
Towards Exploratory Software Design

Environments for the Multi-disciplinary Team

Patrick Rein, Marcel Taeumel, and Robert Hirschfeld

Software Architecture Group, Hasso Plattner Institute, University of Potsdam, 14482

Potsdam, Germany

Abstract The creation of a new software system can be a wicked problem. Con-

sequently, it is important for such projects to have a collaborating team of experts

from multiple disciplines. While agile development processes foster such a collab-

oration on the social level, the tools used by individual experts still prevent the team

members from seeing the overall result of their collective modifications upon the

resulting system. Roles in the process, such as content designers and user experience

designers, only see the impact of their changes on their artifacts. Based on the con-

cept of exploratory programming environments, we propose a new perspective on

the environments used in software development, called exploratory software design

environments. We describe the properties of such an environment and illustrate the

perspective with existing related tools and environments.

1 Introduction

Software development has the properties of a wicked problem: Requirements

might only become apparent after an interim solution was proposed and software is

never done as the intended real-world use cases for the software constantly change

[Rittel and Webber 1973, Conklin 2006, DeGrace and Stahl 1990]. Further, the cre-

ators of a software system have to account for a variety of properties such as tech-

nical stability and maintainability, usability of the user interface, correctness of the

domain model, and actual usefulness to the users. Consequently, software develop-

ment can benefit from insights of the Design Thinking methodology, here the con-

sideration of multiple viewpoints for solving such wicked problems [DeGrace and

Stahl 1990, Beck 2000].

In order to create an appropriate solution, a multi-disciplinary team has to closely

collaborate, as only then the multiple perspectives of the participants can actually

contribute to the design. In such close collaboration, team members are not only

interested in finishing their individual tasks but continuously assess the impact of

Robert Hirschfeld
In Christoph Meinel and Larry Leifer (eds.)
Design Thinking Research: Looking Further: Design Thinking Beyond Solution-Fixation (pages 229-247)
Springer 2018 (doi:10.1007/978-3-319-97082-0_12)�

2

their own contributions on the overall design and comments on any other contribu-

tion if they think it necessary. A commonly described factor for creating such a team

culture is the creation of a common purpose within the team.

Software development can benefit from teams of experts that incorporate multi-

disciplinary knowledge. The variety of properties of a software system makes it

essential for the design process that a variety of people with different backgrounds

are involved in the creation of the software, such as back-end developers, user in-

terface designers, the actual users, and experts of the application domain. The com-

mon purpose of such software development teams, ideally, is the collective and con-

tinuous evolution of a system, which brings value to its users. Agile processes are

based on the notion of a team sharing a common purpose. These processes try to

support the team culture through appropriate techniques. For example, Extreme Pro-

gramming (XP) lists "The Whole XP Team" as one of its practices and describes it

as "... they [the team] were roped together. Walking abreast, they could make more

progress than if any one group tried to force to others to follow." [Beck 2000]

Fig. 1. The current workflow in software development. Most team members work on their type of

artifacts (bold arrows). They only get feedback on the impact of their changes on the system at a

later point in time after submitting their artifacts to the program designers (dashed lines).

While such development practices aim to support a culture of working together

on a single system, this impression is often not reflected in the software tools used

by individual participants. All experts operate their own tools, creating an output

which is only later combined into the running system. For example, technical writ-

ers are often passed a file with a long list of placeholders which they should, for

example, translate into full-length labels. The effects of changes to the text might

only become visible to the other team members much later in the process and only

in case they actually run the new system version. Consequently, even while an agile

development process might aim at collaboration on one system, the tools only allow

3

for cooperation almost resembling a software factory with single workstations (see

Figure 1).

Fig. 2. The ideal workflow in exploratory software design environments for the whole team. Every

team member can work on their artifacts but also get direct feedback of their modifications to the

system. Further, they can see how their modification interacts with modifications of others.

Instead, we should aim for a software workshop in which all participants of the

process work together on the actual, running system (see Figure 2). In such a work-

shop, the technical writer from above would change the labels while the software is

running and others would shortly afterwards see the changed labels, too. Whenever

someone applies a change to the system, the effect should become visible to the

other team members in short time. This facilitates a sense of working together on

one system and make collaboration more likely.

In this article, we illustrate the factors impeding collaboration during the design

of software in traditional environments. Further, we show how so called exploratory

programming environments can serve as a foundation for a software workshop in

which people with different roles can collaborate directly on one system. We do so

by describing the properties of exploratory programming environments and illus-

trate these properties with two exemplary programming systems. We then general-

ize these properties to properties for exploratory software design environments

which provide an exploratory workflow for all participants of the process. To show

how such an environment might work we further describe a number of exemplary

tools and environments that implement characteristic aspects.

4

2. From Cooperation to Collaboration in Software Development

Agile processes such as Extreme Programming (XP) share a number of princi-

ples and values with the design thinking methodology. Both are iterative in nature,

make creating value for the user a primary goal, and emphasize self-sufficient and

multi-disciplinary teams. To actually leverage the different viewpoints of a multi-

disciplinary team, team members have to collaborate beyond mere cooperation. As

software development already entails particular tasks, a multi-disciplinary software

development team has a set of artifacts and tools, which correspond to typical roles:

content creation, user experience design, program design, and user.

2.1 Design Thinking, Wicked Problems, and Agile Processes

Wicked problems are problems which have "no definitive formulation" due to

requirements which are incomplete from the start or might change during the design

of a solution. Traditional examples of wicked problems are social problems such as

drug abuse and homelessness. In a more general way, they have been defined

through a set of six characteristics [Conklin 2006] (derived from a larger catalogue

of eleven characteristics [Rittel and Webber 1973]):

1. The problem is not understood until after the formulation of a solution.

2. Wicked problems have no stopping rule.

3. Solutions to wicked problems are not right or wrong.

4. Every wicked problem is essentially novel and unique.

5. Every solution to a wicked problem is a 'one shot operation.'

6. Wicked problems have no given alternative solutions.

The design thinking process is a suitable for approaching wicked problems [Bu-

chanan 1992]. For example, the iterations in the design process allow team members

to refine their understanding of the problem after each iteration (characteristic 1).

Further, the novel and unique nature of the problem is covered by techniques for

ideation to support the team in creating new and fitting solutions (characteristic 4).

Even early design thinking methodologies already focused on similar types of prob-

lems [Arnold 1956, Arnold 1959/2016]. Further, wicked problems consist of inter-

dependencies of various individual factors. Each factor might only be understood

in terms of a particular field, such as sociology, art, and mechanical engineering.

Thus, design teams should ideally consist of experts from a variety of fields. Due to

their different backgrounds, each team member has a different viewpoint onto the

original problem and can hence determine sub-problems related to their field.

The design of software systems is also considered a wicked problem [DeGrace

and Stahl 1990]. A major aspect which makes software development wicked is that

the actual requirements for a software system are only understood after parts of the

software have been build and are in use. Often, users require an intermediate state

5

of the software to determine what they actually need. Further, software also does

not have a "stopping rule" (characteristic 2). As the context of the use of software

constantly changes, software has to adapt accordingly. This is summarized by the

saying in software industry that "software is never done".

Agile processes acknowledge the wicked nature of software development. One

of the principles of Extreme Programming (XP) is, for example, "embrace change",

meaning that development should happen in small iterations to get feedback from

users in time. Based on this feedback, the system can directly be adapted to fit the

new requirements best [Beck 2000]. In this respect, every iteration of an XP team

is a design iteration. At the beginning, needs and wishes from the users are collected.

The team then works out a solution for these challenges and produces a small incre-

ment in the features of the system. This increment serves as a prototype which is

directly evaluated with the users by incorporating it into the running software. Ob-

servations and feedback from the users are directly used in the next iteration. Also,

software development covers more than the mere production of source code. Soft-

ware development also covers activities such as user experience design, interface

design, and content creation by domain experts. Consequently, XP also emphasizes

a "whole team" and collaboration becomes paramount in the process. Every activity

or aspect of the software should be covered by someone in the multi-disciplinary

team.

2.2 From Cooperation to Collaboration

For multi-disciplinary teams to work they have to collaborate on solving the

problem and not only cooperate. Although both of the words "cooperation" and

"collaboration" generally refer to working together, the style of working together

they describe differs.

Cooperation is defined by Meriam Webster as "to act or work with another or

others; act together or in compliance". The important part here is that the team mem-

bers merely act together. This does not imply a shared goal or active support for

each other. Individuals who cooperate have some overlap of their goals but the in-

dividual goals dominate. An example for cooperation are bureaucratic organiza-

tions. The group of people who make up the organization cooperate by each ful-

filling their individual tasks and thereby providing the service of the organization.

Collaboration is a special form of cooperation defined by Meriam Webster as "to

work jointly with others or together especially in an intellectual endeavor". People

who collaborate closely work with the others in order to achieve a common goal.

Design teams typically collaborate as they discuss ideas in the group together. A

major requirement for a team to closely collaborate is that all team members have a

shared understanding of the common purpose of the team. Further, every team

member has to assess the complete situation continuously and put it relation to the

strategic goal of the team, similar to the way each soccer player has to continuously

6

monitor the complete soccer field and not only concentrate on their "patch of grass."

[McChrystal 2015]

In his book "Team of Teams", Stanley McChrystal does not mention the two

terms, cooperation and collaboration, explicitly but illustrates the two styles of

working together through a comparison of traditional command structures in the

military and team-based structures in a variety of domains [McChrystal 2015]. The

author describes command structures as a way of cooperation "[...] in a command,

the leader breaks endeavors down into separate tasks and hands them out. The re-

cipients of instructions do not need to know their counterparts, they only need to

listen to their boss. In a command, the connections that matter are vertical ties." The

author states, that this cooperation in command structures was efficient but rigid

which according was not a good fit for modern challenges. The context and require-

ments for modern challenges change too quickly for any pre-determined plan to be

applicable. Instead, organizations should focus on small empowered teams whose

members collaborate working towards a common goal. Again, one of the character-

istics of such teams is that "team members tackling complex environments must all

grasp the team's situation and overarching purpose [...] They must be collectively

responsible for the team's success and understand everything that responsibility en-

tails."

The design of a software system depends on such collaboration between experts

from multiple disciplines. However, the fact that these team members are experts of

their own discipline and masters of their own tools makes it very easy to stick to

their “patch of grass”.

2.3 The Whole Team: Multiple Disciplines for Multiple

Perspectives

Software development benefits from a pre-defined type of artifact to be pro-

duced: the software system. There are particular roles which are relevant to the soft-

ware design process [Beck 2000], such as testers, interface designers, programmers,

technical writers, and managers. Depending on the type of system to be created,

different roles might be more active in the process than others. For example, when

developing a computer game artists can make up more than half of the team. Simi-

larly, when working on a software tool for a very particular domain, domain experts

might outnumber programmers (for example, the biochemistry software tool com-

pany Synthace lists two biochemistry scientists as technical leads and only one soft-

ware engineer1). Thus, it is beneficial for the quality of working together, to enable

all these roles to participate equally during the software design.

Further, these roles are only approximate groupings of activities. For example,

in XP "roles on a mature XP team aren't fixed and rigid. The goal is to have everyone

1 https://web.archive.org/web/20171205131307/https://synthace.com/who-we-are/ accessed on

5th of December 2017

7

contribute the best he has to offer to the team's success." [Beck 2000] We summa-

rize these roles into the four categories:

• User

• User experience designer

• Content designer

• Program designer

We want to illustrate their typical contributions, their tools, and the artifacts they

create in an iteration during the development process.

Users provide new requirements and general use cases for the software. They

might have thought them out in great details already or only have a vague idea.

Generally, users are the ones generating value with the software system produced.

They are affected by all the decisions of the other roles and at the same time provide

the requirements, use cases, and the overall purpose of the software to be produced.

Besides the direct users, we also count customers and domain experts into this role.

In consumer software they often interact with the system design team through issue

tracking software. In more specialized software they might be able to talk in person

to the design team and may even be able to join them during an iteration.

Early in the process user experience designers might produce first paper-based

sketches of user interfaces to check with users whether this is what they might need.

Additionally, they might create storyboards to document a workflow users want to

have supported in the system. In general, they determine the actual interactions and

feedback mechanisms of the system to make the program useful to the users. They

take care of the intricacies of single user interfaces as well as the efficiency com-

plete workflows throughout the system. Activities of this role might also be sub-

sumed under the terms "usability engineer" or "user interface engineer". They work

with a variety of tools starting with pencil and paper. For visual designs, user expe-

rience designers might use graphical editors in which they create screenshots of the

future interface. They might also use user interface builder tools in which they can

already define the actual user interface in a graphical manner.

Content designers generally create the texts, graphics, or pre-loaded data and

examples used throughout a system. The particular type of output depends upon the

domain of the system. Being artists, they create texts and graphics and have to take

care of aspects such as a consistent aesthetic appearance or fitting the content to the

culture of the system’s user. Correspondingly, the tools used also depend on the

domain of the system. Either way, most of these tools are specialized to the content

format, such as the Adobe Photoshop2 graphics editor for graphical content or the

Qt Linguist3 for translation tables. Depending on the system the content designers

might also be domain experts contributing domain specific knowledge to the sys-

tem, such as mathematical formulas or business rules.

2 https://web.archive.org/web/20171205125120/http://www.adobe.com/de/products/pho-

toshop.html accessed on 5th of December 2017
3 https://web.archive.org/web/20171205125218/http://doc.qt.io/qt-5/linguist-translators.html ac-

cessed on 5th of December 2017

8

Program designers create and maintain the technical side of a software system.

This covers the design of the overall system architecture as well as fine-granular

decision such as the names used in the source code. Further, as test engineers they

might also write automated tests for checking whether the system behaves as ex-

pected, or as tool engineers, they might create tools for making the overall design

of the system easier for all roles. When working on a new feature, progam designers

add, edit, and remove source code. This changes to the source code are often done

in a so-called integrated development environments (IDEs) which provides a set of

integrated development tools in one environment. When working on the overall

structure, program designers often use graphical modelling tools which allow them

to draw diagrams representing the system structure.

2.4 The Impact of Tools on Cooperation and Collaboration

Agile processes, such as XP, try to tackle the wickedness of software development

similar to the way design thinking methodologies tackle wicked problems. Collab-

oration of multi-disciplinary teams is a key component of Extreme Programming.

Thus, XP lists a number of principles and practices to foster this collaboration in

social interactions.

However, when it comes to actually working together on the system to be created,

the software tools used by team members do not support close collaboration. Every

team member uses their specialized tool set to produce artifacts which are particular

to their activity. Regarding the concrete artifact to be produced, team members

might get feedback in a short amount of time, for example a content designer creat-

ing a new icon can see the icon directly in the graphics editor. However, the impres-

sion of the icon in the running system might only become available much later when

the files representing the icon are merged into the software system. This is similar

to the way production in a factory works: Individual workers work on optimized

stations with their specialized tool. The resulting end product might never be visible

to them. Both share the property that there is a long delay between a new artifact

produced and a visible change in the resulting system might span hours or days.

Such a long delay between one’s modifications and an actual change in the software

to be created does hinder individual team members to assess the overall state of the

software and their impact on it. They work on their local view of the system for an

extended period of time. As a consequence, interdependencies between modifica-

tions, positive as well as negative ones, can only be detected late in the process. For

example, translators have to wait for the merge of their translation tables only to

find out that a translated text was too long because the interface designer changed

the width of some buttons simultaneously. This scenario that translators find such

problems is further based on the unlikely assumption that translators actually do

review their translated texts in the user interface at a later point in time. Further,

these long delays can lead to actual dead locks between two roles with one team not

9

being able to continue working, for example without being able to examine the di-

mensions of new graphics. Sharing partial results early on would improve on that.

Agile teams of program designers generally strive for a short roundtrip time be-

tween anyone’s change to the system and a visible change in behavior of the system.

For example, Extreme Programming proposes to only have one branch of source

code and only work on separate branches for a few hours at maximum. Thereby, all

changes to the system always become visible to other team members at least at the

end of the day. Although, XP promotes a whole team this practice only refers ex-

plicitly to source code. Other artifacts relevant to the system are not mentioned. In

the end, only program designers can effectively modify the system.

Ideally, every team member would contribute to the system directly. This would

still allow for experts to work on their tasks with a special tool set, for example a

wireframe editor. However, the resulting artifact should directly have an impact on

the system, for example the wireframe could directly determine the layout of a user

interface without a program designer translating from the wireframe to source code.

Thus, the team would work in a workshop-like environment in which the final prod-

uct is at the center and while every team member would work on it using their spe-

cialized tools, they would still all contribute to one result. Further, as they would all

work in the same room, they can always see the changes of others and the overall

state of the product.

An example of how design teams can implement such a workshop-like environment

can be found at Boeing. The team constructing the Boing 777 airplane used a shared

3D model which was always kept up to date with the newest modifications from

each team. Further, every team could access it, see the overall state of the airplane

design, and examine any interactions between their modifications and modifications

of others [McChrystal 2015].

For software development, there is no need for an additional model as the system to

be designed is already a digital artifact and could theoretically directly be accessed

by every team member.

3. Learning from Program Designers

Exploratory programming environments are based on "the conscious intertwin-

ing of system design and implementation." [Sheil 1986] They rely on a variety of

properties to support divergent and convergent approaches throughout the design

process [Trenouth 1991]. However, so far they are based on a very narrow definition

of software design as programming. The properties of these environments might

actually be generalized to form the conceptual foundation to describe exploratory

software design environments in which all roles can benefit from these properties.

We will first describe the original idea of workflows in exploratory programming

environments, the corresponding properties, and illustrate them with two explora-

tory programming systems: Squeak/Smalltalk [Ingalls 1997] and Lively Kernel

[Ingalls 2008, Lincke 2012]. We then describe a generalization of this workflow for

10

"exploratory software design environments" and the adapted properties for such

systems.

3.1 Exploratory Programming Environments for Program

Designers

The idea of exploratory software development originates from the observations

that static, linear development processes do not cope well with complex and often-

changing requirements. While the process model was not very explicit, the idea was

helpful in shaping programming environments which support the iterative and di-

vergent style of programming, which are called exploratory programming environ-

ments [Sheil 1986, Trenouth 1991, Sandberg 1988]. According to a survey by

Trenouth, four properties define such systems [Trenouth 1991]:

• Continuously executable: The product of the exploration process might not only

be the software system but also a greater insight which will inform the future

process. Thus, a mere static representation of the software as source code is not

desirable. The system to be created should ideally be continuously running and

usable.

• Easily extensible: Programmers should be able to modify the software easily

"without adversely affecting existing behavior".

• Conveniently explorable: In order to allow the exploration of design alternative,

the environment should support the management of alternatives. Consequently,

it should allow programmers to quickly switch between the alternatives.

• Usefully explainable: The exploratory programming process aims to allow pro-

grammers to understand the problem and design space. As such, the environment

should provide means to enable programmers to understand the system, for ex-

ample through state inspection or visualizations of the dynamic system behavior.

3.2 Case “Desktop Development”: Squeak/Smalltalk

Squeak/Smalltalk is an exploratory programming environment [Ingalls 1997,

Sandberg 1988]. It was designed as a media-authoring and simulation environment.

Several versions and extensions explicitly targeted children exploring ideas and

models through the environment.

A fundamental principle of the environment is object-orientation which states

that every "thing" in the environment is active in the sense that it has some behavior.

This behavior is invoked by sending a message to such an object. For example,

sending the message capitalized to the object representing the text "smalltalk"

11

would result in the text calculating a capitalized version of itself which is "Small-

talk". The object-orientation is fundamental for Squeak/Smalltalk as everything is

an object that means all artifacts making up the system such as source code, pic-

tures, sounds, and layout specifications are objects.

Squeak/Smalltalk provides special support for the exploratory creation of graph-

ical objects. All visual elements on the screen are so called morphs. A morph can

be manipulated through halos a kind of meta-menu allowing access to graphical

operations such as resizing or rotation (see Figure 3). Through the halos users can

also copy a morph and thereby create multiple versions of a morph. Beyond these

graphical operations, the halos also give users access to some programming facili-

ties such as defining the behavior of the morph when users click on it.

Fig. 3. A screenshot of a list morph on the left (1) with an open halo (2). On the right, the code

browser (3) shows parts of the implementation of the help browser tool shown on the left. On the

bottom right, an object explorer (4) shows the internal state of the list morph on the left.

Squeak/Smalltalk is also used as a programming system and thus it provides ma-

ture tool support for exploratory programming (see Figure 3). Squeak/Smalltalk

supports the continuously executable features as it allows developers to run appli-

cations next to their development tools in the same environment. Programmers can

further change the system while it is running without any need to restart it. As

Squeak/Smalltalk is a class-based object-oriented environment, it is easily extensi-

ble trough the addition or modification of classes. The support for convenient ex-

ploration is available for source code as well as runtime state. Alternative versions

of the source code can be managed on a small scale through local versioning of

methods. The state of the system can be versioned by saving the current state of the

running system into an image file. When the system is loaded from that file it will

be in the exact same state it was before. Finally, the environment provides tools to

support the usefully explainable feature. With the object explorer and inspector

tools, programmers can inspect and manipulate any object. The Squeak/Smalltalk

12

debugger enables programmers to stop the execution of any Smalltalk process and

inspect and manipulate the state on the stack.

3.3 Case “Web Development”: Lively Kernel

Lively Kernel is another exploratory programming environment [Ingalls 2008,

Lincke 2012]. As it originates from the Smalltalk tradition of programming systems,

it is also object-oriented and exhibits similar tools for exploratory programming.

Additionally, it also provides a graphical interface based on morphs and halos.

Fig. 4. A screenshot of the parts bin in the Lively Kernel environment. Each graphical element can

be dragged out and will create a local copy which can be modified by the local user [Lincke 2012].

Lively Kernel, however, allows its users to create the final applications graphical

user interface through direct manipulation. After users have assembled their appli-

cation by combining morphs they can publish their newly assembled graphical ob-

ject as a part. The place where all the published graphical objects are gathered is

called the PartsBin (see Figure 4) [Lincke 2012]. Every other user of Lively Kernel

can instantly see a newly published part and create their own copy by dragging a

part out of the PartsBin. Other users can then modify their copies of the part and

publish it again as a new part. Thereby, all users can quickly make small changes to

parts and share them quickly with other team members.

13

3.4 Towards Environments for Exploratory Software Design

In the original description of exploratory programming environments, the fea-

tures refer to the relation between programmers, source code, and the running sys-

tem. However, in a more general sense, they can be applied to any role in the devel-

opment process to create exploratory design environments. Thereby, we move the

focus from creating source code to create a running program to creating a variety of

artifacts resulting in a software system:

• Continuously executable: The software design process should be about creat-

ing a working software system which is useful to the user. Thus, everyone

participating in the process should be able to execute a current version of the

system. This current version should always include their own changes. That

means, a content designer creating new sounds should always be able to try

their sounds in the environment and interaction designers should always be

able to try a new workflow. This property also should hold for the user who

should always be able to run a current development version of the system.

• Easily extensible: Every team member should be able to easily extend the

system in a structured way. A content designer should be able to easily replace

or modify content, ideally from within the running system. For example, a

graphics designer should be able to modify an icon directly in the running

application using graphic editing tools. Consequently, all relevant tools

should be included in the environment for every team member. Furthermore,

as the design process might unveil new artifacts to be produced the environ-

ment should allow for the easy addition of new tools. Such an environment

would even allow members of the design team to change the system in the

working environment of a user. Thereby, designers can see their effects di-

rectly on actual user data and users can immediately see, try, and comment

the modifications.

• Conveniently explorable: All design activities within the process profit from

an interleaving of divergent and convergent approaches. Convergence is nat-

urally part of the process as there is normally only one current version of the

software. In contrast, divergence has to be additionally supported. Thus, the

environment should allow versioning and branching for all kinds of artifacts

produced in the system. Additionally, switching between versions and com-

paring versions should also be possible for all artifacts. Ideally, the versioning

mechanism is the same for all artifacts including source code.

• Usefully explainable: The dynamic nature of a running system affects all ar-

tifacts produced. For example, an interface might be layouted differently be-

cause the displayed name of a user is too long or the display ration of an icon

is distorted as the layout specification changes the border of icons on small

screens. Thus, for all team members to effectively evaluate their modifica-

tions, the environment should provide tools for exploring the dynamic version

of the artifact in the running system. For example, these tools should allow

14

interface designers to determine which user interactions triggered which tran-

sitions in the storyboard so that the system ended up in the current state or

content designers should be able to see scaling parameters for graphics.

4. Identifying Tools and Environments for Whole Team

Software Design

The ideal environment containing all tools that might potentially become rele-

vant for some software project is not possible, due to the variety of domains and

constraints for individual projects. However, the idea and the target properties of

exploratory software design environments might help in identifying tools and envi-

ronments which can at least support the collaboration between different roles in a

software design team.

4.1 For Individuals: Specific Tools for Specific Tasks

There are a number of tools that integrate the activity of a role with a running

instance of the system under design or integrate the artifacts produced by different

roles.

Fig. 5. A screenshot of the CrowdIn tool for translating text of a webpage within the webpage

itself.

For content designers, the tools have to be created as part of the system when the

content is specific to the domain or the system. For example, a system for the auto-

matic assessment of insurance claims might have a dedicated editor for business

rules. For more general use cases, generic tools are available which integrate the

15

tool and the running system. For example, the CrowdIn tool4 allows translators to

translate a text interactively directly within the webpage where the text is displayed

(see Figure 5). Further, to make versioning easy for graphics designers and integrate

their artifacts with the source code artifacts of the program designers, tools exist

which support the versioning of graphics files. An example is the Kactus tool5 that

integrates the graphics editor SketchApp6 with the versioning tool Git that is also

often used for versioning source code. Thereby, graphic designers and program de-

signers can use the same versioning mechanism and see changes from each other

throughout the version history.

Fig. 6. A screenshot7 of the Android layout editor showing new widgets (1), the existing layout

tree (2), the toolbar (3), the interactive editor (4), and the property view for one element (5)

While interface design is often done through mock-ups in graphic editors, it can

also be done with tools for creating the actual interface. For example, the Android

designer environment includes a layout tool for creating individual screen layouts8

(see Figure 6). The iOS development environment further supports the creation of

4 https://web.archive.org/web/20171205114216/https://crowdin.com/page/in-context-localization

accessed on 5th of December 2017
5 https://web.archive.org/web/20171205114339/https://kactus.io/ accessed on 5th of December

2017
6 https://web.archive.org/web/20171205124457/https://sketchapp.com/ accessed on 5th of Decem-

ber 2017
7 https://web.archive.org/web/20171205130930/https://developer.android.com/studio/write/lay-

out-editor.html accessed on 5th of December 2017
8 https://web.archive.org/web/20171205124801/https://developer.android.com/studio/fea-

tures.html accessed on 5th of December 2017

16

executable storyboards which define the actual transitions between different views

in the resulting mobile application9. In both cases, the resulting layout files are di-

rectly stored in the directory containing the source code of the application and can

be shared with the same tools the source code is shared with.

The degree of participation that is possible for users again depends mostly on the

kind of system to be designed. For specialized systems the user might actually work

next door from the design team and might interact with them in person regularly.

For a system with a broader target audience this process has to work differently.

However, the integration of giving feedback from within the actual context of usage

has been improved by several tools. One example is Instabug10. In a mobile appli-

cation containing Instabug, users can add a new suggestion by shaking the phone.

The app will stop, create a screenshot, and ask users for further information on what

they would have expected in this situation. A research prototype pushed this mech-

anism further by converting such suggestions directly into stubs and comments in

the source code at the appropriate locations [Kato 2017]. Thereby, users can have a

very concrete impact on the artifacts making up the system.

Program design is concerned with the behavior of the system, and thus most

tools are close to the system in some aspect. Traditional tools separate the modifi-

cation of source code from the execution of the system, exploratory tools as de-

scribed above, integrate the modification of the source code artifacts and the execu-

tion of the system (see Figure 3 and 4).

4.2 For Teams: Integrated Tool Environments

For special domains and types of software systems, environments bringing to-

gether several roles of the software design team do exist. However, the integration

is often based on a thorough understanding of the production processes of the type

of software to be created. For example, for a certain type of web applications the

requirements and efficient development processes are well known. These environ-

ments however, would not work well in situations in which requirements are un-

known. Alternatively, design tools might be very well integrated for one particular

system which is sometimes done in game development for the design of one partic-

ular game.

One example for integrated environments are content management systems

(CMS) such as the Drupal system11. It provides content designers, users, interface

designers, and program designers tools to modify or use the system. For becoming

9 https://web.archive.org/web/20171205131025/https://developer.apple.com/xcode/interface-

builder/ accessed on 5th of December 2017
10 https://web.archive.org/web/20171205131100/https://instabug.com/ accessed on 5th of Decem-

ber 2017
11 https://web.archive.org/web/20171205124956/https://www.drupal.org/ accessed on 5th of De-

cember 2017

17

exploratory environments, they are however missing ways to support versioning or

branching for comparing different versions. Further, they are specialized on create-

read-update-delete (CRUD) systems which are mostly used for managing and pub-

lishing digital artifacts.

Another type of systems already integrates many of the relevant tools in one en-

vironment: game development environments. Games are complex software systems

which require a lot of content design. Consequently, the content and program design

are well integrated. An example of such an integration are the development tools

for a recent game developed at Nintendo12. The integration in their development

environment spanned several roles. For example, the interface and program design-

ers were able to see throughout the game world were test users failed most often

and could make changes accordingly. For task management, program and interface

designers could switch to a task view to see the tasks located next to the relevant

location in the world and easily get "get a look at overall completion rates for the

game". Further, all content designers were handed the same set of tools: "They cre-

ated a dedicated software launcher for all the artists to ensure that they were running

the same dev[elopment] environment syncing Maya preferences and running auto-

matic tool tests." This focus on integration might be a result of the culture of Nin-

tendo which the game designers described as: "[...] at Nintendo, above all else the

most important thing is the fun. This needs to be first and foremost in everyone's

mind, regardless of occupation, and they have to tune until the very end to ensure

it."13

Another environment integrating the activities of several roles is the Home en-

vironment which allows the use and modification of productivity tools such as todo

lists, e-mail management, or document editing in one environment [Rein 2017]. It

is based on Squeak/Smalltalk and Vivide [Taeumel 2014] and thus inherits its ex-

ploratory properties. However, the Home environment additionally adds user inter-

face elements which make the system usable as an ordinary desktop system. Users

can write emails, create todo items, and store them in a hierarchical ordering system

similar to a file system. At the same time all tools can directly be modified using

the built-in programming tools without any additional setup or any mode changes.

This enables users and program designers to work in the same environment with

program designers making live changes in a user's environment or users demon-

strating their desired workflows directly within the environment of a program de-

signer.

12 https://web.archive.org/web/20171205124841/https://medium.com/@gypsyOtoko/the-final-

botw-cedec-session-as-far-as-i-know-is-from-the-engineers-botw-project-management-

c30f4e42598e accessed on 5th of December 2017
13 https://web.archive.org/web/20171205124841/https://medium.com/@gypsyOtoko/the-final-

botw-cedec-session-as-far-as-i-know-is-from-the-engineers-botw-project-management-

c30f4e42598e accessed on 5th of December 2017

18

5. Conclusion

We described exploratory software design environments as a new perspective on

the tools used throughout software development teams consisting of program de-

signers, content designers, user experience designers, and users. Taking inspiration

from exploratory programming environments, these environments should provide

individual team members with more direct feedback from the system to be designed

regardless of their role. Consequently, each team member can get an overview of

the current state of the system and see the interaction between their modifications

and modifications of others. While the creation of one true exploratory software

design environment is a wicked problem of itself, individual tools and environments

supporting some form of collaboration do exist. By using such tools and environ-

ments, teams might be able to grow closer together and create an experience of

collaborating while creating a system bringing value to its users.

6. References

• [Rittel and Webber 1973] H. Rittel, M. Webber. Dilemmas in a General Theory of Plan-

ning. Policy sciences 4(2), 155-169, Springer. 1973

• [Conklin 2006] J. Conklin. Dialogue Mapping: Building Shared Understanding of Wicked

Problems. Wiley. 2006

• [DeGrace and Stahl 1990] P. DeGrace, L. Stahl. Wicked Problems, Righteous Solutions.

Yourdon Press. 1990

• [Beck 2000] K. Beck. Extreme programming explained: embrace change. Addison-Wesley

Professional, 2000.

• [Sandberg1988] D. W. Sandberg, Smalltalk and exploratory programming, ACM Sigplan

Notices, vol. 23, no. 10, pp. 85-92, 1988.

• [Arnold 1956] J.E. Arnold. Problem solving--A creative approach (National Defense Uni-

versity, Publication No. L57-20). Washington, DC: Industrial College of the Armed Forces

• [Arnold 1959] J.E. Arnold. Creative Engineering. In W.J. Clancey (Ed.), Creative engi-

neering: Promoting innovation by thinking differently (pp. 59-150). Stanford Digital Re-

pository. http://purl.stanford.edu/jb100vs5754 (Original manuscript 1959)

• [Buchanan 1992] R. Buchanan. Wicked Problems in Design Thinking. Design Issues, 8(2),

pp. 5-21

• [McChrystal 2015] S. McChrystal. Team of Teams. Portfolio / Penguin, 2015.

• [Ingalls 1997] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay. Back to the Future:

The Story of Squeak, a Practical Smalltalk Written in Itself. ACM SIGPLAN Notices,

ACM. 1997

• [Trenouth 1991] J. Trenouth. A Survey of Exploratory Software Development. The Com-

puter Journal 34(2), pp. 153-163, Oxford University Press. 1991

• [Ingalls 2008] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, T. Mikkonen. The Lively

Kernel: A Self-Supporting System on a Web Page. Proceedings of the Workshop on Self-

Sustaining Systems (S3) 2008, Springer. 2008

• [Lincke 2012] J. Lincke, R. Krahn, D. Ingalls, M. Röder, R. Hirschfeld. The Lively Parts-

Bin -- A Cloud-Based Repository for Collaborative Development of Active Web Content.

Proceedings of the Hawaii International Conference on System Sciences (HICSS) 2012.

2012

19

• [Rein 2017] P. Rein, J. Lincke, S. Ramson, T. Mattis, and R. Hirschfeld. Living in Your

Programming Environment: Towards an Environment for Exploratory Adaptations of

Productivity Tools. In Proceedings of the Programming Experience Workshop (PX/17.2)

2017. ACM. 2017

• [Taeumel 2014] M. Taeumel, M. Perscheid, B. Steinert, J. Lincke, and R. Hirschfeld. In-

terleaving of Modification and Use in Data-Driven Tool Development. In Proceedings of

the ACM International Symposium on New Ideas, New Paradigms, and Reflections on Pro-

gramming & Software (Onward!) 2014. ACM. 2014

• [Kato 2017] J. Kato, M. Goto. User-Generated Variables: Streamlined Interaction Design

for Feature Requests and Implementations. Proceedings of the Programming Experience

Workshop (PX/17) 2017, ACM. 2017

