The Exploration Workspace

Interleaving the Implementation and Use of Plain Objects in Smalltalk

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
patrick.rein@hpi.uni-potsdam.de

ABSTRACT

When engaging in exploratory programming, the activities of ex-
ploring, understanding, implementing, and using objects of a par-
ticular domain should ideally be tightly interwoven to allow for
short feedback cycles and continuous progress towards desired
levels of comprehension and knowledge. However, when working
with plain data objects using state-of-the-art development tools,
programmers often have to resort to a more sequential workflow
in which they first need to understand the model, then implement
it, and only afterwards can start using and exploring it.

We propose the exploration workspace tool which enables pro-
grammers to interleave these activities to better support the explo-
ration of objects they are not fully acquainted with. We achieve this
by trying to tolerate deviations of the assumed protocol from the
protocol actually provided by the objects the programmers wish
to interact with. For that, we strive for non-intrusive tool support
that helps to semi-automatically build up the vocabulary preferred
in interactions. We also suggest to consolidate both domain object
implementations and exploration scripts once learning progressed.

Through an example scenario, we will illustrate various resolu-
tion strategies applied during the implementation of a geographical
map showing social media posts and photos.

CCS CONCEPTS

« Software and its engineering — Integrated and visual de-
velopment environments; Classes and objects;

KEYWORDS

exploratory programming, live programming, tool support, Smalltalk,
Squeak

ACM Reference Format:

Patrick Rein and Robert Hirschfeld. 2018. The Exploration Workspace: In-
terleaving the Implementation and Use of Plain Objects in Smalltalk. In
Proceedings of 2nd International Conference on the Art, Science, and Engineer-
ing of Programming (<Programming’18> Companion). ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3191697.3214339

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

<Programming’18> Companion, April 9-12, 2018, Nice, France

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5513-1/18/04. .. $15.00

https://doi.org/10.1145/3191697.3214339

113

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
robert.hirschfeld@hpi.uni-potsdam.de

Explore
Understand
= L Explore = Implement

-+~
g 2. Understand é Use
3)

2| 3. Implement S Explore
3 & Understand
4. Use o= nderstan
Implement

Use

Figure 1: Two approaches to working with data objects in
an exploratory environment. The first approach organizes
rather big steps in a sequential manner. The second one
favors to repeatedly interleave finer-grained activities for
shorter feedback cycles and a more continuous exploration
experience.

1 COMPREHENSION, IMPLEMENTATION,
AND USAGE IN EXPLORATION

Exploratory programming describes a workflow for situations in
which requirements and appropriate solutions are yet to be de-
termined [6, 8]. Through this workflow, programmers can experi-
ment with possible solutions to determine a suitable way forward.
Exploratory programming environments, such as several Lisp and
Smalltalk implementations, support this workflow by providing
mechanisms and tools for the introspection of run-time behavior
and state and by allowing programmers to change the system while
it is running [2, 5, 7]. In the case of Smalltalk, programmers can
explore the run-time state of individual objects, invoke behavior on
these objects, and change their behavior by changing the method
definition in the corresponding classes. The underlying activities of
using objects, understanding the domain represented by the objects,
and implementing new behavior and solutions are tightly interwo-
ven and thereby support an exploratory style of development (see
Figure 1). These activities are already well supported whenever
the data interesting to programmers is already represented as do-
main objects, and the interface of these domain objects has a fairly
complete implementation.

However, for example when working with data retrieved from
modern web services, programmers often start with data not yet
properly represented as domain objects with an extensive interface.
In this case, the experimentation is put to a halt. For example, when
loading objects directly from a JSON file into a Squeak/Smalltalk

https://doi.org/10.1145/3191697.3214339
https://doi.org/10.1145/3191697.3214339

<Programming’18> Companion, April 9-12, 2018, Nice, France

image (which will serve as an example exploratory programming
environment), the resulting JsonObject instances only provide
access to their data. Nevertheless, programmers want to script and
explore solutions based on these data objects by using domain-
specific operations, especially so, when the programmers have an
intuition about the interfaces those domain objects should provide.

For example programmers might want to implement a media
map showing social media posts and photos from external data
sources. The social media posts and meta-data on the photos were
loaded as data objects into a Squeak/Smalltalk environment. Both
kinds of objects contain geographical positions. In this scenario, pro-
grammers might interpret a data object as a geographical location.
When programmers explore a solution using these simple objects,
they might, based on their intuition about the domain, want to ask
for the geographical distance between two such objects. However,
the data objects do not allow for that, yet. While they might allow
programmers access to their internal state, they do not provide
domain-specific methods. This discrepancy between the aassumed
interface of these objects and the actually available interface has
the potential to disrupt the train of thought of programmers. They
have to switch from thinking about their current variation of a
solution to reasoning about the technical details of the provided
interface.

Consequently, programmers have to take a step back from the
exploratory programming approach and resort to a sequential pro-
gramming workflow (see Figure 1). First, they try to understand
the internal structure of the incoming data objects. Then, they can
implement a corresponding domain object class and the conver-
sion of the data objects to domain objects. Finally, only after these
steps are finished, the programmers can start using these objects in
their exploration and for working on a solution within the actual
problem domain. For example, programmers could first devise an
appropriate model for geographical locations before loading the
incoming data into objects of this model and then start exploring
what could be done using the locations.

Ideally, programmers would start exploring a solution using the
data objects right away, interleaving the activities of understanding,
using, and implementing right from the start (see Figure 1). However,
this interleaving might require programmers to constantly switch
between using the domain objects, implementing basic domain
logic, converting from data objects to domain objects. A major part
of this basic domain logic is often the mapping of the names of
fields in the data objects to domain vocabulary, as well as extending
the interface with convenience methods. These small but frequent
context switches can interrupt the exploration process and the
flow of thought of programmers. Thus, we propose an exploration
workspace for Squeak/Smalltalk [3] that integrates such fine-grained
implementation tasks more tightly with the usage of data objects
during an exploratory programming workflow.

2 THE EXPLORATION WORKSPACE

We propose a tool called exploration workspace. It is designed to
ease the burden of context switches for minor implementation tasks
during exploratory programming activities involving data objects.

To introduce the tool, we describe an exploration of the afore-
mentioned media map that shows media objects (for example social

114

Patrick Rein and Robert Hirschfeld

(mediaObjects collect: [:mediaObject |
mediaObject latitude])min
52.393295
o

latitude was not understood.
Can you provide a solution?

Please Choose

id

geoPosition

data

latitude from GeoPoint

write your own

Figure 2: A screenshot of an exploration workspace in
Squeak/Smalltalk. In addition to its regular workspace be-
havior, it also helps to automatically mitigate minor incon-
sistencies between messages sent and methods actually im-
plemented. Here the message latitude is sent to but not
understood by the mediaObject. Our exploration workspace
offers a few options to help the programmer to proceed:
The first three methods are already understood by the
mediaObject and the fourth method can be added by a trait.
And of course, if none of the proposals seem helpful, one
can write the missing code by falling back to the regular pro-
gramming infrastructure.

media posts or photos) with geographical coordinates on a map. In
this example, the programmers use data from two different data
sources, a social network and a photo sharing platform. While the
data objects from both sources include geographical coordinates,
those coordinates are represented through different structures.

2.1 Features

The exploration workspace is an adapted Squeak/Smalltalk workspace
(see Figure 2). The workspace assumes that the programmer calls
methods which semantically fit the available objects and thus the
workspace will automatically try to solve minor incompatibilities
which would normally require programmers to write code. It uses
a combination of two strategies: normalizing selector names (for
example between camel-case and underscores) and mapping syn-
onymous selectors using WordNet [9].

Further, if there is no obvious mapping from our desired message
to a method already implemented by the receiver, the workspace
will present a list of options on how to proceed. First, programmers
can choose any existing method of the object as a replacement for
the method being called. Second, programmers can select a method
from a number of traits which might already be available in the
environment [1]. The workspace only suggests a trait if the object
provides the methods required by it. Last, programmers can choose
to implement a method from within the workspace if no other
option matches the desired functionality.

The Exploration Workspace

Any decision, taken by either the workspace or the user, is
stored in the workspace. If a new mismatch arises, the exploration
workspace first tries to resolve it by using the previous decisions.
Further, the decisions are scoped to code executed from within
that particular workspace. A second exploration workspace can
contain different decisions. After an exploration programmers can
consolidate the decisions and materialize them into source code as
a starting point for a follow-up implementation.

2.2 Example: Building a Social Media Map

The following walkthrough illustrates the interactions between
programmers and the exploration workspace. In our example, the
programmers want to explore how a basic structure of a social
media map could work. As a starting point, we will load the data
objects from two JSON files into the exploration workspace and
then start exploring.

map := KnotsMap new openInWorld; yourself.
tweets := Json loadFrom: (FileDirectory default
readOnlyFileNamed: 'tweets.json') readStream.
photos := Json loadFrom:

In order to see what is available, the programmers first open an
object explorer on a tweet and a photo:

{a JsonObject(’content’->’A nice parking...etc...
= root {a JsonObject(’content’-
-1 a JsonObject(’content’-3
’content’ ’A nice parking lot’
+ ’location’ a JsonObject('x’->52.393
X’ 52.393926
'y’ 13.129535
‘user’ ’codeZeilen’
- 2 a JsonObject(’caption’->|
’caption’ "The large lake Griebnitz
I 'data’ &a Form(600x450x32)
+ 'geographicalPosition’ a JsonObject(’latitude’->
latitude’ 52.393926
’longitude’ 13.129535
B id’ 901730123
inspect

The programmers look at the first object and see that the object
stored in the location field contains geographical coordinates.
Thus, they start exploring a possible algorithm for displaying them
on the map by trying the following:

tweets first location
distanceTo: map geoCoordinatesOfMap.

It turns out that they forgot the correct selector for the geograph-
ical coordinates of the map and thus the exploration workspace
shows the following dialog:

115

<Programming’18> Companion, April 9-12, 2018, Nice, France

A KnotsMap

did not understand:
geoCoordinatesOfMap
did you mean:

upperLeftGeoCoordinatesOfMap O
actorStateOrNil
exportAsBMP
printPSToFile
actionMap
actorState
reasonableForms
enclosingEditor
geologicalMapSize
becomeModal
releaseActionMap
getCharacters

Palar

They select the first selector and the execution continues. As
the object resulting from sending location to the tweet object is
merely a JsonObject it does not understand the domain-specific
message distanceTo:. However, the system includes a trait with
methods for geographic arithmetic operations which includes a
distanceTo: method. Thus it proposes the following:

%)

A x-y did not understand: distanceTo:
did you mean:

[~]

Please Choose

| Use distanceTo: from Trait: GeographicArithmetic |

| write method |

The dialog shows the list of fields as the type of the object ("x-
y"), as the object is not an instance of a domain-specific class. The
programmers recognize that it refers to the location object of the
tweet and as the GeographicArithmentic Trait sounds promising
they select it. However, this trait requires an object to understand
latitude and longitude, so subsequently two more dialogs open up
asking for an interpretation of latitude and longitude in the context
of the location object. After these questions have been answered,
the expression evaluates successfully. Based on this expression they
develop the following snippet to place objects on the map:

(tweets collect: [:0 | o location distanceTo:
map geoCoordinatesOfMap])
do: [:point |
map addMorph: (CircleMorph new
position: map topLeft + (point * map mapScale)abs;
color: Color red;
openInWorld)J].

For now the programmers are satisfied with the script and want
to extend it to work with photos also. They think that the logic of
the script should also apply to photo objects as they also have a
geographic location. So, to visualize the photos they change the
collection of objects to:

(tweets , photos collect: [:0 | o location ...] ...)

From a technical perspective this script includes another inter-
face mismatch, as photo objects store the geographical location in
a field called geographicalPosition. However, when executing
the script this time, the exploration workspace resolves the mis-
match automatically because the two selectors are synonymous

<Programming’18> Companion, April 9-12, 2018, Nice, France

according to the synonym database. The only prompt presented to
the programmers on this second execution is the question where
distanceTo: should be taken from. This is necessary as the photo
location objects have fields different from the tweet location objects
and thereby the previous decision does not apply to them.

After successfully running the script the programmers see the
map with red markers showing the locations of tweets and photos:

3 IMPLEMENTATION

The implementation of the exploration workspace is based on com-
patibility layers [4]. It consists of the mechanism to detect a mis-
match and a number of resolution strategies.

We detect an interface mismatch by reacting to dispatch errors.
Therefore, we adapted the doesNotUnderstand: method on the
Object class. This adapted implementation checks whether the
call originated from code executed in an exploration workspace.
We determine this by traversing the stack looking for a call to an
exploration workspace. If there was such a call, the workspace is
returned and used as the scope for the following resolution process.

After detecting the mismatch the aforementioned resolution
strategies are applied in the following order:

(1) Resolution using existing decisions

(2) Lexical normalization

(3) Synonym lookup through WordNet

(4) Proposing manual resolution: existing methods, matching
traits, writing ad-hoc implementation

The decisions are stored per selector and class of the called object.
For data objects without a domain-specific class the alphabetically
sorted list of field names is used as a class identifier.

The lexical normalization strategy converts camel-case selectors
with colons to a lowercase string separated by underscores. To
determine synonyms, we also use a Smalltalk WordNet database
normalized by the same rules. We are conservative in looking up
synonyms and only take synonyms from the synset for the de-
sired selector. If there is no designated synset for that selector the
synonym lookup fails.

4 CONCLUSION AND FUTURE WORK

We propose exploration workspaces to improve exploratory work-
flows that involve data objects. While our current focus is mostly on
the exploration of data obtained from external sources, we believe

! Available at https:/github.com/hpi-swa/SmalltalkWordNet

116

Patrick Rein and Robert Hirschfeld

that exploration workspaces can also be beneficial when program-
ming with objects with extensive interfaces. Especially novice pro-
grammers might benefit from that approach as they might struggle
with the strict interpretation of method selectors while already
having an intuitive idea of how to talk to an object.

Future Work

In order to evolve the design of the exploration workspace, more
information is required on the particular mismatches happening
during exploratory programming. We plan on gaining these insights
through a qualitative study of exploratory workflows.

Additionally, the user experience of the exploration workspaces
can be improved. The scale of the exploration is limited as program-
mers have to mentally keep track of resolved mismatches. Further,
if they take a wrong decision they can not selectively undo it. Thus,
future designs should include some overview of past decisions and
mechanisms to quickly undo decisions. As the explored solutions
might become more extensive the resolutions might become more
extensive, too. When faced with decisions programmers might re-
quire more context including information on which decisions have
already been used in the current call stack and which decisions
might arise depending on the current options. A tree visualization
of the potential resolution paths might be of help here. Finally, the
user interaction based on dialog boxes can disturb the exploration
workflow through regular context-switches. A more integrated de-
sign similar to the way programmers interact with code completion
might be beneficial.

ACKNOWLEDGMENTS

Sincere thanks also go to all PX workshop participants, who pro-
vided valuable feedback by discussing this topic thoroughly. We
would like to thank Anton von Weltzien for his version of and
perspective on the exploration workspace. We gratefully acknowl-
edge the financial support of HPI's Research School® and the Hasso
Plattner Design Thinking Research Program?

REFERENCES

[1] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schirli, Roel Wuyts, and Andrew
Black. 2006. Traits: A Mechanism for Fine-Grained Reuse. ACM Transactions on
Programming Languages and Systems 28, 2 (2006), (331 to: 338). https://doi.org/10.
1145/1119479.1119483
Adele Goldberg and David Robson. 1983. Smalitalk-80: The Language and Its
Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston, USA.
Daniel Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997.
Back to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself.
In Smalltalk and Exploratory Programming, Vol. 32. ACM, (318 to: 326). https:
//doi.org/10.1145/263698.263754
Patrick Rein, Robert Hirschfeld, Stefan Lehmann, and Jens Lincke. 2016. Compat-
ibility Layers for Interface Mediation at Run-time. In Companion Proceedings of
the 15th International Conference on Modularity (MODULARITY Companion 2016).
ACM, New York, NY, USA, 113-118. https://doi.org/10.1145/2892664.2892683
David Sandberg. 1988. Smalltalk and Exploratory Programming. SIGPLAN Not.
23,10 (1988), (85 to: 92). https://doi.org/10.1145/51607.51614
Beau Sheil. 1983. Power Tools for Programmers. Datamation Magazine. (1983).
Warren Teitelman. 2008. History of Interlisp. In Celebrating the 50th Anniversary of
Lisp (LISP50). ACM, New York, NY, USA, (5 to: 5). https://doi.org/10.1145/1529966.
1529971
[8] Jason Trenouth. 1991. A Survey of Exploratory Software Development. Comput.
7.34, 2 (1991), (153 to: 163).
[9] Princeton University. 2010. "About WordNet". (2010).

2www.hpi.uni-potsdam.de/research_school

3www.hpi.de/en/research/design-thinking-research-program

https://github.com/hpi-swa/SmalltalkWordNet
https://doi.org/10.1145/1119479.1119483
https://doi.org/10.1145/1119479.1119483
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/2892664.2892683
https://doi.org/10.1145/51607.51614
https://doi.org/10.1145/1529966.1529971
https://doi.org/10.1145/1529966.1529971
www.hpi.uni-potsdam.de/research_school
www.hpi.de/en/research/design-thinking-research-program

	Abstract
	1 Comprehension, Implementation, and Usage in Exploration
	2 The Exploration Workspace
	2.1 Features
	2.2 Example: Building a Social Media Map

	3 Implementation
	4 Conclusion and Future Work
	Acknowledgments
	References

