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Version control is awidely used practice among software developers. It reduces the
risk of changing their software and allows them to manage different configurations
and to collaborate with others more efficiently. This is amplified by code sharing
platforms such as GitHub or Bitbucket. Most version control systems track files
(e.g., Git, Mercurial, and Subversion do), but some programming environments do
not operate on files, but on objects instead (many Smalltalk implementations do).
Users of such environments want to use version control for their objects anyway.
Specialized version control systems, such as the ones available for Smalltalk systems
(e.g., ENVY/Developer and Monticello), focus on a small subset of objects that can
be versioned. Most of these systems concentrate on the tracking of methods, classes,
and configurations of these. Other user-defined and user-built objects are either not
eligible for version control at all, tracking them involves complicated workarounds,
or a fixed, domain-unspecific serialization format is used that does not equally suit
all kinds of objects. Moreover, these version control systems that are specific to a
programming environment require their own code sharing platforms; popular, well-
establishedplatforms for file-based version control systems cannot be used or adapter
solutions need to be implemented and maintained.

To improve the situation for version control of arbitrary objects, a framework
for tracking, converting, and storing of objects is presented in this report. It allows
editions of objects to be stored in an exchangeable, existing backend version control
system. The platforms of the backend version control system can thus be reused.
Users and objects have control over how objects are captured for the purpose of
version control. Domain-specific requirements can be implemented. The storage
format (i.e., the file format, when file-based backend version control systems are
used) can also vary from one object to another. Different editions of objects can be
compared and sets of changes can be applied to graphs of objects. A generic way for
capturing and restoring that supports most kinds of objects is described. It models
each object as a collection of slots. Thus, users can begin to track their objects without
first having to implement version control supplements for their own kinds of objects.
The proposed architecture is evaluated using a prototype implementation that can
be used to track objects in Squeak/Smalltalk with Git. The prototype improves the
suboptimal standing of user objects with respect to version control described above
and also simplifies some version control tasks for classes and methods as well. It
also raises new problems, which are discussed in this report as well.
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1 Introduction

For a long time, it has been good practice to keep past versions of source code to
manage changes and trackwho performed them [55]. Inmost programming systems
the source code of programs is saved in files. Hence, version control systems or their
user interfaces are often based on files and interactions with files. That is, users add
files and directories to the version control system and the subsequent changes to
files and the directory structure constitute the differences between versions.

But when users engage in exploratory programming, the product of the users’
work may not only be code. It can also be objects that have been interactively created,
configured, and composed over time if the programming environment allows it.
The amount of work and time spent to build objects might be as significant as the
resources invested in writing code. A prime example where objects and code are
equally important is the prototype-based language and programming environment
Self [69].

Many Smalltalk systems can also be used for exploratory programming, using their
extended set of interactive tools, such as object inspectors, a powerful debugger, and
the ability to run snippets of code just about anywhere in the environment [21]. These
facilities can also be used to construct objects without writing construction code in
advance, like in Self. Yet, such arbitrary objects are often only second-level citizens in
contemporary version control systems for Smalltalk, or they are not eligible for ver-
sion control at all. Version control systems that support arbitrary content are usually
file-based, whereas non-file-based version control systems tend to be specialized to
some domain: most version control systems for Smalltalk, like ENVY/Developer or
Monticello, focus on the tracking of class definitions, methods, and objects that store
configurations (packages, applications), but not arbitrary objects.

A way to put such objects under version control anyway is to export them to a file
or to encode them in a different kind of object that can be tracked by a version control
system. Users of document-centric applications such as office software suites may
look upon this as a natural workflow. But to save a new version of a set of objects
in this way, users would have to collect all of these objects, export all of them from
their native, directly manipulable form to a different representation, and only then
actually create a new version with the version control system. This repetitive task
should be facilitated by tools.

When objects must be converted before they can be put under version control,
sometimes there are multiple options of how this can be done. For example, for any
given purpose, multiple file formats can be available (e.g., XML or JavaScript Object
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1 Introduction

Notation (JSON)1), or multiple perspectives fromwhich an object could be modeled
(e.g., a particular plot of the graph of a function can be represented extensionally as
an enumeration of its data points or as an image, or intensionally by a description of
the plotted function and attributes such as the scaling and range of the coordinate
axes).

Version control is also used to enable collaboration. When people make changes to
local copies (or instances) of a system simultaneously, contemporary version control
tools support users inmanaging and synchronizing different streams of development
(branches). Internet platforms such as GitHub2have made collaborative, distributed
development of software or other (file-based) artifacts easier, especially for free and
open-source software. Often these platforms provide additional tools for project
management, such as issue trackers or wikis.

Why should there not be similar support for collaboration on artifacts that are not
text, or files, but arbitrary objects built in an exploratory programming environment?
For example, when somebody creates an active essay [33] in an environment like
Squeak/Smalltalk3 [30], he or she might want to share it with others and accept
contributions. If there is a team of co-authors, they will surely want to synchronize
their work. Ideally, this should not be harder or more cumbersome than the sharing
and synchronizing of source code among programmers.

The adoption of a new version control solution is not a lightly-taken decision. It
must be trusted that the new system works correctly, so no data will be lost. We
therefore propose a version control solution for arbitrary objects that works on top of
an existing, already established version control system. This also makes the reuse of
existing platforms possible. Otherwise, similar platformsmight need to be developed
and maintained for the new system. Every new platform would incur operational
costs, which can be saved if an existing version control system and its platforms can
be reused.

Contributions

In this report, we present an architecture to put arbitrary objects under version con-
trol. It allows for customization of how versions of objects are represented and how
they can be stored in files (if that is necessary), so the most suitable representation
can be chosen. The storage of versions is delegated to a backend version control
system, so existing systems can be used for their maturity and familiarity to users,
and their platforms can be reused for their utility and to save costs.

We do not propose a solution for synchronous collaborative editing of objects. That
is, the proposed architecture assumes that the users of the exploratory programming
environment need to synchronize their changes to objects explicitly. Changes by oth-
ers do not become visible on the screen automatically, like it is the case in online

1http://www.json.org/ (last accessed November 5, 2017).
2http://github.com (last accessed November 5, 2017).
3http://squeak.org (last accessed November 5, 2017).
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1 Introduction

services like Etherpad4or Google Docs5. We rather assume that users work indepen-
dently on different kinds of objects like Fabrik models [31], sets of UML diagrams,
pictures and other static resources, classes and source code, and that they want to
synchronize all these objects in combination at a time of their choosing.

Chapter 2 gives an overview of how version control has been approached so far in
selected exploratory programming environments, and introduces the reader to back-
ground knowledge that might be needed to put some information from the following
chapters into context properly. Chapter 3 describes the proposed architecture. Fol-
lowing that, chapter 4 introduces the prototype implementation of this architecture,
which provides object version control in Squeak/Smalltalk with Git. In chapter 5, the
prototype is evaluated. Observations and issues are discussed. Chapter 6 relates the
prototype to a number of other version control approaches and solutions, ways to
deal with objects that must be transferred between two programming environments,
user interface concepts, and some work that can be used as a starting point to resolve
issues of the prototype or to amend the features that are still missing from it. Finally,
chapter 7 concludes this report and gives an outlook of how its results could find
further applications.

4http://etherpad.org/ (last accessed November 5, 2017).
5https://www.google.com/docs/about/ (last accessed November 5, 2017).
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2 Background

In this chapter, an overview on existing approaches to version control in exploratory
programming environments is given, and coming from that, the goal of this report
is refined. Further, an overview of existing concepts that are reused in the following
chapters is given, such as version-control-related vocabulary, a brief introduction to
the object model of Git repositories, and challenges that need to be solved.

When the term users is used in this reportwithout further qualification, the users of
an exploratory programming environment are meant. They could be programmers,
but they might also use the environment to create documents, such as active essays,
or other kinds of objects, without general programming expertise.Users are the ones
that decide that some objects should be put under version control. More terms are
introduced later in this chapter.

2.1 Version control and object import/export in existing
programming environments

In most programming languages, all artifacts—both source code and resources that
in combination define the delivered software—are stored in files. Thus, they are nat-
urally compatible with file-based version control systems (VCSs) like Git. However,
this is not the case for all programming environments. Self and most Smalltalk sys-
tems, being examples of exploratory programming environments, store their users’
software product in a snapshot of the heap memory, together with the runtime en-
vironment and development tools. This snapshot is commonly called an (or the)
image.

Such systems revolving around an image usually allow exporting the source code
and other definitions of a software to the file system. In Smalltalks, this export opera-
tion is usually called file out [21]. The exported definitions can be imported into other
images with a corresponding file in operation. The files created during a file-out can
be versioned with any file-based VCS. But if that way is taken, the tools for version
control are usually not available in the programming environment. Conversely, sys-
tems that do not provide own version control tools usually rely solely on file out and
external VCSs, like Cuis/Smalltalk does [72, 73].

Many other Smalltalk systemsdo comewith ownversion control systems. Squeak1and
Pharo2use a VCS called Monticello. It describes Smalltalk packages declaratively in

1http://squeak.org/ (last accessed November 5, 2017).
2http://pharo.org/ (last accessed November 5, 2017).
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2.1 Version control and object import/export in existing programming environments

terms of definitions of the contained classes, methods, auxiliary scripts and the class
organization (categorization). All of these objects are essentially source code, or
closely related to it. While Monticello’s snapshot model could support non-code
artifacts (see Figure 2.1), the Monticello tools are currently not built to support such
artifacts well.

Figure 2.1: Monticello’s model of snapshots and definitions (extract). New sub-
classes of MCDefinition could be added, but it might turn out that not all kinds of
Monticello repositories and tools support them.

Another popular Smalltalk VCS is ENVY/Developer, often just called ENVY [51].
It is still available in VA Smalltalk and was previously also available in Cincom Visual-
Works Smalltalk. It provides versioning for methods, classes, class extensions (which
contain extension methods), applications (which group related classes and can have
dependencies on other applications, similar to packages in Monticello), and config-
uration maps (that combine specific versions of applications into configurations).
ENVY features a tight integration with the development tools. For example, most
menus related to the versioned objects allow users to browse other editions of the
selected object. But again, the entities listed above are all related to source code,
not arbitrary objects. Files and directories can be added to applications [27, ch. 29],
which stores them in the repository of versioned objects (called the library in ENVY).
However, there seems to be no immediate way to track instances of domain objects
with ENVY.Dolphin Smalltalk includes a version control facility called Source Tracking
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2 Background

System (STS) which is similar in use and functionality to ENVY [59]. It offers the
possibility to add global objects (which can be accessed unqualified from methods
and are usually stored in the Smalltalk dictionary) to a package, so these objects will
be versioned together with the package. This will store the object in Dolphin’s own
binary object format, encoded as text, in the package file generatedwhen the package
is saved. Therefore, the serialization format is fixed by the version control framework
and, as a human being, it is hard to make sense of the object just by looking at the
package file (on GitHub, for example).

The focus of Smalltalk version control systems on source code is reflected in GUI
building: most frameworks mandate that the GUI must be defined in code (Squeak’s
ToolBuilder, Dolphin’s MVP), or design tools serialize the composed interfaces to
source code (VA Smalltalk’s visual parts, Squeak’s Morphic designer3). The latter
approach is also taken in other programming languages and frameworks, such as the
form designer for Windows Forms in Microsoft’s Visual Studio. Generating source
code for the GUI does have advantages, such as being readable (if the API for GUIs
and the source code generator are good). But on the other hand, it adds a transfor-
mation step between what is being built in a design tool and what is actually created
from it. If the generated source code is subsequently modified manually (or by a
merge on GitHub), this can lead to errors in the design tool, or the manual changes
might be discarded when the design tool is used again.

There are facilities to export arbitrary objects from Smalltalk images, indepen-
dent of version control. For example, there are general purpose object serializers
and deserializers, such as Squeak’s DataStream and its more advanced successor
SmartRefStream [10], or Fuel as a fast binary object serializer [13, 14]. However, these
are not integrated with version control facilities like Monticello, so they provide only
a file-out and file-in equivalent for arbitrary objects.

Squeak’s primary user interface, which is called Morphic and was ported from
Self [25, 45], supports creating graphical objects interactively, without writing con-
struction code. The graphical composites, calledmorphs, can be exported to files via a
context menu, much like the file out operation for source code. But it is not integrated
with a version control system. The serialization behind the scenes actually uses the
previously mentioned SmartRefStream. Because Monticello does not track arbitrary
objects or files, this poses a problem when an interactively-built morph should be
versioned together with the source code that uses it. One possible workaround is
to use two different systems: Monticello for the code, and a file-based VCS for re-
sources in files, but it complicates configuration management and the installation
of packages. Another workaround is to serialize resources into source code (e.g.,
generating a method that returns a byte array of the resource data), which can then
be tracked with Monticello. But saving a new version in Monticello will not trigger
the serialization of all resources into their designated methods, so there is still a
disconnection between the VCS and the tracked objects.

3https://www.hpi.uni-potsdam.de/hirschfeld/trac/SqueakCommunityProjects/wiki/designer (last
accessed November 5, 2017).
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Moreover, any binary serialization output (whether encoded in text or not) is not
as easily accessible on GitHub as text-based formats—primarily due to the fact that
most humans cannot read the binary format. But automatic merging of such files is
also not available [18, gitattributes, built-in merge drivers], so collaboration through
pull-requests on GitHub can become more difficult.

In Self, objects are transferred fromone image to another via the Self Transporter [68].
There are no classes in Self. Objects implementations are reused as prototypes, like in
JavaScript. The prototype objects are fully-capable objects themselves, which blurs or
even removes the gap between meta-objects and “actual instances”. For this reason,
the Self Transporter can transport any object. It does so by traversing a graph of
objects—guided by annotations to objects and their slots to fill in important informa-
tion about user intentions thatwould otherwise not be available in these objects—and
writing files that contain Self source code expressions that rebuild the captured object
graph when evaluated. The serialization format is therefore text-based and general
enough to describe arbitrary objects, but it is specific to the Self language. Objects can
be exchanged with file-based VCSs, like Smalltalk file outs, but the version control
system is not integrated (or even visible) in the Self environment.

Another exploratory programming environment is the Lively Kernel [32]. Com-
ing with a set of programming tools that should be familiar to Squeak/Smalltalk
users, and another implementation of the Morphic framework, the Lively Kernel
provides its users with an exploratory programming environment for JavaScript
entirely inside the web browser. Lively components can be shared via a parts bin that
uses Subversion for version control and publishing. On top of that, version control
features like difference detection and merging have been integrated into the Lively
Kernel environment [5][39, ch. 5.2, 5.3]. It employs a serialization based on JSON
with support for object graphs (with cycles) and instance-specific behavior (i.e.,
functions that do not belong to a class). This is a very advanced solution for version
control of arbitrary objects, but the serialization format is still fixed.

All of the systems described above have in common that objects and their meta-
objects (e.g., classes and prototypes) and the programming tools live in the same
environment. More technically, the programming environment and the manipulated
objects share a single execution environment, such as an image or a web page. This
is different from typical programming environments for languages like C, Java, or
Python, where the execution of the program under development is, at development-
time, usually short-lived in comparison to the programming environment: during a
programming session, the source code is repeatedly compiled and run (for testing
or debugging), then terminated for another iteration of the edit-compile-run cycle.
When an integrated development environment (IDE), such as Eclipse, is not used,
the programming environmentmay simply be a text editor or a shell. The implication
is a stronger separation of the software artifacts (the code and resources) from the
programming environment, and the ubiquitous use of the file system as a medium
of data exchange between the two. In contrast, loading equivalent software artifacts
into a programming environment such as Squeak/Smalltalk can have immediate
side effects. Checking out a class for a Java program will certainly simply replace a
single file of source code, and the program is probably not being run at the same
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2 Background

time. And even if it were, checking out the class (or rather its source code) in the
file system will usually not affect the running program. Checking out a class in
Smalltalk does imply changing an existing class definition and possibly compiling
some methods, immediately affecting all existing (which is kind of equivalent to
“running”) instances of that class. This is a fundamental difference between tracking
live objects and tracking (“dead”) source code. This difference must be accounted
for in a version control system for objects.

2.2 Goals for a new version control system for objects

The general aim is to put arbitrary objects under version control, not only meta-
objects related to source code. To achieve this, source code and meta-objects should
be strictly regarded as a special case of objects that can be put under version con-
trol. The diversity of domain objects and their possible repertoire of suitable data
exchange formats should be accounted for by separating the serialization of objects
from their captured snapshot representation. This separation is already realized in
Monticello because the serialization format is determined by the repository type, not
by the definition objects. But if the snapshot objects have no control over the serial-
ization, there can be no flexibility in file formats for one kind of object. Moreover,
certain version control operations, such as the handling of differences, should also be
under the influence of domain-specific types. They may have special requirements
for an operation (e.g., to produce differences that are at all useful for the consum-
ing users) or the nature of a type might offer opportunities for improvements over
a domain-unspecific, fixed set of procedures and tools. Another reason is that the
knowledge and code about the representation of domain objects can stay close to the
domain objects themselves, rather than being spread out intomodifications to aMon-
ticello repository type or custom merge drivers for Git, for example. In contrast to
version control via import/export mechanisms such as the Self Transporter, file out,
or saving objects to files manually, version control for objects should be controlled
from inside the exploratory programming environment. This should make it possi-
ble to build tools that are as tightly integrated with the programming environment
as demonstrated by ENVY/Developer.

On the other hand, the new system should not prompt for version control specific
specialization too eagerly: it would be daunting for users if they had to supplement all
their domain objects with suitable version control integration code first, before these
objects could be tracked. Instead, an adequate solution that is already sufficient for
many objects must be found. As far as possible, specializations should be an option,
rather than a requirement.

One key requirement for version control systems is stability and robustness against
data loss. After all, these systems are built to preserve past or concurrent alternatives.
To meet the desire for stability or maturity, existing VCSs are preferred in productive
use over experimental, new ones—until the new ones have matured and their tech-
nological advantages warrant a switch. Therefore, the new VCS for objects (which
undoubtedly is experimental in the beginning) should be built on top of an exist-
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ing VCS. In this way, the original, canonical set of tools of the reused VCS can be
applied to repositories of the new system as well, filling the gaps in tooling for the
new system and aiding in recovery scenarios. Moreover, the canonical tools can help
to verify the correctness of the new system, as far as the underlying reused VCS is
concerned (e.g., Git provides the git fsck tool to check the integrity of a repository).

Sharing versioned files (or objects) usually involves a central place to host and
exchange the versioned data. While this is not technically necessary in distributed
version control systems like Monticello, Git, or Mercurial, the presence of platforms
such as SqueakSource4, GitHub, or Atlassian Bitbucket5indicates that central reposito-
ries are very much desired. Many of them come with additional tools that comple-
ment the software development process, such as issue trackers or wikis. Reusing an
existing VCS to base the new one on also means that the existing platforms can be
reused. This frees the new system from the cost of implementing and, more impor-
tantly, maintaining and running an equivalent solution to host projects. Established
and well-known platforms like GitHub and Bitbucket have proven their maturity,
availability, and popularity in this regard.

Another reason to reuse an existing and especially a file-based VCS is that software
may depend on resources that are better stored as external files (e.g., because they
are large or infrequently accessed, not warranting storage in the programming envi-
ronment), and that these external files should also be version controlled along with
the artifacts resident in the image.6 In file-based programming environments (e.g.,
in Java projects) this is supported naturally because there is no difference between
source code and other files, as far as the VCS is concerned. Support for external files
becomes even more important when multiple programming languages are used in
a software project, and the different parts must be developed in different program-
ming environments. For example, a project might have some modules written in
Smalltalk and others in C, or there might be auxiliary shell scripts. Like resource
files, the primarily file-based source code must be kept in synchronization with the
Smalltalk parts as part of the software configuration management.

2.3 Prerequisites and prior knowledge

2.3.1 Git’s object model and repository structure

Because the prototype implementation presented in chapter 4 uses Git, a brief intro-
duction to Git’s object model is given here.

At its heart, a Git repository (which is usually the .git directory in cloned directo-
ries) is a key-value store of hashed objects; the sha-1 hashes of these objects are the

4http://squeaksource.com (last accessed November 5, 2017).
5https://bitbucket.org (last accessed November 5, 2017).
6This is also a weakness of Monticello because there is no easy way to connect external files

with a Monticello version.

19

http://squeaksource.com
https://bitbucket.org


2 Background

Figure 2.2: Git object types

keys, and the objects themselves are the values. There are four kinds of objects: blobs,
trees, commits, and tags (see Figure 2.2). Blobs are made from tracked files and store
some text or binary content as added (with git add) to the repository at some point
in time. Trees represent directories and each tree contains a set of tree entries. Each
tree entry refers (by hash) either to a blob, or to another tree (a subdirectory), or
to a commit (in the special case of submodules). Trees and blobs together can cap-
ture a file system hierarchy. Modifying a file will create a new blob with a different
hash than before. Because trees refer to their entry objects by their hashes, the tree
for the directory that contains the file will also be modified. This changes the tree’s
hash in turn, so each change to one file ripples up through all parent trees up to
the root tree. Commits form the version history in Git. Each commit refers to a tree,
which captures the state of files and the directory structure when the commit was
created. One commit can have an arbitrary number of parent commits. No parents
mean the commit is “orphaned”, which means that a new line of history starts there.
One parent is the usual case when one commit is made as a successor of another.
Commits with two or more parents are merges, where two or more divergent lines
of history are reconciled. Tags refer to the tagged object (usually a commit) by hash
and decorate it with additional data, such as the tag message or a cryptographic
signature. [6, ch. 10]

From the structure of this model, certain performance characteristics can be de-
rived. Because there are no direct history links that connect versions of blobs or trees
with another, the detection of differences must always start from the root tree of a
commit. Thus, the worst-case complexity to detect if there are any differences be-
tween two versions of a blob is linear in the number of path segments from the root
tree to the blob. If any intermediate tree’s hash is unchanged between the two com-
pared versions, the blob must also be unchanged.7 This effectively prunes the search

7All of this assumes that no collisions in the sha-1 hash function appear, of course.
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for differences. The absence of blob- and tree-specific history is also the reason why
copy and rename detection must be performed by heuristics in Git. For comparison,
Mercurial does keep own histories for each file and directory in its revlogs [42], and
can therefore track renames and moves directly.

Git’s object model actually does not contain any notion of differences; Git has a
state-based history model [35]. All differences are computed on demand by Git’s
tools. For comparison, the earlier VCSs SCCS and RCS stored revisions of files by
recording the differences from one revision to another, [20, 55, 66, 67]. A contempo-
rary VCS that is based on changes is Darcs [56].

A Git repository contains more than the key-value store of objects. Most impor-
tantly, each repository has a dictionary of references, which are mutable named point-
ers to Git objects. They are stored in the refs subdirectory of a Git repository in the file
system. The references located under refs/heads/ are the local branches. The mirrored
references of remote repositories, which are called remote-tracking branches, are stored
under refs/remotes/<remotename>/. They are created and maintained by git fetch.

2.3.2 Diverse representations for objects

There can be more than one way to represent one kind of object. Take a Form in
Squeak, for example, which is a rectangular picture that can be rendered on a graph-
ical medium. When it should be stored in a file, many different image formats could
be used to do so. Or a custom binary format like that of DataStream could be used,
trading interoperability with other programs working with images for a possible
performance benefit during serialization and deserialization.

Another example are compiled methods in Smalltalk. They can be represented as
they are, as literals and bytes (the byte codes), or by the source text. Capturing the
former may be brittle because the literals could change (when global variables are
rebound or classes are replaced) and it is specific to the byte code set employed by
the virtual machine. But restoring a compiled method from such a snapshot could
be much faster than compiling the source code again. Some common requirements
for snapshot and serialization formats, among which a trade-off must be made, are
performance, portability and interoperability, expressiveness and completeness (i.e.,
that no information is lost), and human-readability.

The most suitable form of representation might not even depend only on the type
of object, but also on the use case of the representation. In the compiled method
example, for collaborative development on GitHub, classes and methods are best
represented in the form in which they are written by the developers (i.e., as source
code). However, if the use case is to distribute the software (transfer it to another
image) it can be more beneficial to share a binary representation of the same classes
and methods for performance reasons. The latter is done for loading methods in
Orwell [65]—a predecessor of ENVY [51, p. 2]—to save the compilation time, and
VisualWorks/Smalltalk Parcels, which offer a way to load and unload sets of classes
and methods fast, but in a controlled manner [47].
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2.3.3 Object lifecycles and vocabulary issues

In the previous section, it was noted that live objectsmay need to be treated differently
than files, because loading such objects may cause side effects. Therefore, it should be
possible to inspect other versions of objects without loading them. Monticello solves
this by introducing another kind of meta-objects, the MCDefinition and subclasses,
that are bundled together in an MCSnapshot. Unfortunately, the objects captured by
MCClassDefinition (i.e., classes), are meta-objects themselves (for their instances). So,
how to call the objects in a snapshot? If they are contrasted with live objects, are
they supposed to be dead objects? At least, there is no real difference to the execution
environment. ENVY calls them shadows [51, pp. 237 ff.]. How does loading relate to
the deserialization of data from files?

Even without the issues connected with all the terms printed in italics in this
section so far, different VCSs have used different terms for equivalent operations or
the same term for different operations in the past. For example, while Subversion
and Git coin commit (as a verb) to create a new revision (in Subversion) or commit
(as a noun, in Git), SCCS and RCS coined checkin for the same operation [20, 55, 66,
67]. In ENVY, it is version (as a verb), and in Monticello it is save. Even back in 1990,
the lack of consistent terminology has already been noted [1]. Since, today, there
is no agreement among Subversion, Git, and Mercurial on how a branch should be
constituted [35], and there are multiple explanations of what checkout does in Git
alone, the situation does not seem to have improved much.

For an overview of selected terms associated with the lifecycle of objects under ver-
sion control, have a look at Figure 2.3. The terms used in the remainder of this report

Figure 2.3: A multitude of terms is available to describe operations of converting ob-
jects between different representations. The ones chosen in this report are printed
in bold.
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(with some deviations in chapter 4, which describes the prototype implementation
of the proposed design), are the following:

live object An object that would exist even without any support for support for
version control in the programming environment.

snapshot object An object that represents a live object for the purpose of version
control.

to capture an object Convert a live object to a snapshot object.

to materialize an object Convert a snapshot object to a live object. This may have
side effects on other live objects, as noted earlier in this chapter.

tracked object A live object that is currently considered for version control and that
can be captured at some point.

captured object Usually a live object that has been captured.

to serialize an object Convert an object to a series of bytes, for storing the object to
a stream, which can end up in a file.

to deserialize an object Convert a series of bytes that was generated by serializing
an object back to an object.

version (without a referent noun) An object that describes a set of object graphs at
some point in time, with metadata such as the author who created this version.
Such versions form the version history in a repository. TheGit equivalentwould
be a commit.

version (of an object) An object as present in a version as defined above.

edition (of an object) An object in a state that needs not necessarily be present in
any version. It could be a live object with changes not persisted in a version, or
a modified snapshot object that was derived from applying only some of the
differences between two versions to a version of an object. The set of versions
of an object is always a subset of the set of editions of an object.

to apply differences to an object Transform an object from one edition into another
edition of itself. Synonym: to patch an object.

merge The operation of combining three editions of each object in a set of objects
into one edition, and the result of that operation.

The choice of version and edition are partially based on their usage in ENVY, where
versions are immutable editions that have been given a name (usually including a
number) [51].

The color code used in Figure 2.3 will also be used for other figures in this report
when applicable: live objects are green, snapshot objects are yellow, and objects that
result from serialization or are involved in that process are gray.
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2.3.4 Object graphs

In general, one single object does not have a significant meaning on its own.8 Instead,
what can make a given, seemingly interesting object meaningful is a graph of objects
that is reachable from it. For example, given a user interface form that contains a box
for text entry and a button to accept the entered text, the form alone would not be
meaningful without its contained objects (the text box and the button).

On the other hand, not all objects that are reachable from a given object might be
relevant for the purpose of tracking this object for version control. For example, in
Squeak’s implementation of Morphic, each morph has a reference to its containing
morph, the owner. If the user chooses to track one morph, its owner might not be
relevant for versioning the morph; the owner can change whenever the user puts the
morph into another space of the programming environment. The change of owner is
therefore only relevant to organize the environment for one user, not for all of them
and, subsequently, not for tracking and sharing the morph. Further, if the owner
reference were always followed unconditionally, tracking any morph that happens
to be visible on the screen in Squeak would mean to track the whole world of visible
morphs and their associated objects. By following the chain of owner references, the
root morph that transitively contains all morphs visible on the screen can be reached
from every visible morph. Tracking every morph on the screen as a consequence of
tracking a single morph is certainly unexpected and undesired.

While the owner reference of the initially tracked morph may be irrelevant, the
owner references of morphs contained in the tracked morph are relevant because
otherwise the part-of relationships among these morphs would not be captured (or
inconsistently captured). So, whether a particular instance variable is relevant for
capturing must in general be decided per instance, not per type.

2.3.5 User intentions missing from object graphs

The generalized variant of the issue raised above with the example of morph own-
ers has already been documented for the Self Transporter. According to [68], the
following information is generally missing from graphs of extensionally constructed
objects, but it is required when these objects should be transported from one system
to another. Therefore, the information must be supplemented somehow:

• To which package a part of an object belongs (different parts could belong to
different packages),

• whether a reference from one object to another should be captured as is or
whether the referent should be replaced by a different value in the transport
representation,

8Numbers and primitive values such as nil, true, and false may all be complete on their own,
but it is not useful to track any of them standing alone. They only make sense when put
into a context: What is true or false?
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• whether a referenced object is a global object that is assumed to be already
present in the target system, thus making it preferable to capture only a sym-
bolic reference to the object instead of the object itself,

• whether the identity of an object matters when it is restored, and

• whether an object should be recreated from an abstract expression rather than
from a complete snapshot representation.

The first point is applicable if packages are put before objects, that is, the entities
that are being tracked are packages, which happen to contain objects. As per the
goals set out above, the reverse should be assumed: a package is just a special kind
of composed object (that may refer to only parts of other objects such as classes or
prototypes, to address the issue raised in [68]). Therefore, it might not be necessary
to annotate parts of objects with packaging information. However, it is important
to be able to control the relevant “reach” of an object, depending on the intention
for tracking it. It should be possible to ignore a portion of an object’s state when
capturing a graph of objects, for example the owner reference of a morph that has
been selected for tracking, as discussed above.

The second point applies, for example, to transient state (such as caches) which
should probably not be put under version control.

The third point indicates that some objects provide a context for others, but this
context is fixed by the programming environment and should neither be transported
out of the environment, nor modified when other versions are loaded into the envi-
ronment. In Smalltalk, one example of such an object is the global Smalltalkdictionary,
which usually manages the bindings of all globally accessible identifiers, including
class names. While loading different versions of packages might actually modify
these bindings, the mapping object itself does not usually need to be tracked and
should not be tracked, as it is bound to the running instance of the programming
environment (e.g., a Smalltalk image).

The fourth point derives from the need that multiple references to the same object
must be transported such that when the references are restored in the target environ-
ment they will all refer to the same object again. However, there are exceptions, such
as value objects, for which this requirement does not necessarily apply. For example,
a point of x and y coordinates in Self does not have an identity, so it is irrelevant
whether two references to a particular point will be stored and restored as references
to two equal points or as references to the same point object.

The fifth point from the list above derives from the capturing approach of the
Self Transporter, which transforms object graphs into an evaluable stream of Self
expressions. These could either allocate a new Self object and initialize it by assigning
the results of other expressions to its object slots, or instead use specialmessage sends
to construct an object (such as the @ message to construct points, i.e., x @ y). Since
we do not want to dictate a particular serialization format or even prescribe the
in-memory representation of snapshots for all kinds of objects, this point can be
reformulated into “[It must be defined] whether a special type of snapshot should
be used to represent an object.”
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All of these issues require that objects or whole object graphs must be comple-
mented by additional information. In the remainder of this report, such information
will be called object metadata (or only metadata for short).
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In this chapter, we present our framework solution to track objects and store them in
existing version control systems. It is described how object graphs can be captured
and rematerialized, how object identity can be preserved in this process, how dif-
ferences between two editions of object graphs can be handled, and how it can be
supported to have different formats in which snapshots can be stored in an existing
VCS. Finally, a generic way to capture any kind of object is presented, so that users
do not have to provide own solutions for snapshots and differences for the types of
all objects that they want to track.

3.1 Storing objects in versions

In order to put anything under version control from inside of an exploratory pro-
gramming environment, there must exist a connector component to a version control
system. It should be able to access the version history of a repository, create new
versions, and possibly manage independent development streams, such as branches.
How this connection can be established without focusing on a particular VCS has
already been treated by related work and is not in the scope of this chapter (some
details will be given in chapter 4). However, some assumptions must be established
on how objects can be put into versions and how they can get out again. This part
of the architecture is based on a subset of an abstraction for version control systems
called Pur [35].

A version describes a revision of a set of objects. Versions can have any number of
parent versions. This relationship forms the version history in a repository.

Each version contains a snapshot of object graphs and their associated metadata. In
contrast, the Pur architecture deliberately does not define what a snapshot consists
of because it depends on the particular application that is seeking to connect to a
version control system. However, Pur defines an entity named store that can create
snapshots and restore snapshots, updating the objects in the store. What “restore”
means depends on the particular type of the store. The example implementation Pur
for Newspeak presented in [35] defines two stores: an image store to capture classes
and methods from the Newspeak environment into a snapshot and to load them
back from a snapshot, and a file store to write snapshots to files and to read such files
back into a snapshot.

In the following sections of this chapter, we will further define the snapshots of
our version control solution for objects and what they must be able to do.
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3.2 Live objects, snapshot objects, storage objects

The distinction of stores and versions from their snapshots implies that there can be at
least two or three kinds of forms to represent the same object. Three realms of objects
will be defined into which these forms are categorized. This makes communication
about the different forms and about crossing the boundaries of the realms easier.
The three realms were already shown in Figure 2.3, but not formalized.

The objects that the users usually interact with and thatmake up the programming
environment are attributed to the live realm. Domain objects belong to this realm, as
well as their meta-objects that define their types and behaviors, such as classes and
methods in Smalltalk and functions (closures) in JavaScript. A defining property for
live objects is that they do not exist for the purpose of version control. They would
still exist when version control is not even attempted.

The snapshot realm contains objects that stand in for editions of objects that origi-
nally came from the live realm, either from the the running system or from another
system. Snapshot objects can represent either current editions (i.e., their captured
state is equivalent of that of live objects in the running system) or editions from
other points in history. Objects in the snapshot realm reside in the memory of the
running programming environment, just like live objects, but they solely exist for
the purpose of version control. Objects for differences between editions, and other
objects that explicitly deal with snapshots are also attributed to the snapshot realm.

The third realm includes all forms of objects that are intended to be stored outside
of the programming environment. Since the most pressing reason to export objects
in the context of version control is persistence, this realm will be called the “stor-
age realm”. But even when snapshots from the version control solution were to be
transferred directly between two running programming environments, the represen-
tation “on the wire” between the two processes would belong to the storage realm,
according to this nomenclature.

Converting objects from the storage realm to the live realm always goes via the
snapshot realm. The same holds for the inverse direction.

There are additional objects in the proposed design that solely exist for the purpose
of version control, but they are not snapshots because they do not represent live
objects. They deal with objects of one particular realm or operate at the boundary
between realms, converting objects from one realm into another. Since these objects
are in away aware of version control and of the different involved realms, theywill be
called infrastructure objects. Examples of these are stores, versions, and repositories.
If they deal with objects of one realm specifically, they will be attributed to the realm
onwhich they operate. If an object operates inmultiple realms, theywill be attributed
to the realm that is not the snapshot realm. For example, serializers that convert
snapshots to storage data are attributed to the storage realm; an object assuming the
role of a store for live objects would be attributed to the live realm; and an object that
computes differences between snapshots would be attributed to the snapshot realm.
Containers of objects in the snapshot realm (rather than containers that can convert
objects to snapshots on demand), belong to the snapshot realm. For example, the
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snapshot that is associated with a version (and contains other snapshots), belongs
to the snapshot realm.

3.3 Preserving object identity across system boundaries

In subsection 2.3.5 several issues were already raised that must be solved when
attempting to transfer objects from one environment to another. If an object should
be tracked for version control, additional requirements arise. It must be possible to
discover an object in a target environment if it already exists there. Also, it must be
possible to identify that different snapshots of an object belong to the same original
object. Otherwise, restoring a graph of objects from a snapshot would either have
to rely on the structure of the graph to identify corresponding objects (e.g., starting
from a well-known object, the object reached via a certain path will be assumed to
correspond to a snapshot object in the snapshot graph via the same path), or it would
have to rematerialize the whole object graph from scratch (based on the snapshot)
and only a well-known references were redirected from the “old” graph’s objects to
the “new” ones. This might be sufficient in some cases, but in general there may be
objects outside of a captured graph that have references to non-well-known objects
inside the graph (see Figure 3.1 for an illustration). These references would become
stale if the objects of the captured graph are not updated in-place.

Figure 3.1: External referrer into a captured object graph

To identify objects in different snapshots, we propose that names are assigned to
objects if the identity of these objects needs to be preserved. By default, object identity
needs to be preserved for all objects, but some objects can be exempt: identity can be
ignored for value objects, and for objects that can be identified and accessed in the
target environment based on their properties (e.g., a PackageInfo object in Squeak is
identified and accessed by its name, so it is unnecessary to assign another, technical
name to it). Object names must be globally unique, even across the boundaries of
the programming environment. They can take any suitable form for in-memory
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and external storage, but they should make it easy to avoid collisions, should not
depend on the state of an object (e.g., they should not be hash values), and should
not consumemuch memory (to keep the overhead low). One possibility are UUIDs,1
although these are hard to read and remember for humans.

3.4 Capturing and materialization of object graphs

In this section, we describe how graphs of live objects can be captured to create
graphs of snapshot objects, and how the inverse operation, materializing live objects
from snapshot objects, can be performed. All of this does not assume any particular
application domain.

3.4.1 Composition of version snapshots and object graphs

The snapshot of a version or a store is a collection of object graphs. Each graph is
associated with object metadata that saves decisions about the capturing or storage,
which might also be needed to recover the graphs properly. In addition to that, a key
is assigned to each graph. This key uniquely identifies the graph in the snapshot and
in the store that creates the snapshot. It is also used to access a graph in a snapshot.

Each object graph stores the bidirectional mapping between object snapshots and
the names of their captured objects. Additionally, each graph has a start object, from
which all other objects in the graph can be reached. New graphs are introduced to a
store by telling the store to track an additional object (under a given key) that is the
start object of the graph. The other objects in the graph are then derived from the
relationships among objects, guided or restricted by the metadata that is configured
in the store. Snapshot objects can refer to each other, so all snapshots (nodes) in the
graph should be reachable from the snapshot of the start object of the graph.

To capture the snapshot of a store, the store must enumerate the live object graphs
that are known to it, convert them to the snapshot realm and collect them into the
overall snapshot, together with the metadata (see Figure 3.2).

3.4.2 Abstract algorithm to capture object graphs

To capture an object graph, beginning from a given start object, the graph has to be
traversed and an appropriate snapshot has to be created for each encountered object.
All objects encountered that do not already have names from a previous capture
operation (or because they have been materialized from another snapshot) must
have new names assigned unless their identity does not matter. These names should
be persistently kept in the store that tracks live objects, so future operations on the
same graph of objects can look up the named live objects if they still exist. The names

1Universally Unique IDentifier, https://tools.ietf.org/html/rfc4122 (last accessed November 5,
2017).
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Figure 3.2: Example setting for object graphs, start objects, and object names. The
store captures all objects that are reachable from its known start objects.

are also assigned to the respective snapshot objects, so the corresponding live object
of a snapshot object can be looked up and vice versa.

The graph traversal can be realized with an exhaustive search algorithm (e.g.,
breadth-first search for graphs). The algorithm should include multiple-path prun-
ing, so each object is captured only once. The live objects that are being capturedmust
be able to direct the graph traversal to related objects, so the traversal can progress
through the graph.

When a live object is encountered during the traversal, a message is sent to the
live object, instructing it to convert itself into its preferred type of snapshot. This is
the opportunity for a live object to decide that it should be replaced in the snapshot
graph by another object (e.g., by a symbolic reference to itself).

Live objects that know that they are the root of a sufficiently independent substruc-
ture in the overall graph could also decide at this point to start another (independent)
graph traversal that works differently for this subgraph (see Figure 3.3). They must
take care not to miss out on the multiple-path pruning of the main traversal. If the
snapshots of the objects in this subgraph should be registered normally (with object
names) in the snapshot graph that is built by the outer graph traversal, a way to pass
the inner snapshots out to the main graph must be implemented. Alternatively, the
very aim of the separate traversal might be to encapsulate the results of the special
traversal in a single (composite) snapshot object.

Live objects (and auxiliary objects involved in the capturing traversal)must further
be able to access the object metadata themselves, so gaps of missing information as
described in subsection 2.3.5 can be filled with this metadata. For example, when one
attribute of an object should be captured with a default value instead of the actual
value, this needs to be looked up in the metadata.

Theremight bemore than oneway to capture one type of live object. For example, a
CompiledMethod in Smalltalk could be captured in source code formor in its compiled
byte code form (or in the form presented below in section 3.7). To support the
choice that an object should be captured with a different type of snapshot than the

31



3 An architecture for object versioning

Figure 3.3: Different graph traversal strategy for a subgraph. The different line styles
indicate that the relationships among the objects in the subgraph could be of a very
different nature than the relationships outside of the subgraph (e.g., references
from pointers vs. references derived from a naming convention).

one the object usually prefers, the necessary override information must be added
in the metadata—associated with the particular live object to which the override
pertains—and it must be interpreted by either the graph traversal or the live object
itself. For example, the metadata could contain an association of the live object with a
different message that will be sent to it for capturing, when the object is encountered.

3.4.3 Abstract algorithm to materialize object graphs

When snapshots of object graphs can be created, it must also be possible to convert
them back to live objects. Like capturing, this can be realized with a traversal of the
object graph (now the graph of snapshot objects), starting from the snapshot of the
start object. As during capturing, each object should only be rematerialized once.

When a snapshot is to bematerialized, amessage is sent to it to convert it back to its
original live object. Depending on the kind of snapshot this may involve, for example,
creating a new instance of the type of the captured object, or compiling source code.
If the captured live object had itself replaced by another during capturing, at this
step the replacement object will be rematerialized instead of the captured object. To
get the original live object back, another message is sent to the materialized object,
essentially telling it to “bring itself back to live”. A symbolic reference to a globally
accessible object would at this point resolve itself and return this global object. Live
objects can also perform other post-materialization tasks in response to this message
if necessary, such as notifying observers of changes.

When snapshots are materialized, it is possible that a live object for the snapshot
already exists (i.e., there is a live object with the same name known to the store).
In this case, the snapshot object should be instructed to materialize itself into the
existing live object if possible. This attempts to ensure that references to the live
object do not become stale by materializing a new live object.
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3.4.4 Containers of tracked objects

Stores and the snapshots produced by them contain objects in different forms (as
indicated by the different realms), but ultimately they always contain graphs of
objects. In a way, the same holds for versions, which contain the objects in their
snapshots. Retrieving the snapshot can involve delegating to a store that retrieves
objects from the storage of the backend VCS.

Therefore, at a higher level of abstraction, stores, versions and their snapshots can
share a common set of operations. For example, it should be possible to compute
the differences between two stores, between two versions, between a store and a
version, between a store and another snapshot, and between a version and another
snapshot (each time resulting in a set of differences for object graphs). Consequen-
tially, another such operation would be to apply a set of differences on top of a store
or on top of the snapshot obtained from a store. Applying differences to a version
would be somewhat ambiguous because it is unclear what the result should be: a
new version or only a different snapshot? When such operations are performed on
stores, in contrast to snapshots, these operations will affect objects in the live realm
or the storage realm, introducing the side effects mentioned in the previous chapter.
Applying an operation to a snapshot would constrain the operation to the snapshot
realm.

To generalize such operations, we introduce the abstract type object container as
the union of stores, versions, and snapshots obtained from them. To realize some
of these operations when performed on different concrete types (e.g., when a ver-
sion is compared to a store), the object realms need to be crossed transparently by
converting objects to and from the snapshot realm whenever necessary. At the same
time this means there is potential for optimization, since containers of the same type
(e.g., versions from the same VCS backend) may implement shortcuts that avoid the
unnecessary conversion of some objects.

3.5 Differences between snapshots

After having described how objects can be converted between the live realm and the
snapshot realm, in this section we will motivate the need to describe and compute
differences between object graphs, describe how it can be done (independent of a
particular application domain) and how these differences can be applied to object
graphs.

3.5.1 About the importance and granularity of differences

It would probably be possible to build a simple version control system that does not
have a concept of differences between two snapshots. In fact, the Git object model
does not include differences, as mentioned in the previous chapter, and Pur also
omits them. But the tools that come with Git can compute differences for trees and
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blobs and the example implementation “Pur for Newspeak” presented in [35] also
includes differences.

Differences are important, not only for the users to consume, but also for opti-
mizing certain operations. For example, when a new version is to be saved, first
computing the differences between the working copy and its parent version makes
it possible to ignore all objects that were not changed. The rest of the save operation
can take advantage of this knowledge. The unchanged objects may not need to be
serialized again (depending on the storage mechanism of the backend VCS) and
can be reused for caching of the newly created version. If a tool offers to create the
new version with only a subset of the changes made to the working copy (as git add
–patch does), it might need to reevaluate which objects need to be serialized after
the selection of changes has been performed. But it is guaranteed that the initially
unchanged objects require no further processing. Based on the assumption that only
a small part of a system changes from one version to another, processing only the
differences can mean that fewer objects must be processed overall per operation.

Implementing differences requires an investment of additional development time
(in comparison to building a purely snapshot-based system). But the effort can be
worth it for both the user experience and the performance of the version control
system.

There are multiple levels at which differences can be computed.

1. At the object container level: Which object graphs have changed?

2. At the object graph level: Which objects have changed?

3. At the object level: Which parts of an object have changed?

The simplest form of difference is replacement as a whole. It can be used as a
fallback whenever differences are not implemented at one of the three levels. For
example, if a particular domain object is captured in a form of snapshot for which
fine-granular differences are not implemented, the object can be stored and restored
by replacing the whole object with a new edition that was created from the snapshot,
as described in the previous sections. In programming environments that support an
identity replacement operation, such as Smalltalk’s become:, this replacement may
even be trivial. An alternative approach is to overwrite the existing object entirely,
modifying it in-place. When this is not always possible (e.g., because it might not be
possible to change the size of an existing object), it might be necessary to not only
track the object itself, but also the relevant places that reference it.

If the system does not implement the detection and application of differences
at the object graph level, the whole graph must be replaced. If differences are not
available at the object container level, all tracked objects must be processed with each
operation that transfers objects from one realm to another.

For object graphs, there are two additional trivial forms of differences at the level
of object containers: addition and removal of graphs to and from an object container.
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3.5.2 Abstract detection of differences

The structure of differences depends on the structure of the specific snapshots. How-
ever, the structure of the collection of differences in an object graph and the structure
of differences between object containers are amenable for generalization. The general
principle of detecting changes is described in this section.

Remember that an object graph refers to the snapshot of a start object and that it
includes a bidirectional mapping between object names and snapshots. Consequen-
tially, the differences between two object graphs can be expressed as the collection
of differences between the corresponding snapshots in the compared graphs; that is
the differences between the start objects plus the differences for any objects with the
same name.

To collect the individual differences for the snapshots in an object graph, another
form of graph traversal can be performed, but this time the traversal happens not
in a single graph of live objects, but simultaneously in two or three graphs of snap-
shots that should be compared. One of the graphs is the left-side graph, containing
snapshots “before” certain changes that should be detected, the second is the right-
side graph, which captures the situation “after”2 the changes, and an optional third
graph would be the base graph, which contains snapshots from the base version of a
merge, or more generally the base version of a three-way difference of graphs.

Assume two (or three) graphs that contain some snapshots with names that exist
in either graph, but with different snapshot contents for the same name in some
cases. Beginning from the snapshots of the start objects in each graph, two (or three)
snapshots are compared in each step. The determination of the local differences (i.e.,
changes that apply to the memory of a single object) is up to the implementation of
the snapshots being compared because they must know best their own structure. To
that end, one of the snapshots is told to compare itself to the other snapshot (e.g.,
the left-side snapshot receives a message to compare itself to the right-side snapshot,
based on the base snapshot) and the result must be some kind of differences object.
We can assume that the comparison will somehow iterate over the relevant rela-
tionships of the snapshot object (the “referrer”) with other snapshots and that the
other ends of these relationships may need to be compared among the two (or three)
graphs. Thus, per relationship two (or three) other snapshots (the “referents”) will
be reached in this way (see Figure 3.4).

If the referent snapshots all have the same object name, then the live referrer object
was in relation with the same live referent object at the time of each capturing. This
means that there is no change in this particular relationship. The referents must then
be compared in a subsequent traversal step, to detect differences deeper in the graph.

If the referents have different names, then the relationship has changed (e.g., an
instance variable has been reassigned) and, thus, a difference for the referrer exists.
While users might be interested in the differences between these two (or three)

2The terms before and after are set in quotation marks because they imply a chronological
ordering which needs not be accurate for all comparisons.
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Figure 3.4: Two graphs being compared, currently inspecting a particular relation-
ship from the two editions of the object named A. In graph 1, B is at the end of this
relationship; in graph 2, it is a different object C. B from graph 1 and C from graph
2 are the referents in this relationship, while A from graph 1 and A from graph
2 are the referrers. The change in name from B to C means that the two captured
editions of A related to different objects.

distinct referent objects, sometimes this comparison does not make sense (e.g., when
two of the referents are of completely unrelated types). The differences between the
referents could be computed, but they would only be informational for users and
must not be applied to an object graph because the left-side referent did not actually
mutate into the right-side referent.

If one of the referents does not have an object name, meaning that the identity of
the captured object is not tracked, further information is needed to determine the
correct course of action. If this is the snapshot of an immutable value object, then
the difference applies to the referrer. If the snapshot is of an object that should be
mutated and that supports fine-granular differences in each of the two (or three)
compared graphs, meaning that the referent object would not need to be replaced
at the referrer, then there is no difference for the referrer. But if some of the referent
snapshots have names and others do not, or some are mutable and others are not,
then the difference must in case of doubt be applied to the referrer.

It could be mandated that all snapshots must be able to answer the mentioned
questions: is it immutable, does it support fine-granular differences, and does it
support fine-granular differences also when compared to the specific other snap-
shot(s)—they could be of incompatible types. But the more queries or operations all
snapshots must support, the more difficult it will be for users to create correct do-
main specific snapshot implementations. Another solution to find the correct course
of action in such cases is to keep the snapshots from all involved graphs and present
options on how to proceed to the users who might want to apply these differences.
Change the referrer or change the referent? Attempt to compare the referents or
not? Unfortunately, this makes the user experience of such cases similar to that of
a proper conflict. It also means that the difference finding graph traversal must be
able to resume after user input has been provided. Yet another solution would be to
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annotate each relationship that can run into these problems with the correct answer
to these questions (thus, defining a strategy for comparisons) in the object metadata.
Since this might be daunting for users if it had to be done in advance (e.g., when
an object is enlisted for tracking for the first time) the two latter solutions should be
combined: if one user has made a choice for a particular relationship while looking
at differences, it should be offered to persist the choice in the metadata for future
difference computations. The simplest solution is to insist that objects without names
need not be kept (they opted out of having their identity tracked, after all), so the
change should always be applied to the referrer.

If a three-way difference is computed and there are three different names for the
snapshots in a set of referents (or two names and one nameless snapshot), then the
relationship was changed both from the base to the left-side and from the base to
the right-side, but not to the same object in both cases. This is a conflict and must be
appropriately recorded in the differences for the referrer.

When the referent from the right-side graph does not have a corresponding snap-
shot in the left-side graph, a new object has been introduced to the graph. This must
be noted in the differences by copying the snapshot into the differences, so it could
be added to a graph to which these differences should be applied. The memory
overhead of a new set of objects in the differences could be optimized by replacing
references to snapshots that have a name and that already exist in the left-side graph
with symbolic references by the name. If there is a difference for the referenced object,
then it will be recorded under this name anyway. For the case when an existing object
from the left-side graph can only be reached via the added object in the right-side
graph, the relationships of the added object must be followed (see Figure 3.5). For
each referent with a name that already exists in the left-side graph, the difference
traversal must continue with these same-named snapshots from either side.

Figure 3.5: Two graphs being compared. In the right graph an object C has been
added and it replaces B at the end of the reference x from A. B can only be reached
from A via C in the right graph. The changes to B are “hidden” behind the added
object. The difference detection graph traversal must therefore follow the relation-
ships of C or it will not detect the changes in B.
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If a three-way difference is computed and a name can be found via this mechanism
in the left-side and right-side graph, but not in the base graph, then the same object
was added in both changes from the base (whichmust likely have been done by back-
porting objects to the base version and continuing history from there). Differences
between the left-side snapshot and the right-side snapshot are then automatically
conflicts.

If the right-side graph does not contain an object from the left-side graph, that
object has been removed from the graph because it is no longer referenced. Whether
this requires a special mention in the differences between the two graphs depends on
how the object store towhich these differences should be applied behaves. In a system
that provides automatic garbage collection, changing the references such that the
removed object is not referenced anymore in the target graph would be sufficient, so
no special mention of the deletion is needed. This is also safe for uncaptured objects
(outside of the graph) that refer to the object that has been “removed” (actually
it is only no longer part of the captured graph). If the objects in a store are not
subject to garbage collection (e.g., files on disk may not be deleted automatically),
the removal of an object should be noted explicitly in the differences, so the removal
can be executed when the differences are applied. For the latter case, the removal
of a named object can be detected by marking each named object in the left-side
graph when an object with the same name is encountered in the right-side graph.
All objects in the left-side graph that are not marked at the end of the traversal are not
present in the right-side graph and have thus been removed. With these semantics,
objects without a name are always “removed” from the target graph and replaced
by others (which may be equivalent).

When one snapshot is told to compare itself to another, the snapshot implemen-
tation can decide to start an own graph traversal for differences, much like the the
possibility for live objects to start their own capturing graph traversal for a subgraph.
This makes most sense when objects pursue this way both for capturing and for
comparisons.

3.5.3 Abstract application of differences

Applying differences relates to detecting differences like materialization relates to
capturing. But since the differences between two snapshot graphs are made up of
the collection of differences to named objects (as defined above), no further object
graph traversal is needed this time. Instead, the individual differences must simply
be applied to their respective objects in the left-side graph.

Sometimes, objects appear in the right-side graph that do not exist in the left-
side graph. In this case, these objects have been added and this addition must be
reproduced when the differences are applied.

If a store on live objects implements the application of differences and new objects
must be created, they must be materialized similar as described in subsection 3.4.3,
but with a variation. If a materialized object refers to another named object, this
referent object must be looked up in the target graph as usual. But if it already
exists, it does not need to be materialized (which would be the case in the abstract
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materialization algorithm above). Instead, only the reference to this object must be
materialized in the referrer, while the existing referent object is only subject to a
change if there is an own difference for it.

3.6 Storing objects outside of the programming
environment

The previous sections primarily deal with live objects and their snapshots. When the
objects eventually have to leave the programming environment, to be shared with
other programmers or authors, the third of the introduced realms, the storage realm,
comes into play.

When snapshots are exported from the programming environment, they must
be converted into a representation that suits the target storage or communication
medium. For one type of snapshots, theremight bemore than one form of representa-
tion. For example, a snapshot of a formatted text could be converted intoMarkdown3,
HTML, or some specialized XML format. For some objects, users may want to have
control over the export format, but for others, they might not care.

We note that there can be a variety of storage strategies4 for each snapshot type.
These strategies are implemented in serializers and deserializers. The responsibility of
serializers is to convert graphs of snapshots (not live objects, although implemen-
tations may choose to be relaxed about this) into storage objects (e.g., files), and
deserializers should do the inverse: create snapshots from storage objects. For each
type of serializer, there should be a matching type of deserializer.

Snapshot types should define a preferred type of serializer that is generally suitable
for the objects that they represent. For example, snapshots for character strings could
refer to a serializer that outputs the text in plain text files with a Unicode encoding.
So in case the user is not interested in the particular storage format, a reasonable
default will be chosen.

Which serializer is used for a graph of objects must be recorded in the object
metadata because users may choose a different type of serializer than the default
one. This information both helps the store choose the correct serializer and it is a
hint for the store how storage objects can be deserialized. If deserializers can answer
the question “Can you read the output of this serializer?”, then a store can choose a
suitable deserializer from a pool of available deserializers based on the information
about the serializer.

Because the object metadata must be accessible before the correct deserializer is
known, the format of the metadata must be determined by the store, not by users or
the snapshots in an object graph.

A store must therefore perform the following steps to serialize an object graph:

3https://daringfireball.net/projects/markdown/ (last accessed November 5, 2017).
4cf. strategy pattern [16, pp. 315 ff.]
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1. Look up the chosen serializer according to the metadata (if there is none de-
fined, use the preferred serializer of the start object of the graph and add that
information to the metadata).

2. Instruct the serializer about the key of the object graph to be stored (the serial-
izer may derive the final storage location from the key).

3. Invoke the serializer with the object graph.

4. Write out the metadata to the storage medium.

The steps to deserialize storage objects to snapshots are:

1. Read in the metadata from the storage medium.

2. Based on the information about the serializer contained therein, look up a
suitable deserializer.

3. Instruct the deserializer about the location of the storage objects.

4. Invoke the deserializer to obtain a graph of snapshots.

Finally, a store may need to find the storage locations of objects graphs in the first
place. How it does that is basically implementation-defined, but a good strategy is
to maintain a dictionary that connects graph keys with locations. The store would
have to store this dictionary in a well-known location and format.

3.7 Generic snapshot format for objects

The previous sections described an abstract framework for version control of diverse
types of objects. In this section, a proposal is made, how objects can be captured and
compared when there are no special types of snapshots available for them. Thus,
this proposal attempts to make all objects trackable for version control.

3.7.1 The structure of objects

In general, objects combine data with behavior. How this combination is realized
depends on the object model of the programming language. In Smalltalk, behavior
is defined in classes and their methods. While each object belongs to exactly one
class, it only stores its own state in the memory allocated for it, but not the behavior.
In JavaScript and Self, methods can be assigned to objects directly, although most
objects inherit their methods from their respective prototype object. The prototypes
themselves are interesting candidates for version control, of course. Since methods
and functions are first-class objects in JavaScript and Self, they can be regarded as
a special kind of state because all objects will only have references to the method
objects anyway, which makes them indistinguishable from “non-behavioral” state
without looking at the referent.
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One can say that objects are composed of a number of slots. This term is borrowed
from Self and from the Common LispObject System (CLOS) to denote “a component
of an object that can store a value” [52, 26.1 Glossary]. Theremay be different types of
slots, such as instance variables, indexable fields, or unordered items of a collection.
Typically, each slot references another object, but in theory a slot could also signify
a meaning on its own (for example, a mark or tag on the object). Slots can have
an identifier, such as a variable name, symbol, or index, but they do not need to.
However, it must be possible to look up a slot in an object. In a bad case, the lookup
could include a search through the items of a collection.

The snapshot of an arbitrary object is the collection of captured slots of that object,
and the name assigned to the object if its identity should be kept. Specializations of
this schema can be made to accommodate special kinds of objects, such as primitive
values. For concrete examples, please see subsection 4.1.8. Slots could refer to other
object snapshots directly or by name (if the referent has one). In programming
languages with strong typing, it makes sense to keep a reference to the type of the
original live object that was captured and to the type of the live object that was put
as a replacement at the request of the captured object (e.g., a symbolic reference).
Thus, when the snapshot is rematerialized into a live object, the correct type can be
instantiated.

To make these types of snapshots applicable to the programming environment,
the message that tells an object to convert itself into a snapshot must be implemented
for a suitable root object, such as in the root class for all objects in the environment
(if there is one).

The default implementation of the capturing message should enumerate all slots
in the live object (which needs capabilities for introspection in the programming
language) and add slots of the appropriate type to the snapshot under construction.
If the live slots reference other objects, these should be handed back to the graph
traversal as described previously, so the search through the object graph can be
continued.

When the snapshot slots are created, it should be looked up in the object metadata
whether the slot’s value should be replaced with a default value or if the slot should
not be captured at all, as described in subsection 2.3.5. Actually, this way to influence
the capturing of objects is formulated very specifically for this low-level formof object
capturing. Live objects that are captured with a higher level of abstraction would
need an equally more abstract description of a defaulting mechanism to achieve the
same goal.

To materialize an object snapshot, a new (uninitialized) instance of the type of
the object of which the slots have been captured must be created. If the captured
live object was replaced for capturing, the needed type is the type of the replace-
ment object. If the captured live object was not replaced, the type is the same as
the type of the captured live object. Each slot must then be materialized into the
fresh object. What must be done to that object depends on the type of each slot. For
example, a slot for an instance variable should assign its materialized value to the
represented instance variable (which needs capabilities for reflection in the program-
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ming language). After all slots have been materialized in the new object, it should
be complete.

3.7.2 Differences in single objects

How objects can be mutated depends on the programming language. Commonly
(at least in languages that support imperative programming) a slot value can be
changed, so the slot refers to a different object after the change. The addition and
removal of slots is possible if the set of slots for a particular type is not fixed (i.e., slots
can be added or removed from an object of this type without changing the identity
of the object or having to create a new object).

The differences between two object snapshots can therefore be described by the
collection of changes to the slots of the object (reassignments, additions, removals).
If an object is replaced by another one everywhere in the system, there might also
be another type of difference that denotes “object replacement”. But in most cases,
it is sufficient and simpler to determine that slots referring to the “replaced” object
are changed to refer to the replacement.

When an object snapshot is told to compare itself to another one (as described in
subsection 3.5.2), it must iterate over its slots and match them with the slots of the
other snapshot. For this reason, it is necessary that slots can be looked up in another
object snapshot. If no matching slot can be found in the other snapshot, the slot was
either added or removed. In both cases, this must be added to the collection of slot
changes.

If a matching slot is found, the two slots are compared. Should the slots be of a
kind that references another snapshot, the referents of the slots are passed to the
difference detection graph traversal as described in subsection 3.5.2. Should it be
determined that there is a local change to the referrer, which in this case means that
a different object has been assigned to the slot, this reassignment is added to the
collection of slot changes.

When such differences are applied to an object, each slot change in the collection
must be applied to the object. Depending on the type of slot change this can mean
that a slot’s value is changed to a different object, or that a slot is added or removed.
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4 Object version control in
Squeak/Smalltalk with Git

In this chapter, we will describe our prototype implementation of the architecture
introduced in the previous chapter. It has been realized in Squeak/Smalltalk and
connects to Git as the backend VCS. The part that is independent of Git has been
named Squot and the part that connects with Git has been named Squit (as a mixture
of the names Squot and Git). The implementation is hosted on GitHub.1

4.1 Squot: Squeak’s Object Tracker

4.1.1 Object containers and object graphs

The origin of all version control for objects are the original live objects, of course. As
per the design from the previous chapter, these must be captured by a store. This
is the responsibility of a SquotImageStore. The objects in it are stored in the Squeak
image and they are live while Squeak is running. To start tracking an object graph,
one object is chosen by the user together with a key. The chosen object will become
the start object of an object graph during capturing and the chosen key will become
the graph’s key in the store snapshot.

Because the only implemented backend VCS at the moment is Git, which is a
file-based VCS, the keys of graphs are also the paths to the files or directories in
which the graphs will be stored. For example, if the package “Squot” should be
put in the directory src/Squot.package, then the user would add it to the store as
shown in Listing 4.1. Because graph keys are unified with storage paths, whenever

Listing 4.1: Adding a package to an image store

anImageStore add: (PackageInfo named: 'Squot') at: 'src/Squot.package'.

“graph keys” were mentioned in chapter 3, the corresponding code in Squot will
mention “paths” instead. These paths are character strings, not objects that are used
to represent file system paths (e.g., FSPath from the FileSystem API). Because graph

1https://github.com/hpi-swa/Squot (last accessed November 5, 2017).
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keys only need to be unique in a store (unlike object names, which should be globally
unique), the double role as paths is unproblematic.

Thus, the image store keeps a bidirectional mapping between paths and start
objects. It supports to track the same start object at multiple paths, but this has not
been used practically so far. Because an object can have multiple forms of snapshots
and serialization formats, the possibility to add an object more than once has been
considered. The implication would be redundant representations of the same object
in the version history, of course.

In addition to the objects and their paths, an image store also holds onto the
metadata for each path. Because the terms introduced in chapter 2 were not fixed
from the beginning, variables that refer to object metadata aremostly named storeInfo
or additionalInfo in Squot. The holders of metadata for an object graph are instances
of SquotTrackedObjectMetadata. This is essentially a dictionary because the required
attributes in the metadata cannot be known in advance. There are some well-known
keys that correspond to pieces of metadata presented in chapter 3 (e.g., the name of
the serializer to be used is stored at the symbol key #serializer).

The image store must also remember the names of objects that are not the start
objects of a graph, otherwise these objects would get new names assigned each
time the graph is captured. For this purpose, the image store keeps a dictionary of
SquotObjectGraphs and an object registry. The difference is that one SquotObjectGraph
stores the names of live objects and snapshots only for one graph, whereas a Squot-
ObjectRegistry is used to keep the names of all live objects (and only the live objects)
encountered while capturing from an image store. Therefore, objects that appear in
multiple graphs (which leads to redundancy among the snapshots) can at least get
the same name in each graph.

There are some kinds of metadata that are only relevant for an image store, and
they must not be persisted in the snapshots of versions. This is called transient
store info in Squot. Live objects are given the opportunity to initialize the metadata
when they are added to an image store. When a class overrides the method squot-
AddTransientStoreInfoTo:,2 its instances may add transient information to an image
store’s metadata, and they also have the liability to remove such transient metadata
when they receive the message squotRemoveTransientStoreInfoFrom:. Other kinds of
metadata must be transformed when snapshots are created. For example, the in-
formation that an instance variable of a live object should not be captured at all
is stored in an IdentityDictionary that associates live objects with arrays of the ig-
nored instance variable names. The live object must not be referenced frommetadata
belonging to a snapshot. Therefore, such kinds of metadata have their live object ref-
erences replaced with the names of those live objects in the default implementation
of squotRemoveTransientStoreInfoFrom: in the class Object. The names are converted

2Allmessages that could be implemented as extensionmethods to classes that do not belong
to Squot have the word “Squot” in their names to avoid name clashes. Squot is not the
first package in the domain of version control and object converting, and it will probably
not be the last.
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back to live objects by the default implementation of squotAddTransientStoreInfoTo:
after the objects have been rematerialized when they are added to the image store.

When the snapshot of an image store is captured, the result is a SquotSnapshot,
which is also the type of the snapshots of versions. To distinguish the snapshots of
stores and versions from the snapshots of objects, the latter are called shadows in
Squot. This follows the tradition of ENVY/Developer which calls non-resident (i.e.,
not loaded) editions shadows [51, pp. 237 ff.]. They are implemented differently in
Squot, however. Shadows in ENVY inherit from their live classes (e.g., EmShadow-
Class is a subclass of Class), which is not the case for any of the current classes of
shadows in Squot. It is not forbidden to have shadow classes inherit from their corre-
sponding live classes either—they only must make sure that multiple shadows of the
same object can coexist without issues. The deserialization of shadows from storage
objects should therefore be free of side effects to the programming environment (e.g.,
methods should not be compiled when shadows of them are read in).

Each SquotSnapshot has a dictionary of SquotArtifacts.3 An artifact is the combina-
tion of an object graph, its key (called path as described above), and the associated
metadata. The name artifact was chosen before it was decided that an artifact should
always contain a graph of objects (instead of a single object, for example). For the
same reason, the graph of an artifact is accessed with the contents message. Apart
from the structural definition above, the true definition of artifact in Squot is: an
artifact is an element of an object container. All classes that implement the protocol
of object containers allow querying instances for their artifacts, which answers a dic-
tionary of objects that understand the protocol of SquotArtifact. The keys in these
dictionaries are the paths of the artifacts.

Since image stores are also object containers, they can also produce a variant of
artifacts that are called SquotLiveArtifact. They act like adapters on the live objects in
the image store, holding the image store metadata and the live start object. When the
contents of a SquotLiveArtifact are accessed, it will capture the graph starting from
the live object and answer a graph of shadows.

Graphs of shadows are instances of SquotShadowGraph, and they associate object
names with shadows. In contrast, SquotObjectGraphs additionally associate names
with live objects and should therefore not be stored in versions.

Because there is no static type checking in Smalltalk, classes need not declare that
they implement a particular interface or protocol. Instead, Squot defines traits [15]
for behavior that is common for multiple classes. This allows grouping of related
messages and capabilities without introducing mandatory abstract superclasses.

3The naming is somewhat debatable if we look at the definition of artifact in the Oxford
Advanced Learner’s dictionary: “(technical) an object that is made by a person, especially
sth of historical or cultural interest” [26, p. 72]. In a way, Squeak really deals with “objects
that were created by a person”, namely the Smalltalk objects which were created by users
during their exploratory programming sessions. And since version control deals with
the history of objects, there is also “historical interest”, although the meaning deviates
somewhat from the intention of the Oxford dictionary definition.
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Figure 4.1: Relationships among object containers, SquotSnapshot, SquotImage-
Storee, artifacts, and graphs of shadow objects (snapshot objects). The abstract
methods in the traits are required by the trait.

Naturally, some of these traits correspond with the types that are proposed in
chapter 3, such as object containers.

4.1.2 Generic object snapshots

Following section 3.7, generic snapshots for all kinds of objects, implemented in
SquotObjectShadow, contain a collection of slots, the class of the original live object
that should have been captured, and the class of the object that was actually captured
(in case the live object wanted to be replaced).
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Two types of slots must be considered for Smalltalk objects:

1. instance variables

2. indexable variables (for variably-sized classes, such as Array)

Since instance variable names cannot be integers, both kinds of slots can be stored
together in one dictionary. The classes of slots have an abstract superclass Squot-
ShadowSlot, which is a subclass of Association (a key-value pair). Instance variables
are represented with SquotInstVarSlot and indexable variables with SquotVariable-
PartSlot. The key of a SquotInstVarSlot is the instance variable name. For a SquotVari-
ablePartSlot, the key is the index. In both classes, the value of the slot is the shadow
of the object to which the respective variable is bound. The lookup of a slot in an
object shadow sends instVarSlotNamed: or variablePartSlotWithIndex:, respectively, to
a SquotObjectShadow that will perform the lookup in its slots dictionary.

Some objects must be captured differently because of their special identity require-
ments: the primitive types SmallInteger and, since the advent of the Spur memory
manager4with Squeak 5.0, Character and SmallFloat64. They could each be captured
as an “empty” SquotObjectShadow, but we would still need to know which shadow
is which integer, for example. For ordinary objects, this is solved by assigning names
to them. However, we want to avoid names for primitive objects because they are
value objects and should not need an additional name. Thus, a different class, Squot-
PrimitiveValue, is used for the shadows of primitive objects (also for true, false and
nil). It is a simple wrapper around the primitive object. This means a shadow object
will reference a live object, but in this case this is fine because the primitive objects
have no side effects, cannot change their identity, and are already present in every
Smalltalk system.

While this is already sufficient to capture and materialize nearly5 every object
in Squeak/Smalltalk, some types should be handled differently. There are collec-
tions whose indexable variables all contain the same primitive type (e.g., ByteArray,
WordArray, ByteString, and WideString). Creating one SquotPrimitiveValue wrapper
for each slot would be a huge waste of memory, so there is another shadow class
SquotBitsObjectShadow that simply wraps a copy of such collections.

The reason why not all objects can be captured by simply making a copy of them is
that snapshots would be indistinguishable from live objects by the meta-object proto-
col. For example, the snapshot copies of domain objects would be included in queries
such as allInstances to their classes. Applications that leverage the meta-object proto-
col to perform operations on live domain objects would also modify the snapshots,

4http://www.mirandabanda.org/cogblog/2013/09/05/a-spur-gear-for-cog/ (last accessed Novem-
ber 5, 2017).

5Another exception is CompiledCode (the superclass of CompiledMethod), which has index-
able byte variables (the bytecode), but the first indices are not accessible like indexable
variables because they actually contain pointers (the literals). There is an extra shadow
class SquotCompiledCodeShadow for them that currently implements proper capturing,
but not materialization.
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which contradicts the purpose of snapshots to preserve state. Primitive objects and
bits objects are defined by the Squeak standard library, are domain independent, and
should not be subject to modification after having been retrieved by an application
via the meta-object protocol (because it would not only affect objects of the appli-
cation, but other parts of the system as well). If application developers consciously
decide to introduce new domain specific bits types (with variableByteSubclass:, vari-
ableWordSubclass:, etc.), rather than using the ones that ship with Squeak, then these
developers should also be entrusted with properly overriding the capturing and
materialization behavior for this type.

4.1.3 Capturing

All trackable live objects must understand themessage captureWithSquot and answer
an appropriate snapshot. The default implementation added to Object (which is the
base class of nearly all objects) starts a traversal of the live object graph, which is
implemented in SquotObjectCapturer. Immediate objects (SmallInteger et al.) are just
wrapped with SquotPrimitiveValue, no traversal is started from them.

The capturer performs a breadth-first search starting from the start object of the live
graph. In the course of this, it builds a new SquotObjectGraph. To affirm that object
graphs should be considered immutable after capturing, the mutator methods used
to build a graph are only defined in a subclass named SquotMutableObjectGraph,
which is used by the capturer. When new objects are encountered, the capturer
assigns a name to them. Names are both registered in the object graph and in the
object registry supplied by the capturing image store. Additionally, the captured
object and the snapshot are decorated6 with a SquotNameDecorator. This helps to
see the names easily in the debugger, but the decoration is lost in a double dispatch
(because when the decorated object supplies self as a message argument or return
value, the decorator is no longer applied). Therefore, the definite source for existing
object names is the object registry.

When the capturer encounters an object, it sends captureWithSquot: to the object,
with the capturer as argument. This message should be understood by all trackable
objects in addition to the parameterless captureWithSquot. The answer, which should
be the created shadow, is added to the object graph under construction. The de-
fault implementation of captureWithSquot: in Object can be seen in Listing 4.2 below:
The response to squotShadowFactory should be the preferred shadow class of the
object. Most objects will answer SquotObjectShadow, but some differ (see subsubsec-
tion 4.1.8.1).

Remembering subsection 2.3.5, globally accessible objects should be able to replace
themselves with symbolic references for capturing. They can do so by returning a
replacement object from the squotReplacement: method. The default implementation
is to delegate to another method objectForDataStream:, which is used in Squeak for
the DataStream class. DataStreams (in practice its subclasses) are used to save ob-

6cf. decorator pattern [16, pp. 175 ff.]
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Listing 4.2: Default implementation Object»captureWithSquot:

captureWithSquot: aCapturer
| replacementOrSelf |
self class isImmediateClass ifTrue:

[↑ aCapturer capturePrimitiveValue: self].
self class isBits ifTrue: [↑ aCapturer captureBits: self].
replacementOrSelf := self squotReplacement: aCapturer.
↑ aCapturer

capture: replacementOrSelf
as: replacementOrSelf squotShadowFactory

jects to the disk [10]. Objects that want a symbolic reference must create a DiskProxy
instance with the necessary information to find the object in the target environment,
send replace:with: to the argument of objectForDataStream: (which usually is a Data-
Stream), and return the DiskProxy from objectFromDataStream:. Since Squot needs
the samemechanism for object capturing, it reuses this message and lets the capturer
mimic the necessary part of DataStream’s protocol. The Fuel object serializer defines
a similar message fuelReplacement for the same purpose.

In capture:as: the capturer will 1) instantiate the new shadow object and 2) tell
it to initialize itself based on the live object. Separating these two steps is one way
to deal with cycles in the object graph: the uninitialized shadow can already be
associated with the live object in a dictionary, so on a recursive encounter with the
same object, the (possibly not yet fully initialized) shadow can be used already. For
SquotObjectShadow the initialization means that the live object must enumerate all
its relevant instance variables (which can be controlled by overriding the class-side
method squotRelevantInstVars) and the indexable variables and adding them to the
shadow. This will create the appropriate slots and tell the capturer to capture the
slot’s value. If a slot’s valuemust be replaced by another value according to the object
metadata supplied from the image store, the replacement will happen at this point. If
the slot value has already been captured in a previous step, the resulting shadowwill
be assigned to the slot. Otherwise, the live value is enqueued to the search frontier in
the capturer, but it is not captured yet (doing so would result in a depth-first search);
and the slot is remembered, so the correct shadow can be filled in later. The name-
decorated live object is used as the slot’s value in the meantime. Deferring the final
filling-in of references is a second way to deal with cycles in the object graph because
it means that a shadow can be initialized without running into an endless recursion
when a live object in a cycle is captured. Instead, the following of references can be
left to the search algorithm, which provides proper multiple-path pruning.

After the object graph traversal has come to an end, the remembered slots whose
values were not yet filled with the correct shadows are finally redirected. The shad-
ows are taken from the aforementioned dictionary that associates live objects with
their shadows. The same dictionary is used to capture each object only once: when
an object is already present as a key in the dictionary, it will not be captured again.
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In the current implementation, the names assigned to objects are arrays that con-
tain a UUID and slot identifiers on the path via which an object was reached from
the start object. Because breadth-first search always reaches a node via the shortest
path from the search origin, it was preferred over depth-first search for capturing.
The path component of the name is not necessary to distinguish objects, but it makes
debugging easier (e.g., in the unit test cases) because UUIDs alone are hard to re-
member for most humans.7 If an object moves in the graph or is replaced where the
path in the name leads, the path will become outdated, of course. But since it is only
a nice-to-have and the UUID on its own should suffice to uniquely identify an object,
this does not impede the functionality. The path part of the name is created in the
capturer by remembering the slot from which an object was first encountered. The
slots understand a message to provide a readable name for this purpose (usually it
is simply the slot key, i.e., the variable name or index). The referrer-slot information
is stored in dictionaries next to the object names. Objects are also decorated with
their referrer with a SquotCreatorDecorator.

Shadow objects always refer to another directly via pointers, an indirection to only
refer via the object name has not been implemented so far, as the need for it did not
arise yet. The name indirection would make it possible to create partial object graphs
that do not contain shadows for all objects in the graph.

4.1.4 Materialization

The snapshot traversal is, like the traversal for capturing, implemented in a separate
class, called SquotShadowMaterializer. A recursive depth-first search was chosen here
because it wasmore straight-forward to implement.When thematerializer is created,
a SquotObjectRegistry, a target SquotObjectGraph, and a source SquotShadowGraph
can be supplied. The source graph is used to retrieve object names, so they can be
added to the registry and to the target graph if an object does not yet exist there. If
no target graph is supplied, the names are only kept in the object registry.

To materialize a shadow graph, rematerialize: is sent with the start object shadow
to the materializer. If a shadow subsequently wants to have another shadow remate-
rialized (as the search progresses), it will also send rematerialize:. In this method of
the materializer, it is checked that each shadow is materialized only once.

When a shadow is to bematerialized and it has an object name, it will be looked up
in the object registry to find an existing live object with the same name. If one is found,
the materializer will attempt to “overwrite” the live object in-place (the shadow is
materialized in the existing live object). How this is accomplished is determined by
the shadow, as can be seen in Listing 4.3. If the in-placematerialization is not possible
(e.g., because the object would have to change its size, which is impossible in Squeak)
the shadow should materialize itself into a new object instead and the old one will
be replaced with the new one via becomeForward:. If no object with the name exists

7Projects like https://github.com/jamesmunns/human-hash-rs (last accessed November 5,
2017) seem to support this claim.
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yet, according to the registry, it is at the shadow’s discretion to materialize itself into
a new object. Primitive objects do not have names, they will simply be unwrapped
from their SquotPrimitiveValue.

Listing 4.3: Materialization dispatch in SquotShadowMaterializer

findOrCreateAndRematerialize: aShadow
| existing |
self sourceNameOf: aShadow ifPresent: [:name |

existing := objectRegistry objectNamed: name ifAbsent: [].
(existing notNil and: [existing squotShouldKeepIdentity])

ifTrue: [↑ self materialize: aShadow in: existing]].
↑ aShadow squotMaterializeWith: self

materialize: aShadow in: anObject
| materializedObject |
convertedObjects at: aShadow undecorated put: anObject.
(anObject shouldHaveNameAssignedBySquot and: [sourceGraph notNil])

ifTrue: [objectRegistry nameOf: anObject
ifAbsentAssign: [sourceGraph nameOf: aShadow]].

materializedObject :=
(aShadow materializeAs: anObject with: self)

squotReactivateWith: self.
anObject becomeForward: materializedObject copyHash: false.
↑ anObject

SquotObjectShadows tell each of their slots to materialize themselves in the given
live object, with the materializer. The slots, in turn, instruct the materializer to rema-
terialize their values, then modify the instance variables or indexable variables of
the live object accordingly.

Again, object graphs with cycles are cared for by separating the creation (alloca-
tion) of a new object from initializing (materializing into) it. The created (or existing)
object will be registered before the materialization proceeds (see Listing 4.3 and List-
ing 4.4).

Listing 4.4: The allocation of new objects by SquotObjectShadows is separated from
filling in the slot values (cf. Listing 4.3). This makes it possible tomaterialize object
graphs with cycles.

squotMaterializeWith: aMaterializer
| object |
object := self createMaterializedInstance.
↑ aMaterializer materialize: self in: object
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4.1.5 Providing context information

As already indicated in chapter 3, many operations need access to context infor-
mation such as object metadata or the names of objects. It is not always obvious
which operation will need to have access to which information: the tracked objects
and their snapshots can influence these operations and one object might need other
information than another.

There is more than oneway to provide context information in Squeak. The obvious
one is to pass everything that is needed in message arguments, which, however,
clutters themessage signatures. This approachwas taken to pass around the capturer
and materializer, for example. Since these are already available as an argument, a
different way to make further context accessible would be to use the capturer and
materializer as facades to access the other necessary information. This in turn would
clutter the interfaces of these classes with messages that are only marginally relevant
to the rest of their implementation (low cohesion).

A third way are dynamic variables. The concept is well defined in Common Lisp
[52, 5.3 Macro defparameter, defvar], which allows the value-binding of variables
declared as “special” to be controlled by the dynamic execution context, rather than
the lexical environment [52, 3.8 Declaration special]. A simplified explanation is
that dynamic variables are like implicit additional arguments to all functions or
methods invoked in the scope of the dynamic binding. The object metadata and
the image store’s object registry are made available via dynamic variables in Squot
(as subclasses of DynamicVariable). The object registry is further given directly to
capturers and materializers.

4.1.6 Differences

On page 34 three levels of differences are introduced: object container level, object
graph level, object level. The corresponding classes of differences in Squot are:

1. SquotPatch—at the object container level

2. SquotObjectGraphDiff—at the object graph level

3. classes that can understand the protocol of the trait TSquotDiff (SquotObjectD-
iff, for example)—at the object level

Because of the additional SquotArtifact in Squot’s compositional hierarchy of snap-
shots, there is also a SquotArtifactDiff. A SquotPatch8 contains one SquotArtifactDiff
for each changed artifact. Each SquotArtifactDiff then wraps one SquotObjectGraph-
Diff, which maps object names to their differences. For an overview see Figure 4.2.

8The names might not be ideal because the distinction of “patches” from “diffs” is not
obvious before reading their documentation or reading how they are used in the code.
But the names SquotSnapshot and SquotPatch are at least reminiscent of the Monticello
classes MCSnapshot and MCPatch, which serve similar roles: versions have a snapshot
and patches contain the differences between two such snapshots.
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Figure 4.2: Relationships among object containers, artifacts, object graphs, and their
respective difference classes
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The graph traversal for the computation of differences is conducted by instances of
SquotDiffBuilder. While traversing two or three graphs simultaneously, it constructs a
SquotObjectGraphDiff. In each step, a left-side shadow is compared with a right-side
shadow, and optionally a base shadow. Their object names are compared as described
in subsection 3.5.2 to decide how the difference detection should proceed. It currently
relies on the presence of name decorators on the shadows and remembers names
in an own dictionary before performing double-dispatches with shadows. There
is one specialty for the treatment of the start object shadows: when their names
differ, a SquotObjectReplacement will be generated as the difference, signifying that
a different object is now used to span the graph. For all other objects encountered via
references, different names will lead to differences in the referrer, not in the referents.

At several places the resulting differences are tested with the message squot-
HasChanges, towhich the response should be false if no differenceswere found. Squot-
DiffOfEqualObjects serves as a null-object for many kinds of differences. It always
denies to have changes. If no changes are detected for an object, there is no need to
record anything about it in the differences between two object graphs (except for
some information described later in this section).

Cycles in the compared graphs are dealt with by splitting the creation of difference
objects from their initialization (see Listing 4.5).

Listing 4.5: The allocation of new difference objects for SquotDiffBuilder is separated
from actually computing the differences.

diffFrom: leftShadow to: rightShadow
ifNew: newBlock andInitialize: initBlock

| diff left |
left := leftShadow undecorated.
diff := objectDiffs at: left

ifPresent: [:existing | ↑ existing]
ifAbsentPut: newBlock.

initBlock cull: diff cull: leftShadow cull: rightShadow.
diff squotHasChanges ifTrue:

[graphDiff
addDiff: diff
forObjectNamed: (shadowNames at: left ifAbsent: nil).

self noteChanged: left].
↑ diff

Notably, the multiple-path pruning in this traversal works by only checking that
the left-side shadow has not been encountered yet. The rationale is that the changes
to a single object do not depend on the path via which the object was reached in
the graph. The object must have changed in the same way wherever it is referenced.
Anything else would rather mean that a former reference to this object was in fact
changed to another object (with another name).
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Analogous to capturing, the comparison of slot-based snapshots works by dele-
gating the comparison to the contained slots. The results are saved in an instance
of SquotObjectDiff, which keeps differences for all changed slots for one object. If
the names of the values of two compared slots are different or one of the values
does not have a name, a SquotSlotReassignment will be recorded. It remembers both
the left-side and the right-side value. In effect, user-defined strategies to deal with
unnamed or differently-named objects as proposed on page 36 are currently not
implemented. Making changes to the referrer is always preferred to making changes
to the referent. This avoids the mutation of value objects, but it might not always be
what the user wants. If the names of the compared slot values are equal, no difference
is recorded for the compared slots, but the referents are added to the search queue of
the SquotDiffBuilder for further comparison. At this level of abstraction, slots cannot
be added or removed from a Squeak object (because once allocated, an object cannot
change its size on the heap). So the only type of slot difference up to this point are
reassignments.

Applying differences to shadows is initiated by sending squotApplyTo: to a dif-
ference object with the target shadow as argument. The graph traversal needed to
patch object graphs is coordinated by a SquotObjectPatcher. It eventually sends squo-
tApplyTo:with: to each difference object (with the target as first argument and with
the patcher as second argument) and remembers the answer (which should be the
modified shadow) for each shadow to which a difference has been applied. Shad-
ows should be considered immutable (after having been constructed), so they will
usually copy themselves and apply the changes to the copy, which is then returned.

The messages used to apply differences to snapshots, stores, artifacts, and object
graphs can be seen in Figure 4.2.

SquotObjectDiffs simply apply all their slot differences to the target. On a Squot-
SlotReassignment, the slot’s value is replaced by the right-side shadow that is stored
in the reassignment object.

Whendifferences are applied to a SquotImageStore, the live objectsmust be patched,
of course. Currently, difference classes implement a method with the prefix apply-
ToLoaded to apply changes directly to live objects. For SquotObjectDiffs, this will
apply the differences to a shadow first and then materialize the patched shadow in
the live object. The patcher assumes the role of the materializer in the arguments.
When an object does not exist in the graph yet, or when it does not have a name,
then it will be fully materialized with a SquotShadowMaterializer. This is only a stub
implementation, however, because it does not correctly handle the case when a new
object must be added to the graph. Neither are the differences beyond added ob-
jects detected, as demanded on page 37, nor is the materialization of new objects
“shallow” as described on page 38. Instead, the whole subgraph reachable from the
added object will be materialized. This stub implementation works when the added
objects are simple nameless objects that do not transitively refer to any named ob-
jects (e.g., it works for Points). The name-object mappings for both shadows and live
objects beyond the added one will not be correct. At least, the graphs generated by
applying such differences are structurally correct, so, Squot’s bookkeeping aside, the
generated objects should work.
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It is also possible that the object metadata is different from one snapshot to another.
Therefore, differences should be computed and applied for the metadata as well. But
since changes to the metadata have been rare so far, this has not been thoroughly
implemented yet. Instead, the metadata entries from the right side are simply added
to the metadata from the left side, possibly overwriting entries.

4.1.6.1 Deep changes
Let us assume amerge situationwhere in the base version there is a form that contains
a button. In the left-side form, the button’s label has been changed, whereas in the
right-side form, the button has been deleted. The situation should be presented to
the user with a conflict in the form for the button because with an automatic solution
either the label change or the deletion would be lost. To make this feasible, it must
be noted in the differences to the form between its base snapshot and its left-side
snapshot (where the label of the button changed) that something has changed in the
button slot. Otherwise, when the differences to the form are inspected and there is
no change when going to the left side (after all, the button was changed, not really
the form itself), it might be decided that the deletion of the button can safely be
performed, since the change does not conflict with any other change to the form.
The crux is that changes to objects that are part of a parent object can actually be
significant to the parent object as well.

Squot notes this by adding SquotSlotTransientChanges to the slot changes in Squot-
ObjectDiffs for the parent objects. To do that, whenever the differences builder en-
counters the values of slots, it remembers the referrers of these values. When differ-
ences to an object are found, the difference builder walks back the chain of referrers
and adds the transient changes for the slots. When these differences are applied to
objects, they do nothing, but they can be used in three-way differences to detect
conflicts. They also make difference objects navigable like shadow objects, so all
differences in a graph can be reached from the difference object for the start object
of the graph. This is helpful for inspecting the differences with the Smalltalk toolset
and it could also help when visualizations of the differences must be built.

An alternate implementation approach would be to look for the deep changes only
when three-way differences are actually computed for a merge. Some kind of reverse
search through the object graph would be needed to find the transitive referrers
to objects that have actual changes. Navigating two-way differences like a graph is
not possible in this variant, but it could be reproduced by computing the transient
changes belatedly like for merges.

4.1.6.2 Addition and removal of object graphs
In the beginning it seemed to be a good idea for certain operations to describe the
addition of an artifact or object, or the removal of one, as the differences between
nothing and the present object. One example application is the displaying of dif-
ferences to users. Squot has SquotAbsentArtifact and SquotAbsentValue (the “Absent
types”) as null-objects to represent nothing for such purposes. However, these objects
lack knowledge about the type of the absent thing and, hence, cannot know what
“nothing” really means for the purpose of comparison. This was compensated by
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double-dispatching the absent object with the other, present object, such that the
type can be determined from the present object. To have further control over the
handling of absent objects, customization hooks have been introduced such as a con-
structor absentPrototypeForSquot in Object which must be overridden if an empty
instance is not the same as an uninitialized instance, or if it is at all ill-defined what
an empty or uninitialized instance of a class would be (Boolean and Number answer
SquotAbsentValue here). Ultimately, the Absent types only deferred the problem of
dealing with additions and removals from the place of their detection to other places
in the code; it turned out simpler in most situations to directly handle additions and
removals specially instead of hiding them in specially constructed regular differ-
ences. Thus, SquotArtifactAddition and SquotArtifactRemoval were introduced later
as kinds of SquotArtifactDiff.

4.1.7 Serialization and deserialization

Themost common target of export operations is the local file system. For each artifact,
one or more files and directories should be created. Squot includes the SquotFileSys-
temStore to operate on a file system directory that contains serialized artifacts. It
stores object metadata next to the files of an artifact in a dot-file that ends with .squot-
contents. Additionally, a table of contents named .squot ismaintained in the store’s direc-
tory, so that it needs not search the directory tree for the relevant files. Both metadata
and the table of contents are stored in Smalltalk Object Notation (STON) [70].

To use Squot even on existing Smalltalk projects that do not have any of the meta-
data files, the file store will perform a search for files named .filetree to find at least
packages stored with Squeak’s FileTree9implementation of the Cypress Smalltalk
code interchange format10. In order to contribute to such projects using Squot, but
without forcing the Squot metadata files on anybody else, a file store can be told to
not store the metadata.

The directory on which a file store operates can also contain files that are not
relevant to Squot, such as a readme text or configuration files used by other ser-
vices like smalltalkCI [49]. The file store currently ignores any files and directories
not related to artifacts according to the table of contents, but it generates a single
SquotUnrecordedFilesArtifact as a representative for all of them.

When a file store should write an artifact, it will look up the serializer class to
be used in the artifact’s metadata. A serializer object is then created to write in the
directory of the file store and the artifact is given to it for writing. Because the artifact
paths (the keys of object graphs) are file or directory paths already, the serializer
will create its output at this location. Afterwards, the metadata will be stored (unless
the file store was configured not to do so). When all artifacts have been written out,
the table of contents is created. It contains the paths of all stored artifacts.

9https://github.com/dalehenrich/filetree (last accessed November 5, 2017).
10https://github.com/CampSmalltalk/Cypress (last accessed November 5, 2017).
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When the file store is asked to enumerate its artifacts, it will read the table of con-
tents and the metadata for each artifact. There it finds the information about each
artifact’s serializer. To find a compatible deserializer, the file store class has a registry
of deserializer classes and each of these responds to a message canReadObjectSeri-
alizedBy:. Deserializer classes are responsible to register themselves in the registry
when they are installed. The first deserializer class that responds to be able to read
the output of the given serializer is selected to read the artifact. An instance of the
detected deserializer is created to read in the object graph from the files.

When a file store is asked for all of its artifacts, the deserialization is done lazily, in
case not all object graphs in the file store will actually be needed (but only the paths
and metadata, for example). To support this, there is SquotLazyArtifact, which will
invoke the conversion to shadows only when the getter method for the object graph
is invoked. That method is memoized, so the deserialization will not need to be
invoked again when the graph of the lazy artifact is accessed multiple times. Because
it is sometimes necessary to extract the shadows early, all artifacts understand a
capture message that does nothing for regular artifacts, but invokes the conversion
immediately for lazy artifacts.

Because the STON serializer will not differentiate between snapshot objects and
live objects, it is especially important that the metadata does not reference any live
objects anymore when the artifacts are being serialized. That is why references to
live objects in the metadata are replaced with object names when the artifacts of an
image store are captured.

4.1.7.1 General purpose serializers and deserializers
Since Squot provides general purpose shadow objects, it also provides general pur-
pose serializers for them. These serializers can also be used for other shadow types,
since they can serialize and deserialize any object.

Squeak’s own facility to store objects to files and restore them later is the SmartRef-
Stream. It traverses object graphs, serializes each object only once and for each type of
object it encounters, it also stores the class layout and the names of the instance vari-
ables. When the schema of a class changes, this can be detected and the stream will
try to migrate instances. The SquotSmartRefStreamSerializer and the corresponding
-Deserializer are simple adapters around SmartRefStream. The serializer will create a
file at the artifact’s path, create a SmartRefStream on the file and put the SquotShad-
owGraph of the artifact into the stream. The deserializer implementation is equally
simple: a SmartRefStream is created on the file at the artifact’s path and the first object
is extracted from it, which should be the SquotShadowGraph serialized earlier.

Another serialization implementation on which Squot already depends for the
metadata, and which produces more human-readable files than SmartRefStream, is
the serializer and deserializer for STON. SquotStonFileCodec is serializer and deseri-
alizer both in one class,11 since only two message sends to the STON class must be

11Ideally, there would be similar portmanteau for serializer-deserializer. Codec is a portman-
teau of coder-decoder.
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adapted. As in the SquotSmartRefStreamSerializer, the SquotShadowGraph from the
artifact is converted as is and written to a file at the artifact’s path.

4.1.8 Example specializations for some kinds of objects

The aim of the design implemented in Squot is to be flexible about the formats of
snapshots and differences, so that domain specific solutions can be implemented
when desired. In this subsection, we present some examples of specializations that
deviate from the standard procedure of capturing, serialization, or materialization.

4.1.8.1 Hashed collections
While the slot-based shadow model is indeed sufficient for nearly all objects in
Squeak, it does not always produce the most useful results. For example, collections
are not treated specially at all, as far as their capturing has been described so far. This
means that their structural implementation details are exposed in the shadow graphs
and that additions and removals to variable-length collections are not detected as
such. For HashedCollection, which is the superclass for Set and Dictionary in Squeak,
this is particularly troublesome.

HashedCollection implements a hash table for constant-time element lookup, addi-
tion and removal. It uses an internal array as the hash table and an integer tally to
remember the size of the collection. These could be captured separately as described
so far, but the differences computed for these snapshots would be confusing and
inappropriate for the task: elements could be moved in the hash table (because the
identity hashes of objects with the same name need not be equal in two different
Squeak images), or the hash table could be replaced by a new one (because it had to
be grown), which would be visible when comparing regular object shadows, but it
would not constitute a relevant change to the collection. The movement of retained
elements in the hash table can also obfuscate actual additions and removals of other
elements.

Therefore, a specialized shadow class SquotHashedCollectionShadow (which sub-
classes SquotObjectShadow) is used for hashed collections. It keeps a separate collec-
tion for the elements of the tracked collection, each captured in a SquotHashedCollec-
tionSlot (whose key is irrelevant). The lookup of such slots is realized by searching
the items of a SquotHashedCollectionShadow. This has different performance char-
acteristics than the live hashed collections, but the snapshots should not be handled
like live collections anyway. They serve a different purpose, after all.

When two such shadows of hashed collections are compared, the elements of one
are looked up in the other to detect additions and removals. These are recorded
as SquotSlotAddition and SquotSlotRemoval with the elements’ slots. Additions and
removals are suddenly possible because the shadows for hashed collections treat
these collections as proper collections, which is a higher level of abstraction than
before. On this more abstract level, collections can actually change their size.

Dictionaries receive another slightly different treatment. A Squeak Dictionary is
made up of Association objects. Two dictionaries can share a single association. This
means that if the value of the association is changed in one of the dictionaries, it
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will also change in the other dictionary. This is used, for example, in the dictionaries
for variable bindings, most prominently global variables in the Smalltalk pseudo-
dictionary.12 While this might not be relevant to most dictionaries used in domain
objects, the feature is generally available andmust be reflected in the shadows. There-
fore, the elements of a dictionary shadow are the shadows of the contained associa-
tions. These in turn carry the shadows for their keys and for their values.

4.1.8.2 Packages (Smalltalk code)
For some domain objects or infrastructure of the programming environment, objects
for snapshots and differences already exist. Existing version control systems for
Smalltalk code, such as Monticello in Squeak, come with a set of modeling types to
capture the definitions of classes andmethods, andpossiblymore. ForMonticello, the
relevant classes are MCSnapshot, MCPatch, MCDefinition, subclasses of the latter, and
MCPatchOperation and its subclasses. Monticello also provides a class to compile the
definitions captured in its snapshots, called MCPackageLoader. Further, Monticello
has several types of repositories that define a storage format for the snapshot types.
To not duplicate the implementation effort that has been invested in such models
already, the architecture presented in this report supports the reuse of such objects,
provided that their interfaces can be adapted suitably.

The traditional representation of a package in Squeak is a PackageInfo object. It
has a name and is usually registered in a PackageOrganizer.13 Each PackageInfo can
be queried for the contained Behaviors (which includes classes) and all the methods
that belong to the package. Which belongs and which does not is determined by a
naming convention for the class categories and method protocols [50]. Hence, it was
decided to track Smalltalk source code by adding a PackageInfo object to an image
store. So, a PackageInfo is the live object from which Smalltalk code is captured, as a
special case of object capturing.

To capture a package, there is SquotPackageShadow. It wraps an MCSnapshot and
the name of the package. The snapshot is obtained from the MCPackage with the
same name (which uses the PackageInfo to collect all the behaviors, methods and
scripts belonging to the package and turns them into MCDefinitions). When two
SquotPackageShadows are compared, a SquotPackageDiff is created, which wraps an
MCPatch. During merges, the latter is substituted for a SquotMonticelloMergeDiff
because an MCPatch cannot contain conflicts. Applying package diffs to package
shadows applies the wrapped Monticello patches to the wrapped Monticello snap-
shots. Materializing a package shadow or applying the diffs to loaded packages uses
the MCPackageLoader to perform the operation.

This implementation makes use of the permission in the architecture that live
objects may capture their relatives independently of the main object graph traversal,
as described on page 31. The relationship of packages, classes, and methods is not

12Smalltalk used to delegate to a SystemDictionary and since Squeak 4.5 it delegates to an
Environment, which in turn has a dictionary for its bindings.

13There is a default package organizer singleton, but each Environment also has its own
organizer.
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established via object references, but via a naming convention in the globally acces-
sible system organization and the organization of methods within classes. The other
reason to go down this path is, as already mentioned, the reuse of existing capturing
code in Monticello.

For serialization, the Cypress/FileTree format already implemented for Monti-
cello is used. This ensures compatibility with the existing Smalltalk projects that
have used FileTree to share the code via Git on GitHub. The features of MCFile-
TreeWriter and MCFileTreeStCypressWriter are used for serialization in SquotCypress-
CodeSerializer and those of MCFileTreeStCypressReader are used for deserialization
in SquotCypressCodeDeserializer. Because of the way the connection to Git is made,
which is described later in this chapter, the FileSystem API [3] must be used instead
of Squeak’s FileDirectory API. Normally, FileSystemwould only be used whenMonti-
cello is executed on Pharo/Smalltalk (instead of Squeak), so the readers and writers
have been subclassed to make the necessary adjustments to use FileSystem also on
Squeak. At a later time, a cleaner reimplementation of the de-/serialization to the
same target format could be approached.

4.1.8.3 Texts in text files
While the two previous examples of specializations both introduced new shadow
types, this time we will only customize the serialization format. Most software repos-
itories will contain a readme file and it might be desirable to edit it from within
Squeak. Squeak can load text files into workspaces and save them back, but this is
decoupled from version control, of course. Moreover, a working copy of the readme
would be needed in the file system (instead of only in Squeak’s memory) to interact
with it. It would be more consistent if the text file, or rather its textual contents, could
be tracked as objects, without compromising on the storage format being plain text.

To convert between String objects and plain text files, there is SquotTextFileCodec,
which is the squotDefaultSerializer for SquotBitsObjectShadow if it contains a String.
The codec assumes that the object graph of the artifact that should be serialized
contains only the start object, which is the character string. Hence, writes out only
the start object. Accordingly, it creates a new object graph with a single bits object
shadow on deserialization.

4.2 Git connectivity

In this section we describe the missing parts to bring objects from Squeak to Git
repositories, for example on GitHub.
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4.2.1 FileSystem-Git

FileSystem-Git is originally a project for Pharo/Smalltalk that combines two facilities:

1. an implementation of the Git object model, repository layout and auxiliary
structures (such as pack files) that allows inspecting and manipulating of Git
repositories in a file system

2. an adaptation for the FileSystem API to provide virtual file systems on the
trees and blobs of Git commits

While the former enables the low-level interaction with a Git repository (that
usually is the local .git directory of a clone), the latter provides the possibility to
browse and modify Git trees and blobs with anything that uses the FileSystem API;
such clients do not even have to know that they are browsing the contents of a
Git commit. Checking out a working copy outside of the Smalltalk environment is
not necessary. Moreover, new commits can be created from a Git file system after
its files or directories have been modified. In traditional Git terms, the low-level
implementation can be thought of as the “plumbing”. The FileSystem layer on top
provides some kind of “porcelain”. Though, it does not provide all the features of
the tools that come with the official Git distribution.14

The implementation of the Smalltalk plumbing was originally started as Git for
Squeak [17]. Later it has been extended and used in GitFS [38], which already added
the connection to the FileSystem API, before it was included under the name FSGit
in the original repository of the FileSystem package.15Since then, it was separated
from FileSystem again, as the latter was adopted as the standard file access library
in Pharo [3], renamed to FileSystem-Git and moved to SmalltalkHub.16

In the meantime, the library has been abandoned as the provider of Git connectiv-
ity in Pharo. It has been superseded by a binding to the library libgit217 [37] (which
is implemented in C) for maintenance and performance considerations [36]. Nev-
ertheless, we have chosen to pick up the pure-Smalltalk implementation of Git and
backport it to Squeak because the bindings to libgit2 use a variant of the foreign
function interface that is currently not available in Squeak. Because of the differences
between the FileSystemAPI in Pharo and the version of it that is available for Squeak
(e.g., classes have been renamed), some changes have been made to the FileSystem
library for Squeak aswell. All changes to FileSystem and FileSystem-Git are currently
hosted together with Squot in its repository on GitHub.

The implementation of FileSystem-Git was already quite complete when it was
picked it up for Squot. But besides the porting to Squeak, support for some Git
features had to be added, some bugs had to be fixed, and optimizations have been
implemented (which are mostly about handling large blobs and pack files more
efficiently). Some notable contributions are:

14http://git-scm.org (last accessed November 5, 2017).
15http://www.squeaksource.com/fs.html (last accessed November 5, 2017).
16http://smalltalkhub.com/#!/~FileSystemGitDev/FileSystem-Git (last accessed November 5, 2017).
17https://libgit2.github.io (last accessed November 5, 2017).
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• support to push Git objects to a remote repository

• computation of recursive tree differences (i.e., generating a hierarchy of changed
trees and blobs to focus on objects that changed between two commits)

• implementation of a merge-base finding algorithm

• tolerance for tree entry modes other than file and directory, such as executable
file or submodule (no implementation to deal with submodules has been
added, though)

• basic read and write access to the Git index (staging area)

• appending to reflogs18

• support for packed references (i.e., references stored in the .git/packed-refs file)

• access to the configuration local to the repository (.git/config)

There still is some functionality missing that would be required to ingest really all
Git repositories, such as extensions of the index format [19] or replaced objects [18,
git-replace]. Also, the implementation of pack file deltification (which significantly
optimizes the disk space occupied by a Git repository) has been postponed, since it
is not absolutely necessary for working with a Git repository. There is currently no
interface to access the Git stash; even without a special interface, to edit the stash in a
way compatible with the canonical git stash command, more comprehensive support
for editing the reflog would be needed [18, git-stash].

Instances of GitRepository are used to access Git objects (i.e., blobs, trees, commits,
and tags), resolve and manipulate references (and thus, branches) and access the
repository’s configuration. On top of a GitRepository, a FileSystemGitRepository can
be created, which can create file systems on branches and commits. These file sys-
tems are of the class GitFilesystem, which uses a GitStore as the backing store (which
is a FileSystem store, not a store that creates snapshots from objects as the term is
employed otherwise in this report). Each GitStore starts from a single Git commit
and its associated tree. When entries are accessed in a GitFilesystem, the tree is tra-
versed down to look up the blob or tree at the requested path. When a blob or tree is
accessed, it is copied from the repository as a file or directory to a MemoryFileSystem
that serves as cache and as temporary storage space. When files are opened in the
Git file system, they are actually opened in the memory file system. Whenever a
blob is opened for writing or when a directory is created, it will be remembered by
a GitStore’s GitModificationManager. When a directory entry is deleted, the deleted
path will be remembered as well. Eventually, when a new commit is created from
the GitFilesystem, new blobs and trees will be created in the repository for the re-
membered and deleted paths, from the leaf blobs up to the root tree. A new commit
will be created in the repository with that new root tree.

18https://git-scm.com/docs/git-reflog (last accessed November 5, 2017).
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4.2.2 Squit

On the one hand, it was clear from the beginning of the implementation of Squot,
that it should connect to Git repositories. On the other hand, it was decided that Git
should not be hard-coded into the design, so that it could be replaced in the future
if a new, widely-used version control solution with platform support emerges and
it would warrant a connection to Squeak. Pur is already mentioned in the previous
chapter as an abstraction for version control systems inwhich history can bemodeled
as a directed acyclic graph of versions [35]. Squot and Squit are based on the design
of Pur, although Squot does not adhere strictly to the interfaces that Pur defines.

A Pur repository is an object that contains versions, which formhistory by the parent-
child-relationship among themselves. History can be accessed through historians of
a repository. A historian represents one view of the history inside the repository, by
referring to one tip version, and the historian can change and carry forward that
history by updating its reference to another version. Historians represent label-based
branches (that are like Git branches). A repository can create new historians and
delete existing ones.

Should the need arise, it should be possible to connect Squot to a different VCS
than Git by only implementing suitable adapters for repositories, historians, and
versions.

Following that nomenclature, Squit defines the classes SquitRepository, SquitHisto-
rian and SquitVersion. A Squit repository wraps a FileSystemGitRepository and adapts
or delegates all operations that query or alter the Git repository to it. Moreover, it
provides a place to store credentials needed to connect to remote repositories, and
it keeps a cache of SquitVersions. Each Squit historian wraps a Git reference (e.g.,
refs/heads/master for the master branch) and it knows its Squit repository, and the
low-level GitRepository, to perform updates to the Git reference when a different
version is assigned to the historian, or to delete the reference when the historian is
deleted from its repository.

A SquitVersion knows the GitCommit that it wraps and the containing SquitRepo-
sitory. As an object container, it also provides methods for comparison with other
object containers. When two SquitVersions are compared to each other, the computa-
tion is optimized by only comparing those object graphs whose files were modified
according to the tree differences obtained from FileSystem-Git.

But even if an operationwere performed that involves a SquitVersion and a different
kind of object container, all artifacts in a SquitVersion are extracted lazily by default.
In fact, Squit uses the previously described SquotFileSystemStore to create trees and
blobs, since FileSystem-Git provides access to them like regular files and directories.

When a new SquitVersion must be created, which happens with a SquitVersion-
Builder for reasons given below, a GitFilesystem is created on the first parent commit.
On the root directory of this file system, a file store is used to update all files and
folders belonging to Squot artifacts. After the files have been written, a new commit
is prepared from the GitFilesystem, which stores the new trees and blobs in the repos-
itory, but not yet the commit. The author information, the message for the change log
and possibly additional parent commits must be added by the SquitVersionBuilder
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first because a Git commit cannot be changed after it was stored in the repository
once; its hash would change as well. Finally, the completed commit is stored in the
repository, and a new SquitVersion that wraps the new commit is created.

To update a Git reference to point to the new commit, the newly created SquitVer-
sion must be assigned to a SquitHistorian. Or themessage to create a new versionmust
have been sent to the historian in the first place, then it will automatically update its
reference. The latter way is actually preferred because the reference update will be
identified as a commit operation in the reflog.

In order to merge object graphs, a suitable merge-base version needs to be found
among any versions for Squot, just like a Git merge needs to find amerge-base among
commits. The merge-base algorithm implemented for FileSystem-Git does not really
depend on any Git specifics—it is rather a special-purpose search algorithm that
operates on directed acyclic graphs—so it is desirable to reuse the implementation
of the algorithm in Squot. But neither Squot should depend on FileSystem-Git, nor
should FileSystem-Git depend on Squot. Therefore, the merge-base algorithm has
been outsourced into a separate package simply called VersionControl, on which both
FileSystem-Git and Squot depend.

4.2.3 Working copies

Now we can read versions from a repository and create new ones, and we can cap-
ture snapshots from an image store and restore snapshots to it. Connecting the two is
the responsibility of a SquotWorkingCopy, which combines one store with one histo-
rian (and, hence, a repository). Working copies can be registered in a class instance
variable of SquotWorkingCopy, so they remain globally accessible (and will not be
garbage collected when users accidentally close the only workspace that held a ref-
erence to the working copy).

The working copy is actually intended as the primary scripting interface for Squot
users (see Listing 4.6 for examples). It understands messages to add and remove
objects (which are delegated to the store), add new versions to the historian based
on the store’s current objects, perform merges, switch to another historian etc.

Being one form of the user interface, usability aspects come into play. Git has a
reputation of being more complicated to use than other VCSs. Analyses of the causes
of that have been conducted byDe Rosso and Jackson, leading to a redesign of the Git
user interface named Gitless [11, 12]. Some of their ideas have been incorporated in
SquotWorkingCopy, such as automatic saving and restoring of uncommitted changes
upon switching a branch, and not allowing the so-called detached HEAD state of Git.

4.3 Graphical User Interface

To make Squot and the new Git connectivity for Squeak more easily tangible, a GUI
has been created using Squeak’s ToolBuilder API.
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Listing 4.6: Examples of the working copy API

"add an object and create a new version"
aWorkingCopy

add: (PackageInfo named: 'MyPackage')
at: 'src/MyPackage.package'.

aWorkingCopy saveNewVersionInteractivelyIfCanceled:
[Transcript showln: 'User canceled the save dialog'].

"merge another branch"
master := aWorkingCopy loadedHistorian.
branch := aWorkingCopy repository historianNamed: 'other−branch'.
aWorkingCopy

mergeVersionInteractively: branch version
ifCanceled: [Transcript showln: 'User aborted the merge'].

"at this point, no merge version has been created yet,
but the branch version is remembered as the second parent version"
aWorkingCopy saveNewVersionMessage: 'merge other−branch' interactive: false.

"change the active branch and modify an object there"
aWorkingCopy switchTo: branch.
"new versions would now be created on the branch"
aMorph := aWorkingCopy objectAt: 'MyActiveEssay.morph'.
aMorph position: 200 @ 200; addDropShadow.

"go back to master, keep the unsaved changes"
aWorkingCopy switchAndMoveUnsavedChangesOverTo: master.
aMorph position. "=> 200 @ 200" aMorph hasDropShadow. "=> true"
"...and then change your mind"
aWorkingCopy discardUnsavedChanges.

"pick something from the branch: a dialog will be opened to choose changes"
aWorkingCopy

loadArtifactInteractively: (branch version artifactAt: 'test/testdata.ston')
ifCanceled: [Transcript showln: 'User canceled the load dialog'].
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4.3.1 Git browser

The primary tool to interact with a working copy and the history of the connected
repository is the Git browser. It is not named after Squot because all user interface
elements, such as buttons, are labeled with Git terminology (i.e., branch instead of
historian, commit instead of version, checkout instead of materialize or load, etc.). The
reason behind this is that Squot was provided to a course of about 80 bachelor
students who had to work on software projects and host them on GitHub during the
months leading up to this report. They should not be burdened with learning two
different vocabularies for version control simultaneously. Since the target platform
was GitHub, it was obvious that Git is involved, so hiding Git from them was less of
an option than hiding Squot from them. For students who have already been familiar
with Git, it also meant less of an overhead to learn the new tools.

The Git browser is divided into six panes (see Figure 4.3):

1. a list of projects (working copies)

2. a list of branches (historians) in the selected project

3. a searchable list of commits (versions) that is a linearized history view of the
selected branch

4. a text with information about the selected commit

5. a list of objects (actually artifacts) contained in the selected version

6. a central ribbon of buttons that can be used to trigger common actions on the
selected branch or the selected version (depending on the action)

In addition to the buttons, many more actions can be accessed through the context
menus of each of the four lists. The actions in the context menu of the branch list
allow users, for example, to switch the working copy to the selected historian, or to
remove that historian from the repository. The action to add a new project (i.e., create
a new working copy) or to clone from a remote repository can also be found in the
context menu of the list of projects. Adding new objects to the set of tracked object
would also happen via the project list menu, but because of the target audience
mentioned above, there are only actions to track packages (i.e., Smalltalk code),
currently. Other kinds of objects must be added by sending the appropriatemessages
to the SquotWorkingCopy object from a workspace or any other Smalltalk code editor.

The model class for the Git browser is SquitBrowser and belongs to the Squit pack-
age accordingly. Most of the features it provides can be generalized from Squit to
Squot, but the Git terminology does not fit the names used by Squot; and some
features are really specific to Git (e.g., dealing with remote-tracking branches).

Because the building of the commit list can produce a noticeable delay if there
is a moderate number of commits in the selected branch, only the top 30 commits
are displayed at first. The rest of the list is collected asynchronously and appended
to the displayed list when finished. Being able to work immediately only with the
most recent 30 commits is sufficient under the assumption that the most recent
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Figure 4.3: Screenshot of the Git browser. A working copy of the Squot repository
itself is currently viewed. The commit list shows commits on the develop branch.

commits are in most cases also the ones of most interest (e.g., having a look at the
recent work of co-developers to see if their commits should be merged into one’s
own working copy). The object list is loaded asynchronously in its entirety because
building it used to be slow if the contents of a version was voluminous (e.g., the
Squot repository itself currently includes 16 packages, some of which havemore than
a dozen classes and lots of methods). This was later solved by having SquitVersion
and SquotFileSystemStore load their artifacts lazily, as described above, because all
that is needed to display the list in the Git browser are the paths of the artifacts, not
the snapshots of any contained objects.

The context menu of the object list can be used to trigger actions that affect only
the selected object. It also allows the corresponding live object to add menu items
that are specific to the type of the object. For example, four menu items that can
be seen in Figure 4.4 allow users to edit the scripts associated with a PackageInfo
object. This menu is not an ideal location for such actions because, now, it contains
actions for both the historical edition of an artifact and for the loaded edition. There
is no separate GUI list for the objects in the working copy, so this is the best place to
hook up such actions currently. The actions on the live object are added by sending
squitBrowserSupplementObjectMenu: with the menu under construction to the live
object. The Browse edition in selected version action offers a way to inspect the historical
edition of the artifact without materializing it first. Which tool would be best for
this task depends on the type of the object, of course. Therefore, the action is first
dispatched to the artifact (sending browse), which will usually delegate to a shadow
object by sending browseFromSquot: with the artifact as argument (so the path or the
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Figure 4.4: Context menu of the object list. Some menu items concern the historical
edition of an artifact while others pertain to the live object in the working copy’s
image store. In this case, the script editing commands are supplied by the live
PackageInfo object. The other actions are always available.

metadata can be accessed if necessary). The Browse loaded action does the same, but
sends browse to the artifact in the working copy’s image store, so the live object will
receive browseFromSquot: in the end. The default implementation for both live objects
and shadows in Object opens an inspector on the live object. The live PackageInfo
opens a systembrowser on all the classes in the loaded package. SquotPackageShadow
opens an MCSnapshotBrowser on its Monticello snapshot (which looks similar to the
system browser for loaded classes).

4.3.2 Presentation and manipulation of differences

Whenever objects should be stored, materialized, or merged in the course of an
interactive operation on the working copy, a dialog will appear that allows users
to select and reject pieces of the differences to be applied. For example, the dialog
for creating a new version/commit offers such a selection (see Figure 4.5). This
introduces another aspect to differences not described previously, which is the ability
to modify them before applying. To create the tree view on the left in Figure 4.5, the
SquotObjectGraphDiff from each artifact must be transformed into a tree first. In the
example, only changes to packages are displayed, which have a tree structure anyway
(primarily that is: packages above classes above methods). For other kinds of objects
and their differences a different form than a tree might be more beneficial. However,
this was the most practical way to implement the GUI for the time being. Via the
context menu of the tree view, nodes can be included or excluded from the current
operation. Unless the dialog is canceled, the exclusions must be propagated to the
SquotObjectGraphDiff or parts of the differences contained in it. Therefore, a two-
way conversion between differences objects and a hierarchical (tree) form for their
presentation is needed.
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Figure 4.5: Change selection in the dialog to create new versions/commits. The tree
on the left side presents differences in a tree structure. The right pane shows a
textual representation of the changes included in the selected node on the left.
Each node can be excluded from the new version via the context menu of the tree.
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The protocol for this is as follows: Each SquotArtifactDiff can be asked for a list
of top-level nodes. The class for such nodes is SquotDiffNode. Each node can have
a title—used as the node label in the tree view—, a collection of child nodes, a flag
whether the change is currently included or excluded, and optionally a reference
to the relevant part in the object differences graph (for later reference, we will call
such a parts difference particles). In three-way merges, nodes with conflicts also store
which choice a user made to resolve the conflict (or if no choice has been made
yet). To prevent the change selection dialog from being affirmatively closed before
all conflicts have been resolved, nodes can be asked whether any of them or any
of their descendant nodes still requires a choice to be made (unresolved conflicts
require a choice). Currently, the nodes are already createdwhen the SquotArtifactDiff
is initialized (i.e., they are always created when diffs for artifacts are produced). This
is done by sending asSquotHierarchicalDiff to the diff object obtained by comparing
two (or three, in a three-way diff) artifacts. For example, SquotPackageDiffs produce
their tree structure (which can be seen in Figure 4.5) from the wrapped MCPatch
or SquotMonticelloMergeDiff. For SquotObjectShadows, only a stub implementation is
available so far. Only changes to the slots of the start object can be excluded because
no nodes are created and processed for the related objects.

The user selection must eventually be brought back into the various diff objects.
To achieve that, the messages adjustedBy: and squotAdjustToResemble: are sent to ar-
tifact diffs and object graph diffs, respectively, with the corresponding top node as
the argument. A SquotObjectGraphDiff will make a copy of itself and then delegate
the operation to the diff of the start object. It is the responsibility of the object diffs
to check whether their node has been excluded (deactivated) or not (because only
they know how to handle this situation), to update themselves and the graph diff
accordingly, and to continue the adjustment with the child nodes for diffs of the
corresponding related objects. For package diffs it removes Monticello patch opera-
tions from the wrapped Monticello patch when necessary. Monticello conflicts are
resolved with the choices made according to the nodes. Because the same diff object
is responsible for both building the difference nodes and applying them back, it can
make use of the difference particle in each node. In the case of package diffs, the
Monticello patch operations are stored as difference particles in the leaves of the
tree. An example for a package diff and its hierarchical representation can be seen
in Figure 4.6.
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Figure 4.6: Example setting for the conversion between differences and trees for
display in the GUI. The SquotObjectGraphDiff is omitted from the picture to save
space. It goes between the SquotArtifactDiff and the SquotPackageDiff.
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The prototype Squot introduced in the previous chapter has been used productively
during the pastmonths. Several groups of students have used it tomanage the source
code of their Squeak projects. These projects are all hosted on GitHub. Also, Squot
is used to manage its own code. In this chapter, Squot and the architecture from
chapter 3 are evaluated with regard to the other systems and the goals described in
chapter 2. Observations, issues and possible improvements are discussed.

Squot and Squit comewith a suite of unit tests that check a variety of cases, such as
the capturing, materializing, and comparison of primitive objects, collections, cyclic
data structures, global variable bindings; the preservation of object identity; snapshot
creating and restoring for image stores and file stores, and the application of patches
to them; and basic working copy tasks such as creating new versions, reverting to
older versions, and performing merges. The test suite does not claim to cover all
combinations and corner cases. Some of the tests use a scenario where the window
(i.e., the morph) of a workspace with variable bindings is tracked, modified and
restored. This combines many different kinds of objects and circular dependencies in
the object graph, as well as metadata influences on the capturing, so this test running
successful gives an impression of the functionality of Squot’s object tracking.

The example specializations presented in subsection 4.1.8 show that:

• the general (slot-based) approach to object snapshots is extensible to support
types with special requirements,

• domain objects can opt out of the general approach and implement their own,

• existing classes for snapshots and differences (e.g., those of Monticello) can be
reused and adapted for Squot, and

• the format of snapshots and the format of the generated files can be customized
separately—to use a different file format, it is not always required to change
the kind of snapshot used for an object.

In comparison to the previous workflow to host Squeak code on GitHub (using
Monticello-FileTree and the canonical Git command line tools) the process has been
streamlined. Instead of having to save all packages belonging to a project (e.g., one
core package and a test package) separately in Monticello and, on top, create a
commit with Git, it can all be done in a single action from the Git browser. If separate
commits for the different packages of a project are desired, the other packages can
be deselected in the commit dialog. No further interaction with the canonical Git
command line is required. Moreover, the path to a package inside the repository
needs no longer be known to load the package from Git. For Monticello-FileTree, a
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repository had to be created on the folder which contains the package subfolders
as immediate entries. Because of Squot’s table of contents, which works a little bit
like a makefile, packages can be located in different subfolders and still be loaded
in one action (e.g., when there are external libraries in a vendor or lib subfolder, and
the actual source code is in a different src subfolder).

Merges were a complicated task with FileTree: First, a Git merge had to be per-
formed, supplying arguments on the command line to make Git resolve all conflicts
by choosing the incoming (“their”) changes, rather than the local ones (“mine”).
Second, a merge had to be performed in Monticello. Because the code directory on
which FileTree operates would contain all the changes not already present in Squeak,
the incoming changes would not go missing. After the merging with Monticello,
a new Monticello version had to be saved to the FileTree repository, to write the
merge results back to the files. Finally, the merge commit created during the previ-
ous Git merge had to be amended (i.e., overwritten), so that it would contain the
properly merged files. Not only is this a cumbersome procedure, there are also mul-
tiple opportunities to make mistakes and eventually lose changes. Certainly, it is not
ideal for any newcomers to Git and Squeak. With Squot, merges have become much
simpler. Actually, the process of dealing with conflicts and reviewing the incoming
changes has not changed and remains a complex task for beginners in itself. But the
surrounding procedure is now simplified to invoking the merge action on a branch
or commit. After the conflict resolution has been performed, the user is prompted to
create a commit to persist the merge in the version history. No interaction with the
Git repository outside of Squeak is necessary (and no command line switches need
to be remembered to produce the correct results).

However, Squot does not currently regard any files that are not associated with
tracked objects. This is a problem during merges, because these files need to be
merged as well—especially in projects that have modules both in Smalltalk and in
other languages. But also pure Squeak/Smalltalk projects can have files that are not
of immediate interest for the image: Readme texts, license files, and configuration
files for external services, such as Travis CI1in combination with smalltalkCI [49].
One solution would be to track all such files as objects in Squot (e.g., a SmalltalkCI-
Spec object), but the more general and less cumbersome solution would be to also
merge the non-Squot files. Squot already has a placeholder object for all these files
(SquotUnrecordedFilesArtifact), which could be extended to take care of merging. It
might be tricky to thoroughly separate the files produced by Squot serializers from
the unrelated files, though.

Since we implemented a connector to one backend VCS only (Git), Squot does
not prove that the design will also support other VCSs. But the implementation of
snapshots (shadows), the image store, file store, and working copies do not depend
on methods only defined by Squit. Moreover, since Squot is based on Pur, for which
connectors to Git and Mercurial have been shown to work [35], we believe that the
implementation of connectors for additional VCSs is feasible.

1https://travis-ci.org/ (last accessed November 5, 2017).
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While other objects than packages have not been tracked in the student projects, it
is now possible to commit objects together with packages. The separation between
saving the code and exporting objects to the disk has been lifted. Objects and source
code can be tracked in the same Git repository with a unified workflow.

Because Git’s object model puts the version history on top of whole directory struc-
tures (i.e., each commit can contain multiple objects), each commit already describes
a configuration of the objects stored therein. Further configuration management for
the objects in the repository is not necessary; by checking out objects from a specific
commit (or materializing objects from a version, in Squot terms), configurations can
be restored in the Squeak object memory in a single operation. Squot does not cur-
rently handle dependencies on external packages or objects (i.e., such hosted outside
of a project repository). Neither does Monticello, as this task is delegated to another
library called Metacello [2]. Metacello can also be used to install packages hosted in
a remote repository into an image. Since Squot uses the FileTree/Cypress format to
serialize Smalltalk code, Git repositories managed by Squot can be accessed with
Metacello like any other Git repository that contains Smalltalk code in the Cypress
format. However,Metacello does not know anything about Squot’s capability to track
arbitrary objects and, hence, cannot install other objects than packages. To remedy
this, an integration with Metacello could be worthwhile in the future.

One problem associated with changing the structure of classes—such as adding
or renaming instance variables—is migrating the state of existing objects to the new
schema. Assuming that users will properly migrate the state in their own program-
ming environment, the tracked objects will also be properly migrated in other users’
environments when they update objects from a version that was created after the
schema change. These objects have been captured after receiving the treatment of
the migration, after all. But objects that are not tracked with Squot cannot benefit
from that, however. Therefore, it is still advisable to take other measures to migrate
existing objects, such as migration code in preamble (pre-load) and post-load scripts
of packages.

In the previous chapter, somemissing features have already beenmentioned. Some
other tools are still missing from Squot. For example, there are no special browsers for
graphs of object shadows (they can be explored with the object explorer, but it will
reveal implementation details), and there is only a stub implementation to convert
their differences to trees for the selection of changes. Also, any object metadata can
only be edited by evaluating the necessary Smalltalk expressions in workspaces,
inspectors, and object explorers, since there is no GUI tool to do that. Such tools
should be added in future versions of Squot, to make the tracking of objects similarly
simple to tracking packages.

While the merging of packages hosted in Git repositories has been simplified as
described above, merging for arbitrary objects (with slot-based shadows) is not
implemented yet. The reason is that further research must be conducted first on how
objects can be merged correctly. This problem is not solved in this report, but the
example in Figure 5.1 briefly introduces one of the issues. Some basic assumptions in
line-based text merging via three-way differences do not always make sense in object
graphs, such as: if the base and one of the other two alternatives for a comparison
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Figure 5.1: Merging even small object graphs correctly can be difficult. In this exam-
ple, a window and its containedwidgets are tracked. Initially, thewindow contains
only a button. On one branch, a sidebar is added to the window, which moves the
button to the right. On the other branch, a new morph is added above the button;
the button is moved downward. When the two branches are merged, the position
point of the button could be merged component-wise without a conflict. In this
example, the component-wise merge yields the correct result. If the button had
instead been moved to the far right of the window in the upper-right branch, the
button would no longer be aligned with the morph from the lower-left branch,
which could be an intention of the author of the lower-left branch. But since the
automatic merge cannot know whether the morph should be moved to the right
like the button, an automatic merge would probably result in a wrong position of
the morph anyway, without indicating a problem or conflict. Layout containers
could help in this particular case to make each user’s intentions about the layout
explicit.
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atom (a line) are equal, the solution is the third alternative. It could be a good
idea to delegate the determination of a valid merge strategy to the merged objects
themselves, which is also done for determining suitable snapshot types. However,
to determine a useful default implementation for merging (or to determine whether
such a default exists), it should be investigated how conflicts are resolved manually
in real-world merge scenarios for objects.

Squot also does not currently provide a general solution to trace the history of indi-
vidual objects deep inside of an object graph. Similarly to Git, each version/commit
must be inspected for changes to a particular object/path. In contrast to Git, appro-
priate tools to hide this circumstance do not exist yet in Squot. While object names
make it easy to retrieve objects from a given graph, not all objects get names assigned.
For example, the package snapshots created by Monticello for SquotPackageShadows
do not assign object names to method snapshots and do not collect them in a data
structure that supports a constant-time lookup.2 If the tracing of inner object history
is requested in the future, the interface of snapshot objects could be extended to offer
the lookup, given one snapshot edition and its origin object graph, of the equivalent
edition that is reachable from the receiver snapshot. Object graphs could try to look
up the object by its name and if that fails, delegate the look up to the snapshot of
the start object. Given a Monticello method definition, a SquotPackageShadow could
then try to locate an edition of the method in its wrapped package snapshot. For
slot-based snapshots, the object could be searched in its original graph and the de-
tected path to it from the start object could be used to find an object in the lookup
graph. An architecturally simpler alternative that puts additional burden on custom
capturers, however, would be to demand that all objects that should be traceable
must be registered with a name in the object graph, even if they are value objects
or have intrinsic names already. Instead of UUIDs, names derived from the objects
in a well-known manner could be used in such cases (e.g., a method’s class name
and the method selector). Other VCSs like Mercurial have built-in per-file history
support in the repository. Taking advantage of that would require optional features
in the repository interface and a way to extract the connection between a snapshot
object and a file from the used serializer.

In general,when the features of the backendVCS are considered, there is a trade-off
between abstraction and interface simplicity on the one side and performance on the
other side. Pur defines aminimal interface to interactwithVCSs, and even its example
implementation in Newspeak already defines some extensions [35]. A prominent
VCS feature that warrants to be exploited is the listing of changed objects/files, for
which there are probably appropriate data structures in place. Finding all changed
objects could also be implemented in Squot without consulting the version control
backend, but it would mean to deserialize all objects from a version in the backend
to snapshots first and then inspect all of these snapshots for changes. Under the
assumption that only a small portion of the tracked objects changes from one version

2An MCDefinitionIndex can be created from a set of definitions, but its creation accesses each
definition in the snapshot, so it does not help for looking up a single definition only once.
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to another, this would mean a huge overhead without the help of the version control
backend.

For operations that could utilize features of the backend VCS, an abstract reimple-
mentation of these features can be beneficial when a new connector to a different
VCS is developed. Like a polyfill3, the abstract implementation could be used until
the new VCS connector provides a more efficient solution itself. However, providing
the abstract solution also implies a redundant implementation and, after connectors
have been completed, dead code. It still remains a useful strategy for features that
might be available in only a few VCSs, but which could be utilized for significant
performance improvements if available.

One potential problem with the current implementation is that objects cannot be
shared among multiple object graphs. If one object is referenced in multiple graphs,
these graphs will overlap and create redundant snapshots (and storage data) for
the objects reachable from the common object. At least the redundant snapshots
will have equal names due to the shared object registry in an image store. Shared
objects would be “rejoined” when they are materialized. But it could also lead to
inconsistencies when changes to common objects are committed for only one of the
involved graphs. The currently proposed solution is to let users make sure that the
graphs spanned by the tracked start objects do not overlap. Because there are no
special tools to easily explore the reach of an object yet, ensuring this can be difficult.
Independent building blocks of the system under construction must be carefully
identified and then suitable start objectsmust be chosen. For source code, such slicing
has existed for a long time in the form of packages (under various names in other
environments), but for exploratively-built objects it might be less clear where the
separating lines can be drawn. On the one hand, reflecting about the structure of the
system and paying attention to loose coupling is advantageous; on the other hand, it
slows down and distracts during an exploratory programming session—particularly
in the earlier stages when the final result is far from clear. Version control might be
desired for these early exploratory steps anyway. Tracking many parts in a single
graph could encourage tighter-than-necessary coupling. Without tools for tracing
the history of inner objects, it may also imply less awareness for changes—not least
because only a single object is selected for tracking and the rest of the spanned graph
results implicitly.

If multiple parts of the system are tracked independently (i.e., in separate object
graphs), it could be confusing where the proper place to compose them is and how
(or if) this composing part should be tracked (without including all the other parts).
One reason for that is that it is unclear where live objects should be put when they
are materialized from a snapshot—unless these live objects have already existed
and are visible on the screen, for example. The materialized objects are added to an

3 “Shims and polyfills are libraries that retrofit newer functionality on older JavaScript
engines: A shim is a library that brings a new API to an older environment, using only
the means of that environment. A polyfill is a shim for a browser API. It typically checks
if a browser supports an API. If it doesn’t, the polyfill installs its own implementation.
That allows you to use the API in either case.” [54, p. 405].
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image store, but the image store is (probably) not part of the software or document
under development and out of reach for this reason. The materialized objects might
need to be assigned to some class variable or associated with content holders, such
as graphical tools. There are several possible ways to address this problem. One
is to introduce a concept of “places” that can hold tracked objects (like places and
generalized references in Common Lisp [52, ch. 5.1]). The place where an object
should be materialized would be stored in the tracked object’s associated metadata.
In some cases, these places might be transient (e.g., a workspace that exists only in
the environment of one user), in other cases they might need to be persisted (e.g.,
when the object should be assigned to a class variable). A different approach is
to mandate that container objects that wrap or hold the actual objects of interest
should be tracked instead of the actual object. Looking at the simple example of
tracking a piece of text, this could mean to track a StringHolder model which contains
the String or Text object, instead of tracking the latter directly. Workspaces can be
opened on the model to view and edit the text. Tracking objects in class variables
could be explained as tracking the class object with a special capturing mode (i.e.,
one which captures a subset of the state of the class, instead of its source code).
The capturing mode would be recorded in the metadata. The difference between
the “places” and the “containers” approaches is that, in the first, the location of an
object is stored in the metadata, whereas in the second, the location itself is tracked
as an object. When containers are tracked that include more than one object (e.g.,
when there are multiple class variables in one class) this would lead to larger object
graphs again where different parts of the system could be combined unnecessarily.
Sometimes there is no suitable container object for the desired location of an object.
For example, there is no special object that represents a live class variable in Squeak.4
A “synthetic” container that represents the particular class variable and manages
to update it could be introduced and tracked. A StringHolder object to wrap a text
might also be regarded as a synthetic container.

Coming back to the problem of graph separation with respect to shared objects, it
could also be addressed by introducing “external references” among object graphs.
It would be necessary to assign a “home graph” to each shared object (or even
slots, which would be similar to the package annotations described for the Self Trans-
porter [68]). If an object from one graph is reachedwhile capturing a different graph,
an external reference to the object would be created instead of capturing the object.
An external slot would simply be omitted from the snapshot. Because we do not yet
have experience on how version control for objects would primarily be used in prac-
tice, it is difficult to knowwhether support for shared objects and external references
is necessary.

Another concern, not entirely unrelated to the proper separation of object graphs,
is that not all objects contained in a version should always be materialized in the

4The association object that is the binding of the variable in the class pool dictionary comes
closest as a candidate for tracking. But this is a crude, hard-to-explain solution and it
exploits the implementation details of both class pools and dictionaries in Squeak.
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image. Currently, Squot assumes that an object graph should be deleted (i.e., un-
tracked) if it is absent in a working copy’s store, but present in the parent version
upon which a new version should be based. If a repository contains packages for
different platforms, so not all of them can be loaded at the same time,5 support for
unmaterialized object graphs without signifying their deletion becomes a require-
ment. It could be necessary to make the untracking of object graphs explicit in the
state of a store to achieve this.

To speed up the creation of new versions, it would be beneficial if serializers were
able to write only those files (or even parts of files) that must actually be changed.
In other words, serializers should be able to work with differences, just like object
containers. Currently, all implemented serializers always write out (and overwrite)
all files belonging to an object graph. Reading only the subset of changed files from
other versions could be difficult because a file store operates on only one tree of files
and directories and can, therefore, only access the files of one single version. Hence,
differences-aware deserializers would have to cooperate with other objects, such as
a version or a repository, to obtain the necessary information about changed files. Or
such data would have to be provided as input data to deserializers. Both approaches
would require a VCS-neutral interface to communicate differences in trees of files
and directories, to keep deserializers independent from concrete VCS backends.

Creating new versions could also be sped up on the other end of the process, at
the live objects. Capturing an object graph currently involves traversing the whole
graph each time. If it were possible to capture just the objects that have changed since
the last capture operation, time could be saved, especially for large object graphs
(or packages with many methods) with only small changes from one version to the
next. Evolving a Smalltalk program can feel particularly swift because eachmethod is
compiled just after it has been edited. The software is compiled incrementally in small
steps, which prevents slowing down the programmerwith lengthy compilation steps.
For classes and methods, this could be leveraged by also capturing them whenever
they are saved. Changes to code are announced via a global notificationmechanism in
Squeak and Pharo (and probably in other systems as well). Squot’s image store could
hook onto such notifications at the request of tracked objects, to realize incremental
capturing. Of course, no such notifications are signaled when an instance variable
of an arbitrary object changes, so incremental capturing might only be available in
some domains. Or a language extension that intercepts assignments to properties of
objects would have to be used [53].

When FileSystem-Git was extended and later deployed with Squot and Squit for
production use, some lessons have been learned regarding the priority of some of
Git’s features. Future attempts to work on a Git implementation or maybe even other
VCS might benefit from these insights. When Git pushes objects from one repository
to another, references (e.g., branches) at the remote are updated. In the canonical

5The repository of Metacello is an example for this. It contains packages specific to Squeak
and Pharo, respectively, encapsulating the use of APIs specific to each, such as file access.
The Pharo variant would not work in Squeak and vice versa.
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Git implementation, it is detected when updating a remote reference would make
some commits that are currently reachable from the reference no longer be reachable
after the push. This is the case if someone else pushed onto a branch while one
was working on the same branch locally. The canonical Git implementation will
reject the push, so no commits are lost at the remote. References can be updated
anyway in this case with a forced push, which can be commanded with a command
line flag. But technically, the force-push prevention is not visible in the Git protocol
to synchronize objects. It must be detected and handled by the connected parties
(client and server), which both can deny a forced push, but the situation is not
formally advertised in their communication. Usually, Git servers do not prevent
forced pushes and on GitHub such prevention must be enabled explicitly in the
repository settings. The initial released version of Squot and Squit did not have
a detection for destructive pushes in FileSystem-Git, so all pushes were essentially
performed like forced pushes. This obviously lead to problems of people overwriting
each others changes on GitHub, so the detection of destructive pushes has been
added soon after. Users now have to confirm the push when a forced push would
be necessary.

Another feature that was absent in the beginning was the clone operation. The
reason for its absence was that it can be reproduced by either 1) creating a new,
empty repository, adding a remote repository, and fetching the objects; or 2) by
cloning a repositorywith the canonical Git or anyGUI for it, and adding the new local
repository in the Git browser.While none of these steps require any extraordinaryGit
expertise and the steps were demonstrated in an introductory lecture, the difficulties
during the first steps of users with any new tools should not be underestimated.
Providing a built-in clone operation from the very beginning would have avoided
some support requests in the start phase of the student projects.

Later during these projects, another issue emerged. For some users, more and
more redundant remote-tracking branches started to accumulate in the Git browser
(e.g., next to the expected master and origin/master branches, branches like origin/-
origin/master started to appear). The most probable explanation is that these users
worked on the remote-tracking branch (origin/master) instead of the corresponding
local branch (master).6 This was possible because for both local and remote-tracking
branches the same actions were made available by the Git browser. Technically, there
really is no difference, except for the reference names (local branch references start
with refs/heads/, while remote-tracking branch references start with refs/remotes/).
But users should never check out (i.e., base a working copy on) a remote-tracking
branch because its reference will be overwritten by the git fetch operation. The canon-
ical Git client automatically creates and checks out a local branch when the user
attempts to check out a remote-tracking branch. The lesson learned is, thus, that
remote-tracking branches (or in general, branches that should not be modified by

6The error pattern subsequently emerged because of branch name heuristics applied when
no upstream branch was configured for a given local Git reference. This lead to the
repeated prepending of the remote name origin to these references.
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users) must be treated differently than local branches in the user interface, even if
there is no technical difference between the two.

If users want to make heavy use of pull requests on GitHub, it is advantageous if
as few “technical” conflicts as possible arise (i.e., conflicts caused only by encodings
and file formats, not by conflicting user actions). But even without conflicts, errors
can slip in during automatic merges. In one such instance, when a project’s .squot
table of contents file was merged on GitHub, the last item was removed from it. The
table of contents is stored in the STON format, which is based on JSON, where object
entries and collection elements must be separated by commas. The last item of an
object must not have a trailing comma, however. The automatic merge performed on
GitHub removed the last element from the table of contents, but it did not remove
the trailing comma from the preceding line. Consequentially, the file was no longer a
well-formed STON document and the STON parser used by Squot refused to accept
the file. The error was fixed by manually removing the comma.

However, this little detail in the file format revealed once again the impact of the
choice of file formats on the version control experience. When comparing binary
formats to text formats, this is obvious. But the automatic mergeability of different
text formats varies as well. To facilitate automatic merges with general-purpose line-
based text difference tools (as employed by GitHub), text files should

1. provide enough context to separate changes, so changes to different parts of
the file will not be erroneously intermixed easily,

2. not contain complex nested structures that cannot be detected and guaran-
teedly preserved by line-based diff algorithms,

3. not require changes to adjacent items when one item is changed, added, or
removed,

4. have a stable ordering of any encoded collection items, so swapping lines or
blocks of text is always a significant change, and

5. be comprehensible by humans, so merge errors can be fixed easily when they
occur.

STON and JSON do not fulfill the second and third demand. Even source code with
nested blocks surrounded by any kind of brackets does not fulfill the second demand,
but after all, automatic mergeability is not as important as the legibility of human-
authored text files. The point is that complex nesting unamenable to line-based diff
tools should be avoided for automatically generated files when it is not absolutely
necessary for fulfilling the purpose of these files. Because Squot’s table of contents
currently does not store complex data, but only a flat list, a simpler file formatwithout
separator characters (except for line breaks) could be used in the future, to prevent
merge errors. Alternative solutions would be to modify the STON parser to be more
relaxed about the commas, or to declare merges with tools other than Squot itself as
unsupported. The latter option is unpractical because one of the goals of Squot was
to make it easier to use Squeak/Smalltalk projects with GitHub; denying the use of
some of GitHub’s features is therefore contradictory.
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These observations about text file formats are also relevant when new file formats
for the serialization of objects are designed or existing formats must be selected. A
related aspect not covered in the list above is that data that should not be merged
under any circumstances is best stored in separate files. Git will not merge content
from blobs at different paths. This is one of the reasons why FileTree/Cypress stores
each method in a separate file, even though it makes it more difficult to browse
the source code directly in the files and on GitHub, compared to using the tools in
Squeak (which are not available on the GitHub web page, of course).
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In this chapter, a selection of other work on version control systems and object track-
ing, capturing, and serialization solutions are given and put in relation to our pro-
totype implementation Squot. In addition, some work on user interfaces for version
control is referenced and some starting points for the merging of objects, which is
not yet generally available in Squot, are given.

6.1 Existing version control approaches

Pur is mentioned multiple times in this report as an abstraction for version control
systems [35]. Looking at Subversion, Git, andMercurial, it derives common concepts
and transforms them into an abstract framework for version control with a state-
based history model and directed acyclic graphs to describe version history. The
abstract framework must be complemented with both a backend implementation
for a particular VCS and with a frontend implementation that defines stores, the
structure of snapshots, and how versions are created. Pur was a starting point for
Squot, although Squot does not strive to be a full implementation of Pur. Image store,
file store, working copy and snapshot types are the frontend implementation in Squot
(snapshots being composed of artifacts, object graphs, and shadow objects). The
backend implementation is Squit, which is an implementation of the Pur interfaces
with Git as the target VCS.

Orwell is a version control and configuration management system for Smalltalk
described in 1988 [65]. Its goal was to make development of Smalltalk software in
teams productive. Orwell provides versioning of methods, classes, applications and
configurations, all of which are stored in a single object database. The traditional
changes file that accompanies a Smalltalk image is replaced by a doIt log, since the
code for method and class editions is stored in the object database instead. Next
to the textual representations, their compiled forms are also stored in the object
database. The reason for this is to speed up the loading of other object editions by
saving the time needed to compile the code. However, Orwell does not support to
track arbitrary Smalltalk objects, as Thomas and Johnson note in their conclusion:
“Our current solution eliminates persistent objects [i.e., globals or objects stored in
pool dictionaries] by placing the responsibility for their creation with the class/ap-
plication owner [who must write code to initialize such persistent objects]. Ideally it
should be possible to manage such objects in the same database.” [65, p. 141] Squot
explicitly declares to make the tracking of any object possible.

As already described in chapter 2, Smalltalk systems such as VA Smalltalk, Visual-
Works, Dolphin, Squeak, and Pharo provide specialized version control systems that
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the building blocks of Smalltalk packages (or applications) directly, instead of files.
VA Smalltalk comes with ENVY/Developer [51], VisualWorks offers Store [7], Squeak
and Pharo provide Monticello [48], and Dolphin Smalltalk comes with a source track-
ing system, which offers a similar user experience to that of ENVY [59]. Some of
them are well-integrated into their respective programming environments (e.g., by
offering to browse other editions whenever a versioned object is encountered), but
most of them focus on classes and methods and do not support to track arbitrary
objects (or only in a fixed serialization format).

GitFileTree is an extension for Monticello in Pharo/Smalltalk that improves the in-
tegration of Git and FileTree [23]. It provides a special kind of Monticello repository
that interprets the Git history of the selected FileTree directory to list Monticello
versions. The standalone FileTree only ever shows one version per package because
only one version can exist in a directory at one point in time. Operations on a GitFile-
Tree repository automatically invoke Git commands, such as git commit when a new
version is saved. Thereby, GitFileTree repositories feel less disconnected from Git
than the regular Squeak-FileTree combination described above. Squot achieves the
same goal, but in a different way. By using FileSystem-Git, Squot does not depend on
the canonical Git being installed and it does not require external process call support
in Squeak (usually provided via the OSProcess package1that is not included in the
Squeak trunk).
Iceberg is a new set of tools for Pharo/Smalltalk that strives to greatly simplify

the use of Git and GitHub for Smalltalk projects [28]. But like Monticello, Iceberg
currently seems to focus on the versioning of Smalltalk code and has no support for
tracking or serializing arbitrary objects.2 In contrast to Squit, Iceberg uses Pharo’s
foreign function interface (FFI) to bind to the C library libgit2 to work with Git
repositories. Iceberg also strives for a better integration of GitHub features directly
in the Pharo programming environment, which has not been a focus of Squot so far.
Like Squot, Iceberg currently only connects to Git, but could handle other VCSs if
appropriate connectors would be implemented.
CoVer adds version control to a collaborative hypermedia editing system with

asynchronous editing [24]. Within it, Haake and Haake propose a collaboration
model based on tasks, reminiscent of the contemporary Rational Synergy by IBM.3All
versions of a tracked object are combined into a multi-state object to track the identity
of an object. Thus, each object has its own history, which is more similar to ENVY or
Mercurial than to Squot, Monticello, or Git. Moreover, Squot does not include any
model for collaboration; it only provides the technical means on top of which many
different collaboration workflows could be organized—much like Git. While CoVer
deals with hypertext documents, the authors state that “any application domain that
can bemodelled by interrelated objects can bemapped to hypertext” [24, conclusion].
This could mean that hypertext could be used as a general snapshot format (though,
it might also incur serialization, lifting the distinction of snapshots from storage

1http://www.squeaksource.com/OSProcess.html (last accessed November 5, 2017).
2This was concluded by reviewing the Iceberg classes in the Pharo 6 distribution.
3http://www.ibm.com/software/products/ratisyne (last accessed November 5, 2017).
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objects) or that their approach on hypertext can be transferred easily to other kinds
of object graphs.
COOP/Orm is an environment that provides fine-grained version control and

configurationmanagement for sets of documents [43] based on a framework for fine-
grained version control for software development [44]. Each document is modeled
and edited as a tree of information units, which could be classes and methods, or
chapters and paragraphs, for example. Versions are created for documents, but the
history of individual information units can be inspected as well. Configurations
are created with explicit bindings between versions of documents. It even allows
multiple versions of the same document to appear in a configuration. The latter is not
possible with Squot in a single working copy because only one edition of an object
can be checked out at the same time in one working copy—like in most file-based
VCSs and ENVY. On the other hand, COOP/Orm imposes to model documents as a
tree structure, while the equivalent to documents in Squot are object graphs that, as
the name says, need not be trees. Merging is described as a two-level process: first,
the node structures in the document object trees must be compared and merged,
which can result in conflicts, and second, these conflicts are attempted to be resolved
by comparing and merging the data of the conflicting nodes, which can again result
in conflicts. In both steps, a set of default rules determines the outcome of merges.
The results are presented to users who can either accept or modify the proposed
merge. Remaining conflicts must always be resolved by the users. The same can be
observed in Git: first, changes in trees are identified by comparing the hashes of tree
entries, and second, diff and merge tools are invoked on blobs at the same path. For
changes to trees and lines of text, Git has decision tables to merge automatically or
escalate conflicts to users.

In general, we observe that the older VCSs put the focus of “revisions” on smaller
parts like files, documents, or classes and methods [4, 20, 43, 51, 65, 67] and require
higher-level “configurations” to compose particular versions of them. Newer VCSs
like Subversion, Monticello, Mercurial, and Git rather have revisions (or versions,
change sets, and commits, respectively) [35] that behavemore like the configurations
of the previous systems, and the contained objects/files can be addressed in terms
of these higher-level revisions (e.g., “the file at path x/y/z in revision r”). Monticello
is actually somewhere in between because a system is often described in terms of
multiple packages, so configurations are still needed on top of versions. The need
for additional configurations in the other VCSs primarily arises when a system must
be composed with other systems or libraries that are hosted in external repositories,
in which case facilities like Metacello [2], Maven4, npm’s package.json5, or Git sub-
modules are used to describe dependencies. Squot follows Pur’s style of versions in
this regard, which is equivalent to that of Git, Mercurial, and Subversion.

The term configuration is also used to describe which implementation of a particu-
lar interface should be used to instantiate a system—most importantly when there

4https://maven.apache.org/ (last accessed November 5, 2017).
5https://docs.npmjs.com/files/package.json (last accessed November 5, 2017).
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are multiple implementations for a single interface. This seems to be the primary
meaning employed by Ambriola et al. for their comparison of version control and
configuration management generations in 1990 [1].
HistOOry is an object versioning system that can efficiently record the state of

selected fields of objects whenever a snapshot is created. It is also meant to be a
general-purpose language extension for Squeak/Smalltalk and Pharo/Smalltalk for
all applications that might need object versioning [53]. This sounds quite similar
to Squot, but there are some differences. HistOOry stores all versions in memory
(i.e., in the image) and does not intend to connect to a VCS with external storage.
Sharing objects and their versions with other users also seems not to be a goal of
HistOOry, while supporting collaboration is an explicit goal of Squot. HistOOry
can create views on the snapshots of an object that are polymorphic with the live
object, which is not the case for shadows in Squot (it is not impossible to achieve
in Squot, but it would need a different implementation of the shadows). Finally,
HistOOry has a fairly efficient implementation to detect modifications to arbitrary
objects whenever they happen, without requiring modifications to the Smalltalk
virtual machine. It involves byte-code patching of accessor methods for versioned
instance variables and introduces an indirection to property access via the current
Process, which controls which version determines the current state of an object. This
could allow for operation-based change tracking and could avoid traversals of whole
object graphs to create new snapshots if this approach were combined with Squot.

CoExist proposes continuous versioning as a means to relieve programmers from
the risks of changing code [60, 61]. New snapshots are created automatically when-
ever a program is changed in the Squeak environment by using a tool, such as a
system browser. For retrieving a previous state of the environment, a timeline of
changes and a versions browser are provided. To achieve good performance and
short response times, meta-objects such as classes and compiled methods are stored
with each snapshot (i.e., a state-based approach). These instances are shared among
snapshots if they were not modified from one version to another. Other versions can
be inspected and browsed by opening another environment inside the current one.
In the other environment, code browsing tools will display the state of the chosen
version and objects will behave like when the chosen version was created. In order
to work with classes from multiple versions simultaneously, CoExist works with a
modified version of Squeak’s virtualmachine, inwhich classes are late-bound in com-
piled methods. Normally they are bound whenever a method is saved and compiled,
but this prevents methods to work with past versions of classes without recompiling
the methods. Similarly to HistOOry, versions are kept in-memory and sharing them
with other users is not a use case of CoExist. Squot only captures objects on demand
(usually when new versions should be created), but also requires more time to do so.
Like most Smalltalk VCSs, CoExist focuses on the source code of programs and the
definitions of classes. Arbitrary objects are not supported. Sharing and collaboration
are not the goals of CoExist, rather it is to provide fast recovery means (undo and
redo operations) to encourage changes during exploratory programming. It is meant
as a complementary tool next to a VCS, so Squot and CoVer could work well together.
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Expanding on CoExist, Steinert et al. implemented object versioning for the Lively
Kernel [62]. In contrast to CoExist, arbitrary objects are considered because the direct
manipulation of objects is central to Lively, and JavaScript has no classes, like Self.
Their approach is to replace references between objects with versioned references.
Depending on a context setting, the references resolve to different objects as they did
when a version was created. The approach of augmenting references with version
information is similar to that of HistOOry. The versioned references in Lively were
implemented using ECMAScript 6 proxies. Because this implementation shares the
goals of CoExist, the same differences to Squot in that regard apply. At the time when
[62] was published, the early browser implementations of ECMAScript proxies dis-
played bad performance, making their ubiquitous use in Lively objects unfavorable.

Lively Kernel includes a parts bin of reusable graphical objects (morphs) [40]. Thom-
schke and Lincke describe that the parts in the bin are versioned using Subversion,
but additional tools in Lively have been created to detect and display differences and
perform merges [5, pp. 44 ff.][39, pp. 103 ff.]. One motivation to have extra tools,
even though Subversion provides such functionality already, is that the morphs are
serialized in JSON, which is not easily comparable and mergeable with line-based
diff tools. Thomschke and Lincke describe the challenges involved in tracking and
merging morphs and their associated object graphs and provide solutions. They
identify the need to trace the identity of each morph, so morphs can be recognized
even when they are moved in a hierarchy of submorphs, for example. The tracing
of morphs is made possible by assigning unique identifiers to them, which is simi-
lar to the object names assigned by Squot. Further, they establish that morphs can
have multiple representations: (1) visual, (2) JavaScript objects, (3) “linearized”
JavaScript objects—which are object graphs with cycles broken up by introducing
indirect references to other objects, so the graph can be serialized in JSON—, and (4)
the serialized JSON string. In the terms of this report, these correspond to (2) live
objects, (3) snapshots, and (4) storage objects. The visual representation is domain
specific; it is available because morphs are graphical objects. It is also a filtered view
on these objects because not every property of a morph is visible; some cannot be
seen. In each of these representations, differences can be computed and merges can
be attempted. Some representations are more suitable for the task than others. In
Squot these findings resonate 1) by providing the possibility to have domain specific
snapshots, 2) by performing change detection and merging on these snapshot ob-
jects, and 3) in its difference detection algorithm, which distinguishes objects from
references to them, like the linearized form in Lively. Additionally, the serialization
format is customizable in Squot, so a format can be chosen that is more suitable for
consumption by users or for the merge tools of the backend VCS (and ideally, both),
if such a format is available.
WebCards by Dannert is a modern recreation of Apple’s HyperCard in the Lively

Kernel [9]. In comparison to the original, it features synchronous collaboration of
multiple users on the same card in a stack. Cards are composed of morphs, which
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are stored automatically in a CouchDB6(a non-relational document-based database)
when they are first added to a card. Thus, each morph gets a document ID assigned
in the CouchDB. Morphs are serialized in JSON after a linearizing preprocessing, as
already mentioned above. One core concept of WebCards is that all user actions are
recorded in command objects.7 This enables the synchronous collaboration via opera-
tional transformations and it provides an undo capability because the commands can
be reverted. Because the commands are also stored in the CouchDB, asynchronous
collaboration is also possible. In combination with undo, this creates an implicit ver-
sion control mechanism in based on the command objects. The CouchDB document
IDs that are assigned to each morph on a card are similar to the object names as-
signed by Squot. Difference objects have commonalities with command objects, but
Squot’s differences do not constitute versions—they are only computed on-demand,
since Squot uses a state-based version control approach. In Squot, it is not necessary
to create a command for every single trackable operation that can be applied to an
object, but for the same reason it does not easily support synchronous collaboration,
versions must be created explicitly, and the undoing of operations involves more
work (loading a previous version and deselecting all changes that are not related to
the operation that should be undone). Creating differences for every user operation
is also either inconvenient (when it limits the actions that users may perform) or
complex (language extensions like HistOOry are necessary). Generally, state-based
storage models in version control systems imply that versions can be loaded in O(1)
time, while change-based storage can imply O(n)worst-case time where n is the size
of the version history. However, for small histories and sufficiently large object graphs
or due to lengthy deserialization procedures, change-based storage can still be faster
in practice, which is why Squot tries to efficiently derive differences whenever it can.
Git tries to get out the best of both worlds as well with its pack file heuristics: recent
versions (which are more likely to be accessed, which is also observed by Dannert)
are stored independently for faster access, while older versions of similar blobs are
stored with a delta compression scheme to save space [8].

An example of a programming environment that does not primarily involve source
code is Simulink8. It can be used to model systems as hierarchical blocks and also
provides simulation capabilities. With Simulink Project, integrations with existing
version control systems are provided, including Subversion and Git [57, 58]. Tools
for resolving conflicts in models (i.e., not text-based content) are also available [46].
While this version control integration is naturally tied to the Simulink product, it
shares some characteristics with Squot’s architecture: multiple backend VCSs are
supported and multiple kinds of objects (non-textual models and textual files) can
be tracked and merged within the programming environment. Because Simulink is
a proprietary product with undisclosed source code, we cannot compare its version
control solution with Squot in more technical detail.

6http://couchdb.apache.org/ (last accessed November 5, 2017).
7cf. command pattern [16, pp. 233 ff.]
8http://www.mathworks.de/products/simulink/ (last accessed November 5, 2017).
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6.2 Tracking and transportation of objects

Vegdahl writes about the challenges involved in moving objects between Smalltalk
images and the implementation of a solution that supports structures with circular
references [71]. The proposed solution is similar to Squeak’s ReferenceStream and
the object references in STON in that it assigns numbers to objects (the numbers
are unique in the stream). All but the first reference to an object are replaced by
the number of that object. The described implementation already contains the con-
cept of “unique objects” that should not be serialized. Rather, the corresponding
unique object in the target system should be put in its place on deserialization. This
is applied to global variables, including classes. Vegdahl also describes the need for
special handling of Sets because it would not be useful to serialize their internal
(implementation-defined) structure. Like in Squot, the objects to be serialized are
themselves in control of the format in which they are written out, although there is
no intermediate snapshot representation.

The Self Transporter is the primarymeans to move objects between Self images [68].
Because Self is a prototype-based language, there are no classes, so the Transporter
is not specific to Self code, unlike most of the Smalltalk version control systems
mentioned above. The Transporter captures objects and transforms them into Self
expressions that recreate the captured objects when evaluated. Ungar notes in his
paper that object graphs are missing some information about the intentions of the
programmers who built the objects, and that these intentions must be recovered
somehow for a proper transportation of objects from one system to another. In Self,
the missing information is stored in annotations to objects and their slots. The Trans-
porter does not provide own facilities for version control. Rather, it is proposed to
share the exported files via any file-based VCS. In this regard, it could be described as
an advanced file-out and file-in mechanism for arbitrary objects in Self. The insights
obtained from developing the Transporter heavily influenced the generic object snap-
shots in Squot and guided the design of object capturing in general.
Parcels are a deployment mechanism for objects and source code in VisualWorks

Smalltalk [47]. It employs a pickling method for fast loading of a parcel and its con-
tained objects into a VisualWorks image. Further, it supports mutual dependencies
among parcels, features partial loading of parcels (in case some prerequisite classes
are not present in the image when a parcel is loaded), and appropriate teardown
when a parcel is unloaded. While there can be multiple versions of a parcel, parcels
itself do not provide a version control system—for this, Store is used in VisualWorks
[7]. Squot is currently not intended to be a deployment facility and focuses on ver-
sion control instead. However, partial loading is an interesting feature that could be
investigated for Squot in the future.

Fuel is a fast binary object serializer for Pharo/Smalltalk and Squeak/Smalltalk [13,
14]. It expands on the fast pickling format of Parcels. To make object materialization
more efficient, objects are clustered in a separate analysis phase before these objects
are actually serialized. As a result, object allocation and materialization can be done
iteratively and in bulks. Like any good serializer, Fuel also addresses at least some
of the issues of object transportation, such as transient state and global objects. Fast
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serialization and deserialization would also benefit Squot, but it must be weighed
against the portability and readability of the file format. Fuel streams are generally
not intended to be portable. Nevertheless, an adapter to Fuel could be added to Squot
as an alternative to the SquotSmartRefStreamSerializer. Fuel’s object graph analysis
hasmany common taskswith Squot’s capturing. It could be investigated in the future
whether there is any potential for code reuse here.

Tanker is a project for Pharo/Smalltalk to export and import classes, traits, and
their methods efficiently. Fuel is used for serialization and materialization, to avoid
the overhead of compilation source code on each import [64]. Thus, Tanker is similar
to Orwell and ENVY in this regard, but Tanker currently does not provide version
control. The need for faster imports/materialization could play a role in future exten-
sions of Squot or uses of FileSystem-Git. Monticello version files also include both a
binary snapshot and the source text of a package. A similar double storage could be
built into Squot, but it must be determined how to balance fast saving and loading
with the tool and platform support of GitHub, for example. The latter will have
problems with the handling (especially merging) of binary snapshots. It might also
be problematic if the binary snapshots get out of synchronization with the primary
(maybe textual) snapshots that can be handled by users outside of Squeak if neces-
sary. Moreover, the binary serializations of Fuel and the compiled bytes of methods
are not portable across all different Smalltalk dialects and virtual machines. There-
fore, binary serializations for faster loading might be more interesting for company-
or group-internal software repositories, complementary to repositories that contain
publishable and portable serializations.

Khoshafian and Copeland describe different levels of identity support in program-
ming and database systems [34]. They note that Smalltalk has a strong concept of
object identity already (with object oriented pointers), but identity is limited tempo-
rally and to the running instance of the Smalltalk system. Moreover, object oriented
pointers are not stable in Squeak because it uses direct pointers and a compacting
garbage collector instead of the object table described for Smalltalk-80, which as-
signs an integer to each object [22, 30]. For comprehensive object identity support,
Khoshafian and Copeland propose to introduce object surrogates that are “system-
generated, globally unique identifiers, completely independent of any physical lo-
cation” [34, p. 413]. The object names that Squot assigns to objects are similar to
such surrogates, but they are not assigned to each object unconditionally and not
already at the time when an object is created. Instead the names are assigned when
objects are captured for the first time and only when it is deemed necessary to assign
a name (although objects must opt out from having a name assigned to avoid it).
More importantly, several snapshot objects might carry the same name in Squot to
denote that they represent the same live object (whether that live object actually
exists in the running system or not).
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6.3 User interface concepts

Tam and Greenberg describe a “theoretical framework for asynchronous change
awareness in collaborative documents and workspaces” [63]. In it, they collect
which kind of information should be made available to users to make them aware of
each other’s changes in a collaborative environment where changes are performed
asynchronously—which is the case with Squot and Git. Not much work to address
change awareness has been put into Squot, except for the displayability and manipu-
lability of differences in tree form. If more sophisticated tools are designed for Squot
and domain-specific snapshots in the future, such a change awareness framework
and related work of it could be a valuable guidance.

De Rosso and Jackson have conducted a conceptual design analysis of Git (primar-
ily of its command line user interface) [12] to find out what conveys the wide-spread
impression that Git is complicated (which is even reiterated in a presentation for
Iceberg9) or at least more complicated than other VCSs. They further attempt a re-
design of Git, called Gitless, to address some of the identified shortcomings [11].
Squot already picks up some of their ideas as described in subsection 4.2.3. Since, in
general, object graphs are more complicated than hierarchically structured source
code and it can be harder to build good user interfaces about them, every possible
step should be taken to avoid unnecessary complexity in Squot’s version control user
interface and concepts, when it does not mean to reduce its power.

6.4 Object merging

Ignat and Norrie describe and compare operation-based and state-based merging
in the case of asynchronous collaborative editing of graphical objects [29]. They
conclude that operation-based merging has advantages in solving conflicts that
would otherwise require manual resolution by users and that it is also more effi-
cient for large documents (i.e., when the number of objects is high). Nevertheless,
Squot basically assumes state-based merging because it fits more naturally with the
snapshot-based (instead of change-based) version control model and there is no API
in Squeak to capture all operations that are performed on an arbitrary object (though,
HistOOry’s indirect references could probably be extended for that purpose). If do-
main objects have the capability to record the trace of operations, they could choose
to capture these operations in the snapshots and store them in the backend VCS.
They could then use the operations in the snapshots to perform operation-based
merging. However, the serialized operations may be unpractical to handle for users
(unless both the final state and the operations that lead there are stored), and they
may be hard to merge on GitHub where only line-based text merge tools (and man-
ual editing) are available. Despite being state-based, Squot tries to make use of the

9https://www.slideshare.net/esug/iceberg-bringing-next-generation-source-versioning-to-pharo,
slide 13 (last accessed November 5, 2017).
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efficiency advantage of operation-based approaches by computing the differences
between snapshots first (which can sometimes avoid to process the whole snapshot,
when information from the backend VCS can be utilized) and applying those in-
stead of processing whole snapshots. Thus, different “operations” than originally
performed by users are generated, so there is no advantage for merging as in truly
operation-based merges. Another difference between Squot and [29] is that in the
latter, the versioned (graphical) objects are trees, while Squot has to deal with more
general graphs of objects.

Lindholm describes how three-way merges can be performed for XML docu-
ments [41]. Even though XML infosets10are also trees, and thus only a subset of
what Squot should eventually support to merge, this paper and its related work are
further sources to consider when a merge implementation for arbitrary objects in
Squot will be devised. XML documents are described as “ordered trees with labelled
nodes” [41, p. 3]. Labels are already provided by Squot in the form of object names,
so the findings about XML merges could be useful when merging object graphs that
include collections that have an ordering.

10http://www.w3.org/TR/xml-infoset/ (last accessed November 5, 2017).
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We set out to devise a solution to the problem that, in exploratory programming
environments that are built around objects, regular (non-code) objects are either
precluded from specialized version control solutions, or that version control is not
integrated with the programming environment because an export and import step
separates the version control system from the programming environment. Existing
version control technology should be reused to provide insurances for robustness
and tool support. Ultimately, version control for objects should be as practical and
accessible as it is for files today, or even better.

With the architecture presented in this report, a first step towards that goal has
been made. It provides a framework for modeling other editions of objects and
comparing themwith each other. A generic solution to track arbitrary kinds of objects
is provided, so the effort of versioning a new objects is kept low. When a more
specialized way to handle different editions of an object is needed, the architecture
provides variation points, so that custom software can supply their own formats of
snapshots and serializations. The prototype implementation Squot proves that the
architecture is functional and that the status-quo on object version control could be
improved in Squeak/Smalltalk. By building on the ideas of Pur [35], the architecture
is not tied too closely to Git to be portable to another backend version control system.

The journey towards a product thatmakes version control for objects feel as natural
as it has become for files has not come to an end yet; there is still room for improve-
ment. To provide a fully-functional version control experience for objects, merging
facilities for arbitrary objects must still be implemented. In general, a number of
tools needs to be added to Squot to make snapshots of object graphs and differences
between them easier to understand. Other open issues are discussed in chapter 5.
The prototype could be extended with additional, useful features, such as support
for ignoring certain changes to tracked objects when they are captured. This would
allow users to keep some changes (e.g., customizations and hacks) private in their
own working copies of these objects.

To further validate the applicability and generality of the proposed architecture,
an implementation in another exploratory programming environment could be un-
dertaken. While the Lively Kernel already supports to manage versions of objects, it
could be examined how the solution in this report can be mapped to support and
extend Lively’s approach to that challenge. To port Squot to a different Smalltalk
system would likely be a smaller step; whether or how Squot can help to exchange
libraries of objects between different Smalltalks could be investigated. It could also
be interesting to see whether additional requirements arise when interoperability is
considered or how snapshots and file formats might change to suit that need. More
abstract forms of snapshots could be needed, to materialize different kinds objects
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depending on the target environment. It could be possible to capture a graphical tool
that displays data such that it could be rematerialized in a different environment
using a different implementation of windows and widgets. Possible questions re-
garding the used file formats are: Would the formats tend to be more general and be
used for diverse kinds of objects (think of XML, ASN.1,1 or RDF2), or would many
domain specific formats emerge?

The availability of a working library to directly manipulate Git repositories from
Smalltalk (which is fulfilled by both FileSystem-Git and Pharo’s binding to libgit2)
paves the way for further ideas on how the two technologies might complement
each other. For example, it might be investigated whether Git repositories (or other
better-known version control systems) can be used to replace the changes file (that
accompanies each Squeak image) to an advantage, like ENVY libraries replaced
changes files. Another area for experimentation is whether fine-grained version
control (as defined in some related work [43, 65], where all objects can have their
own history) can somehow be combinedwith Git’s historymodel and, thus, bemade
easily usable with tools and platforms like GitHub.

1Abstract Syntax Notation One.
2Resource Description Framework.
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