
Exploratory Development of Data-intensive Applications
Sampling and Streaming of Large Data Sets in Live Programming Environments

Patrick Rein
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
patrick.rein@hpi.uni-potsdam.de

Marcel Taeumel
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
marcel.taeumel@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
robert.hirschfeld@hpi.uni-potsdam.de

Michael Perscheid
SAP Innovation Center
Potsdam, Germany

michael.perscheid@sap.com

ABSTRACT
Business applications are usually data-intensive. The process of de-
signing and implementing such applications benefits from working
with realistic data to sharpen requirements and discover pitfalls.
However, such data is usually quite extensive and the feedback cy-
cles during programming and design activities can become long and
distracting. As a result, programmers might prefer abstract thinking
and mental simulations over working with concrete, realistic data.
We propose a new approach supporting live programming, with
immediate feedback and explorable runtime data, for the domain of
data-intensive business applications on top of relational databases.
With the integration of streamed access to sampled data, we can
employ productive traits of a live programming environment such
as Squeak/Smalltalk, which is not optimized for the processing of
huge amounts of data and is hence not well-suited for such tasks.
We describe two representative scenarios and also discuss limitati-
ons by putting our approach in relation to the current development
of business applications.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; • Information systems → Middle-
ware for databases;

KEYWORDS
live programming, business applicationd evelopment, streaming,
sampling, relational databases
ACM Reference format:
Patrick Rein, Marcel Taeumel, Robert Hirschfeld, and Michael Perscheid.
2017. Exploratory Development of Data-intensive Applications. In Procee-
dings of Programming Experience Workshop, Brussels, Belgium, April 03, 2017
(PX/17), 11 pages.
DOI: http://dx.doi.org/10.1145/3079368.3079399

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PX/17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4836-2/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3079368.3079399

1 INTRODUCTION
Live programming – editing a program while it is running – promi-
ses short feedback loops for developers in situations where require-
ments and constraints are not well-known in advance to develop-
ment. This exploratory style of programming is well-supported by
various environments for different use cases, such as developing
graphical desktop applications, developing web applications, and
even live music performances [6, 9, 10, 13, 27]. However, for ap-
plications working with large data sets, such a live programming
experience is difficult to provide because live programming partly
relies on a sense of immediacy, which is supported by tools for ma-
nipulating runtime data and a short timespan between changes to
source code and perceiving changed behavior in the system [21, 26].
Computation on large data sets requires considerable time and thus
delays feedback, as a visible change in the behavior of the system
takes longer to emerge. Further, as data sets are large and often
stored in remote systems, such as relational databases, interactively
exploring or manipulating the data is often cumbersome as, for
example, data has to be loaded from the remote system first and
often requires a manual conversion of data types. Beyond that, most
application development environments are not designed for deve-
lopers using concrete query results directly to build an application
from it.

For the use case of analyzing large data sets, several systems
have been designed to address this challenge, for example Sintr [3]
or Tempe [4]. Both systems are designed for a scenario in which
developers interact with the system to analyze a given data set.
Large data sets, however, do not only occur in the context of data
analysis but also in the context of common application development.

An example of a business application which is based on com-
putations on large data sets, is the implementation of the dunning
process in companies. The dunning process is similar to an ana-
lytical scenario as it requires the aggregation of past billing and
shipping data for all customers [18]. From the perspective of a
user however, the application for viewing overdue customers and
sending out dunning letters is transactional. Thus, even when de-
veloping applications such as tools for the dunning process, develo-
pers face similar issues regarding response times and manipulation
capabilities for runtime data as they face in the context of data
analysis.

In the end, this also impedes the feedback cycle between cus-
tomers and developers. A short delay between a modification of

1

PX/17, April 03, 2017, Brussels, Belgium Patrick Rein, Marcel Taeumel, Robert Hirschfeld, and Michael Perscheid

source code and a visible change in the behavior of the application
could support participatory design [23], as customers can directly
provide feedback on changes.

Thus, we propose a programming environment which brings the
idea of live programming, with immediate feedback and explorable
runtime data, to the domain of developing data-intensive business
applications on top of relational databases. It provides two tools: an
SQL workspace for creating queries and a table view for viewing
result sets. The tools are build on two key mechanisms: streaming
and sampling. The first provides timely feedback by streaming the
results of long-running queries in order to provide developers with
early feedback even if the final result is not known yet. The second
mechanism enables the immediate exploration and manipulation
of data-sets through providing samples of the underlying data set
instead of the full data set. Thereby, developers can experiment
with the concrete query results without using up resources of the
development environment. Further, the data is provided as first
class objects of the surrounding development environment and can
thus be inspected with the same tools which can be used to inspect
common runtime objects. We have implemented a first prototype
of these tools in Squeak/Smalltalk and used them to create two
exemplary business applications. While one is a generic histogram
tool which can be used for any table, the other is a real-world use
case around the dunning process in companies.

Overall our contributions in this paper are:
• The design of tools (SQL workspace and table view) and

means (sampling and streaming) for improving feedback
in the development of data-intensive business applications
working with relational databases

• A first prototypical implementation of the tools and me-
chanisms in Squeak/Smalltalk [9]

• Two exemplary scenarios for developing graphical busi-
ness applications in which our proposed live programming
environment for data-intensive applications can be benefi-
cial: A tool supporting dunning as a business process, and
a generic histogram for exploring query results

The remainder of the paper is structured as follows. In Section 2,
we give a short overview of live programming concepts and sys-
tems based on immediate feedback and explorable runtime data. In
section 3 we will briefly outline the mechanisms and their imple-
mentations for enabling live programming for application develop-
ment with large data sets. The workflow for developing graphical
business applications in our environment is described in in Section 4
based on two example scenarios. In Section 5, we compare our
approach to existing environments for business application deve-
lopment before we conclude the paper and give an overview of our
next steps in Section 6.

2 LIVE PROGRAMMING AND BUSINESS
APPLICATION DEVELOPMENT

Before describing our approach, we first give an overview of the na-
ture of business application development and how it could generally
benefit from a shorter feedback loop. We then introduce the aspects
of immediacy and tangibility of live programming environments
as a possible approach to shortening the feedback loop in business
application development. We also describe the Squeak/Smalltalk

system, which already covers many of described aspects of live
programming.

2.1 Business Application Development
Short feedback cycles can be beneficial for the development of bu-
siness applications. While there are standardized product lines for
enterprise resource planning (ERP) systems, many components are
still developed for individual companies and their particular busi-
ness processes [20]. For the success of an ERP system deployment it
is essential, that the business processes implicit in the ERP system
fit the company’s processes [8]. If an adaptation of the business
processes within the company is not desirable, the ERP system is
customized. To bring the customizations of the ERP system close
to the customer’s processes, developers sometimes work directly at
the location of the customer. Ideally, they also directly involve the
people affected by the process to be implemented [23].

Further, working directly with existing data of the customer’s
ERP system data is crucial for the successful development of these
applications. Using generated test data is often not viable or not
useful as it can not reflect the particularities of actual production
data in an ERP system. For example, if the database structure has
been modified over a long period of time by various parts of the
organization, the structure does often not match the standard struc-
ture anymore. Further, the values used in certain fields can have
special meaning in the context of the one organization. For example,
it might be customary for users of a form for entering insurance
claims to enter 99999 in the zip code field, if the zip code is unknown.

Generally speaking, when working directly with customer data
and at the customer’s location, timely feedback in such a scenario
could enable developers to directly get feedback from the customer.
Thereby, they could determine whether the application does fulfill
the requirements and could enable them to directly incorporate the
customer feedback even during discussions.

2.2 Liveness and Immediate Feedback
One way to enable this short feedback loop is to enable program-
mers to directly edit the application while it is running. Thereby,
they can evolve the code directly based on the observed behavior
of the application working on concrete data. In general, the feature
of editing an application while it is running is at the core of live
programming environments.

To bridge the gap between the static representation of the appli-
cation behavior and its actual dynamic behavior, many live systems
provide quick feedback on changes to the behavior of the system as
a result of a change in the source code [17, 26]. Thereby, they strive
for an experience of enabling the developers “to edit a program
while it is running” [25]. While there are no explicit recommen-
dations on upper bounds of the response time of the system the
system should generally continue execution “without noticeable
interruption according to the updated version of the program” [25].
A noticeable interruption occurs, for example, if a query is send to
a database, and the completion of the query takes several seconds.
Besides that, the context in which the change was applied should
be preserved, for example graphical objects should not be deleted
and re-created but continue to be visible, now behavior according
to their new behavior [7].

2

Exploratory Development of Data-intensive Applications PX/17, April 03, 2017, Brussels, Belgium

2.3 Liveness and Tangible Objects
In order to support the exploration of the dynamic behavior of
the system further, some environments provide means to inspect,
navigate, and manipulate runtime data [6, 26]. These means make
runtime data tangible, as developers can directly interact with them.
The impression of tangibility can be amplified by providing some
kind of visual representation which can be used to interact with
the object, for example a generic tool which displays the attributes
of an object or a list of objects which can be manipulated through
context menus. In contrast, in systems in which objects are not
tangible, developers might only be able to read values of certain
objects they specified at compile time.

Prior work hints, that making exemplary data accessible in the
development environment can also be beneficial for the co-creation
of software by programmers and non-programmers [11]. Thus, it
could also be beneficial for the context of business application deve-
lopment when business domain experts and programmers develop
software together.

At the same time, the visual representation of runtime objects
does not have to constitute a complete direct manipulation interface
which requires the representation of objects to lend to some degree
to physical metaphors [21]. Arbitrary runtime data might be too
abstract for such a representation to exist.

Overall, through tangible objects developers can interactively
explore the dynamic relationships of objects which result from the
static source code.

2.4 Squeak/Smalltalk
Squeak/Smalltalk is a live programming environment which can be
used to build graphical desktop applications. As it is based on the
Smalltalk language, everything in the system is an object, including
the meta-structures of classes and methods [6]. Squeak/Smalltalk
support the hot-swapping of code by replacing the method object
in the method dictionary of the class object. As the compilation
and hot-swapping take place in under 50 ms the application can
continue without a “noticeable interruption” [19].

Also, most of the environment is self-supporting as the develop-
ment tools, such as the code browser, the debugger, or the inspector
for inspecting the state of objects, are all written in Smalltalk and
are running in the same process [6, 9]. Squeak/Smalltalk makes run-
time data tangible to some extent through the object inspector tool
(see Figure 3 for a Smalltalk-style inspector). It allows developers
to inspect and navigate through all objects available in the system.
By executing small scripts on the object, the inspector also allows
for manipulating these objects.

While live programming environments, such as Squeak/Small-
talk, are well-suited for general application development, the live-
ness can lead to challenges regarding large data-sets. For example,
as Squeak/Smalltalk is self-supporting, development tools and appli-
cation data share the same resources. Thus, a large data set uses up
memory which is also required by the environment itself. Similarly,
when processing large amounts of data within the environment,
the processing time is not available for the interactive tools and
thus the overall environment might become unresponsive.

Morphic

Vivide

OS Process Library Object Serialization

Streaming Collections

SQL Workspace / Table View Histogram / Dunning Tool

Squeak/Smalltalk System

Figure 1: A diagram illustrating the basic architecture of our
approach. Our contributions are highlighted in orange and
the tools created in the case studies are highlighted in blue.
All four are created using the Vivide tool building frame-
work and use the streaming collection data structure.

3 MEANS FOR LIVE PROGRAMMING OF
BUSINESS APPLICATIONS

Wewill describe the tools and mechanisms designed for providing a
live programming experience. The tools are based upon the Vivide
tool-building environment [24] which is an essential part of the re-
sulting environment. Figure 1 shows the basic relation between the
mechanisms we propose, the created development and application
tools, and the surrounding libraries and frameworks.

3.1 Tools
The main entry point for developers of data-intensive business
applications in our environment are two tools: the SQL Workspace
and the Table View. To illustrate the difference between their functi-
onality and the functionality provided by the surrounding Vivide
environment we first give a short introduction to Vivide.

3.1.1 The Vivide Environment. Vivide is an extension of the
Squeak/Smalltalk environment which eases the development of
graphical tools by taking a data-driven perspective on them [24].

As a framework, it helps developers to develop graphical tools by
separating the code which prepares the data to be displayed from
the code which deals with the details of graphical components, like
rendering or event handling. As a programming environment, it
changes the workflow, as the objects themselves become central
to user interactions. For example, instead of opening a class brow-
ser, the developer opens a set of class objects, optionally filters
and transforms them, and finally selects a graphical component
to display the resulting data set. It also allows the programmer to
combine existing tools by defining a data flow between them, such
as the connection between the input sandbox and the parse result
visualizer.

Scripts and Views. In Vivide, the code which prepares the data
for displaying is represented as a script. The visual component
displaying this data is called a view and can be a list, a tree, or even
a three dimensional visualization of a graph. Typically, one tool
has several scripts which transform domain objects to the target
data set and the corresponding view configurations. A view will
get the resulting view configuration as an input and render the
elements appropriately. For example, if the collection of methods is
rendered as a list, then each method becomes a list item with the

3

PX/17, April 03, 2017, Brussels, Belgium Patrick Rein, Marcel Taeumel, Robert Hirschfeld, and Michael Perscheid

Figure 2: A screenshot of the SQL workspace on the left and the TableView on the right. The two windows are connected so
that the result data of the SQL query flows from the SQL workspace to the TableView.

method selector as its label. The combination of scripts and a view
is captured in a pane, for example the rule browser combining a
script for extracting rules from a grammar and a list view.

Data-driven Tool Construction. Every pane has an output which is
determined by the view. For example, when a user selects a method
from a list view containing methods, the output of the pane of the
list is the selected method object. This output can be connected to
the input of another pane. For example, a developer could create
a list of classes and connect its output to the input of our pane,
listing the methods of a class. These combinations of panes through
connections can also be grouped together to form single tools.

Figure 3: A Vivide object inspector showing the contents of
a data record. The input field below the list allows for the
execution of scripts on the object.

3.1.2 SQL Workspace. The SQL workspace (see Figure 2) can be
used to edit SQL queries and send them to a database. Developers
can edit the query and on hitting the saving keyboard shortcut the
query is send off to the database. The workspace produces a query
result object. This object can directly be used to create new tools

by using it as example input for a Vivide script. Thereby, it is an
entry point to developing a new application.

The concrete database that the query is sent to, can be defined
globally for the environment or locally for a single workspace. As
the workspace is a Vivide pane it provides the query result object
at its outgoing data flow port. Whenever, the query is saved, the
workspace produces a new result object at its outgoing port.

3.1.3 Table View. The database table view (see Figure 2) displays
query results originating from the SQL workspace. It displays the
result as a table, as it resembles the model behind relational databa-
ses. At the same time, each row in the table is an actual object. It
can be dragged out of the list and when dropped on the screen, the
environment opens an object inspector for it (see Figure 3) which
can be used to inspect and manipulate the record. Changes to the
record object are not propagated back to the database (see Section
3.2.3). The table view itself is also a Vivide pane and provides the
currently selected rows at its outgoing port.

3.2 Mechanisms
3.2.1 General Architecture. The goal of our approach is to enable

interactive programming. Hence, we have to keep the user interface
of the programming environment responsive even when developers
create long-running queries. Therefore, we generally separate the
graphical user interface from the processing of queries. To imple-
ment this, we create a new operating-system-level process of the
virtual machine and let this second process handle the communi-
cation with the database and the conversion of objects. Thereby,
our graphical development environment is not affected by the pro-
cessing and memory demands of the database communication. To
get the query results, we create a proxy object in the development
environment which represents the results of the query. This proxy
regularly polls the remote process to fetch successfully processed
data. Also, the proxy provides a collection interface which allows
developers to use it like a common Smalltalk collection.

3.2.2 Sampling for Making Large Data Sets Tangible. A major
issue for working interactively with large data-sets is their size. It
is often not possible to get an exact understanding of the whole
data set. Further, exploring a large data set through scripting in

4

Exploratory Development of Data-intensive Applications PX/17, April 03, 2017, Brussels, Belgium

the development environment is infeasible due to resulting long
processing times. If the data is stored in a database, the problem
is worsened as developers can only start working with the data
after the transmission of the result set. We propose to mitigate
this issue by developing applications by only using samples of
the data. The basic idea of this mechanism is that developers only
work with samples of the original query result in the development
environment. These samples should ideally contain a much smaller
but nevertheless representative sample of the result. This sample
can then be used to inspect the data and to develop the application.

Further, to still provide insights on the overall structure of the
data set, the object representing the query result also provides
methods to access value distributions of the single columns of the
result and the overall result count.

Implementation. The sampling mechanism can be implemented
either as part of the SQL query or in the environment itself. When
implementing it by extending the original database query, one
would wrap the SQL query in another query which only returns
a subset using the LIMIT operator or the SELECT TOP clause. This
approach will, however, only return the first results of the query
and not a real random sample. Alternatively, the sampling could be
implemented by sorting the query results using a random number
and limiting the resulting results. This approach suffers from the
constraint, that the complete query result has to be computed first
to provide an ordering which can then be used to return the sample.
Further, even the random ordering approach does not provide a
representative sampling. However, even a stored procedure which
produces representative samples would require a complete query
result. A heuristic approach would be needed to provide both, short
query execution time and representative results.

As our design favors quick feedback on query results, we have
implemented the simple case of limiting the query results. Also, the
query result object provides methods to get the value distribution
of any field so developers can get an impression of the actual values
which could occur.

3.2.3 Making Query Results Tangible. Squeak/Smalltalk provi-
des tools for inspecting and manipulating runtime objects. At the
same time, when working with database data, the data is often only
available as numbers or strings. To be able to use the tool set with
query results, we return the result records as objects. Therefore, we
first map primitive values to actual Smalltalk objects, for example
values representing a Date to Date objects. We then create an object
which has getter methods for all fields of the record and fill the
object with the fields of the record. Generating generic setter met-
hods is not trivial, as the query could have generated a projection
which makes it impossible to map a field in the result to a field in a
database table.

Implementation. The conversion of data values to corresponding
Smalltalk objects is partially done by the database access library.
However, for example in the dunning scenario (see Section 4), the
data is mostly stored in strings. To still obtain objects, we have
implemented simple heuristics which infer the type of the field
from the syntax of the string representing it. After the values are
all converted, they are stored in a DYDictionary, which maps the
fields names to its values. To enable access to the fields via message

sends, the DYDictionary class overrides the doesNotUnderstand:
callback which is called whenever a message was not understood.
The callback then checks the message name and if it matches a
key in the dictionary returns the value. The complete conversion
is executed in the database communication process in order to not
use up resources of the interactive environment process.

3.2.4 Streaming into Collections for Providing Immediate Feed-
back. Returning only a subset of the overall query results shortens
the time between sending a query and getting first results. However,
when the query requires a lot of computation per result record, even
fetching the limited sample might take a long time and thereby
inhibit the sense of liveness in the system. Thus, our environment
streams all data which is retrieved from the database in the way
Sintr and Tempe demonstrated [3, 4]. This includes, overall query
results, samples, as well as information on the distribution of values
in columns. The focus is on reducing response times for individual
queries. Thus, the streaming stops as soon as the entire information
was retrieved. In particular, it does not update the query result
when the database changes.

As query results should be tangible, the streaming is hidden from
the application developer. The environment provides a collection
interface on the query result, asmentioned before, and the collection
content is continuously updated in the background. To deal with
these changes in the content of the collection, the result collection
additionally provides an observer mechanism which notifies clients
whenever the collection changed.

Implementation. As described before the retrieval and conversion
of data from the database happens in a separate process. Such a
process is started for each query and for each request for the value
distribution of a column. After retrieving and converting the data,
these processes write the result objects onto a ReferenceStream
which converts the objects into a transmission format. This data
is then written to an operating system pipe. In the development
environment a periodic callback is executed which reads the other
end of the pipe through a ReferenceStream and adds them to the
corresponding result collection.

The collection integrates with the Vivide notification system.
Whenever, the collection has been updated the collection sends
out an event. Tools can register for this event from that particular
collection.

4 BUILDING DATA-INTENSIVE
APPLICATIONS IN A LIVE ENVIRONMENT

Our environment can be used to develop business applications and
data analysis tools. We demonstrate both use cases. First, we show
how to incrementally build a graphical tool supporting the dunning
process based upon a real-world business use case. Second, we
demonstrate that the same mechanisms can also be used to build
general data analysis tools, such as a histogram.

4.1 Building a Dunning Application
The dunning process is an important financial process in ERP sy-
stems. The analytical part determines the set of customers with
open debit. Some ERP systems allow for automatic sending of dun-
ning notices [5]. In our scenario, we will develop a graphical tool

5

PX/17, April 03, 2017, Brussels, Belgium Patrick Rein, Marcel Taeumel, Robert Hirschfeld, and Michael Perscheid

(a) First version of dunning tool

(b) Adding the deficit of each customer

Figure 4: Screenshots of four versions of the dunning tool each showing the tool on the left and the corresponding script editor
on the right. All four steps use the same SQL query result object.

6

Exploratory Development of Data-intensive Applications PX/17, April 03, 2017, Brussels, Belgium

(c) Sorting the list of customers by increasing balance

(d) Adding a button for sending out an email

Figure 4: Screenshots of four versions of the dunning tool each showing the tool on the left and the corresponding script editor
on the right. All four steps use the same SQL query result object.

7

PX/17, April 03, 2017, Brussels, Belgium Patrick Rein, Marcel Taeumel, Robert Hirschfeld, and Michael Perscheid

which allows users to manually determine which customers to send
notices to. The example data we use is based on actual SAP ERP
database tables. All columns contain the values encoded as strings.
The example data is generated but adheres to the actual domains
of the columns.

The dunning process is a data-intensive business process, as it in-
volves collecting all invoices and payments from each customer and
summing them up against each other. Only then can the overdue
customers be selected [18].1

4.1.1 Creating the List of Debitors. Given that we already have
an SQL query to determine the list of debitors, we can begin develo-
ping the tool by executing the dunning query in the SQL workspace
(the SQL workspace in Figure 2 shows the query). As a result, we
get a SQL result object which contains a sample of the query results
which is already updating in the background. We now open a new
Vivide pane and connect the outgoing port of the SQL workspace
to the ingoing port of the empty pane and open the script editor.
In the new script for the pane, we add one script to get the sample
results from the query result object:

[:row | sqlResultStream queryResults]

We then add another script which creates a text property for
each row in the result which states that the text of a list item should
be the full name of the customer (see Figure 4a):

[:row | { #text
-> (row NAME1 , ' ' , row NAME2) }]

Based on this initial view of the dunning tool we can now iterate
the tool until it includes all relevant information: customer name,
customer id, and balance (see Figure 4b). To make it easier to spot
the customer with the most debit, we also sort the list increasingly
according to their deficit, which brings the customers with the
highest debt on top (see Figure 4c):

[:row | row DEFICIT: row CREDIT - row DEBIT]
[:rows | rows sorted:
[:a :b | a DEFICIT < b DEFICIT]]

4.1.2 Sending out Dunning Notices. The list should also contain
a way to interactively send out dunning notices. Therefore, we want
to add a button for sending out a dunning email. As a first step, we
create a new script, which we then add to the existing dunning list
pane. Thereby, the list pane becomes a multi pane, which is a pane
of panes. In there we connect the outgoing port of the dunning list
with the ingoing port of the new empty script. Thereby, the new
script receives the selection in the dunning list as its input and we
have an example with which we can develop the button to send of
dunning notices.

In order to display buttons, we have to change the view of the
pane from a standard list view, to a ViPluggableButtonBarMorph.
We can then define the appearance and the functionality of the
button (see Figure 4d). For this demonstration we have left out the
details of sending dunning notices:

1See the screencast at https://vimeo.com/202395765 to get an impression of the the
interactive nature of the tool building process (In case any source code in the screencast
differs from the described code, the described version is the current one).

[:row | {
#text -> ('Send Dunning Mail to: ' ,
row NAME1 , ' ' , row NAME2).

#clicked -> [[
"... Send out notice ..."
row DUNND: true]]

}]

At this point, we can select a customer from the list and send a
dunning notice to the customer by clicking the button. To update
the list of customers to be inspected we have to notify the list of
customers that there has been a change. Therefore, we set the list
script to listen for the #dunningListChanged event which we send
out on clicking the notice button:
...
#clicked -> [[
"... Send out notice ..."
row DUNND: true.
ViEventNotifier
trigger: #dunningListChanged]]

...

4.1.3 Wrapping up the Tool. We have developed the tool based
on the query result object originating from the SQL workspace. To
make the tool self-contained, we have to make it independent from
this initial input. The query result object provides a method to re-
execute the underlying query and be filled anewwith the new query
results. To expose this functionality to the user, we create another
button. It receives the complete collection of database records from
the customer list, picks any, determines the source result object, and
calls refresh on it. At this point, the dunning tool is self-contained
and does not require the original SQL workspace anymore.

4.2 Building a Histogram
Histograms can be used to get an overview of the value distribution
of large query results. The histogram tool illustrates how the same
tool building techniques used for creating a business application
can also be used for creating a more generic tool. The tool is based
upon the capability of the query result object to return the count
of distinct values per column.

The histogram (see Figure 5) consists of three parts: a list of field
names, a bar chart, and a display of the number of rows used for
the bar chart. The tool accepts a query result object as its input.
The bars of the chart are colored in orange as long as the histogram
is based on a sample of the data. In the background the aggregation
keeps running and the bar chart regularly updates to provide the
user with incremental feedback. When the histogram is showing
the complete value distribution, the bars turn green (see Figure 5b).

The histogram tool first passes the incoming query result object
to the list of field names which takes the first record from the result
object and displays its field names:
[in first getSamples
ifEmpty: [#()]
ifNotEmptyDo: [:samples | samples first]]

value in: [:result |
out addAll: result asList

[out addAll:
([:records | (records

8

https://vimeo.com/202395765

Exploratory Development of Data-intensive Applications PX/17, April 03, 2017, Brussels, Belgium

(a) (b)

Figure 5: Screenshots of the histogram tool developed in the environment. It streams results and incrementally improves
the counts of single buckets. When the histogram displays the complete distribution it turns green. In this case the initial
histogram (a) is already very close to the complete version (b).

ifEmpty: [#()]
ifNotEmptyDo: [:theRecords |
theRecords first keys
collect: [:k | k asSymbol]])

sorted]

[:symbol |
{ #text -> symbol asString }]

The pane on the right displays its data as a bar chart and accepts
two inputs: the query result and the selected field name from the list
of field names. The script of the bar chart, asks the query result for
the distribution of values for the selected field name. The resulting
DYHistogram object is then asked for a number of buckets, in our
case 5.

[:results :fieldName |
| buckets|
buckets :=
(results getDistributionFor: fieldName)
bucketsForResolution: 5.

{ buckets .
results getResultCount .
(buckets collect: [:b | b count]) sum

} asTuples]

The resulting tuples consist of one bucket, the overall result
count, and the sum of all elements currently in the buckets. These
tuples are then mapped to view configurations for the single bars
in the bar chart.

[:bucket :resultSum :bucketSum | {
#value -> bucket count .
#balloonText -> bucket count asString.
#color -> (resultSum = bucketSum
ifTrue: [Color green paler]
ifFalse: [Color orange darker paler]) .

#text -> bucket bucketLabel}]

The panel displaying the current number of records used for cal-
culating the histogram gets the result object as its input. It directly
displays the sum of the count of records of all buckets.

So far, the histogram would only display the bar chart once
on selecting a field in the list of field names. To make use of the
streaming of results, the script also has to sign up for the events
generated by the query result object similar to the way done in the
dunning tool.

4.3 Discussion
The proposed tools and mechanisms target the exploratory phase
of business application development. While the developed applicati-
ons can also be used in production settings, the resulting deliverable
would have to be adapted to fit into the overall development pro-
cesses of business applications. For example, the application might
have to undergo a security audit or be adjusted to fit the user in-
terface style guide of the overall system. Further, the environment
currently supports cheap tool adaptation which might not be de-
sirable in a business application scenario. Consequently, it might
be required to lock the final version of a tool for deployment. This
could easily be added to our approach.

The short feedback cycle in the environment is made possible
by the two mechanisms of sampling and streaming. While they
support a shorter feedback loop between developers and custo-
mers, they can also deceive developers regarding the correctness
of the program or its responsiveness. We have implemented the
sampling mechanism to return records as fast as possible. As a
result, the sample is not representative, as this would require wai-
ting for the complete query to finish. Such a sample could lead
developers to make biased assumptions about the nature of the
data, for example regarding corner cases, or the general domain of
a field of a result. Further, they might also be mislead regarding the
overall size of the result set. This trade-off could be mitigated by
using database-provided sampling procedures which are provided
by some databases. Similarly, the streaming mechanism is designed
to mask the complete query execution duration. Thus, developers
might underestimate the query execution time which will occur
when the tool is waiting for the complete query result. This might
however, not be relevant to all applications but only those which

9

PX/17, April 03, 2017, Brussels, Belgium Patrick Rein, Marcel Taeumel, Robert Hirschfeld, and Michael Perscheid

require the whole query to complete before the displayed data
becomes useful.

5 RELATEDWORK
The mechanism of streaming is implemented in a variety of lan-
guages and environments. For example, Orc [12] is a language
whose abstractions are primarily build around streams. Similarly,
environments such as ActiveSheets [28] enable non-professional
programmers to work with streams of data in an interactive fashion.
In contrast, the streaming mechanism used in our environment is
only used to update a materialized collection of the stream results.
The clients of this collection are notified trough an event system.

Tools such as Tempe [4] or Sintr [3] use similar mechanisms but
target data analysis as the central use case. Tempe allows users to
analyze different data sets in an interactive manner. It is based on
LINQ [14] to query tables or streams of data and, as a result, can
provide continuously updated visualizations of incoming data in
streams. Sintr is designed for creating map-reduce programs for
massive data sets. It uses streaming to provide developers with
incremental feedback on the results. The mechanisms used in our
approach are inspired by these systems and adapted to the context
of application development.

End-user programming environments such as Excel [15] or Dab-
bleDB [22] allow for the construction of applications based on rela-
tional data. Both support the processing of large data-sets to some
extent but are also not designed as general application development
environments. Gneiss [2] takes the spreadsheet approach further
by also enabling streaming of external data and by continuously
visualizing the information stored in the spreadsheets.

Other approaches start of from the static representation of the
program behavior and enrich the development experience with
exemplary data in an approach called “Programming with Exam-
ples” [11]. The approach tries to improve on the programming
experience by integrating application-specific examples and tools
into the development environment.

The ABAP workbench [1] development environment is designed
for developing business application on top of relational databases.
The development environment is a view on the code objects sto-
red in the database of the ERP system. As a result of this direct
integration of the development tools and the database, developers
can access, inspect, and manipulate database data easily. However,
regarding modifications of the application, ABAP is not specifically
designed for short feedback cycles.

6 CONCLUSION
We presented a new approach to develop data-intensive business
applications in a live programming environment supporting strea-
med access of sampled data. The illustration of the development of
a dunning process tool and a histogram tool hint that the develop-
ment is interactive and productive. With the help of a scripting lan-
guage and graphical tools for editing the application, programmers
can easily adapt the application while clarifying the requirements.
Through this, mistakes in the application design can be discovered
early in the process. If the application domain works with large
amounts of data, long feedback loops do not have to be a necessary
consequence. Even though live programming environments might

have difficulties to process all the data available, our strategy of
sampling and streaming could represent a productive trade-off.

Future Work. As the current implementation of the environment
is only prototypical numerous challenges remain.

The current implementation of the mechanisms is limited as it
only supports one initial query. Ideally, any subsequent collection
protocol calls (for example filtering or mapping) should not be exe-
cuted on the query result in the database. If the collection protocol
execution requires features of the host language, then it should at
least run in the remote process. Therefore, the Smalltalk collection
protocol would require a back end similar to the LINQ implementa-
tion [14]. Further, some queries only produce a result on completion,
for example the computation of an average. To provide fast feed-
back on such queries, any streaming mechanism must be able to
return intermediate results.

Further, the mechanisms for exploring production data could be
improved. While distributions already help with finding outliers,
better tools are needed to identify outliers which only occur seldom.
For example, the first name field of a table storing information on
persons might contain variations of the string unknown to represent
an unknownfirst name. Thesemight not be obvious from the sample
or a histogram.

Besides these technical challenges, it might be worthwhile re-
searching ways to make the proposed means accessible to non-
professional programmers. Processes which have previously been
manually implemented by copying data from the database to spre-
adsheets might be implemented by users themselves. One first step
would be to make the language for creating view configurations
more accessible by making it more task-specific and closer to the
vocabulary of business application users [16].

ACKNOWLEDGMENTS
We appreciate the knowledge exchange with the SAP Innovation
Center Potsdam.2 Sincere thanks also go to all PX workshop parti-
cipants, who provided valuable feedback by discussing this topic
thoroughly. We gratefully acknowledge the financial support of
HPI’s Research School3 and the Hasso Plattner Design Thinking
Research Program.4

REFERENCES
[1] Reudiger Buck-Emden and Jurgen Galimow. 1996. SAP R

3 System: A Client/Server Technology (first edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[2] Kerry Shih-Ping Chang and Brad A. Myers. 2014. Creating Interactive Web Data
Applications with Spreadsheets. In Proceedings of the ACM Symposium on User
Interface Software and Technology, UIST 2014. 87–96. DOI:http://dx.doi.org/10.
1145/2642918.2647371

[3] Luke Church, Mariana Mărăşoiu, and Alan Blackwell. 2016. Sintr: Experi-
menting with liveness at scale. (July 2016). https://www.cl.cam.ac.uk/~mcm79/
pdf/2016-LIVE-Church-Marasoiu-Blackwell.pdf Proceedings of the second LIVE
workshop on live programming systems (http://2016.ecoop.org/track/LIVE-2016).

[4] Danyel Fisher, Badrish Chandramouli, Rob DeLine, Jonathan Gold-
stein, Andrei Aron, Mike Barnett, John Platt, James Terwilliger,
and John Wernsing. 2014. Tempe: An Interactive Data Science En-
vironment for Exploration of Temporal and Streaming Data. Techni-
cal Report. https://www.microsoft.com/en-us/research/publication/
tempe-an-interactive-data-science-environment-for-exploration-of-temporal-\
and-streaming-data/

2icn.sap.com
3www.hpi.uni-potsdam.de/research_school
4www.hpi.de/en/research/design-thinking-research-program

10

http://dx.doi.org/10.1145/2642918.2647371
http://dx.doi.org/10.1145/2642918.2647371
https://www.cl.cam.ac.uk/~mcm79/pdf/2016-LIVE-Church-Marasoiu-Blackwell.pdf
https://www.cl.cam.ac.uk/~mcm79/pdf/2016-LIVE-Church-Marasoiu-Blackwell.pdf
http://2016.ecoop.org/track/LIVE-2016
https://www.microsoft.com/en-us/research/publication/tempe-an-interactive-data-science-environment-for-exploration-of-temporal-\and-streaming-data/
https://www.microsoft.com/en-us/research/publication/tempe-an-interactive-data-science-environment-for-exploration-of-temporal-\and-streaming-data/
https://www.microsoft.com/en-us/research/publication/tempe-an-interactive-data-science-environment-for-exploration-of-temporal-\and-streaming-data/
icn.sap.com
www.hpi.uni-potsdam.de/research_school
www.hpi.de/en/research/design-thinking-research-program

Exploratory Development of Data-intensive Applications PX/17, April 03, 2017, Brussels, Belgium

[5] Heinz Forsthuber and Jrg Siebert. 2009. SAP ERP Financials User’s Guide. SAP
PRESS.

[6] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and its
Implementation. Addison-Wesley.

[7] Christopher M. Hancock. 2003. Real-Time Programming and the Big Ideas of Com-
putational Literacy. Ph.D. Dissertation. Massachusetts Institute of Technology.

[8] Kyung-KwonHong and Young-Gul Kim. 2002. The critical success factors for ERP
implementation: an organizational fit perspective. Information & Management
40, 1 (2002), 25–40. DOI:http://dx.doi.org/10.1016/S0378-7206(01)00134-3

[9] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan C. Kay. 1997.
Back to the Future: The Story of Squeak - A Usable Smalltalk Written in Itself. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages
& Applications (OOPSLA) 1997. 318–326. DOI:http://dx.doi.org/10.1145/263698.
263754

[10] Dan Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi
Mikkonen. 2008. The Lively Kernel: A Self-supporting System on a Web Page.
In Proceedings of the Workshop on Self-Sustaining Systems (S3) 2008. Springer,
31–50.

[11] Jun Kato, Takeo Igarashi, and Masataka Goto. 2016. Programming with Examples
to Develop Data-Intensive User Interfaces. IEEE Computer 49, 7 (2016), 34–42.
DOI:http://dx.doi.org/10.1109/MC.2016.217

[12] David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra. 2009. The
Orc Programming Language. In Proceedings of FMOODS/FORTE 2009 (Lisbon,
Portugal, 9–11 Jun 2009) (Lecture Notes in Computer Science), David Lee, Antónia
Lopes, and Arnd Poetzsch-Heffter (Eds.), Vol. 5522. Springer, 1–25. DOI:http:
//dx.doi.org/10.1007/978-3-642-02138-1_1

[13] Thor Magnusson. 2014. Herding Cats: Observing Live Coding in the Wild.
Computer Music Journal 38, 1 (2014), 8–16. DOI:http://dx.doi.org/10.1162/COMJ_
a_00216

[14] Erik Meijer, Brian Beckman, and Gavin M. Bierman. 2006. LINQ: reconciling
object, relations and XML in the .NET framework. In Proceedings of the Conference
on Management of Data (SIGMOD) 2006. 706. DOI:http://dx.doi.org/10.1145/
1142473.1142552

[15] Microsoft Corporation. 2017. Excel. (3 Feb. 2017). https://products.office.com/
excel

[16] Bonnie A. Nardi. 1993. A Small Matter of Programming: Perspectives on End User
Computing. MIT Press, Cambridge, MA, USA.

[17] Donald A. Norman and Stephen W. Draper. 1986. User Centered System Design.
Lawrence Erlbaum Associates, Inc., Publishers.

[18] Hasso Plattner and Bernd Leukert. 2016. The In-Memory Revolution: How SAP
HANA Enables Business of the Future. Springer International Publishing.

[19] Patrick Rein, Stefan Lehmann, Toni, and Robert Hirschfeld. 2016. How Live
Are Live Programming Systems?: Benchmarking the Response Times of Live
Programming Environments. In Proceedings of the Programming Experience
Workshop (PX/16) 2016 (PX/16). ACM, New York, NY, USA, 1–8. DOI:http:
//dx.doi.org/10.1145/2984380.2984381

[20] August-Wilhelm Scheer and Frank Habermann. 2000. Enterprise Resource Plan-
ning: Making ERP a Success. Commun. ACM 43, 4 (April 2000), 57–61. DOI:
http://dx.doi.org/10.1145/332051.332073

[21] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, and Steven Jacobs. 2009.
Designing the User Interface: Strategies for Effective Human-Computer Interaction
(international edition of 5th revised edition ed.). Pearson, Upper Saddle River,
New Jersey, USA.

[22] Smallthought Systems Inc. 2017. DabbleDB. (3 Feb. 2017). http://blog.dabbledb.
com/

[23] Deborah Szebeko and Lauren Tan. 2010. Co-designing for Society. AMJ 3, 9
(2010), 580–590.

[24] Marcel Taeumel, Michael Perscheid, Bastian Steinert, Jens Lincke, and Robert
Hirschfeld. 2014. Interleaving of Modification and Use in Data-Driven Tool
Development. In Proceedings of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software (Onward!) 2014. ACM,
185–200.

[25] Steven L. Tanimoto. 2013. A perspective on the evolution of live programming.
In Proceedings of the 1st International Workshop on Live Programming, LIVE 2013.
San Francisco, California, USA, 31–34. DOI:http://dx.doi.org/10.1109/LIVE.2013.
6617346

[26] David Ungar, Henry Lieberman, and Christopher Fry. 1997. Debugging and
the Experience of Immediacy. Commun. ACM 40, 4 (1997), 38–43. DOI:http:
//dx.doi.org/10.1145/248448.248457

[27] David Ungar and Randall B. Smith. 1987. Self: The Power of Simplicity. In
Proceedings of Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA) 1987. ACM, New York, New York, USA, 227–242.

[28] Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and Martin
Hirzel. 2014. Stream Processingwith a Spreadsheet. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP) 2014. Springer, 360–384.
DOI:http://dx.doi.org/10.1007/978-3-662-44202-9_15

11

http://dx.doi.org/10.1016/S0378-7206(01)00134-3
http://dx.doi.org/10.1145/263698.263754
http://dx.doi.org/10.1145/263698.263754
http://dx.doi.org/10.1109/MC.2016.217
http://dx.doi.org/10.1007/978-3-642-02138-1_1
http://dx.doi.org/10.1007/978-3-642-02138-1_1
http://dx.doi.org/10.1162/COMJ_a_00216
http://dx.doi.org/10.1162/COMJ_a_00216
http://dx.doi.org/10.1145/1142473.1142552
http://dx.doi.org/10.1145/1142473.1142552
https://products.office.com/excel
https://products.office.com/excel
http://dx.doi.org/10.1145/2984380.2984381
http://dx.doi.org/10.1145/2984380.2984381
http://dx.doi.org/10.1145/332051.332073
http://blog.dabbledb.com/
http://blog.dabbledb.com/
http://dx.doi.org/10.1109/LIVE.2013.6617346
http://dx.doi.org/10.1109/LIVE.2013.6617346
http://dx.doi.org/10.1145/248448.248457
http://dx.doi.org/10.1145/248448.248457
http://dx.doi.org/10.1007/978-3-662-44202-9_15

	Abstract
	1 Introduction
	2 Live Programming and Business Application Development
	2.1 Business Application Development
	2.2 Liveness and Immediate Feedback
	2.3 Liveness and Tangible Objects
	2.4 Squeak/Smalltalk

	3 Means for Live Programming of Business Applications
	3.1 Tools
	3.2 Mechanisms

	4 Building data-intensive applications in a live environment
	4.1 Building a Dunning Application
	4.2 Building a Histogram
	4.3 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

