in controlled experiments [20, 33].
There are typically two forms of maintenance tasks: adaptive and
corrective [7]. They are used by researchers in various kinds of
studies [12, 14, 18] to evaluate tools, to test cognitive models, and
to investigate programmer behavior [3, 20, 30]. In both kinds of
maintenance tasks, participants receive an existing program or
system and some description of the desired change.

In perfective maintenance tasks participants should adapt exist-
ing features or add new features according to some description of
the new behavior [7]. For example, in an evaluation study for an
Android programming tool, the task was to add a database import

to an existing Android app [17]. An observational study on how pro-
grammers gather information on their programs, asked participants
to implement five features in a small painting application [20].

In corrective maintenance tasks, participants are asked to repair
defective behavior [7]. Corrective tasks are often used to evaluate
debugging tools and strategies. For example, an experiment using
corrective tasks explored whether the live feedback in spreadsheets
helps programmers during debugging [6, 33]. Participants received
two small, synthesized spreadsheets in two different domains and
were asked to repair as many defects as possible within 15minutes.
An experiment evaluating the Whyline tool used two real defects
in a large project [19]. Participants were asked to repair the defects.

2.2 Defining Task Complexity
In subsequent sections, we will explore how researchers currently
deal with the complexity of their tasks and how task complexity
can influence programmer behavior. Before this detailed discussion,
however, we first define the term task complexity.

In this paper, we use a definition of task complexity that defines
it as “the aggregation of any intrinsic task characteristic that in-
fluences the performance of a task” [23]. As a result, we regard
task complexity as a compound concept that subsumes other prop-
erties of tasks [23]. The criteria that the characteristics have to
influence the performance of a task are further explained as “If
a task characteristic imposes specific resource requirements (e.g.,
cognitive and physical demands, required knowledge and skills) on
task performers, it is considered to influence the performance of
the task” [23]. Thus, task complexity describes properties of the
task that may influence generic task performers.

Task difficulty is related to task complexity. However, in con-
trast to task complexity, task difficulty depends on individual task
performers [23]. For this work, we use the definition that task dif-
ficulty is the effort task performers perceive when working on a
task [23]. Thus, task difficulty results from the combination of task
complexity and the personal resources that specific task perform-
ers have. Examples of such personal resources in the context of
programming tools are how experienced task performers are in
programming and how much task performers know about the ap-
plication domain [16, 32]. Researchers often use task difficulty to
describe tasks they use in studies [14, 18] and commonly assess or
shape task difficulty through expert judgment or piloting.

In summary, task complexity and task difficulty are both rele-
vant for study designs. While task complexity is relevant to the
actual research questions, task difficulty is also a practical concern
for study designs. Matching task complexity and participants is a
common challenge, in which analyzing task complexity can help
determining sources of complexity that may become difficult for
participants.

2.3 Task Characteristics in Studies Based on
Maintenance Tasks

The tasks used in studies are a major influence on participants. As
they determine how useful and generalizable observations are, re-
searchers generally already discuss their tasks in detail via a variety
of characteristics. Some researchers even do this in great detail. An
example for such a description is an evaluation study of a new user

39

Toward Understanding Task Complexity in Maintenance-Based Studies of Programming Tools ‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal

interface metaphor for integrated development environments [4,
p. 2509]. The description covered among other aspects the overall
system size in several metrics such as lines of code and number of
classes, the size of the affected features, and the kinds of defects. Fur-
ther, the researchers also controlled some characteristics such as the
technical knowledge required and the presence of documentation.
Similarly, an evaluation study of test-based fault navigation tools
describes detailed characteristics of debugging tasks [27, p. 1391].
Among the described characteristics are the length of the infection
chain1of the defects, the presence of tests, and whether the defects
are wrong or missing code.

These studies already describe several task characteristics that
contribute to task complexity according to the definition we use.
Nevertheless, as there is no structured guidance on task complex-
ity, potentially relevant characteristics are often missing from the
description of tasks. An example for a task description that might
benefit from a more thorough discussion of the tasks is a user study
on an Android prototyping framework [17, p. 102]. This study out-
lines the application domain of the app to be adapted and a brief
description of the feature to be implemented2. To fully understand
the subsequent observations, readers may also benefit from a de-
scription of the size of the original system and an ideal patch im-
plementing the new feature. Readers may also benefit from the
description of characteristics that are seemingly unrelated to a per-
fective maintenance task but still contribute to the task complexity,
such as how much of the system participants needed to understand
to implement the feature, and how many steps were required to
evaluate whether the feature met the specification.

Some studies state task complexity as a characteristic that is
relevant for their study without further describing the properties
that make a task complex. [19, p. 1575]. For example, in an eval-
uation of a specialized back-in-time debugger, the description of
tasks mentioned that the researchers selected tasks “that varied in
complexity and difficulty”. Beyond this statement, the nature of the
task complexity was not explained any further.

2.4 Task Complexity in Other Research Areas
Task complexity is a common concept used to characterize tasks in
other research areas, such as information retrieval [34] or industrial
ergonomics [23–25].

In information retrieval research, task complexity is used to
characterize search tasks [34]. Researchers studying information re-
trieval use task complexity in studies to evaluate search systems or
observe usage patterns to inform theories of information retrieval.
As put in one survey on task complexity in these studies, “a signifi-
cant research challenge is developing tasks and task descriptions,
such that the task itself can be systematically manipulated as part of
the research design and does not become a confounding variable.”

In industrial ergonomics research, task complexity is used to
assess processes, such as continuous monitoring of a nuclear power

1The infection chain generally refers to the number of steps between the instruction
that creates an erroneous run-time state and the instruction that leads to wrong
surface behavior of the program [27, 36]. The length of an infection chain is measured
in various different ways.
2This observation only refers to the list of task characteristics given in the paper, which
might be brief due to the page limitation of the publication venue. The authors may
very well still have considered other task characteristics when selecting the tasks.

Table 1: Parts of the generic model of task components and
their respective complexity-contributing factors (CCFs) [23]

Task components CCFs
Goal/output Clarity

Quantity
Conflict
Redundancy

Input Clarity
Quantity
Inaccuracy
Redundancy
Conflict
Unstructured Guidance
Mismatch

Process Clarity
Quantity of paths
Quantity of actions/steps
Conflict

Time Pressure

plant [24, 25]. Researchers use task complexity to analyze the struc-
ture of the processes and spot potential complexity factors.

3 ADAPTED TASK COMPLEXITY
FRAMEWORK

Our framework is based on a generic framework of task complexity
that is supposed to provide a generic perspective of task complexity
independent of particular domains [23]. This generic framework
is the result of a review of 24 previous models of task complexity.
In the following, we describe our steps to translate this generic
perspective to an adapted perspective for tasks in program mainte-
nance studies.

Through this framework, we want to help researchers in reason-
ing about or shaping the complexity of their maintenance study
tasks. At the same time, the framework does not provide guidance
on other important considerations such as external validity, task
difficulty, learning effects between tasks, or the duration of tasks.
Neither does the framework present a comprehensive theory on
actual software maintenance, focusing instead solely on the com-
plexity of maintenance tasks used in studies.

3.1 The Task Complexity Framework
The generic framework our work is based on is the result of a review
of models defining task complexity.

The generic framework provides a set of five components affect-
ing task complexity. For each component, the authors define a set
of complexity-contributing factors (CCFs) that are concrete factors
that increase or decrease the complexity of its component, as shown
in table 1. The factors are also abstracted into ten dimensions that
are supposed to describe the phenomenon of task complexity in its
most generic form.

For our adaptation of the framework, we focused on the compo-
nents and their CCFs, as we found these to provide a more concrete
taxonomy of complexity than the more abstract dimensions. The
first component describes goal and output factors; its CCFs affect
the abstract goal participants need to reach through for example

40

‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal P. Rein, T. Beckmann, T. Mattis, and R. Hirschfeld

clarity, quantity, or redundancy of the goal. Second, the input fac-
tors describe the materials and stimuli given to participants, for
example their rate of change, quantity, or conflict. Third, the process
component includes factors such as the required quantity of actions,
repetitiveness, or cognitive requirements of the process. Fourth, the
time factors are determined by concurrency and time pressure of
the task. Finally, the authors of the framework chose to consider
presentation as a separate component, noting that it may also be
considered part of the input component.

3.2 Adaptations for Tasks in Program
Maintenance Studies

To identify sources of complexity in program maintenance tasks,
we considered models of phases during a maintenance task [15,
28][22, p. 191]. According to a rough summarization of thesemodels,
programmers would begin with an initial comprehension phase,
where materials such as a bug description, an observed fault, or
similar are analyzed. Next, programmers would move on to a bug
location phase with the goal of identifying relevant code in the
software system. To do so, programmers repeatedly formulate and
test hypotheses, for example using their existing knowledge of the
software system or entry points derived from the comprehension
phase, trying to reproduce and understand the concern. Finally,
a repair or patch is created that should eventually yield a correct
program. Drawing from the debugging phases, we extracted distinct
variation points that researchers can affect in their study setup: the
task description, the software system, the infection chain or feature
location, the patch participants are expected to create, and the tool
environment.

Task Description. The initial stimulus for participants to engage
with the task will most likely come from a task description. These
may correspond roughly to the initial prompt programmers would
receive to begin the comprehension phase, such as a bug report.
Components of the task complexity model affecting the description
concern the goal and output component, such as the clarity of
the goal and the quantity of defects. The concrete written or oral
task description introduces complexity through factors of the input
and presentation components, for example the description’s size or
amount of guidance given.

System. Both in the comprehension and in the bug location phase,
the system in which the defect or missing feature is located plays
a major role. Factors of the input component such as the system’s
overall size, domain, or code quality will likely affect participants’
ability to formulate and test their hypotheses. A very small system
may make it too simple for participants to identify a root cause of a
bug, while a very large system presented with little guidance may
render the task too complex.

Infection Chain and Feature Location. During the bug location
phase, researchers have to take another deliberate decision next to
the decision for a system, which is the nature of the infection chain
or how the feature to be adapted is distributed in the system. For
example, a defect that no longer occurs upon observation [13, p. 33]
is likely to introduce significant complexity as part of the conflict
factor in the goal component. The goal’s clarity may for example
also be affected by how common the defect or requested feature is.

Patch. Once participants understood the defect or located the
place where the requested feature can be added, they enter the
phase of creating a patch to address the concern. The goal and
output component characterizes complexity introduced through
the size and nature of the patch, such as how many distinct places
in the code base need to be changed.

Tool Environment. Not explicitly stated as part of the model, we
argue that researchers should also consider the tool environment
in which their study is embedded. If the study aims to evaluate
a tool, this tool’s complexity is inherent to the study. However,
programming tools are rarely used in isolation and the choice or
availability of additional tools can have an impact on the complexity
of the task. For example, tools that aid participants in navigating
and analyzing the software system, such as a means to browse refer-
ences, can support in formulating hypotheses, while a debugger or
a REPL can help in testing hypotheses. Factors important to the tool
environment are primarily found in the process and presentation
components.

Note that not all components and factors from the generic task
complexity summary as listed in table 1 are included in our dis-
cussion. For example, we have excluded the concurrency factory
in the time component, as we have not found studies that intro-
duced complexity through concurrency in the sense that partici-
pants must handle multiple tasks simultaneously. For the factors
that are mentioned we either found a study that was describing
the corresponding factor or considered it important from our own
experience, in which case we explain its relevance in detail.

4 TASK COMPLEXITY CHARACTERISTICS OF
PROGRAMMAINTENANCE TASKS

Based on related work and our experience, we discuss factors that
influence the complexity of tasks.

4.1 Task Description
The task description is the starting point for participants and thus
may significantly influence how they proceed through the task.

The goal of participants reading the task description is to under-
stand the task in the form of features to be implemented or defects
to be repaired. The complexity of understanding the task is influ-
enced by the quantity of sub-goals. For example, many studies use
just one feature or defect at a time [19, 27]. This allows participants
to focus on a single problem. At the same time, some studies give
participants multiple features or defects at the same time. In one
study participants received descriptions for five features to imple-
ment at once [29, p. 891]. In another study, participants received
descriptions for ten features, five for one application and five for a
second [35, p. 4]. Having multiple sub-tasks at once requires partic-
ipants to decide in which order they work on them and requires
participants to distinguish between information relevant for the
different sub-tasks.

When understanding the task the main input for participants
is the written or oral explanation of the task. One complexity-
contributing factor of the input is the quantity of the task descrip-
tion material, or simply put, the length of the task description. Both,

41

Toward Understanding Task Complexity in Maintenance-Based Studies of Programming Tools ‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal

overly short and overly long descriptions can make a task descrip-
tion complex [23]. For synthesized tasks this is fully under the
control of the researchers [29, p. 891][20]. But for tasks collected
from existing projects, this might be a challenge, for example when
the description of a feature also refers to numerous business use
cases that are irrelevant for the isolated situation of the study.

The other central CCF for the task description input is its clar-
ity. If the task description is unclear, whether accidentally or on
purpose, participants may have to spend more time determining
what the desired behavior should be or what the defective behavior
looks like in detail. One aspect of clarity is whether the behav-
ior is explicitly stated or whether participants need to derive it
from additional material such as a standard. Another aspect is the
ambiguity of the description. If participants can have more than
one major interpretation of the described behavior, the subsequent
investigation becomes more complex.

The ambiguity of the task description also touches on the factors
of guidance in the task material. For many tasks, researchers want
participants to work on investigating the overall system and the
defect or feature at hand. Thus, ambiguity is a necessary compo-
nent to not provide too much guidance on how to solve the task.
For example, if the task includes an accidental hint on the class
containing the root cause of a failure, participants might search
for defect less extensively, as they might already find it using this
unintentional hint. In contrast, some guidance can also make it
feasible to design a study with a large system or with a large set of
sub-tasks. For example, one study provided pointers to two relevant
classes out of the 301 classes in the system [29, p. 891].

Finally, redundancy in the task description might reduce the com-
plexity of understanding the task. For example, when the desired
behavior is described through prose as well as manual test scripts
or automated tests, participants can read on the task from different
perspectives. Many studies provide programmers with a set of test
cases accompanying the task description [27, 29].

4.2 System
The system is the backdrop in front of which participants work
on the task and thus it is a major input for working on the task.
Participants need to understand it well enough to form hypotheses
about where defects may be located or where a feature might be
implemented. Thus, the qualities of the system directly influence
the complexity of the task.

One source of the complexity of the overall system is the quantity
of elements in the system.Many studies report the overall size of the
system under study through metrics such as lines of code, number
of methods, number of classes, and number of packages [4, 20,
27]. Beyond this general measure, the complexity of the task also
depends on the size of the portion of the system that is actually
relevant to the task, as reported in some studies [4, 20].

Task complexity and thereby participant behavior is also influ-
enced by the clarity of the source code. Programmers work differ-
ently when working on a method describing a complex algorithm,
a class with tangled concerns, or a whole module with a consistent
architecture [31].

With regard to clarity we distinguish between the underlying
control flow and the overall clarity of the code. For the underlying

control flow, the complexity of the control flow influences how well
the code is understood. Ways to measure this are cyclomatic com-
plexity or cognitive complexity [5]. Beyond this basic complexity,
the overall quality of the code also influences how well the system
and task is understood. “Spaghetti code” [13, p. 33] and bad code [28,
p. 21] have both been brought up by developers when asked about
reasons for difficult defects. The clarity of the system also involves
the architecture and the resulting modularity of the code base. For
example, in an architecture that directly maps concepts of the appli-
cation domain to classes, participants have to infer less to find code
relevant for some application behavior [26]. While these general
qualities of code are difficult to measure, they can still be judged
and described in general terms by researchers looking into systems
that may serve as the foundation for their studies.

Related to the clarity of the system is the factor of mismatches
that may occur between what participants expect the code to do and
what it actually does. Examples include surprising uses of language
features or confusing naming [14, p. 108 f.]. This kind of complexity
can require participants to put more effort into understanding code
in situations that are not relevant for the research questions.

Inaccuracy of the source code can also make the task more com-
plex. By its very nature, code itself is an accurate description of the
behavior of the system. However, some parts of the system may
have been left out for brevity. This in turn might confuse partici-
pants when some parts of the system are given, but others are not.
For example, in one study, the researchers removed non-trivial API
from the code to reduce the knowledge required to understand the
code [4]. While this reduces the required knowledge, it also limits
the participants’ ability to determine the behavior at the call sites
of the API and requires them to make assumptions.

Redundancy in the description of the system behavior can help
reduce the complexity of understanding the system. Redundant de-
scriptions of system behavior such as high-level design documents
can provide a different perspective of the system. For example, in
one study, participants received the user manual of the system so
that they could read about the surface behavior [29, p. 891]. Other
studies reduced the influence from such documents by either not
providing additional documents [4, 20] or by explicitly removing
all such documentation from the source code [1, p. 3].

While redundant, additional information can be of help, conflict
between documents describing the system behavior can increase
the complexity of the task. A major source for such contradictions
are comments in source code, in particular when existing projects
are used. One study dealt with this issue by removing all comments
from the source code [4]. Another study, consciously chose to use
incomplete documents to introduce complexity to a task. In this
study part of the solution to the task was using an undocumented
special case of an otherwise documented mechanism [29, p. 891].

Finally, the complexity of understanding also depends on the
knowledge required. This includes knowledge about the application
domain, as well as knowledge about the technical mechanisms used
in the system. Programmers use different strategies for understand-
ing a system depending on whether they have prior knowledge
about the application domain [9]. Most studies report the applica-
tion domain of their systems [4, 17, 21]. Researchers can control
how much the application domain is a source of complexity by
using an application domain that either a lot of programmers or

42

‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal P. Rein, T. Beckmann, T. Mattis, and R. Hirschfeld

very few programmers have previously worked with. Technical
knowledge such as working with database interfaces or knowing
special language features also increases complexity [14, p. 108]. One
study explicitly wrapped all of these APIs to prevent this as a source
of complexity [4, p. 2509].

4.3 Infection Chain and Feature Location
While all previous considerations are the same for perfective and
corrective maintenance tasks, for this aspect we have to distinguish
between the two kinds of tasks. In perfective maintenance tasks,
participants determine the code sections that implement the feature
or the general behavior that should be modified. In corrective main-
tenance tasks, participants determine the code section that includes
the defect that should be repaired. In the following, we will first
discuss factors contributing to the complexity of perfective tasks
and then factors of corrective tasks. For both, the complexity stems
from feature or the defect as the desired outcome of the activity.

Thus, in perfective maintenance tasks, we look at the complexity
of the overall feature to be adapted by participants. A major source
of this complexity is the quantity of distinct locations that are rele-
vant for the feature to be implemented (combining feature location
and impact analysis) [11]. In particular, task complexity is likely
higher when the code of a feature is scattered. Thus, some studies
limit the search space by telling participants which modules they
should investigate or outright limit their ability to inspect other
modules [8].

With regard to the clarity of the goal of locating the feature,
the major source of complexity is how obvious it is to participants
what the right location is to adapt the feature. Existing code that
only needs to be changed introduces less complexity than code that
needs to be extended or even replaced by participants.

For corrective tasks, we characterize the complexity of the whole
infection chain. Again, a major factor is the quantity of elements in
the infection chain. A long infection chain length has often been
reported as an indicator of complex defects [13, 28]. The more state-
ments are between the observable failure and the original defect
in the code, the more effort is to required to determine the defect.
Similarly, an increasing number of defects that contribute to a fail-
ure also increases complexity. Typically, studies using corrective
tasks only use one defect per failure [20, 27].

Another major factor is the clarity of the defect. A first aspect of
this is the origin of the defect. Participants may have to investigate
a program differently when investigating a defect resulting from a
wrong specification than a defect resulting from a programming
error [36]. Similarly, the kind of defect can influence the overall task
complexity. Participants may recognize more common types such
as missing nil handling more easily than less common types, such
as an accidental modification of meta-objects. Correspondingly,
studies typically mention the types of defects participants worked
on [4, 27].

Another aspect of the clarity is the distinction between defects
of commission and defects of omission [2][14, p. 111]. A defect of
commission is manifested as a wrong piece of code. Participants
can spot it while reading the code. For example, in one study, the
complexity of actually spotting the root cause was explicitly re-
duced by commenting out important code [27]. In contrast, defects

of omission result from missing code. This in turn, is more complex
to determine for participants, as they have to understand the code
well enough, to realize that a statement is missing.

4.4 Patch
The patch is the set of modifications the participants propose to
solve the maintenance task. As the participants work towards this
patch, we regard the patch as an outcome and describe its complexity
correspondingly.

The clarity of what the patch needs to contain depends on the
number of different places that need to be modified. If only one
place needs to be modified, the scope of the patch might be obvious
to participants. However, if multiple places need to be modified,
coordinating these changes adds extra complexity to the task. For
example, one study reported on the number of files participants
needed to modify to implement the required features [29, p. 891].

Further, sheer quantity of edits contained in the patch influences
complexity. The larger the patch needs to be, the more decisions
participants need to take in order to create it. Some studies try to
prevent that the patch generation adds any complexity by mak-
ing the patch a minimal edit such as uncommenting some state-
ment [27]. Other studies keep track of the size of the minimal or
typical patch [4][29, p. 891].

While generating the patch, participants may face complexity
arising from conflicting requirements. For corrective tasks, partici-
pants may wonder whether they should simply repair the surface
behavior or aim to repair the root cause of the failure. While either
one may be acceptable for the research question, participants may
struggle when there are no clear instruction on what counts as
repairing the failure. Similarly, participants might wonder whether
a patch only needs to meet the functional requirements or also
needs to fit into the existing architecture and match the coding
style. Again, clear guidance on this question can reduce complexity
in this regard for participants. Finally, the original requirements for
the patch might be conflicting. One study explicitly introduced com-
plexity in that regard by asking participants to “make the design as
ideal as possible by the criteria of performance, understandability,
and reusability”[21, p. 363].

Finally, complexity may also arise from redundancy between
valid patches. If there are several possible patches, and it is difficult
for participants to decide which ones are valid, the task becomes
more complex in that regard. Again, one solution is to avoid com-
plexity from patch generation completely, by making the patch a
minimal edit [27]. Another option is to make it explicit to partici-
pants that many different solutions are possible and that they are
valid as long as they solve the original requirements [20].

4.5 Tool Environment
Tools necessarily play a major role in the study design. As the
tool itself is being evaluated, most complexity introduced by tools
should be inherent to the study. However, the tool to be evaluated
will most likely still be embedded in an environment that involves
other standard tools that may skew study results if not considered.
Complexity introduced by these standard tools can be captured by
factors of the process of using these tools to work on the task.

43

Toward Understanding Task Complexity in Maintenance-Based Studies of Programming Tools ‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal

The clarity of the process may be affected by the means provided
to reproduce the defect. Some studies provide a test runner with
failing test cases as part of the tool environment [27][29, p. 891],
providing participants a clear entry point.

The number of tools at the participants’ disposal, the quantity of
paths, may reduce complexity. For example, giving participants a
variety of tools fit for different purposes may support their investi-
gation of the system. Studies involving larger tool environments
tend to report which of the standard tools where enabled, and which
were disabled during the study, also to ensure that comparisons
between different tool environments were valid [4, p. 2510][22].

Conflict in the use of tools could occur if participants are given
access to tools that may obscure the defect or lead them on a wrong
path. A misuse of tools can require recovery steps, for example if
participants edit generated or read-only artifacts without noticing.

The quantity of actions or steps required to obtain runtime infor-
mation may increase as well. For example, in a tool environment
where participants are required to wait for a lengthy compilation
step, they may have less feedback available than if for example a
REPL is provided, both, for understanding the system as well as
for verifying their patch. The means to obtain feedback could also
affect task complexity: access to a debugger may render some tasks
easier compared to a tool environments where users are limited to
printf-debugging.

4.6 Overall Considerations
Finally, some components may influence task complexity beyond
the single variation points and throughout the overall study design.
For example, imposing and communicating a time limit on the
study may lead participants to act differently if they believe to have
enough time to consider more options. For example, one study
asked participants to complete as many tasks as they can within 15
minutes [6, 33].

Throughout the study, researchers may decide to provide explicit
guidance as input whenever they feel participants may have gotten
stuck, thus reducing the previously assessed complexity in the
moment. For example, in one study the researchers provided help
on using the tools whenever participants had difficulties with their
basic usage, thereby reducing the complexity in that regard [21].

Similarly, if any of the tools crashes during use, these constitute
non-routine events that participants need to deal with, increasing
the overall complexity of the task.

5 CONCLUSION
We presented a first version of a task complexity framework tailored
towards software maintenance tasks used in studies on program-
ming tools. It is intended to help researchers struggling to design or
choose appropriate maintenance tasks for their studies. By going
through the different factors for each of the five variation points of
the tasks, we hope that they get a complete picture of the ways their
tasks are simple or complex. Accordingly, theymay discover aspects
that should be simpler or more complex depending on whether they
are relevant for their research questions.

By design our framework does not provide means to judge task
difficulty, as this ultimately depends on the combination of the task
complexity and the personal resources of the individual participants.

The challenge for researchers remains to match task complexity
and participants in a way that the task difficulty is suitable for the
research questions.

Finally, we would like to note that this is a preliminary version
of the framework. Currently, the framework is mostly based on
evaluation studies and thus over-emphasizes their perspective on
task design. In the future, a thoroughly defined survey of task design
in studies should lead to a more complete picture.

ACKNOWLEDGMENTS
Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 449591262. We also gratefully acknowledge
the financial support of HPI’s Research School3 and the Hasso
Plattner Design Thinking Research Program4.

REFERENCES
[1] Emad Aghayi, Aaron Massey, and Thomas D. LaToza. 2020. Find Unique Usages:

Helping Developers Understand Common Usages. In IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2020, Dunedin, New Zealand,
August 10-14, 2020, Michael Homer, Felienne Hermans, Steven L. Tanimoto, and
Craig Anslow (Eds.). IEEE, 1–8. https://doi.org/10.1109/VL/HCC50065.2020.
9127285

[2] Victor R. Basili and Richard W. Selby. 1987. Comparing the Effectiveness of
Software Testing Strategies. IEEE Trans. Software Eng. 13, 12 (1987), 1278–1296.
https://doi.org/10.1109/TSE.1987.232881

[3] Deborah A. Boehm-Davis, Jean E. Fix, and Brian H. Philips. 1996. Techniques
for exploring program comprehension. In Workshop on Empirical Studies on
Programmers 1996. https://books.google.de/books?id=G2HflXT2tkYC&lpg=PA2-
IA1

[4] Andrew Bragdon, Robert C. Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph
J. LaViola Jr. 2010. Code bubbles: a working set-based interface for code un-
derstanding and maintenance. In Proceedings of the 28th International Con-
ference on Human Factors in Computing Systems, CHI 2010, Atlanta, Georgia,
USA, April 10-15, 2010, Elizabeth D. Mynatt, Don Schoner, Geraldine Fitzpatrick,
Scott E. Hudson, W. Keith Edwards, and Tom Rodden (Eds.). ACM, 2503–2512.
https://doi.org/10.1145/1753326.1753706

[5] G. Ann Campbell. 2018. Cognitive complexity. In Proceedings of the 2018 Inter-
national Conference on Technical Debt. ACM. https://doi.org/10.1145/3194164.
3194186

[6] Curtis Cook, Margaret Burnett, and Derrick Boom. 1997. A Bug’s Eye View of
Immediate Visual Feedback in Direct-Manipulation Programming Systems. In
Proceedings of ESP 1997 (Alexandria, Virginia, USA) (ESP ’97). ACM, New York,
NY, USA, 20–41. http://doi.acm.org/10.1145/266399.266403

[7] Thomas A. Corbi. 1989. Program Understanding: Challenge for the 1990s. IBM
Syst J 28, 2 (1989), 294–306. https://doi.org/10.1147/sj.282.0294

[8] Fredy Cuenca, Jan Van den Bergh, Kris Luyten, and Karin Coninx. 2015. A user
study for comparing the programming efficiency of modifying executable mul-
timodal interaction descriptions: a domain-specific language versus equivalent
event-callback code. In Proceedings of the 6th Workshop on Evaluation and Usabil-
ity of Programming Languages and Tools, PLATEAU@SPLASH 2015, Pittsburgh, PA,
USA, October 26, 2015, Thomas D. LaToza, Craig Anslow, and Joshua Sunshine
(Eds.). ACM, 31–38. https://doi.org/10.1145/2846680.2846686

[9] Françoise Détienne. 2001. Software design cognitive aspects. Springer. http:
//www.springer.com/computer/swe/book/978-1-85233-253-2

[10] Françoise Détienne and Elliot Soloway. 1990. An Empirically-Derived Control
Structure for the Process of ProgramUnderstanding. International Journal of Man-
machine Studies 33, 3 (1990), 323–342. https://doi.org/10.1016/S0020-7373(05)
80122-1

[11] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. J. Softw. Evol. Process.
25, 1 (2013), 53–95. https://doi.org/10.1002/smr.567

[12] Alastair Dunsmore and Marc Roper. 2000. A Comparative Evaluation of Pro-
gram Comprehension Measures. Technical Report EFoCS 35-2000. Department of
Computer Science, University of Strathclyde.

[13] Marc Eisenstadt. 1997. My hairiest bug war stories. Commun. ACM 40, 4 (1997),
30–37.

3https://hpi.de/en/research/research-school.html
4https://hpi.de/en/dtrp/

44

https://doi.org/10.1109/VL/HCC50065.2020.9127285
https://doi.org/10.1109/VL/HCC50065.2020.9127285
https://doi.org/10.1109/TSE.1987.232881
https://books.google.de/books?id=G2HflXT2tkYC&lpg=PA2-IA1
https://books.google.de/books?id=G2HflXT2tkYC&lpg=PA2-IA1
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/3194164.3194186
https://doi.org/10.1145/3194164.3194186
http://doi.acm.org/10.1145/266399.266403
https://doi.org/10.1147/sj.282.0294
https://doi.org/10.1145/2846680.2846686
http://www.springer.com/computer/swe/book/978-1-85233-253-2
http://www.springer.com/computer/swe/book/978-1-85233-253-2
https://doi.org/10.1016/S0020-7373(05)80122-1
https://doi.org/10.1016/S0020-7373(05)80122-1
https://doi.org/10.1002/smr.567
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/

‹Programming› ’22 Companion, March 21–25, 2022, Porto, Portugal P. Rein, T. Beckmann, T. Mattis, and R. Hirschfeld

[14] Dror G. Feitelson. 2021. Considerations and Pitfalls in Controlled Experiments
on Code Comprehension. In 29th IEEE/ACM International Conference on Program
Comprehension, ICPC 2021, Madrid, Spain, May 20-21, 2021. IEEE, 106–117. https:
//doi.org/10.1109/ICPC52881.2021.00019

[15] David J. Gilmore. 1991. Models of debugging. Acta Psychologica 78, 1 (1991),
151–172. https://doi.org/10.1016/0001-6918(91)90009-O

[16] L. Gugerty and G. Olson. 1986. Debugging by Skilled and Novice Programmers.
In Proceedings of CHI 1986 (Boston, Massachusetts, USA) (CHI ’86). ACM, New
York, NY, USA, 171–174. http://doi.acm.org/10.1145/22627.22367

[17] Donghwi Kim, Sooyoung Park, Jihoon Ko, Steven Y. Ko, and Sung-Ju Lee. 2019.
X-Droid: A Quick and Easy Android Prototyping Framework with a Single-App
Illusion. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology, UIST 2019, New Orleans, LA, USA, October 20-23, 2019,
François Guimbretière, Michael Bernstein, and Katharina Reinecke (Eds.). ACM,
95–108. https://doi.org/10.1145/3332165.3347890

[18] Amy J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A Practical
Guide to Controlled Experiments of Software Engineering Tools with Human
Participants. Empirical Software Engineering 20, 1 (sep 2015), 110–141. https:
//doi.org/10.1007/s10664-013-9279-3 .

[19] Amy J. Ko and Brad A. Myers. 2009. Finding causes of program output with the
JavaWhyline. In Proceedings of the 27th International Conference on Human Factors
in Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009, Dan R. Olsen Jr.,
Richard B. Arthur, Ken Hinckley, Meredith Ringel Morris, Scott E. Hudson, and
Saul Greenberg (Eds.). ACM, 1569–1578. https://doi.org/10.1145/1518701.1518942

[20] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant Infor-
mation during Software Maintenance Tasks. IEEE Trans. Softw. Eng. 12 (2006),
971–987.

[21] Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers.
2007. Program Comprehension As Fact Finding. In Proceedings of ESEC-FSE
2007 (Dubrovnik, Croatia) (ESEC-FSE ’07). ACM, New York, NY, USA, 361–370.
https://doi.org/10.1145/1287624.1287675

[22] Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability ques-
tions. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, Jeff
Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel (Eds.).
ACM, 185–194. https://doi.org/10.1145/1806799.1806829

[23] Peng Liu and Zhizhong Li. 2012. Task Complexity: A Review and Conceptualiza-
tion Framework. Int. J. Ind. Ergon. 42, 6 (2012), 553–568.

[24] Peng Liu and Zhizhong Li. 2016. Comparison between conventional and digital
nuclear power plant main control rooms: A task complexity perspective, part I:
Overall results and analysis. 51 (2016), 2–9. https://doi.org/10.1016/j.ergon.2014.
06.006

[25] Peng Liu and Zhizhong Li. 2016. Comparison between conventional and digital
nuclear power plant main control rooms: A task complexity perspective, Part II:
Detailed results and analysis. 51 (2016), 10–20. https://doi.org/10.1016/j.ergon.
2014.06.011

[26] Bertrand Meyer. 1997. Object-oriented software construction. Vol. 2. Prentice hall
Englewood Cliffs.

[27] Michael Perscheid, Michael Haupt, Robert Hirschfeld, and Hidehiko Masuhara.
2012. Test-driven Fault Navigation for Debugging Reproducible Failures. Infor-
mation and Media Technologies 7, 4 (2012), 1377–1400. https://doi.org/10.11185/
imt.7.1377

[28] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
2017. Studying the Advancement in Debugging Practice of Professional Software
Developers. Springer Software Quality Journal 25, 1 (2017), 83–110. https:
//doi.org/10.1007/s11219-015-9294-2

[29] Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. 2004. How Effective
Developers Investigate Source Code: An Exploratory Study. IEEE Trans. Software
Eng. 30, 12 (2004), 889–903. https://doi.org/10.1109/TSE.2004.101

[30] Xin Rong, Shiyan Yan, Stephen Oney, Mira Dontcheva, and Eytan Adar. 2016.
CodeMend: Assisting Interactive Programming with Bimodal Embedding. In
Proceedings of the 29th Annual Symposium on User Interface Software and Tech-
nology, UIST 2016, Tokyo, Japan, October 16-19, 2016, Jun Rekimoto, Takeo
Igarashi, Jacob O. Wobbrock, and Daniel Avrahami (Eds.). ACM, 247–258. https:
//doi.org/10.1145/2984511.2984544

[31] Anneliese von Mayrhauser and A. Marie Vans. 1994. Comprehension Processes
During Large Scale Maintenance. In Proceedings of the 16th International Con-
ference on Software Engineering, Sorrento, Italy, May 16-21, 1994, Bruno Fadini,
Leon J. Osterweil, and Axel van Lamsweerde (Eds.). IEEE Computer Society /
ACM Press, 39–48. http://portal.acm.org/citation.cfm?id=257734.257741

[32] Anneliese von Mayrhauser and A. Marie Vans. 1995. Program Comprehension
During Software Maintenance and Evolution. Computer 28, 8 (1995), 44–55.
https://doi.org/10.1109/2.402076

[33] E. Wilcox, John jr., Margaret Burnett, J. Cadiz, and Curtis Cook. 1997. Does Con-
tinuous Visual Feedback Aid Debugging in Direct-Manipulation Programming
Systems?. In Proceedings of CHI 1997 (Atlanta, Georgia, USA). ACM, New York,
NY, USA, 258–265. http://doi.acm.org/10.1145/258549.258721

[34] Barbara M. Wildemuth, Luanne Freund, and Elaine G. Toms. 2014. Untangling
search task complexity and difficulty in the context of interactive information
retrieval studies. J. Documentation 70, 6 (2014), 1118–1140. https://doi.org/10.
1108/JD-03-2014-0056

[35] Leon A. Wilson, Yoann Senin, Yibin Wang, and Václav Rajlich. 2019. Empiri-
cal Study of Phased Model of Software Change. CoRR abs/1904.05842 (2019).
arXiv:1904.05842 http://arxiv.org/abs/1904.05842

[36] Andreas Zeller. 2009. Why Programs Fail: A Guide to Systematic Debugging.
Elsevier.

45

https://doi.org/10.1109/ICPC52881.2021.00019
https://doi.org/10.1109/ICPC52881.2021.00019
https://doi.org/10.1016/0001-6918(91)90009-O
http://doi.acm.org/10.1145/22627.22367
https://doi.org/10.1145/3332165.3347890
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1145/1287624.1287675
https://doi.org/10.1145/1806799.1806829
https://doi.org/10.1016/j.ergon.2014.06.006
https://doi.org/10.1016/j.ergon.2014.06.006
https://doi.org/10.1016/j.ergon.2014.06.011
https://doi.org/10.1016/j.ergon.2014.06.011
https://doi.org/10.11185/imt.7.1377
https://doi.org/10.11185/imt.7.1377
https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1145/2984511.2984544
https://doi.org/10.1145/2984511.2984544
http://portal.acm.org/citation.cfm?id=257734.257741
https://doi.org/10.1109/2.402076
http://doi.acm.org/10.1145/258549.258721
https://doi.org/10.1108/JD-03-2014-0056
https://doi.org/10.1108/JD-03-2014-0056
https://arxiv.org/abs/1904.05842
http://arxiv.org/abs/1904.05842

	Abstract
	1 Introduction
	2 Maintenance Tasks in Studies and Task Complexity
	2.1 Studies Based on Maintenance Tasks
	2.2 Defining Task Complexity
	2.3 Task Characteristics in Studies Based on Maintenance Tasks
	2.4 Task Complexity in Other Research Areas

	3 Adapted Task Complexity Framework
	3.1 The Task Complexity Framework
	3.2 Adaptations for Tasks in Program Maintenance Studies

	4 Task Complexity Characteristics of Program Maintenance Tasks
	4.1 Task Description
	4.2 System
	4.3 Infection Chain and Feature Location
	4.4 Patch
	4.5 Tool Environment
	4.6 Overall Considerations

	5 Conclusion
	Acknowledgments
	References

