
FOCUS: CONTEXTUAL-VARIABILITY MODELING

78 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /17/ $ 3 3 . 0 0 © 2 017 I E E E

Group-Based
Behavior
Adaptation
Mechanisms in
Object-Oriented
Systems
Patrick Rein, Stefan Ramson, Jens Lincke, Tim Felgentreff,
and Robert Hirschfeld, Hasso Plattner Institute, University
of Potsdam

// Dynamic and distributed systems
require behavior adaptations for groups
of objects. Group-based behavior
adaptation mechanisms scope adaptations
to objects matching conditions beyond
class membership. The specification of
groups can be explicit or implicit. //

AN IMPORTANT ASPECT of dy-
namic behavior adaptations is the
static description of the scope of sys-
tem parts to be adapted at runtime.
Some context-oriented programming

(COP) mechanisms limit behavior
adaptations to classes.1 However,
systems with few classes, such as dy-
namic web applications, game en-
gines, or service-based applications,

require behavior adaptations based
on more flexible scopes.

So, mechanisms have emerged
that let programmers adapt the be-
havior of groups of objects (see
Figure 1). These mechanisms origi-
nate from different use cases and
programming languages. Here, we
examine eight of them.

Adapting Objects
beyond Classes
In the following example of a web-
based presentation application, us-
ers can assemble new graphical
objects by combining existing ele-
ments through drag and drop. Dur-
ing creation, contained objects can
be dropped into and dragged out of
their parent (see Figure 2).

One example adaptation is that
users should be able to make a com-
position of objects persistent. A per-
sistent composition behaves like a
primitive object, preventing children
from being dragged out. Users can
also edit the composition by “open-
ing it up” so that they can again drag
the original child objects.

From a technical perspective, you
can implement this behavior by main-
taining two collections: children and
persistedChildren. For this feature to be
implemented, objects that are directly
or indirectly in persistedChildren shouldn’t
exhibit the usual drag behavior. Ex-
pressed in code, this means that those
objects just forward the onDrag behav-
ior to their parents.

Although specifying this variation
using class-based behavior adaptation
mechanisms is possible, doing so isn’t
trivial. One way is to implement the
new behavior in a common root class.
However, this implementation as-
sumes that all subclasses call the super-
class implementation and don’t add
contradictory behavior, which doesn’t
always hold. Another solution is to

 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE 79

use metaprogramming to find and
adapt each subclass. This solves the
problem of overridden onDrag callbacks
but introduces another problem: new
objects of classes that are introduced
after the adaptation will miss it.

How Group-Based
Mechanisms Work
Group-based behavior adaptations
explicitly describe behavior varia-
tions that are determined not by the
object’s class membership but by its
group membership (see Figure 1). So,
mechanisms for such adaptations
comprise two parts: group specifica-
tion and behavior adaptation.

There are two main ways to spec-
ify a group: programmers can ex-
plicitly add objects, or membership
can be inferred from specific object
properties. Mechanisms that employ
explicit specification are easier to
implement and have less impact on
the language semantics. Mechanisms
that employ implicit specification re-
quire less work from programmers
to maintain groups.

By specifying a group, program-
mers provide a scope for the corre-
sponding behavior adaptations: the
adaptation is active while the object
is a group member. Also, this group
scope can be combined with other
scoping mechanisms, such as dy-
namic scoping.

Programmers can describe a
group’s behavior adaptations in sev-
eral ways that are also available in
class-based adaptation mechanisms:

• COP layers,
• single methods to be added, or
• functions working on the whole

group.

In general, behavior adaptations can
both modify existing behavior and
add new behavior.

In our example application, we
use reactive object queries (ROQs;
for more on them, see the sidebar).
We specify a group of objects declar-
atively through the following query
in JavaScript:

let group ! select(GraphicalElement,
 element !" element.hasParent(
 (parent, child) !" parent.

persistedChildren.includes(child)));

The select function creates a new
group that contains instances of the

class GraphicalElement, which fulfills the
condition expressed in the anony-
mous function passed as the second
parameter. The method hasParent is
a domain-specific call that checks
whether an element has a parent
that fulfills a certain criterion, again
passed as an anonymous function.

The group is maintained auto-
matically by the ROQ, which listens
for object-state changes that could
affect the query result. We then ac-
tivate a behavior adaptation on the
group through the following call,

Object Object

StringGraphical object
Rectangle Line

Circle Clock

Graphical object
Rectangle Line ‘Peter’

2
158

19
58

‘bottle’

Circle ClockInteger

String

Integer

(a) (b)

Behavior
adaptation

FIGURE 1. The possible scopes in (a) class-scoped behavior adaptation mechanisms
and (b) group-based behavior adaptation mechanisms. Boxes denote classes, the
inclusion of boxes denotes a subclass relation, and the dashed line denotes an example
scope of an adaptation.

Drag
and
drop

{ }
{ }

children
persistedChildren

Drag
and
drop

{ }
{ }children

persistedChildren

(a) (b)

FIGURE 2. A behavior to be implemented (top) and the corresponding object graph
(bottom). (a) Graphical objects in the children collection should handle the drag event
themselves. (b) Graphical objects in any persistedChildren collection should forward the
drag event to their parent element.

80 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: CONTEXTUAL-VARIABILITY MODELING

GROUP-BASED BEHAVIOR ADAPTATION
MECHANISMS
The following eight mechanisms illustrate the spectrum of
implementations and use cases for group-based behavior
adaptations. With these mechanisms, groups are specified
either explicitly or implicitly.

EXPLICIT SPECIFICATION
Lively groups (LGs) are designed for interactive program-
ming environments in which programmers create applica-
tions by combining objects.1 LGs start off with plain objects
and then add state and behavior to these objects indi-
vidually. They let programmers describe behavior shared
among the objects. The behavior is defined for a tag, which
is assigned manually or programmatically to individual
objects or groups of objects.

ContextErlang (CE) is an actor-based language that pro-
vides dynamic behavior adaptation.2 Traditional object-
oriented behavior adaptation mechanisms aren’t a good fit
for actor-based languages because there are no classes and
message sends are asynchronous. CE lets programmers
activate and compose behavior adaptations on individual
actors through message sends. In that regard, it’s similar to
LGs, but it also supports synchronization of adaptations in an
asynchronous environment.

Entity-component-system (ECS) is an architecture for
scaling computer game development with regard to the
myriad dynamic combinations of behaviors of game objects.3
ECS splits a game object into three parts:

 • The entity is the object’s mere identity.
 • Components constitute the data for each aspect of the

object.
 • The system constitutes the game logic working on

multiple entities.

A group is defined by the set of components an entity
must include. Systems are executed as part of the game
loop and define the behavior common to all of that group’s
objects. Group maintenance is synchronized with the execu-
tion of systems through the game loop.

IMPLICIT SPECIFICATION
Predicated generic functions (PGFs) extend the dispatch
mechanism for functional object-oriented environments,

such as the Common Lisp Object System (CLOS).4 A PGF
is a family of methods, similar to CLOS generic functions.
Each PGF implementation contains a set of predicates.
When a PGF is invoked, the concrete implementation
is selected on the basis of predicates that are checked
against the parameters. In this way, it can be determined
to which groups of objects the concrete implementation
applies.

Active layers (ALs) are an implementation of context-
oriented behavior adaptation that allows for user-defined
scoping dimensions beyond dynamic scoping.5 ALs
achieve this by moving the layer composition into
objects. During the method dispatch, activeLayers is
called on the object. Programmers can override this
method to change the layer composition. The behavior
adaptations can be scoped to groups of objects but are
prone to the subclassing issue we describe in the main
article.

Reactive object queries (ROQs) aim primarily to free pro-
grammers from manually maintaining collections.6 Through
ROQs, programmers can declaratively describe collections
of objects on the basis of their properties. The collections
are maintained automatically. Because they denote relevant
groups of objects, they can also be regarded as explicit
scopes. To adapt behavior, ROQs allow for the activation of
context-oriented programming (COP) layers for a collection’s
members.

Context groups (CGs) are a mechanism of the Serv-
alCJ system that includes a generalization of activation
models commonly found in COP systems.7 Using CGs,
programmers specify groups by describing combinations
of activation conditions and activation scopes, which both
describe the activation of COP layers. An object can then
become a member of a CG and will thereby be subject
to its behavior adaptations whenever a partial method is
called.

Implied methods (IMs) support behavior reuse in sce-
narios the behavior’s original developer didn’t anticipate.8 An
IM consists of a set of conditions with which objects must
comply and a method implementation that’s added to the
interface of matching objects. The conditions aim to reveal
whether it’s semantically correct to provide the method for
an object.

References
1. T. Felgentreff et al., “Lively

Groups: Shared Behavior in a

World of Objects without Classes

or Prototypes,” Proc. Workshop

Future Programming (FPW 15),

2015, pp. 15–22.

2. G. Salvaneschi, C. Ghezzi, and

M. Pradella, “ContextErlang:

Introducing Context-Oriented

Programming in the Actor Model,”

Proc. 11th Ann. Int’l Conf. Aspect-

Oriented Software Development

(AOSD 12), 2012, pp. 191–202.

3. S. Bilas, “A Data-Driven Game

Object System,” presentation at

2002 Game Developer Conf.

(GDC 02), 2002; gamedevs.org

/uploads/data-driven-game

-object-system.pdf.

4. J. Vallejos et al., “Predicated Ge-

neric Functions: Enabling Context-

Dependent Method Dispatch,”

Proc. 9th Int’l Conf. Software Com-

position (SC 10), 2010, pp. 66–81.

5. J. Lincke et al., “An Open

Implementation for Context-

Oriented Layer Composition in

ContextJS,” Science of Computer

Programming, vol. 76, no. 12,

2011, pp. 1194–1209.

6. S. Lehmann et al., “Reactive

Object Queries: Consistent Views

in Object-Oriented Languages,”

Companion Proc. 15th Int’l Conf.

Modularity, 2016, pp. 23–28.

7. T. Kamina, T. Aotani, and H.

Masuharam, “Generalized Layer

Activation Mechanism for Context-

Oriented Programming,” Trans.

Modularity and Composition, LNCS

9800, Springer, 2016, pp. 123–166.

8. P. Rein et al., “Compatibility

Layers for Interface Mediation at

Run-time,” Companion Proc. 15th

Int’l Conf. Modularity, 2016, pp.

113–118.

 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE 81

which modifies the onDrag method’s
behavior for all its members:

group.layer({
 onDrag() {
 return this.parent.onDrag(event);
 }
});

This implementation directly ex-
presses the desired functionality. Al-
though it still explicitly mentions a
class, it’s used only as a representa-
tive of the set of all instances of the
class and thus as the base set for the
query. So, it works for all subclasses
of GraphicalElement, even future ones. Ad-
ditionally, whenever objects are added
to or removed from persistedChildren, the
adapted behavior will be activated or
deactivated automatically.

Group-based behavior adaptation
mechanisms are best applied when
the environment doesn’t provide
classes (for example, actor- or proto-
type-based languages) and when var-
ious systems or users can contribute
objects to the system (for example,
distributed systems, service-oriented
architectures, or complex interactive
systems such as games). In these sce-
narios, a behavior adaptation’s de-
veloper can’t anticipate the objects’
concrete classes but might still want
variations to apply.

A Look at Explicit and
Implicit Mechanisms
Here we examine how mechanisms
can specify groups explicitly or im-
plicitly by looking at the eight mech-
anisms we mentioned earlier. For
more details on each mechanism, see
the sidebar.

Explicit Group Specification
Lively groups (LGs), ContextErlang
(CE), and entity-component-system
(ECS) provide one designated group

membership property per object.
Programmers must manage this
property. Besides assigning the prop-
erty directly, programmers can use
queries to select sets of objects to as-
sign the property to. Either way, the
corresponding code must be manu-
ally inserted at appropriate points in
the control flow.

In our example application, pro-
grammers must manually add code to
the system to explicitly set the group
membership of graphical child objects
whenever the parent object is persisted.
Also, group membership must be up-
dated if the parent is opened up again.

Although the implementations of
explicit mechanisms have limited ex-
pressiveness, they require fewer features
from the surrounding environment.

To enable the explicit assignment
of group membership, the implemen-
tation must track each object’s rel-
evant property. This requires either
modifying the root class or assign-
ing the instance-specific state to ob-
jects, which occurs in LGs and CE.
If neither is possible, the state might
be tracked externally. Furthermore,
when group membership changes,
the behavior must be adapted. LGs
and CE do this when the designated
property changes.

For ECS, the group’s behavior is
added through an external function
working on the group. So, the group
must be updated before the next
function is executed on the group.

Implicit Group Specification
These mechanisms automatically deter-
mine and manage an object’s group
membership on the basis of certain
conditions. They’re considered re-
active because whenever the object
state relevant to group membership
changes, the group membership
will have changed the next time the
adapted behavior is called.

References
1. T. Felgentreff et al., “Lively

Groups: Shared Behavior in a

World of Objects without Classes

or Prototypes,” Proc. Workshop

Future Programming (FPW 15),

2015, pp. 15–22.

2. G. Salvaneschi, C. Ghezzi, and

M. Pradella, “ContextErlang:

Introducing Context-Oriented

Programming in the Actor Model,”

Proc. 11th Ann. Int’l Conf. Aspect-

Oriented Software Development

(AOSD 12), 2012, pp. 191–202.

3. S. Bilas, “A Data-Driven Game

Object System,” presentation at

2002 Game Developer Conf.

(GDC 02), 2002; gamedevs.org

/uploads/data-driven-game

-object-system.pdf.

4. J. Vallejos et al., “Predicated Ge-

neric Functions: Enabling Context-

Dependent Method Dispatch,”

Proc. 9th Int’l Conf. Software Com-

position (SC 10), 2010, pp. 66–81.

5. J. Lincke et al., “An Open

Implementation for Context-

Oriented Layer Composition in

ContextJS,” Science of Computer

Programming, vol. 76, no. 12,

2011, pp. 1194–1209.

6. S. Lehmann et al., “Reactive

Object Queries: Consistent Views

in Object-Oriented Languages,”

Companion Proc. 15th Int’l Conf.

Modularity, 2016, pp. 23–28.

7. T. Kamina, T. Aotani, and H.

Masuharam, “Generalized Layer

Activation Mechanism for Context-

Oriented Programming,” Trans.

Modularity and Composition, LNCS

9800, Springer, 2016, pp. 123–166.

8. P. Rein et al., “Compatibility

Layers for Interface Mediation at

Run-time,” Companion Proc. 15th

Int’l Conf. Modularity, 2016, pp.

113–118.

82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: CONTEXTUAL-VARIABILITY MODELING

Predicated generic functions
(PGFs) and active layers (ALs) let
programmers directly define the con-
ditions designating objects’ group
membership, thus emphasizing objects’

local context. Other mechanisms
such as ROQs, context groups (CGs),
and implied methods (IMs) describe
the conditions with regard to the
complete object space.

Either way, implicit specification
of group membership requires at a
minimum that the surrounding envi-
ronment supports introspection for
individual objects. If a mechanism
supports conditions on the complete
object space, the environment also
must support introspection on the
complete space.

IMs, ALs, CGs, and PGFs influ-
ence the dispatch of the actual object
behavior. Alternatively, the behavior
can be changed eagerly (that is, di-
rectly at the moment) when the object
becomes part of the group, as with
ROQs. This eager change alters an
object’s interface, enabling reflection
on the added behavior. Implementa-
tion of such an eager change requires
tracking all changes to an object.
When a change occurs, the condi-
tions for group membership must
be checked, and the object must be
added or removed from the group.

T he dimension of explicit and
implicit group specification
is a starting point for devel-

opers when they’re deciding between
mechanisms, as they determine the
major tradeoff between expres-
siveness and invasiveness. Another
major factor is how a mechanism im-
pacts the resulting application’s per-
formance. Because no standardized
benchmarks for evaluating group-
based behavior mechanisms exist,
developers must evaluate mecha-
nisms for individual applications.
Future research will look into stan-
dardized performance measures to
compare mechanisms.

Reference
 1. R. Hirschfeld, P. Costanza, and

O. Nierstrasz, “Context-Oriented
Programming,” J. Object Technol-
ogy, vol. 7, no. 3, 2008, pp. 125–151.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

PATRICK REIN is a doctoral researcher in the Software
Architecture Group of the Hasso Plattner Institute, University of
Potsdam. His research interests include live programming and
the combination of personal information systems and program-
ming systems. Rein received an MS in IT systems engineering
from the Hasso Plattner Institute. Contact him at patrick.rein@
hpi.uni-potsdam.de.

STEFAN RAMSON is a doctoral researcher in the Software
Architecture Group of the Hasso Plattner Institute, University of
Potsdam. His research interests include programming-language
design and natural programming. Ramson received an MS in IT
systems engineering from the Hasso Plattner Institute. Contact him
at stefan.ramson@hpi.uni-potsdam.de.

JENS LINCKE is a member of the Software Architecture
Group of the Hasso Plattner Institute, University of Potsdam.
His research interests include live and explorative program-
ming. Lincke received a PhD in IT systems engineering from
the Hasso Plattner Institute. Contact him at jens.lincke@hpi
.uni-potsdam.de.

TIM FELGENTREFF is a senior software engineer at Oracle
Labs. His research interests include programming-language
extensions and high-performance dynamic-language virtual
machines. He previously was a member of the Software
Architecture Group of the Hasso Plattner Institute, University
of Potsdam. Felgentreff received a PhD in IT systems engi-
neering from the Hasso Plattner Institute. Contact him at
tim.felgentreff@hpi.uni-potsdam.de.

ROBERT HIRSCHFELD leads the Software Architecture
Group of the Hasso Plattner Institute, University of Potsdam. His
research interests include dynamic programming languages,
development tools, and runtime environments to make interac-
tive programming more approachable. Hirschfeld received a PhD
in computer science from the Ilmenau University of Technology.
Contact him at robert.hirschfeld@hpi.uni-potsdam.de.

FOCUS
CONTEXT-AWARE AND SMART
HEALTHCARE

36 Guest Editors’ Introduction
Recent Advances in Healthcare Software:
Toward Context-Aware and Smart Solutions
Agusti Solanas, Jens H. Weber, Ayse Basar Bener,
Frank van der Linden, and Rafael Capilla

42 Healthy Routes in the Smart City: A
Context-Aware Mobile Recommender
Fran Casino, Constantinos Patsakis, Edgar Batista,
Frederic Borràs, and Antoni Martínez-Ballesté

48 In the Pursuit of Hygge Software
Henrique Damasceno Vianna, Jorge Luis Victória Barbosa,
and Fábio Pittoli

53 Crowd-Based Ambient Assisted Living
to Monitor the Elderly’s Health Outdoors
Ana Cristina Bicharra Garcia, Adriana Santarosa Vivacqua,
Nayat Sánchez-Pi, Luis Martí, and José M. Molina

CONTEXTUAL-VARIABILITY MODELING

58 Guest Editors’ Introduction
Modeling and Managing Context-Aware Systems’
Variability
Kim Mens, Rafael Capilla, Herman Hartmann, and
Thomas Kropf

64 Learning Contextual-Variability Models
Paul Temple, Mathieu Acher, Jean-Marc Jézéquel, and
Olivier Barais

72 Dynamically Adaptable Software Is
All about Modeling Contextual Variability
and Avoiding Failures
Ismayle de Sousa Santos, Magno Luã de Jesus Souza,
Michelle Larissa Luciano Carvalho, Thalisson Alves
Oliveira, Eduardo Santana de Almeida, and
Rossana Maria de Castro Andrade

78 Group-Based Behavior Adaptation
Mechanisms in Object-Oriented Systems
Patrick Rein, Stefan Ramson, Jens Lincke,
Tim Felgentreff, and Robert Hirschfeld

83 Context-Aware Software Variability
through Adaptable Interpreters
Walter Cazzola and Albert Shaqiri

TABLE OF CONTENTS
November/December 2017 Vol. 34 No. 6

	mso20170600c1
	mso20170600c2
	mso2017060001
	mso2017060002
	mso2017060004
	mso2017060007
	mso2017060013
	mso2017060014
	mso2017060018
	mso2017060021
	mso2017060028
	mso2017060036
	mso2017060041
	mso2017060042
	mso2017060048
	mso2017060053
	mso2017060058
	mso2017060064
	mso2017060071
	mso2017060072
	mso2017060078
	mso2017060083
	mso2017060089
	mso2017060094
	mso2017060098
	mso2017060104
	mso2017060109
	mso20170600c3
	mso20170600c4

