
Continuous Selective Testing

Bastian Steinert, Michael Haupt, Robert Krahn, and Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute

University of Potsdam, Germany
firstname.lastname@hpi.uni-potsdam.de

Abstract. A manual and explicit activity, the frequent selection and
execution of tests requires considerable discipline. Our approach auto-
matically derives a subset of tests based on actual modifications to the
code base at hand, then continuously executes them transparently in
the background, and so supports developers in instantly assessing the
effect of their coding activities with respect to the overall set of unit
tests to be passed. We apply techniques of selective regression testing,
mainly relying on dynamic analysis. By taking advantage of the inter-
nal program representation available in IDEs, we do not need to rely on
expensive comparisons of different program versions to detect modified
code entities.

1 Introduction

Test-driven development [5] (TDD) is a cornerstone of agile software development
methodologies such as Extreme Programming [22] (XP). This technique suggests
to write test cases before the code they are intended to cover. Written first, tests
serve multiple purposes. First, they represent a specification for the system to be
developed. Next, they document the system and help other developers in compre-
hending the system. Finally, they ensure that every single change violating one of
the required features described in the executable form of a test is reported.

While testing is an important part of regular development activities, Inte-
grated Development Environments (IDEs) have little support for selecting and
(re)executing tests relevant with respect to modifications applied to the system
under development [18].

There are a few approaches that support (re)running the test suite automati-
cally every time a file is saved in the IDE [29,18]. However, test selection as such
is traditionally not performed: it is always the complete test suite that is run,
including irrelevant tests, leading to an execution overhead that is larger than it
actually needs to be.

For that reason, developers often manually select a few tests that seem ap-
propriate, run them explicitly, and wait for feedback. The manual, regular, and
explicit selection and execution of tests requires considerable discipline. More-
over, success is guaranteed only if no relevant test cases are omitted in the
selection. A solution that automatically selects test cases to be executed in the
background based on the applied changes to source code is preferable.

A. Sillitti et al. (Eds.): XP 2010, LNBIP 48, pp. 132–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Continuous Selective Testing 133

Approaches to test case selection are established: Selective regression testing
[26] has long been a subject of research. Selective regression testing is concerned
with reducing the set of tests that need to be executed to detect failures caused
by recent modifications to the code base. However, researchers have not yet
investigated the potential of integrating this technique into an IDE and having
selected tests execute continuously in the background.

We suggest to select and execute tests automatically whenever the code status
demands this. More precisely, it would be desirable to have support for TDD
that, whenever source code is changed, automatically executes exactly those tests
that are affected by the actual modification, giving developers instant feedback on
whether the applied change breaks something or not.

In this paper, we propose our approach to continuous selective testing (CST)
and present an implementation thereof in Squeak Smalltalk1 [21]. Using an im-
plementation of the suggested approach, developers will be supported as follows:

– Sets of relevant tests are selected based on dynamic analysis during the
regular execution of tests.

– Relevant tests are executed continuously in the background after every mod-
ification to the code base.

– Developers are instantly informed about places in code that, resulting from
an applied change, are no longer covered by tests.

– The introduction of new defects is made apparent immediately, which in
turn lets developers focus on problems right away.

With that, our approach significantly improves on the way IDE tools provide
immediate feedback in a development process adopting TDD. The main contri-
butions of this paper are as follows:

– We present continuous selective testing as an approach relieving developers
from the burden to select and run tests explicitly.

– We describe how test case selection in general can benefit from the internal
program representation already available in IDEs and how differencing of
two versions of a program can be avoided.

– We describe our approach to test case selection based on dynamic analysis,
being not limited to statically-typed languages.

The remainder of this paper is organized as follows. The next section briefly
summarizes TDD and presents the state of the art in tool support for it, provid-
ing further motivation for CST, which is presented and evaluated in Secs. 3 and
4. Related work is discussed in Sec. 5; Sec. 6 summarizes the paper and outlines
future work.

2 Background and Motivation

In this section, we briefly introduce the terms and concepts of TDD. We then
discuss current practices of developing tests and application code in accordance

1 www.squeak.org

www.squeak.org

134 B. Steinert et al.

with TDD and point out the need for better tool support. Afterwards, we intro-
duce the concepts of regression test selection and discuss current approaches.

2.1 The Three Phases of Test-Driven Development

Test-driven development distinguishes three phases of development [5]:

Red. Tests are written that specify new requirements on the system in an
executable manner. When these new tests are run for the first time, failures
or errors occur, as the system does not yet support the new requirements.
An important guideline is to avoid writing application code if there is no
test case that fails.

Green. The developer adds the required code to the system to make the failed
test “green”, i. e., run successfully. It is crucial that the developer write
only code essential to the test in question. A successful test signals that the
developer is done implementing the new requirement. It might happen that
no code has to be added to make the test green, as the system already covers
the newly defined requirement.

Refactor. The developer refactors towards the simplest design they can imag-
ine. By definition of refactoring [13], new functionality must not be added
during this phase. The tests can ensure that all required and specified fea-
tures work after a refactoring. Running tests after each and every little
change helps to avoid breaking features and provides instant feedback.

We can observe that tests and the regular execution of tests play an important
role when developers employ the principles of TDD.

2.2 Tool Support for Test-Driven Development

Best practices in working with tests suggest to make only small changes and run
tests immediately afterwards to get feedback. This suggestion is based, amongst
others, on the following observations:

– Implementing new application functionality is a very complex activity. As
every single step is inherently fault-prone, regular feedback is essential for
detecting faults.

– Modifying source code without breaking existing functionality is also diffi-
cult. Adapting source code to new requirements or refactoring source code
to a simpler design requires very detailed understanding, which to acquire
is hard since source code abstracts from concrete execution paths. Having
tests covering all parts of the respective code entities and running these tests
regularly helps to detect faults early.

– The more steps are passed without getting feedback, the more difficult locat-
ing the source of a fault becomes. When a couple of source code entities are
changed without running tests, and one ore more tests fail later on, isolating
the modification that has caused the failure is not straightforward. Typically,
developers are unaware of the complete set of modifications done before run-
ning the tests. Moreover, multiple failures might have different causes and

Continuous Selective Testing 135

combinations of modifications might lead to completely unexpected behav-
ior. To locate the defects, developers can revert modifications step by step
or debug the current version. Both ways are tedious and time-consuming.

Running tests often and regularly helps developers to detect faults early, reduces
the time required to localize defects, and gives confidence for the next adaptions
and refactorings. However, running tests as often and regularly as suggested
requires much discipline.

The necessary discipline is sometimes hard to bring up, for apprentices as well
as experts. It is all too easy to ignore TDD theory, though well-understood and
accepted, and continue modifying code without running tests. It is not necessarily
only external factors, such as project schedules, that influence such decisions, but
also internal ones like the strong will to finish a task. These aspects contradict
with the required discipline.

Another issue with the theory of testing and test-first development is the
implicitness of the relationship between test cases and application code they
cover. When code is refactored or new features are implemented, existing code
has to be modified. However, while developers are aware of recently implemented
tests, they cannot know the set of all tests relying on a particular method. Hence,
developers do not know the set of tests to be executed after a modification of a
particular method. Consequently, all tests should be run after each modification,
which is, however, increasingly time-consuming as projects grow. As a result of
this, developers run only some tests regularly and the suite of tests is rarely
executed, e. g., during integration builds.

Both aspects discussed above, the implicitness of the relationship between test
cases and application code as well as the discipline required to run tests after
each modification, question the usefulness of tests and test-first development.
Our work provides tool support for TDD that alleviates these limitations and
strengthens the benefits of testing.

3 Continuous Test Queuing, Selecting, and
(Re-)Executing

In this section, we describe our approach to continuous selective testing called
CST. It enables the continuous execution of selected tests directly after code
modifications. Such automation relieves developers from the burden of executing
tests manually. Selecting a subset of all tests and omitting those that cannot
reveal faults reduces execution time and helps to provide feedback instantly. We
have implemented the suggested approach in Squeak Smalltalk.

In the following, we will first introduce the concepts of regression test selection
and then present the use of the IDE’s program representation to detect and
handle modifications to the code base. After that, we describe the queuing of
tests and the selection and (re-)execution of tests according to the modification
at hand. Finally, we present our extensions to the IDE providing instant feedback
on test results.

136 B. Steinert et al.

3.1 Regression Test Selection

Regression testing refers to the practice of validating modified software; in par-
ticular, asserting that applied changes do not affect the software adversely [17].
The simplest approach to regression testing is to reuse the test suite used to
exercise the previous version of the software. Fully running a large test suite can
be unnecessarily costly, e. g., if only a few parts of the system were changed.

A technique to reduce the number of tests is regression test selection. It selects
tests that have to be re-run to reveal a fault resulting from a particular change.
Selecting an optimal set of tests is, however, generally inefficient [26]. Still, the
set of tests traversing modifications can be computed efficiently. This set of
modification-traversing tests can be considered a superset of the fault-revealing
tests when the Proper Regression Testing Assumption [26] holds (P refers to a
program and P ′ refers to the modified version of this program):

When P ′ is tested with t, we hold all factors that might influence the
output of P ′, except for the code in P ′, constant with respect to their
states when we tested P with t.

A regression test selection technique is furthermore considered safe if it ensures
to not omit tests revealing faults [17]. Several safe techniques have been proposed
for purely procedural (e. g., [2,11,27]) as well as for object-oriented programming
languages (e. g., [28,17]). Object-oriented programming is special as inheritance,
polymorphism and thus late-binding have to be considered.

The most efficient and safe test selection technique is based on detecting
modified code entities, such as functions or storage locations [26]. This technique
was first implemented in TestTube [11] for software written in C. The technique is
based on dynamic analysis [3]; test coverage information are recorded during each
test run. For a new version of a software, the set of modified code entities can be
detected. Based on coverage information, the technique selects and re-executes
all tests that exercised the modified code entities in the previous version of the
software. For object-oriented languages, the modified entity selection technique
requires additional considerations due to language features such as inheritance
and polymorphism enabling late binding.

Our approach, CST, is based on this technique of detecting modified code
entities. CST records coverage information and selects tests on a method level.
This procedure may select tests that do not traverse the modifications, because
a test might only traverse unmodified parts of a method, for example. However,
tracing on a more fine-grained level is much more expensive and does not pay
off unless methods contain many control blocks [6].

3.2 Propagating Modifications to the Code Base

Most approaches to test selection are based on comparing the new with an ear-
lier program version to detect change entities. Our approach takes advantage of
an IDE’s internal program representation. Fig. 1, on the left, depicts the setup
of traditional approaches. IDE and test tools are not integrated and do not work

Continuous Selective Testing 137

!"#$#!"#$#

!"#$#!"#$#

E

Fig. 1. The left-hand side shows a traditional setup where test selection tools and IDE
work independently of each other. The right-hand side depicts CST integrating test
selection into the IDE and taking advantage of the internal program representation.

together, each of them works rather separately on external program represen-
tations. In this setup, however, a test selection technique requires a comparison
of program versions to detect modifications between two versions of a software.
There exist differencing concepts and tool for both source code [1,17] and byte
code [20].

We suggest to better integrate the tools for testing and test selection into
the IDE as depicted on the right of Fig. 1. Every modification applied to the
code base can produce an event notifying the IDE about the respective change.
Using this notification mechanism, the test tools can process each modification
to the code base. The tools are now able, for example, to automatically select
and re-execute a set of test cases as necessary for the modification applied.

The set of events used to propagate code modifications to IDE tools has to
be designed for the particular programming language and IDE, respecting the
features of the language and the architecture of the IDE. In Squeak Smalltalk,
for example, there are basically two operations to create or modify code objects.
Sending a subclass-message to a class c creates a new or modifies an already ex-
isting subclass of class c. Sending the compile: message to a class object allows to
compile a source code text of a method and puts it in the method dictionary of
the corresponding class. Based on the effects of this two operations, the follow-
ing change events can be defined for the Smalltalk [14] programming language,
which is a rather simple language and does, for example, not provide any visi-
bility modifiers; class added, class removed, superclass changed, instance variable
added, instance variable removed, method added, method modified, and method
removed. Note that class-specific (“static”) state or behavior do not require spe-
cial treatment as classes are also normal objects whose state and behavior are
defined by meta-classes.

3.3 Queuing and Executing Tests for TDD

CST builds upon a well-defined set of different kinds of modification to the
system. The event mechanism described above, with the possible modification

138 B. Steinert et al.

B

A

C

Fig. 2. An extended code browser in Squeak; having an additional panel on the right
(A) that shows test cases covering the selected method named classRemoved:. Uncov-
ered classes and methods are highlighted (B). A new widget (C) informs the developer
on the current status of the test runner; whether it is currently running tests, and
about the number of tests that have failed.

events it includes, allows for the continuous selection and execution of tests
according to the current state of development.

Our approach distinguishes code entity modifications by their referal to test
case code or non-test code. By convention, those methods of a class extending
TestCase that are prefixed with test are treated as test case methods. Source
code entities of test classes that are non-test methods, that is, attributes, setUp,
tearDown, and other utility methods, are treated equally to application code.

When the creation of a test case method or modifications to one are reported,
the developer is assumed to be in the red phase of the TDD cycle. The test
runner will immediately execute the corresponding test case and provide instant
feedback on the result. If the test fails, it will be queued. Failed test cases will
be re-executed whenever a modification not related to a test method is reported.
Now the developer is expected to be in the green or refactor phase, so the change
has the potential to fix a test. All tests that still fail stay in the queue. A change of
an entity can fix one or more tests cases, but the change can also introduce a fault
that breaks other test cases. All test cases that might be affected by the reported
change need to be re-executed. A technique to select the corresponding test cases
is presented in the next subsection. The tests in the queue, failed before, are run
first, providing earlier feedback on whether the current modification makes the
failed test(s) pass.

To provide feedback on the test runs, we extended the tools for browsing and
editing code. Whenever a modification is reported and the test runner executes

Continuous Selective Testing 139

Table 1. Test selection procedures to be performed on entity modification events

Event Application Class TestCase Class

class c
removed

for each method of c, perform pro-
cedure for removing non-test meth-
ods (see below)

for each test and non-test method
of c, perform procedure for remov-
ing respective methods (see below)

superclass of
class c
changed

re-run tests covering non-test
methods in c and subclasses of c

see left; additionally, re-run tests
defined in c and subclasses of c

Event Application Method Test Method

method m
added to
class c

re-run tests covering overridden
methods with dynamic type c and
tests covering overriding methods

run corresponding test case

method m
removed

re-run covering tests remove coverage links; remove from
list of failed tests

method m
modified

re-run covering tests re-run corresponding test case

tests, a newly introduced GUI widget will inform the developer about the test
runner’s activities and the current status of the test result (Fig. 2). The widget
turns red as soon as one test has failed. Tests are executed in a background
process allowing the developer to navigate to the next code entity of interest
and start editing it.

3.4 Re-executing Selected Tests for OO Software

The set of tests to be re-executed for an applied change should be minimized.
CST relies on collecting test coverage information, and using this information to
select tests that might be affected by a modification.

Using this coverage information of previous test runs, the CST tools can
determine the set of tests that is to be re-executed for any reported change. The
algorithms for the different kinds of changes are provided in table 1. Selecting the
test cases that might be affected by a reported change is a two-step procedure:

1. If a non-test method is modified, the test runner collects and re-executes all
test cases that covered this method previously. Therefore, the test runner
can simply navigate the coverage relationship between the corresponding
method objects.

2. CST also deals with modifications such as adding a method or changing
the superclass that might affect late-bound method invocations. When, for
example, an application method m′ is added to a class c′, and m′ overrides
a method m in a superclass c, CST will execute tests that have covered
m′. More precisely, it will select those tests that previously exercised m for
instances of c.

As mentioned above, the set of meaningful events, which reports modified code
entities, may vary between languages providing different sets of features. The

140 B. Steinert et al.

algorithms to be applied to determine a safe set of tests may vary as well. If
the language supports multiple inheritance, for example, the algorithms have to
consider the possibility of multiple superclasses and the respective linearization
order applied to method dispatch.

As pointed out in [17], a safe test selection technique for object-oriented soft-
ware must also consider exception handling. CST allows to consider exceptions
similarly to other code entities. A basic method constructing an exception object
needs to be instrumented; for instance, default constructors in Java, or basicNew
in Smalltalk. Using the receiver’s dynamic type recorded for each method call,
we can determine whether an exception was created and thrown during the ex-
ecution of a test case. If the exception class hierarchy is changed, all test cases
that might be affected can be identified easily.

3.5 Establishing a Coverage Relationship

Test coverage information used for test selection is collected during regular test
execution. We decided to collect this information only for packages and classes of
interest. This typically excludes basic development classes such as the collection
or system libraries. The selection of relevant packages and exclusion of others
avoids unnecessary overhead [15]. To record method coverage information, we
use method wrappers [8]. Actual method code is wrapped in tracing code that
records the call of the wrapped method in the context of the currently running
test case, and forwards the sent message to the wrapped method afterwards.

Test coverage information is integrated into the IDE’s program representa-
tion. In CST, we establish and maintain a coverage relationship between test
case methods and methods covered during test execution, as depicted in Fig. 3.
Here, we generally refer to objects representing methods in the IDE; Squeak
Smalltalk provides so-called CompiledMethod objects to reflect upon and work
with methods in the system.

Employing the test-first principle and using CST, tests run frequently and the
coverage relationship has to be maintained for test runs. To avoid unnecessary

Fig. 3. The coverage relationship between test methods, included in TestCase classes,
and application methods covered by them

Continuous Selective Testing 141

start-up costs, tracing logic is installed incrementally after each compilation step.
When the developer selects packages and classes of interest, wrapper logic is ini-
tially installed. If source code entities matching the selection criteria are added,
they are wrapped directly after creation. This incremental approach avoids the
need to instrument source code for each test run.

Using CST, developers can also be provided with instant feedback regarding
test coverage. Classes and methods that are not covered any more are highlighted
in the code browser (Fig. 2). The feedback supports developers in ensuring high
method coverage. We further extended the code browser with an additional fifth
panel (Fig. 2) that shows all test cases covering the currently selected method.
This extension makes the coverage relationship visible and the applied test se-
lection technique transparent for developers.

4 Evaluation

In the first part of this section, we describe our experience using CST, and its
implementation in Squeak Smalltalk. After that, we report on our experiments
for gaining insights into test set reduction.

4.1 Using CST in Developing CST

From early on, we used our CST tools to develop their next versions. This
bootstrapping allowed us to get feedback on both the suitability of our approach
and the quality of our implementation.

Unsurprisingly and as expected, we made mistakes during development and
introduced defects into our code base in both unit tests and units under test,
leaving us with both false positives and false negatives. Here, our tool served its
purpose well by making us aware of unexpected results immediately after each
method save. With that, and even if the problem itself was sometimes hard to
understand, the cause of the problem becoming apparent was easily recognized
as the last change done to the system.

Using our tools revealed another benefit in the form of obtaining instant
feedback on test coverage after modifications. Getting this information right
away helped to better understand the dynamics of our system and to remove
code that was not needed any longer.

4.2 Test Set Reduction

We were interested in how effectively CST reduces the amount of tests to be
run when a method is modified. We therefore conducted experiments on the
following systems:

CST. The implementation of CST for Squeak Smalltalk (cf. Sec. 4.1).
XP-Forums. A groupware2 supporting collaboration on artifacts specific to dis-

tributed agile software development.
2 http://www.hpi.uni-potsdam.de/swa/projects/xpf

http://www.hpi.uni-potsdam.de/ swa/ projects/ xpf

142 B. Steinert et al.

AweSOM. A virtual machine3 for a Smalltalk dialect, implemented in Squeak.
Seaside 2.8. A Smalltalk-based Web framework.4

For these four very different software systems, we determined the number of tests
covering each method. These tests have to be executed when the corresponding
method is modified. The results and the overall number of tests for the systems
are presented in Table 2. The comparison shows that method coverage analysis
can significantly reduce the number of tests to be executed. It is also interesting
to see that some methods of the systems are only covered by one test whereas
other methods are covered by all tests.

Our test selection technique is the first to record dynamic type information
(DTI) to reduce the set of tests in case of subclass modifications. To evaluate our
assumption that collecting this information is useful, we performed the following
experiment on the systems:

1. Collect those application methods whose classes have at least one subclass,
and which are not overridden.

2. Determine how many tests must be re-run in case a method is overridden in
one of its class’s subclasses.

The results, also presented in Table 2, show that using run-time information
about the actual receivers of a message can significantly reduce the test set size.
We conclude that our test selection technique is both safe, by considering late
binding in OOP, and still very effective.

Table 2. Results of evaluting the effectiveness of test set reduction on four projects

Project Tests
Cov. Tests per Method Savings Using DTI in %

min max median min max median

CST 55 1 55 15 32 100 86

XP-Forums 98 1 95 24 0 100 38

AweSOM 124 1 124 23 3 100 97

Seaside 183 1 75 3 3 100 50

5 Related Work

In this section, we discuss related work on two major aspects considered in this
paper; tool support for TDD in general and regression test selection.

5.1 Tool Support for Test-Driven Development

The Ruby and Ruby on Rails community in particular is very committed to agile
methodologies. The community has reported the combination of several tools5,
3 http://www.hpi.uni-potsdam.de/swa/projects/som
4 http://www.seaside.st
5 http://www.zenspider.com/ZSS/Products/ZenTest/

http://www.hpi.uni-potsdam.de/ swa/ projects/ som
http://www.seaside.st
http://www.zenspider.com/ ZSS/ Products/ ZenTest/

Continuous Selective Testing 143

such as Growl and autotest/autospec, to run tests when a file is saved and notify
developers on test results. Coverage data are collected to reduce the set of tests
to be executed. The applied test selection technique considers modifications on
the granularity of files, thus it may select more than a modified-entity technique.

The authors of [24] present an approach to guide TDD which is complementary
with our approach. TDD-Guide is an IDE-integrated tool that guides develop-
ers in applying TDD. Based on a set of rules, which can be adapted, the tool
processes IDE information about the current development status and informs
developers about compliance with rules; for example, whether they comply with
adding new functionality only if a failing test exists.

The continuous testing approach [29] is especially interesting as it is close to
our intentions. However, we observe notable differences. First of all, it does not
select regression tests but only prioritizes them to allow for a more efficient test
execution and more timely feedback. Change analysis focuses on files instead of
single methods. Conversely, we do restrict the set of test cases to be executed to
those actually covering changed methods.

5.2 Regression Test Selection

Regarding regression test selection, we restrict the discussion of related work to
approaches that support object-oriented programming languages and constructs.
Among these, we identify three dimensions of interest. First, approaches can be
based on source code or binary formats. Second, static or dynamic analysis can
be applied. Third, the granularity of application entities (files, classes, methods,
single statements or expressions) is relevant. The selection strategy in CST is
based on the binary format of compiled-method representations, applies dynamic
analysis, and is fine-grained in that single methods are the units of analysis. To
the best of our knowledge, CST is the first approach to combine these features.

A large family of approaches applies call graph analysis using source code
[4,25,28,17,12,1] or a binary format [10,30,20] of the software. Dedicated mech-
anisms for object-oriented features, e. g., related to selecting test cases for sub-
classes, have also been devised [9,16,23,19,7].

The above maintain an internal representation of the program that enables a
detailed and correct comparison. Call graphs allow for a very fine-grained analy-
sis, down to single statements. Differencing algorithms in these approaches rely
on static source code analysis, effectively restricting the approach to statically
typed languages. Due to applying dynamic code coverage analysis, CST supports
dynamically-typed languages.

Call graph-based approaches are also more precise than CST, which works at
the granularity of single methods, but they are also more expensive [6]
(cf. Sec. 3.1). Generally, good object-oriented programming style suggests to use
small methods and few control structures—the liabilities our less fine-grained
analysis brings about are likely to go unnoticed if these practices are applied.

One of the binary-format approaches mentioned above [20] is also fine-grained,
regarding single methods as analysis units. The main difference to CST is that
the latter applies dynamic analysis to extract actual method coverage data.

144 B. Steinert et al.

Regarding the safety criterion [26,17], we can report that CST is safe, since
coverage analysis as applied therein selects all tests covering changes. In addition,
object-oriented constructs and late binding are honored. Finally, we regard mes-
sage receiver type information to limit the set of tests to execute upon subclass
changes.

6 Summary and Outlook

We have presented CST, our approach to continuous selective testing and an
implementation thereof in Squeak Smalltalk. Using a tool such as CST relieves
developers from selecting and executing tests manually. Based on the actual
modification, a selected set of tests is executed transparently in the background,
reporting instantly on the effect of the applied change with respect to the overall
set of tests to be passed. CST also takes advantage of an IDE’s program repre-
sentations and thus avoids differencing to detect modified code entities. The test
selection technique that we apply is based on dynamic analysis and thus does
not require a statically typed language. It is the first approach to test selection
that makes use of run-time type information to reduce the test set in case of
subclass modifications.

Future work on CST most importantly includes the investigation of techniques
to prioritize selected tests and the integration of an appropriate candidate. We ex-
pect opportunities to reveal faults and inform developers about them even faster.

Acknowledgments. We gratefully acknowledge the financial support of the
Hasso Plattner Design Thinking Research Program for the project “Agile Soft-
ware Development in Virtual Collaboration Environments”.

References

1. Apiwattanapong, T., Orso, A., Harrold, M.J.: JDiff: A differencing technique and
tool for object-oriented programs. Automated Software Engineering 14(1), 3–36
(2007)

2. Ball, T.: On the limit of control flow analysis for regression test selection. ACM
SIGSOFT Software Engineering Notes 23(2), 134–142 (1998)

3. Ball, T.: The Concept of Dynamic Analysis. In: ESEC/FSE-7: Proceedings of the
7th European Software Engineering Conference held jointly with the 7th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, London,
UK, pp. 216–234. Springer, Heidelberg (1999)

4. Bates, S., Horwitz, S.: Incremental program testing using program dependence
graphs. In: POPL 1993: Proceedings of the 20th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 384–396. ACM, New York
(1993)

5. Beck, K.: Test-driven Development: By Example. Addison-Wesley Professional,
Reading (2003)

6. Bible, J., Rothermel, G., Rosenblum, D.S.: A comparative study of coarse-and fine-
grained safe regression test-selection techniques. ACM Transactions on Software
Engineering and Methodology 10(2), 149–183 (2001)

Continuous Selective Testing 145

7. Binder, R.: Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley, Reading (1999)

8. Brant, J., Foote, B., Johnson, R.E., Roberts, D.: Wrappers to the Rescue.
In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 396–417. Springer, Heidel-
berg (1998)

9. Cheatham, T.J., Mellinger, L.: Testing object-oriented software systems.
In: CSC 1990: Proceedings of the 1990 ACM annual conference on Cooperation,
pp. 161–165. ACM, New York (1990)

10. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regression test selection
with risk analysis. In: CASCON 2002: Proceedings of the 2002 conference of the
Centre for Advanced Studies on Collaborative research, p. 1. IBM Press (2002)

11. Chen, Y.F., Rosenblum, D. S., Vo, K.P.: TestTube: A system for selective regression
testing. In: Proceedings of 16th International Conference on Software Engineering,
1994, ICSE-16, pp. 211–220 (1994)

12. Clarke, P., Malloy, B., Gibson, P.: Using a taxonomy tool to identify changes in
OO software. In: Proceedings of Seventh European Conference on Software Main-
tenance and Reengineering, 2003, pp. 213–222 (2003)

13. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Professional, Reading (1999)

14. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading (1983)

15. Gschwind, T., Oberleitner, J.: Improving Dynamic Data Analysis with Aspect-
Oriented Programming. In: CSMR 2003: Proceedings of the Seventh European
Conference on Software Maintenance and Reengineering, Washington, DC, USA,
pp. 259–268. IEEE Computer Society, Los Alamitos (2003)

16. Harrold, M.J., McGregor, J.D., Fitzpatrick, K.J.: Incremental testing of object-
oriented class structures. In: ICSE 1992: Proceedings of the 14th international
conference on Software engineering, pp. 68–80. ACM, New York (1992)

17. Harrold, M.J., Jones, J.A., Li, T., Liang, D., Orso, A., Pennings, M., Sinha, S.,
Spoon, S.A., Gujarathi, A.: Regression Test Selection for Java software. In: Pro-
ceedings of the 16th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pp. 312–326. ACM, New York (2001)

18. Harrold, M.J., Orso, A.: Retesting Software During Development and Maintenance.
In: Frontiers of Software Maintenance, FoSM 2008, pp. 99–108 (2008)

19. Hsia, P., Li, X., Chenho Kung, D., Hsu, C.T., Li, L., Toyoshima, Y., Chen, C.:
A technique for the selective revalidation of OO software. Journal of Software
Maintenance: Research and Practice 9(4) (1997)

20. Huang, S., Chen, Y., Zhu, J., Li, Z.J., Tan, H.F.: An optimized change-driven
regression testing selection strategy for binary Java applications. In: Proceedings
of the 2009 ACM symposium on Applied Computing, pp. 558–565. ACM, New
York (2009)

21. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the Future: the
Story of Squeak, a Practical Smalltalk Written in Itself. In: Proc. OOPSLA 1997,
pp. 318–326. ACM Press, New York (1997)

22. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Longman, Amsterdam (2004)

23. Kung, D.C., Gao, J., Hsia, P., Toyoshima, Y., Chen, C.: On regression testing of
object-oriented programs. The Journal of Systems & Software 32(1), 21–40 (1996)

24. Mishali, O., Dubinsky, Y., Katz, S.: The TDD-guide training and guidance tool for
test-driven development. In: The International Conference on Agile Processes and

146 B. Steinert et al.

eXtreme Programming in Software Engineering (XP), Limerick, Ireland, Springer,
Heidelberg (2008)

25. Rothermel, G., Harrold, M.J.: A safe, efficient algorithm for regression test se-
lection. In: ICSM ’93: Proceedings of the Conference on Software Maintenance,
Washington, DC, USA, pp. 358–367. IEEE Computer Society Press, Los Alamitos
(1993)

26. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE
Transactions on Software Engineering 22(8), 529–551 (1996)

27. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering and Methodology (TOSEM) 6(2),
173–210 (1997)

28. Rothermel, G., Harrold, M.J., Dedhia, J.: Regression Test Selection for C++ Soft-
ware. Software Testing, Verification & Reliability 10(2), 77–109 (2000)

29. Saff, D., Ernst, M.D.: Reducing wasted development time via continuous testing.
In: ISSRE 2003: Proceedings of the 14th International Symposium on Software
Reliability Engineering, Washington, DC, USA, p. 281. IEEE Computer Society
Press, Los Alamitos (2003)

30. Zheng, J., Robinson, B., Williams, L., Smiley, K.: A process for identifying changes
when source code is not available. In: MPEC 2005: Proceedings of the second
international workshop on Models and processes for the evaluation of off-the-shelf
components, pp. 1–4. ACM, New York (2005)

	Continuous Selective Testing
	Introduction
	Background and Motivation
	The Three Phases of Test-Driven Development
	Tool Support for Test-Driven Development

	Continuous Test Queuing, Selecting, and (Re-)Executing
	Regression Test Selection
	Propagating Modifications to the Code Base
	Queuing and Executing Tests for TDD
	Re-executing Selected Tests for OO Software
	Establishing a Coverage Relationship

	Evaluation
	Using CST in Developing CST
	Test Set Reduction

	Related Work
	Tool Support for Test-Driven Development
	Regression Test Selection

	Summary and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

