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// Dynamic and distributed systems 
require behavior adaptations for groups 
of objects. Group-based behavior 
adaptation mechanisms scope adaptations 
to objects matching conditions beyond 
class membership. The specification of 
groups can be explicit or implicit. //

AN IMPORTANT ASPECT of dy-
namic behavior adaptations is the 
static description of the scope of sys-
tem parts to be adapted at runtime. 
Some context-oriented programming 

(COP) mechanisms limit behavior 
adaptations to classes.1 However, 
systems with few classes, such as dy-
namic web applications, game en-
gines, or service-based applications, 

require behavior adaptations based 
on more flexible scopes.

So, mechanisms have emerged 
that let programmers adapt the be-
havior of groups of objects (see  
Figure 1). These mechanisms origi-
nate from different use cases and 
programming languages. Here, we 
examine eight of them.

Adapting Objects  
beyond Classes
In the following example of a web-
based presentation application, us-
ers can assemble new graphical 
objects by combining existing ele-
ments through drag and drop. Dur-
ing creation, contained objects can 
be dropped into and dragged out of 
their parent (see Figure 2).

One example adaptation is that 
users should be able to make a com-
position of objects persistent. A per-
sistent composition behaves like a 
primitive object, preventing children 
from being dragged out. Users can 
also edit the composition by “open-
ing it up” so that they can again drag 
the original child objects.

From a technical perspective, you 
can implement this behavior by main-
taining two collections: children and 
persistedChildren. For this feature to be 
implemented, objects that are directly 
or indirectly in persistedChildren shouldn’t 
exhibit the usual drag behavior. Ex-
pressed in code, this means that those 
objects just forward the onDrag behav-
ior to their parents.

Although specifying this variation 
using class-based behavior adaptation 
mechanisms is possible, doing so isn’t 
trivial. One way is to implement the 
new behavior in a common root class. 
However, this implementation as-
sumes that all subclasses call the super-
class implementation and don’t add 
contradictory behavior, which doesn’t 
always hold. Another solution is to 
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use metaprogramming to find and 
adapt each subclass. This solves the 
problem of overridden onDrag callbacks 
but introduces another problem: new 
objects of classes that are introduced 
after the adaptation will miss it.

How Group-Based 
Mechanisms Work
Group-based behavior adaptations 
explicitly describe behavior varia-
tions that are determined not by the 
object’s class membership but by its 
group membership (see Figure 1). So, 
mechanisms for such adaptations 
comprise two parts: group specifica-
tion and behavior adaptation.

There are two main ways to spec-
ify a group: programmers can ex-
plicitly add objects, or membership 
can be inferred from specific object 
properties. Mechanisms that employ 
explicit specification are easier to 
implement and have less impact on 
the language semantics. Mechanisms 
that employ implicit specification re-
quire less work from programmers 
to maintain groups.

By specifying a group, program-
mers provide a scope for the corre-
sponding behavior adaptations: the 
adaptation is active while the object 
is a group member. Also, this group 
scope can be combined with other 
scoping mechanisms, such as dy-
namic scoping.

Programmers can describe a 
group’s behavior adaptations in sev-
eral ways that are also available in 
class-based adaptation mechanisms:

• COP layers,
• single methods to be added, or
• functions working on the whole 

group.

In general, behavior adaptations can 
both modify existing behavior and 
add new behavior.

In our example application, we 
use reactive object queries (ROQs; 
for more on them, see the sidebar). 
We specify a group of objects declar-
atively through the following query 
in JavaScript:

let group ! select(GraphicalElement,
 element !" element.hasParent(
   (parent, child) !" parent. 

persistedChildren.includes(child)));

The select function creates a new 
group that contains instances of the 

class GraphicalElement, which fulfills the 
condition expressed in the anony-
mous function passed as the second 
parameter. The method hasParent is 
a domain-specific call that checks 
whether an element has a parent 
that fulfills a certain criterion, again 
passed as an anonymous function.

The group is maintained auto-
matically by the ROQ, which listens 
for object-state changes that could 
affect the query result. We then ac-
tivate a behavior adaptation on the 
group through the following call, 
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FIGURE 1. The possible scopes in (a) class-scoped behavior adaptation mechanisms 
and (b) group-based behavior adaptation mechanisms. Boxes denote classes, the 
inclusion of boxes denotes a subclass relation, and the dashed line denotes an example 
scope of an adaptation.
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FIGURE 2. A behavior to be implemented (top) and the corresponding object graph 
(bottom). (a) Graphical objects in the children collection should handle the drag event 
themselves. (b) Graphical objects in any persistedChildren collection should forward the 
drag event to their parent element.
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GROUP-BASED BEHAVIOR ADAPTATION 
MECHANISMS
The following eight mechanisms illustrate the spectrum of 
implementations and use cases for group-based behavior 
adaptations. With these mechanisms, groups are specified 
either explicitly or implicitly.

EXPLICIT SPECIFICATION
Lively groups (LGs) are designed for interactive program-
ming environments in which programmers create applica-
tions by combining objects.1 LGs start off with plain objects 
and then add state and behavior to these objects indi-
vidually. They let programmers describe behavior shared 
among the objects. The behavior is defined for a tag, which 
is assigned manually or programmatically to individual  
objects or groups of objects.

ContextErlang (CE) is an actor-based language that pro-
vides dynamic behavior adaptation.2 Traditional object- 
oriented behavior adaptation mechanisms aren’t a good fit 
for actor-based languages because there are no classes and 
message sends are asynchronous. CE lets programmers 
activate and compose behavior adaptations on individual 
actors through message sends. In that regard, it’s similar to 
LGs, but it also supports synchronization of adaptations in an 
asynchronous environment.

Entity-component-system (ECS) is an architecture for 
scaling computer game development with regard to the 
myriad dynamic combinations of behaviors of game objects.3 
ECS splits a game object into three parts:

 • The entity is the object’s mere identity.
 • Components constitute the data for each aspect of the 

object.
 • The system constitutes the game logic working on 

multiple entities.

A group is defined by the set of components an entity 
must include. Systems are executed as part of the game 
loop and define the behavior common to all of that group’s 
objects. Group maintenance is synchronized with the execu-
tion of systems through the game loop.

IMPLICIT SPECIFICATION
Predicated generic functions (PGFs) extend the dispatch 
mechanism for functional object-oriented environments, 

such as the Common Lisp Object System (CLOS).4 A PGF 
is a family of methods, similar to CLOS generic functions. 
Each PGF implementation contains a set of predicates. 
When a PGF is invoked, the concrete implementation 
is selected on the basis of predicates that are checked 
against the parameters. In this way, it can be determined 
to which groups of objects the concrete implementation 
applies.

Active layers (ALs) are an implementation of context-
oriented behavior adaptation that allows for user-defined 
scoping dimensions beyond dynamic scoping.5 ALs 
achieve this by moving the layer composition into  
objects. During the method dispatch, activeLayers is  
called on the object. Programmers can override this 
method to change the layer composition. The behavior 
adaptations can be scoped to groups of objects but are 
prone to the subclassing issue we describe in the main 
article.

Reactive object queries (ROQs) aim primarily to free pro-
grammers from manually maintaining collections.6 Through 
ROQs, programmers can declaratively describe collections 
of objects on the basis of their properties. The collections 
are maintained automatically. Because they denote relevant 
groups of objects, they can also be regarded as explicit 
scopes. To adapt behavior, ROQs allow for the activation of 
context-oriented programming (COP) layers for a collection’s 
members.

Context groups (CGs) are a mechanism of the Serv-
alCJ system that includes a generalization of activation 
models commonly found in COP systems.7 Using CGs, 
programmers specify groups by describing combinations 
of activation conditions and activation scopes, which both 
describe the activation of COP layers. An object can then 
become a member of a CG and will thereby be subject 
to its behavior adaptations whenever a partial method is 
called.

Implied methods (IMs) support behavior reuse in sce-
narios the behavior’s original developer didn’t anticipate.8 An 
IM consists of a set of conditions with which objects must 
comply and a method implementation that’s added to the 
interface of matching objects. The conditions aim to reveal 
whether it’s semantically correct to provide the method for 
an object.
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which modifies the onDrag method’s 
behavior for all its members:

group.layer({
 onDrag() {
  return this.parent.onDrag(event);
 }
});

This implementation directly ex-
presses the desired functionality. Al-
though it still explicitly mentions a 
class, it’s used only as a representa-
tive of the set of all instances of the 
class and thus as the base set for the 
query. So, it works for all subclasses 
of GraphicalElement, even future ones. Ad-
ditionally, whenever objects are added 
to or removed from persistedChildren, the 
adapted behavior will be activated or 
deactivated automatically.

Group-based behavior adaptation 
mechanisms are best applied when 
the environment doesn’t provide 
classes (for example, actor- or proto-
type-based languages) and when var-
ious systems or users can contribute 
objects to the system (for example, 
distributed systems, service-oriented 
architectures, or complex interactive 
systems such as games). In these sce-
narios, a behavior adaptation’s de-
veloper can’t anticipate the objects’ 
concrete classes but might still want 
variations to apply.

A Look at Explicit and 
Implicit Mechanisms
Here we examine how mechanisms 
can specify groups explicitly or im-
plicitly by looking at the eight mech-
anisms we mentioned earlier. For 
more details on each mechanism, see 
the sidebar.

Explicit Group Specification
Lively groups (LGs), ContextErlang 
(CE), and entity-component-system 
(ECS) provide one designated group 

membership property per object. 
Programmers must manage this 
property. Besides assigning the prop-
erty directly, programmers can use 
queries to select sets of objects to as-
sign the property to. Either way, the 
corresponding code must be manu-
ally inserted at appropriate points in 
the control flow.

In our example application, pro-
grammers must manually add code to 
the system to explicitly set the group 
membership of graphical child objects 
whenever the parent object is persisted. 
Also, group membership must be up-
dated if the parent is opened up again.

Although the implementations of 
explicit mechanisms have limited ex-
pressiveness, they require fewer features 
from the surrounding environment.

To enable the explicit assignment 
of group membership, the implemen-
tation must track each object’s rel-
evant property. This requires either 
modifying the root class or assign-
ing the instance-specific state to ob-
jects, which occurs in LGs and CE. 
If neither is possible, the state might 
be tracked externally. Furthermore, 
when group membership changes, 
the behavior must be adapted. LGs 
and CE do this when the designated 
property changes.

For ECS, the group’s behavior is 
added through an external function 
working on the group. So, the group 
must be updated before the next 
function is executed on the group.

Implicit Group Specification
These mechanisms automatically deter-
mine and manage an object’s group 
membership on the basis of certain 
conditions. They’re considered re-
active because whenever the object 
state relevant to group membership 
changes, the group membership 
will have changed the next time the 
adapted behavior is called.
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Predicated generic functions 
(PGFs) and active layers (ALs) let 
programmers directly define the con-
ditions designating objects’ group 
membership, thus emphasizing objects’  

local context. Other mechanisms 
such as ROQs, context groups (CGs), 
and implied methods (IMs) describe 
the conditions with regard to the 
complete object space.

Either way, implicit specification 
of group membership requires at a 
minimum that the surrounding envi-
ronment supports introspection for 
individual objects. If a mechanism 
supports conditions on the complete 
object space, the environment also 
must support introspection on the 
complete space.

IMs, ALs, CGs, and PGFs influ-
ence the dispatch of the actual object 
behavior. Alternatively, the behavior 
can be changed eagerly (that is, di-
rectly at the moment) when the object 
becomes part of the group, as with 
ROQs. This eager change alters an 
object’s interface, enabling reflection 
on the added behavior. Implementa-
tion of such an eager change requires 
tracking all changes to an object. 
When a change occurs, the condi-
tions for group membership must 
be checked, and the object must be 
added or removed from the group.

T he dimension of explicit and 
implicit group specification 
is a starting point for devel-

opers when they’re deciding between 
mechanisms, as they determine the 
major tradeoff between expres-
siveness and invasiveness. Another 
major factor is how a mechanism im-
pacts the resulting application’s per-
formance. Because no standardized 
benchmarks for evaluating group-
based behavior mechanisms exist, 
developers must evaluate mecha-
nisms for individual applications. 
Future research will look into stan-
dardized performance measures to 
compare mechanisms.
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